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Abstract
Real-world garbage collectors in managed languages are complex.
We investigate whether this complexity is really necessary and
show that by having a different (but wider) interface between the
collector and the developer, we can achieve high performance with
off-the-shelf components for real applications. We propose to as-
semble a memory manager out of multiple, simple collection strate-
gies and to expose the choice of where to use those strategies in the
program to the developer. We describe and evaluate an instantiation
of our design for C. Our prototype allows developers to choose on
a per-type basis whether data should be reference counted or re-
claimed by a tracing collector. While neither strategy is optimised,
our empirical data shows that we can achieve performance that is
competitive with hand-tuned C code for real-world applications.

Categories and Subject Descriptors D.3.4 Programming Lan-
guages [Processors]: Memory management (garbage collection);
D.3.3 Programming Languages [Language Constructs and Fea-
tures]: Dynamic storage management

General Terms Algorithms, Design, Experimentation, Languages,
Performance

Keywords Memory Management; Garbage Collection; Tracing;
Mark-Sweep; Reference Counting

1. Introduction
Automatic memory management, as supported by modern man-
aged languages such as Java, Ruby and Go, offers a great deal of
safety and productivity to developers. Through a simple interface,
an entire class of difficult bugs is removed, improving security and
reliability. Moreover, the best collectors are competitive, both in
throughput and latency, with explicit memory management. How-
ever, the complexity of highly-tuned collectors and the engineering
effort involved in creating them is staggering. For Java, hundreds
of man years were invested into the various collectors that are part
of the Hotspot virtual machine. One reason for this complexity is
that most memory management strategies have pathologies, par-
ticular workloads that will make them perform sub-optimally. To

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISMM’14, June 12, 2014, Edinburgh, United Kingdom.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2921-7/14/06. . . $15.00.
http://dx.doi.org/10.1145/2602988.2602995

avoid these, best-of-breed collectors incorporate sophisticated op-
timisations designed to reduce the likelihood of triggering worst
case behaviour.

The price for all this is a substantial engineering cost, a cost
that puts high-performance memory management out of the reach
of many systems. Languages that are developed by small commu-
nities, such as Ruby, Python or R, young industrial languages such
as Go, or languages such as C for which automated memory man-
agement is not the preferred route, cannot afford such sophisticated
solutions. Implementations of these languages are forced to get by
with basic reference counting or mark-sweep collectors. This com-
plexity also makes tuning a modern collector to work well across
a wide range of benchmarks, or to a specific application, a difficult
task.

In this paper, we investigate whether this complexity is really
necessary. We show that through a different (but wider) interface
between the developer and garbage collector we can achieve high
performance from off-the-shelf components. We modify the de-
veloper’s memory management interface in two ways. Firstly, we
allow multiple memory management strategies to co-exist in the
same program, and secondly we give developers control of the
policy decision of which program values are managed by which
strategy. We refer to this interface as a multi-memory-management
(M3) system.

While this extension adds some burden at the language level, it
allows for a drastic reduction in the complexity of the underlying
runtime system. Instead of highly tuned collectors that require
substantial compiler support, off-the-shelf collector designs can be
used. Furthermore, the design we are proposing is completely opt-
in. If developers specify no annotations, then a default collector
manages all memory, essentially reducing to the current state of
affairs.

We have implemented a prototype M3 system for C that pro-
vides developers the choice between a naive reference counting
collector, or a basic mark-sweep collector. Despite the simplicity
of the components, we are able to achieve close to, or in one case
better than, the performance of explicit memory management. We
chose C for two reasons. First, it allows us to compare directly with
carefully written manual memory management for performance-
oriented applications. Second, our implementation is an existence
proof that it is straightforward to build an M3 prototype from
scratch from off-the-shelf components.

Our work also suggests that through this wider interface, higher
performance with less effort is achievable for language implemen-
tations willing to ask developers for more information. By allow-
ing developers to guide the memory management policy at the lan-
guage level, the collector strategy can be customized to the specific
application, improving performance and avoiding any worst case
behaviour that a fixed policy collector will have.
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We do not expect M3 to be universally applicable, but believe
that in the hands of more experienced developers building systems
where performance is a concern, it can be simpler and achieve
stronger results than current approaches. These are situations where
a great deal of times is already spent tweaking the exposed garbage
collector and run-time settings on deployment.

In addition to describing the design of our system, we conduct
case studies of three programs and evaluate the performance of our
system on each. Our contributions are as follows:
• We identify the benefits in extending the memory management

interface and the requirements a new interface should satisfy.
• We detail one specific design that satisfies this interface.
• We conduct an evaluation of this design on three programs:

Memcached, MOSS and a synthetic web middleware.

The paper is organized as follows. In Section 2, we motivate
the problem with one particular program we believe is ill-served by
current garbage collectors. In Section 3 we detail the requirements
of an M3 system and describe one design point in the space. In
Section 4 we present three case studies, describing how to use an
M3 system with them and evaluate the performance impact. We
describe related work in Section 5 and conclude in Section 6.

2. Background
In this section we provide some background on the performance
characteristics of modern memory management systems and some
further indications that a simpler implementation that provides
more control to developers would have advantages.

Firstly, designers of automatic memory management implemen-
tations are interested in providing collectors that work well across
a broad range of client systems and metrics of success are usu-
ally expressed in terms of average behaviour across a set of stan-
dard benchmarks [13]. And, on average modern collectors work
very well. However, previous work has shown that the efficacy of a
memory management system is highly dependent on the behaviour
of the application and available resources [4, 19, 32]. For example,
Soman et al. [32] showed in their work on the dynamic selection of
the best garbage collector for a specific application that no single
collector was optimal for all benchmarks. In fact, the optimal col-
lector often varies over the life-time of the application. All of this
leads to considerable variance in collector performance over the set
of applications that developers care about.

Anecdotally we have heard stories of software projects that dis-
covered after writing a large amount of code in a particular lan-
guage with a managed implementation that the collector performed
poorly in at least some (and sometimes, many) of the project’s im-
portant use cases. Unfortunately, these projects had few options
for addressing the problem, as memory managers generally expose
control over only a few decisions (e.g., the size of the generations
in a generational collector). Short of the hugely expensive task of
rewriting the code to target a different platform with a different
garbage collector, these projects are effectively stuck with serious
performance issues they cannot address.

We argue that a collector built from off-the-shelf components
but with a wider interface between the developer and the memory
manager would help address some of these issues. By giving devel-
opers a simpler system with easier-to-understand performance, as
well as more control, developers can better reason in advance about
how a proposed system would perform and better address problems
as they arise by changing the collector’s policy.

2.1 An Example: Memcached
In this section we use Memcached as an example of the challenges
facing modern memory management systems. It is also one of our

typedef struct {
uint size; // sizes of items
void *free; // free list
uint free_size; // total free items in list
void **slabs; // array of slab pointers
uint slab_size; // # of allocated slabs
uint slab_limit; // size of slabs array

} slabclass_t;

// global holding our slab classes
static slabclass_t slabclass[MAX_SLAB_CLASSES];

Figure 1. Type and management of slab classes in Memcached.

case studies. Memcached is a high-performance, distributed, in-
memory key-value store, widely used for the task of caching tempo-
rary data in modern web architectures [2]. For example, Facebook
and Twitter make extensive use of the technology to reduce load on
relational database servers and rely on a 99% hit rate to scale to the
massive user bases that they serve [3]. Memcached uses an event-
based architecture, scaling to a large number of cores. The server is
accessed over the network using a client library. Efficient memory
management is critical as Memcached deals with very large heap
sizes and is used in performance sensitive situations where 99th
percentile latency matters. Being able to provide consistent perfor-
mance at all times and with high heap utilization is a necessity.

Memcached is a challenging program for a garbage collector
due to its absolute emphasis on performance and the unpredictable
lifetimes of items in the system. Key-value pairs in the system are
only deallocated for one of three reasons:

1. The client issues a delete command
2. The client issues a set command to update an existing item. In-

ternally Memcached treats this as a delete and new command,
never updating items in place.

3. The maximum memory usage is hit and Memcached frees the
least-recently-used key-value pair to make room for the next
one.

These properties generally make applying the generational hypoth-
esis efficiently very difficult, as the lifetimes are either unpre-
dictable or the oldest items in the system are being deallocated.
Heap sizes in the 10’s of GB and a requirement for low latency
make the problem even more difficult. We believe these charac-
teristics have prevented systems like Memcached from moving to
safer, more productive languages.

In fact, one of our coauthors tried writing a Memcached-like
system in the garbage-collected Go programming language [22]
and ran into exactly these problems. By the time the problems were
apparent, it was too late to consider rewriting the entire code base,
so the system was modified to use a custom allocator and reference
counting scheme written using unsafe primitives. This doubled the
size of the code base and introduced more bugs than had been
encountered in the entire development process up to that point. In
this situation a simpler collector with the usual safety guarantees
but more performance transparency and developer control would
have been much better than the ultimate solution.

Memcached is written in C and uses explicit memory manage-
ment and a few custom allocators to improve performance and han-
dle fragmentation. For the bulk of memory, the key-value store it-
self, it uses a slab allocator with a number of fixed sized allocation
classes for meeting requests, trading external for internal fragmen-
tation, giving O(1) allocation and deallocation routines. The code
for a slab class is shown in Figure 1.
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While challenging, we believe that software such as Mem-
cached would be suitable for automatic memory management if the
developer was able to express the program’s properties to the mem-
ory manager. In our proposed design, the developer can specify that
the memory associated with the key-value store is managed by a
reference counting system while the rest of the system is managed
by a tracing collector. This design is already partially captured in
the Memcached code base, with manual reference counting being
performed on key-value items.

3. Design
In this section we explore the design space for M3 systems and
offer one concrete design. An M3 system must make choices on
the following axes:
• Memory management strategies: multiple approaches for allo-

cation and deallocation of memory.
• Composability: rules and restrictions for composing strategies

in the same program.
• Granularity: the data items to which a strategy can be attached.
• Staging: the times at which a strategy can be selected.

These four dimensions map out the main design choices that must
be addressed by a multi-memory-management proposal. We con-
tend that with the right design, an M3 system can be built from
off-the-shelf components while still allowing developers to achieve
the performance characteristics that they desire.

It is worth pointing out the relation between M3 systems and the
policies implemented by various generational garbage collectors.
Generational collectors offer more than one strategy for allocating
and recovering memory, e.g., a young generation using a semi-
space copying collector with a bump-point allocator and an old
generation managed using a mark-sweep collector with free-lists
for allocation. However, the decision of when to move memory
from one generation to the other is not exposed to the developer
and each object can only change policy once. Instead, after-the-fact
administrators will attempt to tweak a few knobs such as generation
sizing to improve throughput or latency. This work generalizes
these ideas and gives developers control over the choice of strategy.

3.1 Our Design
We present a concrete design of an M3 system inspired by our case
studies. Our design targets C and strives for simplicity, both in its
implementation and cognitive complexity for the developer:
• Two memory management strategies are supported: naive ref-

erence counting and tracing garbage collection.
• The strategies can be freely composed in the same computation.
• The granularity of the strategies is at the type level. We expect

the common case to be that all values of the same type are
managed by the same policy, but developers can choose per
allocation site.

• Strategies are selected at allocation and stay in place for the
lifetime of the data.

3.1.1 Granularity: Using Types
Types are a natural place to attach memory management choices
and they provide a hint to the compiler to generate efficient code
for memory accesses. In our design, each type defaults to tracing
collection, but all types have two implicit variants that give the de-
veloper control. For example, a type stats can be used as follows:

Tracing Ref. Counting
Strategy Batch Incremental
Mutation cost None High
Throughput Low High
Pauses Long Short
Cycles? Yes No

Table 1. Tracing Vs. Reference Counting. Taken from Bacon et
al. [7].

Tracing Ref. Counting
Num. of In-Bound Refs. Large Small
Num. of Out-Bound Refs. Small Large
Expected Lifetime Short Long
Mutation Rate of Refs. High Low
Utilisation of Memory Low High

Table 2. Ideal properties for a node to perform well with Tracing
Vs. Reference Counting

stats st; // default to tracing collector
rc::stats st; // use of reference counting
gc::stats st; // use of tracing collector

Types already capture commonality in the code and this com-
monality usually extends to the best way to manage the underly-
ing memory. While for some very common types, such as primi-
tive types like int and char*, a single ideal memory management
strategy doesn’t exist for all values, simple type aliasing function-
ality is sufficient to deal with this, to allow further specialisation by
use-case. We will discuss the use of types further in Section 3.1.3.

3.1.2 Memory Management Strategies
While there are countless variations on how memory can be re-
claimed in a system we eventually settled on offering the choice
between the two primary viewpoints in today’s systems: reference
counting and tracing.

The reduction of our initial scope to these two strategies is
not surprising in hind-sight, especially when viewing these two
strategies as duals of one-another as suggested by Bacon et al. [7].
The strength and weaknesses of each one complements the other,
as shown in Table 1 where we summarise the trade-offs of each
strategy and in Table 2 where we specify the kinds of nodes in a
heap that work best with one strategy.

3.1.3 Implementation Considerations
For an implementation of our design a number of questions arise,
primarily on what memory management code to generate for a
function and how to deal with pointers crossing from one heap to
the other. A schematic diagram of our design is in Figure 2. Here
we outline the scope of a complete compiler, however, our current
prototype does not automate everything. We also do not evaluate
the performance of pointers crossing heap boundaries thoroughly at
this time. Please refer to Section 4.1 for an overview of the current
prototype.

Code Generation Naive reference counting requires insertion
of code around pointer operations to atomically update reference
counts. A tracing garbage collector does not require any barriers
around pointer accesses. The simplest strategy for combining the
two is to emit checks around all pointer operations. These checks
perform a switch on both where the pointer resides and where it
points to select the appropriate code to execute. The four choices
and the corresponding actions are outlined in Table 3. While these
checks are expensive, we do not expect it to be the common case:
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Stored To Points To Action
Traced Heap Traced Heap Nothing
Traced Heap RC Heap Add to remembered set

RC Heap RC Heap Perform reference counting
RC Heap Traced Heap Perform reference counting

Table 3. Decision of code to execute for creation of new pointers

instead we have found that a division of the types into the reference
counted or traced heap can be easily found that minimises or elimi-
nates the need for the general case. However, the general case does
provide a simple and safe programming model for the developer.

To improve the performance of the common case, we attack it
as a simple optimisation problem: how to specialise code to one
memory management strategy? Currently in our prototype this is
done with a very simple optimiser: we look at all uses of a type in
the code base and if it is only ever used as a traced type then we
can specialise all the code for that type to tracing. If it is used as
both a traced and reference counted type then we optionally issue
a warning and leave the code unspecialised. This design requires
whole program compilation. A straightforward extension would be
to add per-module declarations that certain types are only used
with a specific memory management strategy, enabling separate
compilation.

Heap Boundaries The second issue that we must deal with is
how to handle pointers that reside in one heap but point to values
in the other heap. This boundary crossing problem is exactly the
same issue dealt with in generational collectors where we must
be aware of all pointers from the old generation pointing into the
young generation. We have two cases to handle:

1. Pointers in the traced heap (TH) pointing to the reference
counted heap (RC); and

2. Pointers in the reference counted heap pointing to the traced
heap.

TH to RC Pointers For the first case, we simply update the
tracing collector to be aware of reference counting and perform the
appropriate decrements as a finalization step on collected objects
that point into the reference counted heap. While this approach has
a cost (the tracing collector now exhibits some of the behaviour of a
reference counting implementation, where tracing dead objects and
freeing is a potentially unbounded operation) we do not expect this
to be an issue in practice. Our assumption is that pointers crossing
heap boundaries will be rare and that a large number of them is
a sign of an inappropriate decision by the developer on how to
specialise the types.

RC to TH Pointers For the second case, we adopt a similar solu-
tion to generational collectors and make use of a remembered set
for augmenting the root set of the tracing collector. We can do this
efficiently as we are expecting most code to be specialised to a spe-
cific memory management strategy and as such will not pay the
cost of a software or hardware write barrier for all heap operations.
Instead we can simply insert the appropriate code where needed.
There is a significant complication compared to the typical use of
remembered sets in generational garbage collectors, which is that
our remembered set can never be cleared. In a generational collec-
tor, the remembered set grows between old generation collections
but is reset on each full collection. As we never wish to scan the
reference counted heap, we must instead both add entries to and re-
move entries from our remembered sets and in the worst case they
can grow unbounded. As before, we argue that such a large number
of pointer crossings is a sign of an inappropriate decision by the
developer on how to specialise the types.

TH
+/-1 ref-count

RC

Remembered Set

Figure 2. Schematic of our Multi-Memory-Management Design

4. Case Studies
In order to both shape our design and evaluate it, we undertook case
studies of a number of programs, the results of which we explore in
this section. The studies include Memcached, a high-performance
in-memory key-value store, MOSS, a plagiarism detection tool and
finally a synthetic example that models the behaviour of a typical
middleware service in a modern web stack. For each of these
studies, we specify the heap organization, how we divided it up
in our system and the results of a performance evaluation.

As our implementation is for C, we evaluate each of our case
studies against an explicit memory management version. This sets
an accurate and very competitive baseline. The small delta be-
tween the explicit memory management version and our M3 ver-
sion shows the performance achievable with our approach. It also
suggests that M3 could be used by developers of currently explicit
memory management systems to improve safety while retaining
performance.

4.1 Implementation
As we have set out to explore the viability of a memory manage-
ment system using off-the-shelf components, we have pursued a
simple implementation. Despite this, even in its current state it is
able to show competitive performance.

For our mark-sweep tracing collector we use the Boehm-Weiser
garbage collector [14, 15]. For our reference counting implementa-
tion we utilize C++11’s shared_ptr feature [25]. To handle point-
ers from the traced to RC heap we manually add a finalizer onto
the traced object at allocation, where the finalizer knows how to
decrement the RC pointer. In a complete implementation, the trac-
ing collector would instead perform the decrement directly to the
RC object during the sweep phase.

The Boehm-Weiser collector provides a mature implementation
that supports parallel and incremental collection [16]. It is a con-
servative collector designed to operate against C/C++ programs.
We use the collector in parallel mode with incremental collection
disabled to keep it as simple as possible.

Our reference counting implementation using shared_ptr’s
provides a naive reference counting collector. Shared pointers im-
plement reference counting by adding a second level of indirection,
with the reference count being stored at this second level and the
managed object left unmodified. This is costly in terms of the sec-
ond indirection we pay on these pointers but provides a very simple
and easy way to integrate it with the rest of the system since the un-
derlying representation of values isn’t changed. This also allows
easy handling of interior pointers, as a shared_ptr acts as a fat
pointer, retaining both a pointer to the start of the object and one to
the current offset.

Unless otherwise noted, memory for the mark-sweep heap is al-
located using the allocator provided by the Boehm-Weiser collec-
tor while memory for the reference counted heap is allocated using
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the malloc and free routines provided by GNU C library (glibc)
2.18.1 [1].

4.2 Memcached
Memcached is a high-performance, distributed, in-memory key-
value store that is widely used for the task of caching temporary
data in modern web architectures. We introduced Memcached in
Section 2.1.

The heap of Memcached can be largely divided into two distinct
components: the management of the key-value pairs themselves
and the rest. The key-value pairs are managed by a typical slab-
allocator design, giving O(1) allocation and deallocation behaviour
by trading external fragmentation for internal fragmentation. The
rest consists of thread data structures, configuration details, server
statistics, and connection and buffer handling. These are all man-
aged by a variety of free-list allocators for each type. Some client
commands, such as statistics collection, also generate variable and
short lived data. A schematic of the heap organization can be seen
in Figure 3.

4.2.1 Applying a Multi-Memory-Management System
We split the heap of Memcached in a simple way: memory retrieved
from the slab allocator for use in storing key-value pairs is reference
counted, while the rest of the system is traced. We achieve this
by having the slab allocator return reference counted pointers and
using a destructor method for them that returns memory to the
appropriate slab.

This design removes the bulk of the memory from consideration
by the tracing collector, which allows us to scale to very large heap
sizes with high utilization while maintaining low latency and high
throughput. We remove the use of free-lists for managing the rest of
the memory such as connections and buffers, instead simply relying
on the tracing collector. The modifications needed to the types and
allocation routines to achieve this are shown in Figure 4.

The traced and reference counted heaps are largely separated
in this design, with only one pointer potentially existing per con-
nection from the traced heap to the reference counted heap. Each
connection object holds a pointer to an item in the key-value store
that corresponds to the item the connection is currently processing
for either a get or set request. As such, the number of these point-
ers is in practice bound to a fairly low number as it isn’t reasonable
to expect a Memcached server to deal with much in excess of a few
thousand connections.

4.2.2 Evaluation
We evaluate the results of our system with Memcached using two
different metrics, the total throughput of the server and the worst-
case latency. For Memcached we evaluate three different variants;
firstly, the original, explicit memory management version; sec-
ondly, a fully traced version; and thirdly, the M3 version. We use
two servers for the evaluation, one running Memcached and one
running the client. Both are 12 core 2.27GHz Intel Xeon L5640
machines connected via 10 gigabit Ethernet.

The throughput results are presented in Table 4. In this setup
we initially load 100,000 key-value pairs into the server and then
perform as many get requests as possible for a 5 minute period.
For the tracing garbage collector, we invoke a collection every 10
seconds. The small heap size however makes this very cheap and
indeed we can increase the frequency further with no impact. The
main point is to measure the cost of using reference counting in our
M3 system.

The results demonstrate that all three versions are able to
achieve the same level of throughput with approximately 1.73M
requests per second.

// new aliases for RC.
typedef char* slab_t;
typedef slab_t* slablist_t;

typedef struct {
uint size; // sizes of items
slab_t free; // free list
uint free_size; // total free items in list
slablist_t slabs; // array of slab pointers
uint slab_size; // # of allocated slabs
uint slab_limit; // size of slabs array

} slabclass_t;

// global holding our slab classes
static slabclass_t slabclass[MAX_SLAB_CLASSES];

// slab allocation
static int slabs_alloc(const unsigned int id) {

// declare reference counted allocation
rc::slab_t ptr;

slabclass_t *p = slabclass[id];
if ((mem_malloced + len > mem_limit && p->slab_size > 0) ||

(grow_slab_list(id) == 0) ||
((ptr = malloc((size_t)len)) == 0)) {
MEMCACHED_SLABS_SLABCLASS_ALLOCATE_FAILED(id);
return 0;

}
p->slabs[p->slab_size++] = ptr;
mem_malloced += len;
MEMCACHED_SLABS_SLABCLASS_ALLOCATE(id);
return 1;

}

Figure 4. Modifications to the slab Type’s and allocation routines.
Compare with Figure 1.

Memcached Version Request Per Second
Explicit 1,728,240
Full Tracing 1,722,577
M3 1,730,996

Table 4. Throughput performance of the various versions of Mem-
cached. We performed get requests with a 50MB heap and manu-
ally invoked the tracing collector every 10 seconds.

For measuring latency we model the behaviour of Memcached
in a production environment under increasing heap sizes. To do this,
we utilise a third machine to generate load, performing 400,000
requests per second with a mixture of 90% get and 10% set

requests. Performing this over a 7 minute window grows the heap
in a linear fashion from nothing to 4GB. Our original client now
functions as a latency sampler, sending 5,000 get requests per
second during the experiment and recording the 20 worst latency
samples. A graph of the additions into this set over the course of the
experiment is shown in Figure 5. Here we let the tracing collector
decide on its own when to collect. The 5 worst samples are shown in
Table 5. Here we see where our M3 system can bring real benefits,
with latency largely matching the performance of explicit memory
management and greatly improving on the full tracing design. It is
also worth pointing out that our evaluation only went to a heap of
4GB, a small size when modern servers come with 40GB - 1TB of
memory.
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Figure 5. Latency of worst response-time as we slowly increase
the heap of Memcached by performing a mix of 90% get requests
and 10% set requests at an approximate rate of 400,000 requests
per second.

Memcached Version 5 4 3 2 1
Explicit 51 51 54 54 66
Full Tracing 83 88 147 263 263
M3 51 51 51 51 53

Table 5. The 5 worst latency measurements (ms) for different
versions of Memcached. These were taken over the course of 7
minutes as we increased the heap from nothing to 4GB.

4.3 MOSS
MOSS is a widely-used plagiarism detection tool in use since 1994
for evaluating the similarity of programs [30]. It is written in C and
uses Gay and Aiken’s region memory manager [20, 21].

What we are proposing is less work for the developer than using
regions, which have been used by systems developers for decades in
C/C++ (often under different names, usually "arenas" or "zones").
So there is plenty of evidence that developers can deal with this.
The main savings is that the developer does not need to specify

where data should be freed, which is typically the developer’s
responsibility in region-based systems. A cost is that you do not
get the locality benefits of regions—we’re not doing anything about
fragmentation. As future work, regions could be incorporated as
another choice of memory management policy into our approach.

MOSS’s heap organization consists of the following principle
regions:

1. database: A potentially very large array storing information
about the various passages of program text that MOSS is pro-
cessing. An internally linked list is threaded through the array
as well for various ordering operations.

2. index: A secondary array that stores a searchable index for
efficiently looking up the passages in the text database. It is
sized at 1/8th of the text database.

3. files: Stores information about the various files being processed.
4. matches: Stores information on matches among files; largely a

collection of arrays and linked lists.
5. temporary regions: A variety of short lived regions are created

for operations such as sorting subsets of much larger arrays and
linked lists.

The database, index and files regions all have a lifetime equal to
the program itself and as such only ever grow in size and require
allocation but not deallocation. The matches and various tempo-
rary regions are much shorter lived, being created and destroyed
throughout the execution. A diagram of MOSS’s heap organization
can be seen in Figure 6.

4.3.1 Applying a Multi-Memory-Management System
We simply put the text database into the reference counted heap
and the rest is put under the control of the tracing collector. Similar
to Memcached, the bulk of the data is stored in the text database
and little mutation occurs here except for some re-ordering of pas-
sages using the internal linked list. It is not useful moving the index
to the reference counted heap as the indexes are stored as relative
array offsets, not actual pointers, so the tracing collector can deal
efficiently with the index regardless of its size. This requires cre-
ating a new alias for the type involved, passage, but is an easy
change to make given the isolated and limited way the database is
used.

With this division we only end up with a few instances of point-
ers crossing heap boundaries. For the traced to reference counted
direction, which can be handled very efficiently, a pointer for each
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Figure 6. MOSS Heap Organization. Solid lines represent point-
ers, dotted lines implicit pointers through array offsets. The types
stored in each region are also listed.

file read points to its corresponding passages array in the database.
Secondly, for each match we find between two files, a pointer is
created to each passage. No pointers from the reference counted
heap to the traced heap are ever created, as while passage values
exist in both, the existing code already copies such values from the
reference counted database so that it can perform isolated mutation.

4.3.2 Evaluation
The results from an evaluation of MOSS under various configu-
rations are presented in Figure 7. The evaluation is performed by
running MOSS over two different versions of a large source code
repository consisting of 1,255 files and 845,122 lines of code. Pro-
cessing all of this causes MOSS to allocate 2,441MB of memory.
For the versions of MOSS using a collector, we run the experi-
ment over a range of heap sizes, from 800MB, the minimum that
all versions can use, up to 1,400MB. For the M3 version, we size
the reference counted heap at a fixed 670MB, the maximum size
it needs at any point, and the remaining is assigned to the tracing
collector.

We see that at all heap sizes the M3 version of MOSS achieves
the strongest results with a running time of 31.82 seconds on
average across all heap sizes. The region version of MOSS has
a running time of 33.4 seconds and the traced version of MOSS
has a running time between 34.6 - 60.24 seconds. The M3 variant
surprisingly achieves a faster time than the explicit, region version.
This appears to be due to the cost of creating many small temporary
regions compared to the performance of parallel mark-sweep.

The M3 variant is unaffected by the heap size in the range
shown as with the passage database removed from the tracing col-
lectors heap, its collection policy triggers a collection less fre-
quently and each collection is faster. With the collector set to trig-
ger at 85% heap utilization, the traced version of MOSS with an
800MB heap is constantly at that limit since the passage database
is 670MB in size, occupying 83.75% of the heap. With the M3

version, the tracing collector runs without regard for the passage
database since it resides in the reference counted heap, allowing it
to make better policy decisions. This leads the traced version to run
the garbage collector 86 times compared to the M3 version where
it runs only 17 times. While tweaking the policy of the tracing col-
lector could help, this is exactly what we have achieved in the M3

version! Also, even at a 900MB heap when the traced version runs
with a comparable number of collections (15), the higher cost of
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Figure 7. Performance of the various versions of MOSS

collection for tracing the passage database means the traced ver-
sion has a running time of 44.4 seconds.

4.4 Synthetic Middleware
Our third case study is a synthetic program that models the be-
haviour of a typical middleware service in a distributed web stack.
This example is distilled from what is known about a persistent
memory management performance issue in a commercial Internet
service.

The basic design is a request-response architecture that further
generates RPC calls to backend services. Our program has a num-
ber of parameters that can be tuned, all demonstrating various chal-
lenges for memory management systems:

1. Allocation Per Request: We perform a certain amount of al-
location for every request received. Currently we use a tunable
normal distribution for deciding the amount.

2. RPC Delay: We model the RPC calls by inserting delays in
processing. In the production system, the RPC backend is a
separate system.

3. Long Lived Global State: For each request that comes in we
choose a random user id to assign the request to. For each user
in the system we keep statistics at the service on the number and
type of requests performed. The number of users in the system
is tunable.

We believe these parameters accurately model the challenges of
automated memory management in modern systems code and high-
light the complex policy decisions that collectors need to deal with.
The program causes problems for most generational collectors in
the following way:

1. Firstly, the data allocated per request should ideally never be
promoted to the old generation. It is by its nature short lived
and bounded by the number of connections and requests that a
server will handle at any time. However, due to the 99th per-
centile latencies present in a distributed system, it is extremely
hard to size generations correctly to capture these properties.

2. Secondly, as the amount allocated per request can vary, this
presents a problem when it is promoted to the old generation
due to fragmentation and the use of free-lists in nearly all old
generations.
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3. Finally, these two properties over time cause the old generation
to fill up with fragmented and ill-aged data, eventually trigger-
ing a worst-case stop the world compaction collection in many
collector designs (e.g., HotSpot JVM’s CMS collector).

The difficulty of getting the aging policy right through the knobs
provided is key to this issue. The commercial Internet company,
for example, runs a number of their services with 12GB young
generations compared to 4GB old generations in an attempt to
never have memory incorrectly promoted. While this helps, in the
presence of huge variance in 99th percentile latencies and high
throughput it only delays the inevitable.

Unfortunately due to limitations with our implementation we
are unable to demonstrate the effects of varying the 99th percentile
latency of RPC calls and the amount of data allocated per request.
This is because the effect of these parameters, incorrect promo-
tion of memory and fragmentation of the old generation, are only
applicable in a generational system with two styles of collection
and allocation. While the Boehm-Weiser collector has some gener-
ational behaviour in its incremental collection implementation, this
provides neither a separate allocation mechanism nor tracing be-
haviour. Despite these limitations, we are able to show an improve-
ment for our approach over pure tracing or reference counting.

4.4.1 Applying a Multi-Memory-Management System
While we cannot illustrate the specific problem outlined above be-
cause we do not have a generational tracing collector, the synthetic
middleware is still an instructive benchmark. We apply our M3 de-
sign in a straightforward manner: short-lived data associated with
requests are managed by the tracing collector, as are connections
themselves, while the longer lived global state is managed by the
reference counted heap.

While one could object that a generational collector with a trac-
ing, bump-pointer allocator for the young generation and a refer-
ence counting collector for the old generation would also suffice,
we disagree. This would only hold if the aging policy could be
tuned exactly right, a hard problem we believe when considering
the variability of 99th percentile latency in these systems. Even if
the aging and generations can be adjusted to prevent premature ag-
ing, it is likely that this configuration is non-optimal for the bulk
of data that should be handled by the tracing collector that has a
narrow distribution of life-times.

The key point here is the difficulty of tuning a program with
a fixed collection policy. Rather than struggle to do that after the
program has been developed with limited tools (e.g., setting the
generation sizes), we are advocating allowing developers to use
their knowledge of the application-specific characteristics to set
the overall collection policy. That is, instead of a more complex
collector to handle this workload, we show that our M3 system can
achieve high performance from our simple implementation with
only a small amount of developer input.

4.4.2 Evaluation
As with Memcached, we evaluate our M3 system for this case
study on two metrics: throughput and latency. We use the same
setup as before, two machines, one running the synthetic middle-
ware service and the other the client for load generation and sam-
pling. Both machines are 2.27GHz Intel Xeon L5640 connected via
10 gigabit Ethernet.

For throughput we evaluate two different configurations, one
with no bytes allocated per request and another with a fixed 10
bytes allocated per request. These results can be seen in Figure 8. In
both configurations the explicit memory management, full tracing
and M3 versions achieve the same level of performance at 1.86M
req/s. The full reference counting version however only achieves
93% of the performance in the first configuration and 90% in the
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Figure 8. Throughput performance of various versions of our syn-
thetic middleware service. Performance is relative to the explicit
memory management version and consists of two different config-
uration. Firstly, with no allocation per requests and secondly, with
a fixed 10 bytes allocated per request.

second configuration. It is worth highlighting the minimal impact
on performance when we are allocating per-request for the tracing
collector configurations. The work of the mark phase is propor-
tional to the amount of live data and in this system that is bounded
by the number of live requests we are dealing with. While the sweep
phase is proportional to the allocation rate, the cost is far cheaper
than marking due to the memory access patterns.

For evaluating the impact on latency we collected the 10 worst
latency samples across a range of sizes for the number of users
(or long lived data) in the system. We utilize three machines, one
to run the service, one to generate load of 300,000 req/s across
2,000 connections and the final machine for sampling latency by
generating 2,000 req/s. We run the experiment for 10 minutes,
invoking the tracing garbage collector every 1 minute to evaluate
pause times.

The result of the worst recorded latency measure is shown in
Figure 9. As expected the latency of the traced version gets progres-
sively worse as we increase the number of users in the system. The
other three versions all have acceptable latency profiles, staying flat
across the range of heap sizes. The explicit memory management
version achieves a worst case of 2.5ms, the reference counted ver-
sion a worst case of 3.1ms and the M3 version a worst case of
4.5ms. While the M3 version achieves the worst of the three, it is
within acceptable bounds and its throughput performance is 10%
greater than the reference counted version. Critically though, we
have as developers chosen just one point in the possible space of
policies for the M3 version. A developer valuing latency more than
throughput could easily reference count the entire heap.

Our results demonstrate that the M3 version is able to achieve
better latency than the traced version and better throughput than
the reference counted version. Indeed, it is within a small constant
latency overhead of the throughput and latency performance of the
explicit memory management version.

4.5 Summary
In all three of our case studies, the M3 system performs well, with
a flat latency profile and throughput equal to the explicit memory
management or traced version. We believe the key conclusions
from these results are:
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Figure 9. Latency of worst response-time as we increase the
amount of users in the system. This corresponds to more perma-
nent, long-lived data.

1. An M3 system can achieve great performance. In each of our
case studies, our M3 version achieves as good throughput as
the traced version and a flat latency profile very close to the
behaviour of the reference counted version.

2. A little developer control goes a long way. We are able to
achieve the competitive performance that we do with a very
simple implementation that uses off-the-shelf components.

3. An M3 system allows the policy to be expressed by the devel-
oper so that the collector can be customized to the program and
done so after initial program development. While some may
object that the right traditional collector design would achieve
similar results to our M3 design, designing a policy that is ex-
actly right for all programs is at least very difficult; certainly
such a policy has yet to be demonstrated.

5. Related Work
Customisable Memory Management Our closest related work is
by Attardi, Flagella and Idlio on their Customisable Memory Man-
agement framework for C++ [5, 6]. Their work is motivated by
performance and the observation that there is no single ideal col-
lector. Like us, their design gives developers the ability to cus-
tomize the memory management policy by exposing multiple heaps
and allowing developers to choose, on a type-by-type bases, which
heap is responsible for values of that type. They make use of C++
features such as inheritance and operator overloading to provide a
framework that can be customised and extended for mixing various
garbage collection strategies. Unlike our work however, they only
consider tracing collectors, looking at abstracting a mark-sweep
and semi-space collector for example. They also take the approach
of tracing across heap boundaries. Tracing heap A will trace the
reachable set of all pointers starting from the roots of A, regard-
less of if traced objects reside in a different heap. Their system also
doesn’t consider language level support, instead designing a con-
servative collector that can work with the existing C++ language.

Memory Management Toolkits There is a rich history of work in
providing customizable memory allocators through either a richer
interface than malloc or composable layers of simple allocation
routines [8, 33]. They are similar to M3 in their widening of the
interface between the developer and memory manager. However,
they only deal with allocation and unsafe interfaces while our focus

is on safe memory management and choosing between reclamation
strategies.

Similar work has been done for managed languages, providing
toolkits of composable code that can be used to easily build garbage
collectors [11, 24]. We believe this work is complementary to ours
as it would allow rapid experimentation of different collector strate-
gies. It also somewhat addresses the complexity of modern garbage
collectors. Our work differs though in it focus and advocating of a
wider interface between the developer and memory manager, some-
thing not explicitly considered by these toolkits.

Garbage Collection for C/C++ The Boehm-Weiser collector [14,
15] for C/C++ has been designed with the assumption that it does
not control the entire heap of a program. The collector provides
considerable flexibility, safely allowing calls to the libc malloc

and free API’s, as well as the ability to add individual pointers
to the root set. The Boehm-Weiser collector essentially provides
developers two choices of memory management policy: a value can
be placed in the explicitly managed heap or in the GC-managed
heap. There is no language-level support and so the developer must
be very careful not to store the only pointer to a live object in the
traced heap into the explicitly managed heap.

The work of Ellis and Detlefs [18] provides a design of a
language extension to C++ for allowing garbage collection to be
safely integrated with the language. They propose dealing with GC
pointers stored in the explicitly managed heap in the same manner
as us, by using write barriers and remembered sets. Broader in
scope, it also includes the design of a safe subset of C++ that can
support garbage collection efficiently. This proposal has apparently
never been implemented or evaluated.

Hinted Collection Reames and Necula have recently published
work [29] on hinted collection, where the developer can provide
deallocation hints. In their system, a deallocation hint acts as a
performance optimization and has no impact on the correctness
of a program. The collector simply uses the hints to optimize the
ordering and scope for tracing the heap, achieving a reduction in
pause times. They have a single tracing collector managing the
whole heap, rather than exposing different strategies with different
trade-offs as we propose. The work is complementary to ours and
could be used to further optimize the behaviour of the tracing
collector in our system.

Pretenuring Pretenuring [10, 12, 17, 27] allocates objects di-
rectly into the old generation or permanent space in a generation
collector. The performance benefits can be significant if the right
objects are pretenured, as it avoids costs associated with promoting
them from the young generation. The overall memory management
policy is still fixed. Pretenuring is also done through profiler infor-
mation, either online or pre-recorded, and doesn’t attempt to widen
the garbage collection interface for developers.

Garbage Collection Selection Work has been done on the auto-
matic selection of a garbage collection algorithm for a particular
program [19, 32]. Based on characteristics of the program (e.g.,
obtained by profiling) a specific GC algorithm is selected. In some
cases, the choice can be changed dynamically at certain safe execu-
tion points. These works are motivated by the problem that no sin-
gle GC provides the best results for all programs. While we believe
M3 provides a plausible solution to this issue, our motivation is
in exploring the benefits of using several simple strategies to avoid
the complexity associated with modern garbage collectors. In ap-
proach, this line of work exposes no control to the developer and
does not allow different GC designs to be mixed within the same
program.

Reference Counting and Tracing Collectors Previous work has
explored the relationship between reference counting and tracing
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collectors. The work of Bacon, Cheng and Rajan [7] showed that
tracing and reference counting can be seen as duals of each other.
Tracing finds live data and is batch driven in nature, while reference
counting finds dead data and is incremental in nature. Various
collector designs can be seen as combining elements of both to
achieve low latency and high throughput.

The work of Blackburn and McKinley on a garbage collection
design called ‘Ulterior Reference Counting’ [9] explores a gen-
erational collector that traces the young generation and reference
counts the old generation. It is likely that some of our case stud-
ies would perform well with their collector. However, we have no
doubt that there are other realistic systems where their approach
would not perform especially well. Our main point is that the prob-
lem of efficient memory management can be simplified and more
easily achieved if developers are given a modicum of control over
setting the collection policy.

The state-of-the-art for pure reference counting collectors, such
as the work of Shahriyar et al. [31] shows very promising results
with a single collector being competitive across a range of bench-
marks. This work though focuses on pushing the performance of
reference counting collectors and as such greatly increases their
complexity over naive reference counting, counter to our own aim.
The work also doesn’t look at latency, a principle concern in two of
our case studies.

Safe Explicit Memory Management The prior work of Jim et
al. with their safe dialect of C, the Cyclone programming lan-
guage [23, 26], addresses the problem of safe memory manage-
ment with strong developer control. Their work adopts a region-
based type system to provide static safety for memory management.
This type system provides a unifying framework for several forms
of memory management, including stack allocation, arena regions,
reference counting and tracing collection.

Recently, Mozilla has started working on a new programming
language, Rust [28], that is similar in some ways to the memory
management design of Cyclone. It uses a linear type system to
provide a number of different management policies. These include
unique pointers, reference counted pointers and traced pointers,
allowing for stack allocation, reference counting and tracing.

These systems all differ from our work in their emphasis on a
strong static typing discipline with the memory management strat-
egy encoded into pointer types. An advantage of this approach is
that it can express more sophisticated strategies with finer granular-
ity of control. Our approach is very different as we are motivated
by exploring the power of using off-the-shelf components as a re-
sponse to increased complexity in runtimes and compilers. Part of
our motivation is also to explore solutions for existing languages
without such complex type systems as deployed by Cyclone and
Rust.

6. Conclusion
Real-world garbage collectors in managed languages are becom-
ing increasingly complex. We investigated whether this complex-
ity is really necessary and show that by having a different (but
wider) interface between the collector and the developer, we can
get high performance with off-the-shelf components for real appli-
cations. Our interface, M3, provides developers with the choice of
multiple memory management strategies that can coexist, allow-
ing them to select the best combination of policies for their pro-
gram and change that choice at any time. We do not expect M3

to be universally applicable, but believe that in the hands of expe-
rienced developers dealing with performance sensitive code it can
be simpler and achieve stronger results than current approaches.
To investigate the feasibility of M3 we conducted case studies of
three different programs: Memcached, MOSS and a synthetic mid-

dleware. For all three we achieved performance results equal to or
better than any of the single memory management strategies we had
available and were competitive with explicit memory management.
Finally, we remark that while our design used a mark-sweep and
reference counting collector, we do not believe this is necessary for
an M3 system. Instead, systems should be designed with trade-offs
between memory managers carefully chosen and their integration
well managed.
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