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Abstract—Previously, we developed a data-centric approach
to concurrency control in which programmers specify synchro-
nization constraints declaratively, by grouping shared locations
into atomic sets. We implemented our ideas in a Java extension
called AJ, proved that atomicity violations are prevented by
construction, and demonstrated that realistic Java programs can
be refactored into AJ without significant loss of performance.

This paper presents an algorithm for detecting possible dead-
lock in AJ programs by ordering the locks associated with
atomic sets. In our approach, a simple type-based static analysis
is extended to handle recursive data structures by considering
programmer-supplied lock ordering annotations. In an evaluation
of the algorithm on 10 AJ programs, all of these programs were
shown to be deadlock-free. Only 4 ordering annotations were
needed, in one program and 2 programs required some minor
refactorings. For the remaining 7 programs, no programmer
intervention of any kind was required.

I. INTRODUCTION

Writing concurrent programs that operate on shared memory
is error-prone as it requires reasoning about the possible inter-
leavings of threads that access shared locations. If program-
mers make mistakes, two kinds of software faults may occur.
Data races and atomicity violations may arise when shared lo-
cations are not consistently protected by locks. Deadlock may
occur as the result of undisciplined lock acquisition, preventing
an application from making progress. Previously [1], [2], [3],
we proposed a data-centric approach to synchronization that
aims to raise the level of abstraction in concurrent object-
oriented programming and prevent concurrency-related errors.

In our approach, fields of classes are grouped into atomic
sets. Each atomic set has associated units of work, code
fragments that preserve the consistency of their atomic sets.
Our compiler inserts synchronization that is sufficient to
guarantee that, for each atomic set, the associated units of work
are serializable [4], thus preventing data races and atomicity
violations by construction. Our previous work reported on
the implementation of atomic sets as an extension of Java
called AJ. We also demonstrated that atomic sets enjoy low
annotation overhead and that realistic Java programs can be
refactored into AJ without significant loss of performance [3].

However, our previous work did not yet address the problem
of deadlock, which may arise in AJ when two threads attempt
to execute the units of work associated with different atomic

sets in different orders. In languages like Java, where locks
are allocated dynamically, reasoning about deadlock involves
determining the values that references may point to and
understanding sharing patterns in the heap. Solutions to this
problem (discussed in Section VI) include static program
analysis and type systems. Static analysis techniques compute
an over-approximation of the objects that variables may point
to and can, in some cases, rule out deadlock. However,
in other cases, they may reject perfectly correct programs
with little usable feedback for programmers. Type systems
provide programmers with a clear set of rules for writing code
that is guaranteed to be deadlock-free. However, type-based
approaches can be notationally heavy and overly restrictive.

This paper presents a static analysis for detecting possible
deadlock in programs with data-centric synchronization. The
analysis can be seen as a variation on existing deadlock-
prevention strategies [5], [6] that impose a global order on
locks and check that all threads acquire locks in accordance
with that order. However, our approach leverages the declar-
ative nature of data-centric synchronization in AJ to infer
the locks that different threads may acquire. In particular,
we rely on the fact that, in AJ programs, (i) all locks are
associated with atomic sets, and that (ii) the memory locations
associated with different atomic sets will be disjoint unless
they are explicitly merged by the programmer. Our algorithm
computes a partial order on types that declare atomic sets. If
such an order can be found, a program is deadlock-free. For
programs that use recursive data structures, this simple type-
based approach is extended to take into account a programmer-
specified ordering between different instances of an atomic set.

We implemented these ideas and evaluated them on 10 AJ
programs. These programs were converted from Java as part
of our previous work [3], and cover a range of program-
ming styles. The analysis was able to prove all 10 programs
deadlock-free. Minor refactorings were needed in 2 cases, and
a total of 4 ordering annotations were needed, all in 1 program.

In summary, this paper makes the following contributions:

• We present a static analysis for detecting possible dead-
lock in AJ programs. It leverages the declarative nature of
atomic sets to check that locks are acquired in a consistent



order. If so, the program is guaranteed to be deadlock-
free. Otherwise, possible deadlock is reported.

• To handle recursive data structures, we extend AJ with or-
dering annotations that are enforced by a small extension
of AJ’s type system. We show how these annotations are
integrated with our analysis in a straightforward manner.

• We implemented the analysis and evaluated it on a set
of AJ programs. The analysis found all programs to be
deadlock-free, requiring minor refactorings in two cases.
Only 4 ordering annotations were needed, in 1 program.

II. DATA-CENTRIC SYNCHRONIZATION WITH AJ

AJ [2] extends Java with the syntax of Fig. 1. An AJ class
can have zero or more atomicset declarations. Each atomic set
has a symbolic name and intuitively corresponds to a logical
lock protecting a set of memory locations. Each atomic set
has associated units of work, code fragments that preserve the
consistency of their associated atomic sets. By default, the
units of work for an atomic set declared in a class C consist
of all non-private methods in C and its subclasses. Given data-
centric synchronization annotations, the AJ compiler inserts
concurrency control operations that are sufficient to guarantee
that any execution is atomic-set serializable [4], i.e., equivalent
to one in which, for each atomic set, its units of work occur
in some serial order. One may think of a unit of work as an
atomic section IciteJ that is only atomic with respect to a
particular set of memory locations. Accesses to locations not in
the set are visible to other threads. Methods that do not operate
on locations within atomic sets will not be synchronized.

We illustrate the discussion with binary tree example. Fig. 2
shows a class Tree with fields root and size; root points to
the Node that is the root of the tree. Each node has left and
right fields pointing to that node’s children, as well as a value
and a weight. Class Tree has methods size(), which returns
the number of nodes in the tree, find(), for finding a node
with a given value, and insert() for inserting a value into the
tree. The latter two methods rely on methods Node.find() and

atomicset a A class or interface declaration may have
multiple atomic set declarations.

atomic(a) Annotation on instance fields and classes. A
field can belong to at most one atomic set. Annotated
fields can only be accessed from the this reference.

unitfor(a) Each method argument can be annotated by
one or more unitfor annotations, which has the effect
of making the method an additional unit of work for
the specified atomic sets in the argument object.

|a=this.b| Annotation on variable declarations and in
constructor expressions. The atomic set a of the type of
the annotated variable or constructed object is aliased
with the current object’s atomic set b.

Fig. 1. Data-centric annotations.

1 class Tree {
2 atomicset(t);
3 private atomic(t) Node root|n=this.t|;
4 private atomic(t) int size;
5 Tree(int v) { root=new Node|n=this.t|(v); }
6 int size () { return size; }
7 INode find( int v) { return root . find (v); }
8 void insert ( int v) { root . insert (v ); size++; }
9 int compute() { return root .compute(); }

10 void copy(Tree tree) { tree . insert (root .getValue()); }
11 }
12
13 interface INode { void incWeight(int n); }
14
15 class Node implements INode {
16 atomicset(n);
17 private atomic(n) Node left|n=this.n| ;
18 private atomic(n) Node right|n=this.n|;
19 private atomic(n) int value, weight = 1;
20
21 Node(int v) { value = v; }
22 int getValue() { return value; }
23 void insert ( int v) {
24 if (value==v) weight++;
25 else if (v < value) {
26 if ( left ==null) left = new Node|n=this.n|(v);
27 else left . insert (v );
28 } else {
29 if ( right ==null) right = new Node|n=this.n|(v);
30 else right . insert (v );
31 }
32 }
33 public void incWeight(int n){ weight += n; }
34 INode find( int v) {
35 if (value == v) return this ;
36 else if (v<value) return left==null? null : left . find (v);
37 else return right==null? null : right . find (v);
38 }
39 int compute(){
40 int result = value ∗ weight;
41 result += ( left == null)? 0 : left .compute();
42 return result + ( right == null)? 0 : right .compute();
43 }
44 }

Fig. 2. AJ Tree example.

Node.insert(). Tree also has methods compute(), which returns
the weighted sum of its nodes’ values, and copy(), which
inserts the root’s value into another tree passed as an argument.

In this example, we assume the programmer wants to ensure
that concurrent calls to incWeight() and compute() on the same
tree never interleave, as this might trigger a race condition that
causes Tree.compute() to return a stale value. We now discuss
how this can be achieved in AJ.

Tree declares an atomic set t (line 2). The annotations on
lines 3–4 have the effect of including root and size in this
atomic set. At run time, each Tree object has an atomic-
set instance t containing the corresponding fields. The AJ
compiler inserts locks to ensure that the units of work for
t execute atomically. However, preserving the consistency of
complex data structures typically requires multiple objects
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45 class T extends Thread {
46 T(Tree t0 , int v) { tree=t0; value=v; }
47 public void run() { tree . insert (value); }
48 Tree tree ; int value;
49 }
50
51 public static void main(String[] args) throws ... {
52 Tree tree = new Tree(10);
53 Thread T1 = new T(tree, 12);
54 Thread T2 = new T(tree, 5);
55 T1.start (); T2.start (); T1.join (); T2.join ();
56 }

57 class U extends Thread {
58 U(Tree t1, Tree t2) { tree1=t1; tree2=t2; }
59 public void run() { tree1.copy(tree2); }
60 Tree tree1, tree2;
61 }
62
63 public static void main(String[] args) throws ... {
64 Tree tree1 = new Tree(1), tree2 = new Tree(2);
65 Thread T3 = new U(tree1, tree2);
66 Thread T4 = new U(tree2, tree1);
67 T3.start (); T4.start (); T3.join (); T4.join ();
68 }(a) (b)

Fig. 3. Two clients of the Tree class of Fig. 2.

(e.g., all of a Tree’s nodes) to be protected by a single lock.
This can be achieved using aliasing annotations, which unify
the atomic sets of a Tree and the different Node objects into
one larger atomic set. Aliasing annotations are type qualifiers,
so the declaration Node left|n=this.n| (line 17) specifies that the
atomic set instance n of the object referenced by left is unified
with that of the current object. AJ’s type system enforces the
consistency of aliasing annotations to prevent synchronization
errors. For example, the Node allocated on line 5 is annotated
|n=this.t| to enable the type system to verify that it belongs to
the same atomic set instance as the enclosing Tree object.

Together, the aliasing annotations on Tree and Node ensure
that all locations in a Tree object are protected by the same
lock. Fig. 3(a) shows a client where two threads insert con-
currently into a tree. Such operations will execute correctly, as
AJ ensures mutual exclusion. Note that the client code does
not refer to atomic sets at all, as is typical in our approach.

III. DEADLOCK DETECTION IN AJ
We will now discuss, using a motivating example, how

deadlock may arise in AJ programs and how to prevent it.

A. Execution of the example
Recall that for any object o created at runtime that is of a

type that declares an atomic set t, there will be an atomic set
instance o.t that protects the fields in o that are declared to
be in t. Atomic set instances can be thought of as resources
that are acquired when an associated unit of work is executed.
As we shall see shortly, deadlock may arise if two threads
concurrently attempt to acquire such resources out of order.

Consider the program of Figure 3(a), which creates a tree
and two threads that work on it. Execution proceeds as follows:

1) When a Tree object is created and assigned to variable
tree on line ??, its corresponding atomic set instance,
tree.t, protects the root and size fields of the new object.

2) Tree’s constructor on line 5 creates a Node object. The
alias declaration on line 3 causes its left, right, value and
weight fields to be included in atomic set instance tree.t.

3) The object creations of T1 and T2 on lines ??–?? are
standard, with no special operations for atomic sets.

4) Once the workers start (line ??), both threads attempt to
invoke insert() on tree. Since insert() is a unit of work for

t and both threads operate on the same Tree object, AJ’s
runtime system enforces mutual exclusion, by taking a
lock upon calling insert() (see Section ??). Thus, the two
operations will execute serially.

5) The join() calls on line ?? wait for the workers to finish.
Now consider the code in Figure 3(b), which is similar

except that two Tree objects are created and assigned to
variables tree1 and tree2 (line ??). Then, two worker threads,
T3 and T4, are created on lines ??–??. Note that each worker
thread is passed references to both tree1 and tree2 in the
constructor calls, but in a different order. Then, each worker
calls copy() on one tree, which in turn calls insert() on the
other. These methods are both units of work for atomic set t,
so T3 attempts to acquire the lock for tree1.t and then the lock
for tree2.t, and T4 attempts to acquire the lock for tree2.t and
then tree1.t. This is a classical situation where deadlock may
arise when threads acquire multiple locks in different orders.

B. Preventing Deadlock

Deadlock can be prevented by always acquiring locks in
order. Our algorithm attempts to find a partial order < on
atomic sets, where a < b means that units of work on atomic
set a are always executed before units of work on atomic set
b. If no such order can be found, deadlock is deemed possible.
The ordering < between atomic sets reflects transitive calling
relationships between their units of work. For each path in the
call graph from a method m that is a unit of work for atomic
set a to a method n that is a unit of work for atomic set b,
we create an ordering constraint a < b. However, if a = b
and we can determine that both methods are units of work
on the same atomic-set instance, then no ordering constraint
needs to be generated, as locks are reentrant. Possible deadlock
is reported if, after generating all such constraints, < is not
a partial order. While this algorithm is conceptually simple,
some minor complications arise in the presence of atomic set
aliasing, when multiple names may refer to the same atomic
set. This will be discussed further in Section IV.

For Fig. 3(a), the algorithm infers that atomic sets t and n
are unordered and declares the program deadlock-free, since
due to aliasing annotations it can show that all transitive calls
between units of work simply result in lock re-entry. For
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Fig. 3(b), a constraint t < t is inferred, indicating that deadlock
may occur, as we have already seen.

C. Refactoring against Deadlocks

In our experience, many cases of deadlock can be avoided
by simple refactorings that order lock acquisition. This can be
accomplished using AJ’s unitfor construct, which declares a
method to be an additional unit of work for an atomic set in
one of its parameters. For example, deadlock can be prevented
in Fig. 3(b) by placing a unitfor annotation on the parameter
tree of the copy() method as follows:

void copy(unitfor(t) Tree tree){ tree . insert (root .getValue()); }

This declares copy() to be a unit of work for atomic set instance
tree.t, as well as this.t. When a method is a unit of work
for multiple atomic set instances, AJ’s semantics guarantees
that the corresponding resources are acquired atomically, thus
preventing deadlock in Fig. 3(b). Sometimes, deeper code
restructuring is needed before the unitfor construct can be used;
Section V gives some examples.

D. Recursive data structures

The basic algorithm sketched above can fail to prove the
absence of deadlock in programs that use recursive data
structures. Fig. 6 illustrates this with a variant of our binary
tree that allows concurrent updates to the weight of different
nodes in the same tree. However, insert() should still ensure
mutual exclusion to avoid corruption of the tree’s structure.

This synchronization policy is implemented by keeping the
atomic sets of the tree and of its nodes distinct: the atomic
set instances of different Node objects must not be aliased
with each other as this would preclude concurrent access to
different nodes. In Fig. 6, once a thread has a reference to an
INode, it can invoke incWeight() on it. As Node.incWeight() is
a unit of work for the node’s atomic set n, no other thread can
concurrently access that node. However, since different nodes
no longer share the same atomic set instance, incWeight() can
be called concurrently on different nodes, as desired. Note that
invoking Tree.insert() involves acquiring the lock associated

70 class Tree {
71 atomicset(t);
72 private atomic(t) Node root;
73 Tree(int v){ root = new Node(v); }
74 ...
75 }
76 class Node implements INode {
77 atomicset(n);
78 private atomic(n) Node left ;
79 private atomic(n) Node right;
80 ...
81 void insert ( int v){
82 ... left = new Node(v); ...
83 ... right = new Node(v); ...
84 }
85 }
Fig. 4. A tree that permits concurrent access to its nodes. Unmodified code
fragments have been elided.

86 class V extends Thread {
87 V(Tree t , int v){ tree=t ; val=v; }
88 public void run(){ tree . insert (val ); }
89 Tree tree ; int val ;
90 }
91 ...
92 public static void main(String[] args)
93 throws InterruptedException{
94 Tree tree = new Tree(10);
95 Thread T5 = new V(tree, 3);
96 Thread T6 = new V(tree, 4);
97 T5.start (); T6.start (); T5.join (); T6.join ();
98 }

Fig. 5. Client program for the example of Fig. 6.

|this.a<a| Annotation on variables and constructors. This spec-
ifies the order between atomic set a in the annotated variable or
constructed object, and the atomic set a in the current object.

Fig. 6. Extending AJ with ordering annotations.

with the tree’s atomic set instance t, thus ensuring desired
mutual exclusion behavior.

E. Analyzing the modified tree example

Now consider Fig. 7. The basic algorithm discussed above
would compute an ordering constraint n < n for this program,
because Node.insert() recursively invokes itself on the children
of the current node. In the absence of aliasing annotations,
these nodes now have distinct atomic set instances, and the
basic algorithm concludes that deadlock is possible since
it cannot rule out that two threads may access the atomic
set instances of different Node objects in different orders.
However, it is easy to see that this particular program is
deadlock-free, as the recursive calls to insert() traverse the
tree in top-down order. Hence, the locks associated with the
instances of atomic set n in the traversed nodes are always
acquired in a consistent order, precluding deadlock.

F. Ordering Annotations

To handle recursive data structures, we extend AJ with or-
dering annotations as shown in Fig. 8. This lets programmers
specify an ordering between instances of the same atomic set.
The deadlock analysis can then avoid generating constraints
of the form a < a when the user-provided ordering indicates

99 class Node implements INode {
100 atomicset(n);
101 private atomic(n) Node left|this.n<n| ;
102 private atomic(n) Node right|this.n<n|;
103 ...
104 void insert ( int v){
105 ... left = new Node|this.n<n|(v); ...
106 ... right = new Node|this.n<n|(v); ...
107 }
108 }

Fig. 7. Adding ordering annotations to the example of Fig. 6. Unmodified
code fragments have been elided.

4



M := set of methods in program
V := set of final method params plus a special ? symbol
A := set of atomic sets

N := {=, < } × V ×A set of lock identifiers
L := 2N set of atomic-set instances (i.e., locks)
D := 2L set of locksets

uow :M→D := returns the set of locks that a method grabs
padaptName : (M×V ×M)→ V := renames a variable from the perspective of caller to callee
padaptLock : (M×L×M)→ L := adapts all names identifying a lock from the perspective of caller to callee
addNames : (M×L)→ L := consults annotations in scope to add other names for a lock to its representation.

uow(m) = { { v.A }| m is a unit-of-work for v.A }

addNames(m, l) = l ∪ { v.A | w.B ∈ l and v.A is annotated to be an alias for w.B in m’s scope }

padaptName(ms, v,mt) =

 this if ms contains the call v.mt(...)
w if ms passes v as the actual argument for the formal parameter w of mt

? otherwise

padaptLock(ms, l,mt) = { ∗v.A| ∗ w.A ∈ addNames(ms, l),padaptName(ms, w,mt) = v }

m is an entry point
∅ ∈ LBE(m)

(LBE-ENTRY)
n→ m d ∈ LBE(n)

{ padaptLock(n, l,m)| l ∈ d ∪ uow(n) } ∈ LBE(m)
(LBE-CALL)

Fig. 8. Auxiliary definitions.

that a call cannot contribute to deadlock. Fig. 9 shows how
to express an ordering between an atomic set n in a given
node, and in each of its children. Given these annotations,
our enhanced algorithm confirms that the program of Fig. 7 is
indeed deadlock-free. To ensure that it is sound for the analysis
to rely on ordering annotations, AJ’s type checker must verify
that they are valid. This will be discussed in Section ??.

IV. ALGORITHM

Sec. ?? presents auxiliary definitions. Sec. ?? presents our
core algorithm for detecting possible deadlock. Then, Sec. ??
describes an extension that performs a more precise analysis
of recursive data structures such as the one in Fig. 6.

A. Auxiliary Definitions

Fig. 10 defines auxiliary concepts upon which our algorithm
relies. We assume that a call graph of the program has
been constructed and that → denotes the calling relationship
between methods1. Function uow associates each method
with the atomic-set instances for which it is a unit of work,
including those due to unitfor constructs. Intuitively, uow(m)
identifies the set of locks that m acquires (or re-enters) in the
current AJ implementation. A lock is an element of L, and
is represented as a set of names since locks may have many
names due to aliasing annotations. Names (elements of N ) are
notated as ∗v.A where ∗ is either = or <, v is a final method
parameter or variable, and A is the name of an atomic set. If

1 To simplify the presentation, we assume that a method m calls another
method n at most once, and that the same variable is not passed for multiple
parameters. Our implementation, of course, does not have these restrictions.

neither = or < is specified, then = is assumed. Names of the
form < v.A are not considered until Sec. ??.

Fig. 10 also defines LBE(m) (locks before entry), denoting
the sets of locks that may be held just before entering method
m. In general, different sets of locks may be held when m
is invoked by different callers. It is important to keep these
sets of locks distinct, to avoid imprecision in the analysis that
could give rise to false positives. Our algorithm effectively
performs a context-sensitive analysis by computing a separate
set of locks (lockset) for each path in the call graph2, where
locksets are propagated from callers to callees and augmented
with locally acquired locks. When locks are passed from caller
to callee, names are adapted to the callee, to account for the
fact that different name(s) now represent the same lock (see
functions padaptName and padaptLock in Fig. 10). Note
that padaptName and padaptLock use a special symbol
‘?’ to handle cases where a lock cannot be named by a variable
in the scope of the callee, and that padaptLock relies on
function addNames to gather additional names that must refer
to the same lock due to aliasing annotations3 The definition
of LBE(m) consists of two rules:
• Rule LBE-ENTRY adds the empty lockset to LBE(m) if m

is an entry point, indicating that no locks are held before
the program begins.

• Rule LBE-CALL takes each lockset that may be held

2 Note that LBE(m) could conservatively contain a lockset that is never
held before entering method m if the call graph contains infeasible paths.
However, because AJ inserts the necessary lock acquisitions and uow reflects
this knowledge, the locksets themselves are precise and represent exactly the
locks that are held if a particular path in the call graph is traversed.

3 This is not necessary for soundness, but allows the algorithm to more
precisely identify lock re-entry.
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d ∈ LBE(m) l1 ∈ d l2 ∈ uow(m)
v.A ∈ l1 w.B ∈ l2 l3 ∈ d⇒ w.B 6∈ l3

A < B
(UOW)

object creation with alias annotation
|b=this.a| is reachable in code

A B
(GIVES)

A B

A ∼ B
(SHARE-LOCK-1)

A B A C

B ∼ C
(SHARE-LOCK-2)

A ∼ B
B ∼ A

(SHARE-SYM)

A < B B < C

A < C
(TRANS)

A < B B ∼ C
A < C

(SHARE-1)

A ∼ B B < C

A < C
(SHARE-2)

A B B  C

A C
(GIVES-TRANS)

Fig. 9. Definition of the ordering relation ‘<’ between atomic sets.

before entering a caller, augments it with the locks that
the caller acquires, and then adapts the lockset to the
perspective of the callee using padaptLock.

These rules are iterated to a fixed point in order to determine
all of the locksets that may be held before entering a method.

B. Core Algorithm

Fig. ?? defines an ordering ‘<’ on atomic sets using
LBE(m). Intuitively, for atomic sets A and B we have A < B
if a lock associated with an instance of atomic set A may be
acquired before a lock that is associated with an instance of
atomic set B. Rule UOW states that this is the case if there
is a method m and some lockset d ∈ LBE(m) that contains a
lock named v.A, and we have some w.B that names a lock
in uow(m) that is not already held in d.4

When atomic sets are aliased, care must be taken to account
for the fact that multiple names may refer to the same lock. In
general, the generation of an ordering constraint A < B can
be avoided when encountering a unit of work for atomic-set
instance w.B if a lock corresponding to atomic-set instance
v.A is already held, and if it can be determined that v.A and
w.B must refer to the same lock, because in that case the lock
is simply re-entered. Two key steps enable us to do this:
• By keeping locksets separate for each path in the call

graph, we are able to determine when locks must be held.
• The representation of a lock maintains all its known

names (i.e., must-aliases), allowing us to identify situ-
ations where locks are re-entered.

However, we cannot rely on local annotations alone to give
us all possible names for a given lock (i.e., may-aliases) as
aliasing annotations can be cast away. Therefore, rules SHARE-
1 and SHARE-2 conservatively generate additional orderings
to account for any aliasing annotations in the whole program
that may cause instances of two atomic sets to be implemented
using the same lock. To prevent generating spurious ordering
constraints, we use a transitive ’ ’ (gives) relation and a
symmetric ’∼’ (shares) relation instead of simply merging
atomic sets when they may be aliased. To see why this is

4 Note that UOW subtly relies on the fact that uow never returns a lock
named using ?, since atomic-set instances for which a method is a unit-of-work
are always nameable from that method’s scope. Hence, there is no danger of
failing to generate an ordering constraint because we are re-entering ’?.B’.

needed, consider a situation where two classes C and D both
use a utility class List, and where each aliases List’s atomic
set to its own. Then while a C object or a D object may share
a lock with a List object, C objects never share locks with D
objects. Lastly, rule TRANS defines ‘<’ to be transitive.

Now, deadlock may occur if ‘<’ is not a valid partial order.
Conversely, if there is no atomic set A such that A < A, then
the program is deadlock-free: we have found a valid partial
order on atomic sets that is consistent with the order in which
new locks are acquired by transitively called units of work.

C. Accounting for Ordering Annotations

The basic algorithm is unable to infer a partial order
among atomic sets in programs that manipulate recursive data
structures. For the program of Fig. 6, the rules of Fig. ?? infer
n < n, leading to the conclusion that deadlock might occur.
However, as discussed in Sec. ??, deadlock is impossible in
this case because locks are always acquired in a consistent
order that reflects how trees are always traversed in the
same direction. Intuitively, tracking ordering constraints at the
atomic-set level is insufficient in cases where threads execute
units of work associated with multiple instances of the same
atomic set.

Our solution involves having programmers specify ordering
annotations that imply the existence of a finer-grained partial
order between different instances of the same atomic set, as
was illustrated in Fig. 9. We extended the AJ type system to
allow an atomic set instance to be ordered relative to exactly
one other atomic set instance when it is constructed. The type

addNames(m, l) = { l ∪
{ ∗w.B | ∗ v.A ∈ l and w.B is annotated to be an

alias for v.A in m ’s scope } ∪
{< x.A | ∗ v.A ∈ l and x.A is annotated to be

greater than v.A in m ’s scope }}

d ∈ LBE(m) l1 ∈ d l2 ∈ uow(m) v.A ∈ l1
w.B ∈ l2 l3 ∈ d⇒ w.B 6∈ l3 < w.B 6∈ l1

A < B
(UOW)

Fig. 10. Changes to the algorithm to support ordering annotations between
instances of an atomic set.
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Fact Derivation
A1) ∅ ∈ LBE(T.run) LBE-ENTRY
A2) ∅ ∈ LBE(Tree.insert) (A1), LBE-CALL
A3) { { this.n } } ∈ LBE(Node.insert) (A2), LBE-CALL

Fact Derivation
B1) ∅ ∈ LBE(U.run) LBE-ENTRY
B2) ∅ ∈ LBE(Tree.copy) (B1), LBE-CALL
B3) { { ?.t } } ∈ LBE(Tree.insert) (B2), LBE-CALL
B4) t < t (B3), ORDER-UOW

(a) (b)
Fact Derivation

C1) ∅ ∈ LBE(V.run) LBE-ENTRY
C2) ∅ ∈ LBE(Tree.insert) (C1), LBE-CALL
C3) { { ?.t } } ∈ LBE(Node.insert) (C2), LBE-CALL
C4) { { ?.t }, { ?.n } } ∈ LBE(Node.insert) (C3), LBE-CALL
C5) t < n (C3) or (C4), ORDER-UOW
C6) n < n (C4), ORDER-UOW

Fact Derivation
D1) ∅ ∈ LBE(V.run) LBE-ENTRY
D2) ∅ ∈ LBE(Tree.insert) (D1), LBE-CALL
D3) { { ?.t } } ∈ LBE(Node.insert) (D2), LBE-CALL
D4) { { ?.t }, { ?.n, < this.n } } ∈ LBE(Node.insert) (D3), LBE-CALL
D5) t < n (D3) or (D4),

and ORDER-UOW

(c) (d)

Fig. 11. Functioning of the algorithm on binary tree example. Relevant facts that are derivable are shown for (a) client code in Fig. 3(a) which is deadlock-
free; (b) client code in Fig. 3(b) which may deadlock; (c) client code in Fig. 7, which the algorithm conservatively reports may deadlock; and (d) client code
in Fig. 7 after adding ordering annotations. Several derivable facts are not shown in the figure, including t  n, t ∼ n, n ∼ t for (a) and (b), and t < n,
n < n, and n < t for (b).

system ensures that the object to which the newly constructed
object is being related is already completely constructed,
preventing objects that are being constructed simultaneously
from specifying conflicting orders relative to one another.

Fig. 16 updates our analysis to accommodate user-specified
orderings between instances of an atomic set. Function
addNames now consults the ordering annotations available
within a method and its enclosing class. Any atomic-set
instance specified to be greater than a given instance is added
to the lock’s representation and prefixed with a ’<’ to indicate
that it is not a must-alias, but rather a lock that is safe to enter
after the represented lock. Rule UOW now avoids generating an
ordering constraint due to one lock being held when another
is acquired if the former is guaranteed to be less than latter.

D. Example

Let us consider the behavior of our analysis on the example
program in Fig. 2 and its client in Fig. 3(a). The relevant facts
that are discovered by our analysis are shown in Fig. 15(a)
along with an indication of the rules and facts used to derive
them. Note that the facts shown in the figure incorporate an
optimization where names of form ?.a are dropped from a
lock’s set representation if it also has other, more exact names.

From LBE-ENTRY, we know that LBE(T.run) contains the
empty lockset. Using this fact in the premise of LBE-CALL,
we derive ∅ ∈ LBE(Tree.insert). For the call from Tree.insert()
to Node.insert(), LBE-CALL makes the following calculations:
• ∅ ∈ LBE(Tree.insert), uow(Node.insert) = { { this.t } }
• { this.t } ∈ ∅ ∪ { { this.t } }
• addNames(Tree.insert, { this.t }) = { this.t, root.n }
• padaptName(Tree.insert, this,Node.insert) = ?
• padaptName(Tree.insert, root,Node.insert) = this
• padaptLock(Tree.insert, { this.t },Node.insert) =
{ ?.t, this.n }

After removing the unnecessary name involving ?, we get
{ { this.n } } ∈ LBE(Node.insert). The recursive calls to
Node.insert() result in the same lockset, so no additional facts
are derived using the LBE-CALL. Furthermore, there are no
ordering facts that can be derived: the only method with a
non-empty lockset upon entry is Node.insert(), and that lockset
already contains the lock for which the method is a unit

of work, preventing rule UOW from generating an ordering
constraint. Since the empty ordering relation is a valid partial
order, the program is declared deadlock-free. The remainder of
Fig. 15 shows the relevant facts derived for the other examples
from Figs. 3(b) and 7.

V. IMPLEMENTATION

We implemented the deadlock analysis as an extension of
our existing proof-of-concept AJ-to-Java compiler [3], which
is an Eclipse plugin project. In this implementation, data-
centric synchronization annotations are given as special Java
comments. These comments are parsed and given to type
checker and deadlock analysis. Type errors such as the use of
inconsistent ordering annotations are reported using markers in
the Eclipse editor. If type-checking and the deadlock analysis
succeed, the original source is translated to Java, and written
into a new project that holds the transformed code. This project
can then be compiled to Java bytecode, and executed using a
standard Java VM. For further details on the implementation
of AJ, the reader is referred to [3].

The deadlock analysis relies on the WALA program analysis
framework5 for the construction of a call graph. The analysis
first determines all entry points to the program (e.g., main()
methods and the run() methods of threads), and then builds
a conservative approximation of the program’s call graph.6

The propagation of atomic sets in our analysis is essentially
a distributive data flow problem, so we are able to use
WALA’s efficient implementation of an Interprocedural Finite
Distributive Subset solver to perform the analysis [7]. Our
actual implementation works slightly harder than the formal
rules of Sec. IV in gathering and propagating information
gleaned from aliasing and ordering annotations, for example
allowing final fields of method parameters to be included in
lock names. As mentioned before, lock identifiers involving
? are discarded if an exact name for the lock is known
(i.e., one not including < or ?). This allows the analysis
to converge more quickly, and is sound since the algorithm

5 See wala.sourceforge.net.
6Reflection must be approximated as with most static program analyses. In

our case, the only reflective calls that matter are the ones that may call units
of work.
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benchmark LOC files data-centric annotations
program collections atomic- atomic atomic unitfor alias notunitfor total

set (class) (field)
collections 0 10846 63 5 0 53 330 40 0 428
elevator 609 yes 6 1 1 0 0 6 0 8
tsp 754 no 6 2 2 0 0 0 0 4
weblech 1971 no 14 2 0 4 0 0 0 6
jcurzez1 6639 no 49 5 2 7 15 24 0 53
jcurzez2 6633 no 49 4 3 2 6 4 0 19
tuplesoup 7217 yes 40 7 5 11 12 0 46 81
cewolf 14002 yes 129 6 6 0 0 2 0 14
mailpuccino 14519 yes 135 14 13 1 0 0 0 28
jphonelite 16484 yes 105 14 10 26 0 8 0 58
SpecJBB (tuned) 17730 yes 64 18 15 34 1 24 4 80

TABLE I
AJ SUBJECT PROGRAMS. THE TABLE SHOWS, FOR EACH SUBJECT PROGRAM, THE NUMBER OF LINES OF SOURCE CODE (INCLUDING WHITE SPACE AND

COMMENTS), FILES AND DATA-CENTRIC ANNOTATIONS (ONE SUB-COLUMN FOR EACH TYPE OF ANNOTATION).

conservatively generates additional ordering constraints from
existing ones for any atomic sets which globally may have
instances implemented by the same lock (see rules SHARE-1,
SHARE-2).

To ensure that it is sound for the analysis to rely on ordering
annotations, AJ’s type checker must verify that they are valid.
This involves checking that ordering annotations are preserved
by assignment, parameter passing, and redeclaration. Casts
may discard annotations but cannot manufacture them from
unannotated types. A newly constructed object can be ordered
with respect to at most one existing object by annotating the
instance creation or a constructor parameter. The ordering must
also be consistent with the runtime ordering used to enforce
orderly acquisition of locks when a unit of work takes multiple
locks. Details about the changes to AJ’s type system and
compiler can be found in a technical report IciteJ.

VI. EVALUATION

In order to gain some insight into the practical applicability
of our deadlock analysis, we analyzed a collection of AJ
programs with our implementation. The main purpose of this
evaluation is to answer the following research questions:

RQ1 How successful is the analysis in demonstrating the
absence of deadlock in AJ programs?

RQ2 How often are program transformations and ordering
annotations necessary before the analysis could prove the
absence of deadlock?

RQ3 What is the running time of the analysis?

A. Subject Programs

We applied the deadlock analysis to the AJ programs shown
in Table I. These programs were created in the context of
a previous project that focused on evaluating the annotation
overhead and performance of AJ [3], by manually converting
a number of existing multi-threaded Java programs into AJ.
For details about the specific steps involved in this conversion
effort, the reader is referred to [3].

The programs were obtained from several different sources
and reflect a variety of programming styles. Elevator and

tsp have been used by several other researchers (e.g., [8])
in projects related to data race detection. Weblech is a web
crawler that recursively downloads all pages from a web
site. Jcurzez allows building text-based user interfaces for
simple terminals. The original jcurzez code did not have
clearly defined support for multi-threading, and we created
two versions of the code with well-defined behavior in the
presence of concurrency: jcurzez1 achieves this behavior in a
coarse-grained fashion while jcurzez2 does so using more fine-
grained synchronization. Cewolf is a framework for creating
graphical charts. Jphonelite is a Java SIP voice over IP
SoftPhone for computers. tuplesoup is a small easy to use
Java-based framework for storing and retrieving simple hashes.
mailpuccino program is a Java email client. Finally, SpecJBB
is a widely used multi-threaded performance benchmark.All
subject programs except tsp, weblech, and jcurzez rely on AJ
versions of Java collections (e.g, TreeMap, ArrayList), which
therefore must be analyzed as well in those cases.

Table I shows some key characteristics of the subject
programs, including the number of lines of source code, the
number of files, and the number of data-centric synchroniza-
tion constructs. The row labeled “collections” is not a stand-
alone subject program but rather displays the characteristics
of the collection classes from the java.util package that we
converted to AJ. The actual subject programs report only “yes”
or “no” in this LOC column for collections to indicate whether
they use these classes or not and thus whether the collection
code was examined by the analysis.

As is apparent from the data, the programs range from
small to medium-sized. The number of atomic sets is small,
ranging from 1 to 18. SpecJBB has the largest number of fields
declared in atomic sets (34 fields, and 15 entire classes). This is
the case because a complex web of data structures is accessed
and updated by multiple threads in this benchmark. The unitfor
annotations are limited in application code but plentiful in the
library classes. Aliasing is a sign of linked data structures that
must be kept in sync, but that can be accessed from multiple
entry points. Again, these are mostly found in library classes.
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Ordering |locksets| Time [s]
annotations

elevator 0 39 1.0
tsp 0 33 1.4
weblech 0 39 4.6
jcurzez1 0 409 10.3
jcurzez2 4 541 9.4
tuplesoup 0 785 8.8
cewolf 0 25 19.7
mailpuccino 0 205 48.2
jphonelite 0 34 7.2
SpecJBB (tuned) 0 414 7.1

TABLE II
ANALYSIS RESULTS. THE TABLE SHOWS, FOR EACH SUBJECT PROGRAM,

THE NUMBER OF ORDERING ANNOTATIONS REQUIRED TO GUARANTEE
THE ABSENCE OF DEADLOCK, AND THE RUNNING TIME OF OUR ANALYSIS.

B. Deadlock Analysis

In the absence of ordering annotations, our deadlock anal-
ysis is able to guarantee the absence of deadlock in all but
one of the subject programs (jcurzez2). Demonstrating the
absence of deadlock in that program required the insertion
of 4 ordering annotations. Table II also shows the number
of different locksets that the algorithm generates during its
analysis (i.e., the size of the set D of locksets in our algorithm)
as well as the running time of the deadlock analysis for
each subject program. IDan: include details of machine
on which experiments were performedJ Even in its current
unoptimized state, the analysis and the subsequent rewriting
pass run in matter of seconds with no noticeable memory
pressure.

For the majority of our subject programs (7 out of 10),
the analysis could prove the absence of deadlock without
any programmer intervention. Both SpecJBB and tuplesoup
required some slight refactoring in order to eliminate spurious
deadlock reports. In both cases, component objects of a parent
object kept a reference to their parent object in a field. Later,
the analysis was unable to infer the equality of the parent that
called a method in a child object and the object stored in the
child’s parent field. We refactored the problematic calls to pass
an instance of the parent as a parameter to the child’s method.
The benchmark cewolf is a J2EE servlet that does not provide
a central main method. Instead, its methods are resolved by an
application server which we modeled with mock classes from
WALA’s J2EE package.

Only one subject program, jcurzez2, required ordering anno-
tations to be proven deadlock-free. This program implements
a fine-grained synchronization scheme that prevents fully
automatic certification of deadlock freedom. Fig. 18 shows an
excerpt of the problematic methods. The class AbstractWindow
contains a recursive reference to a parent window on which
it sometimes makes calls. The annotation on the constructor’s
parent parameter causes the atomic-set instance b of a newly
constructed AbstractWindow to be placed in the lock order
before parent.b . This fact can be exploited during deadlock
analysis. The type system allows this ordering information to
be propagated to the field the parameter is stored in and the

1 public abstract class AbstractWindow {
2 atomicset b;
3 protected final AbstractWindow parent|this.b<b|;
4
5 protected
6 AbstractWindow(AbstractWindow|this.b<b| parent, ...) {
7 this .parent = parent;
8 }
9 public |this.b<b| AbstractWindow getParent() {

10 return parent;
11 }
12 }

Fig. 12. Excerpt from jcurzez2 requiring ordering annotations.

return value of this field’s getter method. After adding ordering
annotations, the deadlock analysis establishes that deadlock is
impossible.

C. Threats to Validity

Idiscuss benchmark selection bias, etc.J

VII. RELATED WORK

Deadlock detection, prevention and avoidance is well trod-
den ground. We restrict our focus to the most closely related
static techniques.

a) Static analysis.: At heart, all static analysis techniques
follow [5] and attempt to detect cyclic waits-on relationships
between tasks. To this end, they construct abstractions, at
various level of precision, of the program’s control flow,
tasking and synchronization behavior. Cycles that occur in
these graphs correspond to possible deadlock. The precision of
the analysis depends on ruling out cycles that cannot happen
in practice. Engler and Ashcraft [6] choose a simple type-
based approximation in which variables are represented by the
name of their type, instead of a full-fledged alias analysis. In a
language with subtyping, such an approximation would lump
all objects together due to upcasts. Williams et al. [9] propose
another flow-sensitive and context-sensitive static analysis for
Java. They construct a lock order graph, which represents
the order in which locks are acquired. Nodes of this graph
correspond to sets of objects that may be aliased, and edges
between nodes to precedence between lock operations. Again,
cycles indicate deadlocks. Williams et al. present a number of
unsound heuristics to reduce false positives and resort to well-
behavedness assumptions about clients of libraries (e.g., clients
do not make calls to library methods from within callbacks,
and do not lock explicitly library objects). Finally, Wang et
al. [10] build on Engler and Ashcraft’s analysis and synthesize
code that is guaranteed to prevent deadlocks while striving not
to reduce concurrency too much. Overall, the appeal of these
techniques is that they require no programmer intervention and
their drawbacks are the number of false positives and the fact
that if a deadlock is reported, the programmer is offered no
real guidance on how to fix the code.
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b) Type systems.: Type-based approaches that address
deadlocks are often based on an underlying type and effect
system that exposes the locking behavior in type signatures and
provides some mechanism to control aliasing. Boudol’s work
is a good example [11]: It defines a deadlock-free semantics
for an imperative language and a type and effect system for
deadlock avoidance. In his work, singleton reference types
allow reasoning about precise aliasing relationships between
pointers and their locks. Geriakos et al. [12] extend this
approach to unstructured locking and report low runtime
overhead. Boyapati et al. [13] describe another such system
where the notion of ownership [14] is used to restrict aliasing.
In their work, a Java-like language is extended with ownership
annotations and lock levels. Each lock has an associated lock
level, and methods are annotated with the keyword locks
to indicate they acquire locks at a given level. Methods have
effect annotations as well. The type system is limited to tree-
shaped recursive structures and hierarchical locks. A type
system that ensures that locks are acquired in descending order
is discussed, but no proofs or empirical results are presented.
Gordon et al. [15] focus on fine-grained locking scenarios that
involve concurrent data structures such as circular lists and
mutable trees, where it is difficult to impose a strict total order
on the locks held simultaneously by a thread. The approach
relies on a notion of lock capabilities: Associated with each
lock is a set of capabilities to acquire further locks, and
deadlock-freedom is demonstrated by proving acyclicity of the
capability-granting relation. Inference algorithms have been
proposed to reduce the annotation burden. Agarwal et al. [16]
presented a type inference algorithm that can infer locks-
clauses for Boyapati’s type system. For programs that cannot
be typed, they propose a generalization of GoodLock [17] for
runtime detection. Vasconcelos et al. [18] define a type infer-
ence system for a typed assembly language. Their type system
defines a partial order in which locks have to be acquired.
Their system supports non-structured locks in a cooperative
multi-threading environment where threads may be suspended
while holding locks. Type-based techniques give programmers
clear guidelines for writing deadlock free algorithms; the
type system defines the rules precisely. But they have the
disadvantage of being onerous in term of programmer effort
and inference is usually imprecise due to its flow-insensitive
nature. Type and effect systems are arguably impractical in
object-oriented languages due to the presence of subtyping in
those languages. Dealing cleanly with, for example, collection
classes likely requires much more type machinery than most
end users are willing to put up with.

VIII. CONCLUSIONS

This paper presented a whole-program analysis for deadlock
detection in the context of the AJ language. The declarative
nature of synchronization constructs in AJ allows for a simpler
algorithm than previous deadlock detection techniques, in part
because the annotations AJ uses to generate synchronization
code naturally partition the locks used to protect shared
memory, simplifying reasoning about aliasing. The presence of

composite and recursive data structures requires that we extend
AJ with a new annotation to enforce ordering constraints
between distinct instances of atomic sets. The ordering an-
notations allow the deadlock analysis to differentiate between
instances of the same type. However, our experiments show
that such annotations are rarely needed in practice and that
the analysis can validate most subject programs without any
programmer intervention at all. Overall we have found that
AJ presents fewer challenges for deadlock detection than plain
Java code, and that the various object-oriented programming
idioms found in our target programs can be supported in a
straightforward manner. By leveraging AJ’s declarative nature,
and making careful tradeoffs between precision and abstrac-
tion, we are able to achieve a scalable and effective deadlock
analysis.
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APPENDIX

A. Typing

The most complete description of AJ’s type system is
given in [3]. This section presents the small changes that are
required to validate ordering annotations. A class definition C
is well-typed if its fields are well-typed in the context of C.
Furthermore, all methods (including non-overridden inherited
methods) must be well-typed. In the definitions below, we use
the notation C has a to indicate that class C declares or inherits
an atomic set a. Checking a field declaration where τ is a type
with an alias ordering annotation simply requires checking that
all referenced atomic sets exist.

(T-FIELD)

(τ ≡ D|this.b<a| implies D has a and C has b)
(α = atomic (b) implies C has b)

α τ f OK in C

Checking a method requires typing its body in an envi-
ronment E constructed by composing the disjoint sets of
parameters x, local variables z and the distinguished variable
this. If class C has an atomic set a, the type of this is
C|a<= this.a|. The type of the local variable y appearing in
the return statement must match the return type of the method,
and if the method overrides an inherited method, the signature
must be unchanged.

(T-METHOD)

E ≡ x : τx, z : τz, this : τthis E ` s; return y
E(y) = τ C extends D

(if C has a then τthis ≡ C|this.a<a| else τthis ≡ C)
override(m,D, τx → τ)

(τx ≡ E|this.a<b| implies
E has b and C has a and m is constructor)

τ m(τx x){τz z; s; return y} OK in C

Type checking casts simply requires checking that when
the source variable has an ordering annotation this ordering
annotation not be modified by the cast.

(T-CAST-ASET)

E(x) = D|this.b<a| E(y) = C|this.b<a|
C has a E(this) has b D <: C

E ` y = (C|this.b<a|)x

It is possible to entirely discard any alias annotation, in-
cluding ordering constraints.

(T-CAST-OFF)

E(x) = C|this.b<a| C not internal E(y) = C

E ` y = (C)x

The rule for method calls checks the types of the arguments
and the return type. Viewpoint adaption is necessary to ensure
that the types of the arguments and the return value are visible

from the viewpoint of the receiver. We do not detail viewpoint
adaption here, the only important consideration is that it does
not change ordering annotations.

(T-CALL)

E(y) = τy typeof (τy.m) = τ → τ E(z) = τz

τz = adapt(τ , τy) τ ′ = adapt(τ, τy) E(x) = τ ′

E ` x = y.m(z)

The rules for field selection and field update are unchanged.
They already check that the type of the field matches exactly
(including ordering annotations) that of the variable it is stored
into.

(T-SELECT)

E(this) = τ E(x) = τf typeof (τ.f) = τf

E ` x = this.f

(T-UPDATE)

E(this) = τ E(y) = τf typeof (τ.f) = τf

E ` this.f = y

B. Compiler

To support ordering annotations, the AJ compiler must
be modified to ensure that a programmer-specified ordering
between different instances of an atomic set is consistent with
the runtime ordering that is used to enforce orderly acquisition
of locks when multiple locks are taken by one unit of work.
This order is implemented by assigning a lockId to newly
constructed objects.

We assign lockIds to newly constructed objects that are
constrained by ordering annotations as follows. For instance
creations of the form

new Node|this.n<n|()

the lockId of the newly created object is assigned such that it
is larger than the object referred to by the this. In practice, we
pick the first available lockId which is larger. Conversely for

new Node|n<this.n|()

the implementation would pick the first available lockId less
than the lockId of this. Lastly, consider the case when the
new object is constrained by an ordered parameter of its
constructor:

class Person {
atomicset a;
final private Person|this.a<a| dad;
Person(Person |this.a<a| other) { dad = other; }
}

In this example the ordering annotation tells us that we will
always grab the lock on a child before locking its dad. When
a Person is constructed, the compiler ensures that the lockId
of the newly allocated object is set to the first available value
smaller than dad’s.
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