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Abstract

The success of just-in-time compilers is based on their ability to spe-
cialize code at run time. It allows them to dynamically observe the
execution of a program and optimize code for properties of the cur-
rent program state. Just-in-time compilation is the blackest of arts
in language implementation; the initiation rituals include brutal de-
bugging sessions and an oath to pierce all abstractions. While I enjoy
flipping bits, I still believe that at least some of the suffering is avoidable
and building just-in-time compilers could be a topic as precisely docu-
mented as any. Hence, a main motivation for writing this dissertation
is to digest some of this black magic and capture it in simple and precise
terms. This includes the following contributions:

– A calculus featuring a precise description of speculative opti-
mizations with dynamic deoptimization.

– Context dispatch, a generic approach for specializing code up to
a context of dynamically checked assumptions.

– A case study of a realistic language implementation following
these implementation recipes, featuring an intermediate repre-
sentation to analyze and compile R programs.

This dissertation consists of two parts. First, the models and theoretical
findings are presented. The goal of that part is to explain how and
why dynamic optimizations work, how dynamic information can be
used for optimizations, and how assumptions interact in with static
compiler optimizations. Additionally, it is discussed how the models
combine and how complete they are with regards to a full-blown lan-
guage implementation. Secondly, Ř is described and evaluated. Ř is an
implementation of the R language, following the recipes introduced by
the first part. This allows us to connect and evaluate the designs with a
realistic implementation.
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1
Introduction

Just-in-time compilers are omnipresent in today’s technology stacks.
The performance of the code they generate is central to the growing
adoption of languages with dynamic features such as code loading,
extensible objects, monkey-patching, introspection, or eval. These kind
of features render precise static analysis impossible and lead to a wide
range of possible behaviors, even in seemingly benign programs. To
resolve this issue compilers specialize programs at run-time according
to observed behaviors — they identify likely invariants and optimize1

assuming the invariants hold. For instance,

– in prototype based languages classes of likely similar objects are
identified using hidden classes [Chambers and Ungar, 1989],

– duck-typing and late bound call targets are made static by specu-
lating on the stability of the dynamic call-graph and monomor-
phized by splitting [Hölzle, Chambers, and Ungar, 1991],

– methods are specialized to the types of arguments or other dy-
namic properties [Bezanson, Chen, Chung, Karpinski, Shah,
Vitek, and Zoubritzky, 2018]

– class hierarchies are speculated to be stable [Paleczny, Vick, and
Click, 2001],

– dynamic types of variables assumed stable [Hölzle and Ungar,
1994b].

Most optimizations in just-in-time compilers are based in some way on
the premise that, from the vast range of possible behaviors only some

1By optimizationwe generally refer to any behavior-preserving code transformation,
with the additional caveat that some compiler engineer deemed it to improve some
metric of performance of some code.
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will be exercised by any particular execution of a program. Specializing
code to those particular behaviors has been fundamental in making
dynamic languages practical in large applications. These kind of op-
timizations involve forming assumptions about likely behaviors, that
are expected to hold true at run-time. Typically the assumptions are
based on profiling data, gathered either from the current process or
from previous invocations. This is a common practice, even utilized in
ahead-of-time compilers, where it is known as profile guided optimiza-
tions. The advantage in a just-in-time scenario is that specialization
can be explored lazily, generating only code that is actually needed,
in contrast to the ahead-of-time case, where the generated code must
handle all possible behaviors all the time. A fundamental problem in
just-in-time compilation is therefore how to leverage dynamic analysis,
i.e. , an incomplete recording of the past behavior, for optimizations?
In particular, how to speculate and specialize code for likely invariants,
while still safely and efficiently handling the case where they turn out
not to hold. The implementation thereof is often scattered around
different components of the language implementation; for instance,
devirtualization in a language with class loading relies on the interplay
of collecting a dynamic call-graph in the runtime, optimizing under
the assumption that it is stable and retiring code invalidated by the
class loader, while handling the cases where the invalidated code is still
being executed.

1.1 Motivation

In this area of run-time optimizations, there is a lack of well-documented
and re-usable techniques. Specialization is typically ad-hoc, tied to pe-
culiarities of the language or implementation, and often even distinct
for different properties in the same system. For instance the specializa-
tion approach taken by Julia [Bezanson, Karpinski, Shah, and Edelman,
2012] requires a language with multi-method dispatch, the one by Truf-
fle [Würthinger, Wimmer, Wöß, Stadler, Duboscq, Humer, Richards,
Simon, andWolczko, 2013] relies on their language implementation style
using self-specializing AST interpreters. Speculative optimizations in
particular are poorly documented and mistaken for an implementa-
tion detail on how to rewrite stack frames. This gap in the literature
leads to island-solutions for each language and a reluctance by some
language implementers to include speculation in their compiler. The re-
luctance is the result of a poor understanding of the underlying program
transformations and missing off-the shelf techniques.
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Speculation in particular is iconic for just-in-time compilation.
Having a compiler available at run-time allows for multiple attempts
at producing optimal code. This allows for aggressive optimization
strategies, where code is expected to be wrongly optimized sometimes,
but then subsequently and transparently replaced by updated and fixed
code. Speculative optimizations stand out from other techniques by
their ability to — at arbitrary program locations — exclude some parts
of the source code from the code being optimized. This is achieved
by guarding against unexpected behaviors with run-time checks and
bailing out of the optimized code, back to the source code, if these
guards fail. It follows that speculative optimizations allow us to trim
down the vast range of possible behaviors and instead optimize and
even analyze just for the expected ones. It also means, that some form
of recovery action is necessary in the unexpected case. We refer to that
action as deoptimization and it relies on some form of execution state
rewriting by the underlying runtime, such as on-stack-replacement or
stack-switching.

A non-speculating specialization on the other hand involves up-
front splitting of the control-flow on a property. I will refer to them
as contextual optimizations, as they specialize code to certain predi-
cates over the program state. Often contextual optimizations result
in the duplication of the code being optimized. Real-world examples
include multi-method dispatching on argument types in Julia, where
each function signature discovered through dispatch leads to a new
function being compiled and optimized. Or, optimizations involving
tail-duplication, such as message splitting in SELF, where the control-
flow within a function is split on the type of a result of a message send
to produce optimized continuations for expected dynamic types.

As a concrete example, consider a code fragment S, which is part of
a lager program, and shall be specialized to a certain runtime context.
For instance the fragment S could have a free variable x and the goal is
to provide a particularly fast implementation for, say, the cases where x
is 42. A fragment could be a function body, but also a smaller or bigger
piece of code. Let’s assume S is the following expression:

if (!is.numeric(x) || x == 0)

error()

else

1/x

For a simple non-speculating optimization we start with a transforma-
tion to duplicate the fragment into if (x == 42) then S else S.
This allows us to optimize each clone of S independently under the con-
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textual information whether x == 42 holds. Within the then branch,
the compiler can assume x == 42 to be part of the static optimization
context, and conversely within the else branch x != 42.

Now let us contrast this approach with a speculative optimization.
In that case we simply state assert(x == 42); S. For expressions
dominated by the assertion, the fact x == 42 is again part of the static
optimization context. The case where that assumption does not hold,
is not part of the code emitted by such a compiler.

In summary, a speculative optimization means that the compiler
can simply assume a likely invariant at a certain program location,
and the unexpected case falls outside the compilation unit. Under
speculative optimizations we also allow instructions being executed
optimistically and work being done that has to be discarded or even
reverted if the assumption fails. A non-speculative optimization on the
other hand produces code that cannot be invalidated. It is still possible
to optimize for dynamic properties, though the properties are used in a
non-speculative way.

Example

Consider the following vector access function in R

at <- function(x, y)

x[[as.numeric(y)]]

which converts the y argument to a number and then uses that number
as an index into argument x. Assume we call the function with three
different kinds of arguments as follows:

1 vec <- c(1,2,3)

2 # index is a scalar number

3 at(vec, 1)

4 # index is string

5 at(vec, "1")

6 # index type unknown at call-site

7 pos <- function() sample(1:3, 1)

8 at(vec, pos())

In the first two cases the type of the argument is known at the call site.
This does not hold for the third case, because R evaluates arguments
by need; pos() is only invoked, when the y argument is accessed for
the first time, which happens during the execution of at. If we were to
clone the function at and optimize it for different types of arguments,
we can specialize it for three distinct cases: number[n] × number for
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the call-site at line 3, number[n] × string at line 5, and number[n]

× any at line 8. The first two signatures directly lead to well optimized
versions — at the source level they would look like:

at_1 <- function(x, y) {

if (1 <= y && y <= num_vec_len(x))

num_vec_at(x, y)

else error(...)

}

at_2 <- function(x, y) {

y <- as.numeric(y)

if (is.na(y))

NA

else

at_1(x, y)

}

The third case does not lend itself to any useful optimizations, since
at the call-site it is unclear what the expression pos() eventually returns
(excluding inter-procedural analysis for now). This is where speculation
comes into play, and type-feedback from previous runs can be employed
to narrow down the behavior to what we expect from the past. To make
lazy evaluation specific, we’ll mark the position where arguments are
evaluated with force. After forcing the argument expression, we can
then speculate on its type and shape:

at_3 <- function(x, y) {

y <- force(y)

assume(scalar_int(y), in_bounds(x, y))

num_vec_at(x, y)

}

In case our assumptions are wrong, the assume instruction is supposed
to fall back to the source version of this function. It allows us to ignore
unlikely cases, i.e. , in this case most of the implementation of vector
access, which would have to deal with different vector types, indexing
modes and possible errors. Of course for that to actually work, assume
is more complicated than an assertion and more meta-data is required
than is shown here.

Questions

An efficient implementation of a dynamic language must use informa-
tion only available at run-time to optimize code. In particular this infor-
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mation is incomplete and changes over time. There are fundamentally
two approaches to this problem, one is to speculate on likely properties
and fall-back otherwise, the other is to somehow split control-flow
on properties, which are checked up-front. Both of these approaches
present problems and open questions.

Speculation The goal of speculation is, that a compiler can base opti-
mizations not only on static facts, but also on likely invariants. Should
a speculation turn out to be incorrect for a particular execution, then
the optimized code is discarded and the execution switches back to
unoptimized code on-the-fly. But, what does it entail to bail out of
wrongly optimized code that is currently being executed, i.e. , to deopti-
mize code with active stack frames? Program counters must be updated,
optimized execution state rewritten into corresponding unoptimized
state, potentially switching from native to interpreted code, and some
parts of the unoptimized state might not even exist and have to be
synthesized and materialized. The mechanism is typically relegated to
implementation details that are neither clearly abstracted nor docu-
mented, and scattered around different levels of the implementation.
Is there a formal and transferable way to model speculation? How can
compiler correctness be stated in the presence of speculation? When are
two versions compiled under different assumptions equivalent? How
do traditional optimizations have to be adapted? Does deoptimization
inhibit optimizations?

Specialization There are situations where it is beneficial to optimize
code by specializing it to multiple scenarios. For instance if profile
data suggests that a particular variable alternatively holds one of two
unrelated dynamic types, then it makes sense to split control on that
type and optimize for the two continuations separately. In other words,
the aim of specialization is to split code, such that contextual infor-
mation about the current program state can be used for optimizations.
Many existing splitting and customization techniques fall under this
category and implementations use different approaches to generate
code specialized to certain properties of the program state. Given such
a fragmented space, is there a unified or unifying technique to describe
and implement specialization? How can a language implementation
be structured to benefit from specialization? Can specialized code be
shared between compatible uses and contexts? What does it mean for
contexts to be compatible? How does specialization interact with specu-
lation? How can the generation of specialized code be deferred as much
as possible, such that more dynamic information can be considered.
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1.2 Thesis

This dissertation presents a framework for soundly injecting assump-
tions into the optimizer of a just-in-time compiler. First, speculative
optimizations with deoptimization as fallback mechanism are formal-
ized in the sourir model. Sourir’s assume instruction enables optimiza-
tions based on arbitrary assumptions at any point. Second, context
dispatch provides a generic approach for splitting on properties checked
at run-time. Context dispatch allows to optimize functions lazily, up to
the actually encountered contexts of assumptions, which act like static
optimization contexts in an ahead-of-time compiler. I will defend the
thesis that

Assume and context dispatch provide the basis for opti-
mizations based on run-time assumptions in a competitive
just-in-time compiler.

To understand that statement I will briefly introduce the two models,
summarize their contributions, and explicit the claims.

Sourir The sourir model of speculation, presented in Chapter 2, is
a simple abstraction for speculative optimizations that allows for for-
mal reasoning on speculation at the IR level. It makes the following
contributions:

– a semantic for deoptimization points, assumptions, deoptimiza-
tion metadata, and the key invariants required for speculative
optimizations;

– correctness proofs for speculative optimizations and classical
optimizations in the presence of speculation; and

– the assume instruction for speculation that can be easily inte-
grated in a compiler IR.

Context Dispatch Specialization by context dispatch, introduced
in Chapter 3, unifies how a runtime system can exploit contextual
information and provides a simple approach to structure a just-in-time
compiler around code specialization. It allows a compiler to specialize
fragments of code up to a context of assumptions, and the specialized
fragments to be shared between compatible contexts. The contributions
are how to
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– add dynamic information to the static optimization context of a
compiler and combine static and dynamic analysis for specializa-
tion;

– avoid over-specializing and support sharing of code; and

– efficiently dispatch to an optimal version under the current pro-
gram state.

Sourir and context dispatch complement each other. I will also in-
troduce a combined deoptless deoptimization strategy using context
dispatch.

Claims This thesis presents Ř, a bug-compatible implementation
of the R language with a JIT compiler. R’s dynamic nature and lazy
evaluation strategy requires the optimizer to be able to optimistically
speculate and specialize. The implementation effort is presented in
Chapter 4, which also covers those particularities of the R language
that make it particularly resilient to optimizations. Ř uses a context
dispatch system, and the optimizing compiler in Ř has an IR that is
based closely on sourir. Ř shows that these two pieces of theory provide
blueprints for building a language implementation with competitive
performance. In particular in Ř the following claims are validated:

– The two approaches provide specializations on dynamic informa-
tion in all important situations. The optimizing compiler in Ř
uses dynamic information only in the form of assume instruc-
tions or optimization contexts from context dispatch. This claim
is substantiated in Chapter 4, which describes how sourir and
context dispatch translate into the concrete implementation and
how this implementation relies only on these two mechanisms
for incorporating dynamic information.

– The optimizer is competitive. It significantly outperforms the
Ř bytecode interpreter, the GNU R bytecode interpreter, and
is comparable to Oracle’s JIT compiling FastR, but with faster
warmup behavior. The performance evaluation in Chapter 5
shows which assumptions and contexts are required for Ř to
speed up R programs.

Non-Claims I want to stress upfront that sourir and context dispatch
do not cover the entirety of the implementation. This dissertation
focuses on the optimizing compiler. In particular the main focus is
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on the middle-end of a JIT and optimizations on its IR as enabled by
dynamic information. Other details are important for a good imple-
mentation, such as efficient profile collection, a fast garbage collector,
a native backend, or a good interpreter. Sourir and context dispatch
co-evolved with Ř and were instrumental in my own understanding of
key aspects of JIT compilation. The actual implementation goes beyond
these building blocks — on the one hand it features extensions for prac-
tical reasons, and on the other hand many more parts are necessary for
a complete language implementation. These extensions are discussed
less formally, when presenting the implementation. A complete model
and potentially a verified JIT implementation remain future work.

Structure

This thesis is structured as follows. The two main contributions are
presented in Chapter 2 and Chapter 3. The former presents a formal-
ization of speculative optimizations and discusses the relationship of
the model with implementations. The latter focuses on specialization
using context dispatch and related applications. To validate my claims
Chapter 4 presents how these contributions are usable in a real-world
implementation called Ř and Chapter 5 shows that Ř is competitive.
Chapter 6 concludes and presents future work.

Publications

The Ř virtual machine is available and developed as free software at
ř-vm.net.

The text of this dissertation is based or borrows from the following
peer-reviewed publications:

– Correctness of speculative optimizations with dynamic deoptimization
[Flückiger, Scherer, Yee, Goel, Ahmed, and Vitek, 2018] (POPL)

– R melts brains: an IR for first-class environments and lazy effectful
arguments
[Flückiger, Chari, Jecmen, Yee, Hain, and Vitek, 2019] (DLS)

– Sampling Optimized Code for Type Feedback
[Flückiger, Krynski, Wälchli, and Vitek, 2020c] (DLS)

– Contextual Dispatch for Function Specialization
[Flückiger, Chari, Yee, Jecmen, Hain, and Vitek, 2020b] (OOP-
SLA)

https://r-vm.net
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– Formally Verified Speculation and Deoptimization in a JIT Compiler
[Barrière, Blazy, Flückiger, Pichardie, and Vitek, 2021] (POPL)

– Deoptless: Speculation with Dispatched On-Stack Replacement and
Specialized Continuations
[Flückiger, Ječmen, Krynski, and Vitek, 2022b] (PLDI)

The experimental setup for various performance results can be repro-
duced by the following artifacts:

– Artifact of “Contextual Dispatch for Function Specialization”
[Flückiger, Chari, Yee, Jecmen, Hain, and Vitek, 2020a] (OOP-
SLA)

– Artifact of “Deoptless: Speculation with Dispatched On-Stack Replace-
ment and Specialized Continuations”
[Flückiger, Jecmen, Krynski, and Vitek, 2022a] (PLDI)



2
Assume: Speculation

with Deoptimization

Many just-in-time compilers support some form of speculative opti-
mization to avoid generating code for unlikely control-flow paths. For
instance the prevalent polymorphism in a dynamic language causes
even the simplest code to have non-trivial control flow. Consider the
JavaScript snippet (example by Bebenita, Brandner, Fahndrich, Logozzo,
Schulte, Tillmann, and Venter [2010]):

for (var i = 0; i < a.length-1; i++) {

var t = a[i];

a[i] = a[i+1];

a[i+1] = t;

}

Listing 2.1: Shift in JavaScript

Without optimization one iteration of the loop executes 210 instruc-
tions; all arithmetic operations are dispatched and their results boxed.
If the compiler is allowed to make the assumption it is operating on
integers, the body of the loop shrinks down to 13 instructions. As
another example, most Java implementations assume that non-final
methods are not overridden. Speculating on this fact allows compilers
to avoid emitting dispatch code [Ishizaki, Kawahito, Yasue, Komatsu,
and Nakatani, 2000]. Newly loaded classes are monitored, and any time
a method is overridden, the virtual machine invalidates code that con-
tains devirtualized calls to that method. The validity of speculations is
expressed as a predicate on the program state. If some program action,
like loading a new class, falsifies that predicate, the generated code must
be discarded. To undo an assumption, an implementation must ensure
that functions compiled under that assumption are retired. This entails
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replacing affected code with a version that does not depend on the
invalid predicate and, if a function currently being executed is found
to contain invalid code, that function needs to be replaced on the fly.
In such a case, it is necessary to transfer control to a different version
of the function, and in the process, it may be necessary to materialize
portions of the state that were optimized away and perform other re-
covery actions. In particular, if the invalidated function was inlined
into another function, it is necessary to synthesize a new stack frame for
the caller. This is referred to as deoptimization, or on-stack-replacement,
and is found in most industrial-strength compilers.

Speculative optimization gives rise to a large andmulti-dimensional
design space that lies mostly unexplored. First, compiler writers must
decide how to obtain information about program state. This can be
done ahead-of-time by profiling, just-in-time by sampling or instru-
menting code. Second, they must select which facts to record. This can
range from information about the program, its class hierarchy, which
packages were loaded, to information about the value of a particular mu-
table location in the heap. Finally, they must decide how to efficiently
monitor the validity of speculations. While some points in this space
have been explored empirically, existing systems have done it in an ad
hoc manner that is often both language- and implementation-specific,
and thus difficult to transfer.

The model shown here has a focused goal. The aim is to demystify
the interaction between compiler transformations and deoptimization.
When are two versions compiled under different assumptions equiva-
lent? How should traditional optimizations be adapted when operating
on code containing deoptimization points? In what ways does deop-
timization inhibit optimizations? The assume model gives compiler
writers the formal tools they need to reason about speculative optimiza-
tions. To do this in a way that is independent of the specific language
being targeted and of implementation details relative to a particular
compiler infrastructure, we have designed a high-level compiler inter-
mediate representation (IR), named sourir, that is adequate for many
dynamic languages without being tied to any one in particular.

A sourir program is made up of functions, and each function can
have multiple versions. We equip the IR with a single instruction,
named assume, specific to speculative optimization. This instruction
has the role of describing what assumptions are being used to perform
speculative optimization and what information must be preserved for
deoptimization. It tests if those assumptions hold, and in case they do
not, transfers control to another, less optimized version of the code.
Reifying assumptions in the IR makes the interaction with compiler
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rot ( )
Vnative

. . .
call type = typeof (a )
assume type = NumArray else rot.Vbase.Lt [ ]

Lt branch i < limit Lo Lrt
Lo var t = a [ i ]

assume t 6= HL else rot.Vbase.Ls [ i = i , j = i + 1 ]
a [ i ]← a [ i + 1 ]
a [ i + 1 ]← t

i ← i + 1

goto Lt
Lrt . . .

Vbase

. . .
Lt branch i < limit Lo Lrt
Lo call j = add ( i , 1 )
Ls call t1 = get (a , i )

call t2 = get (a , j )
call t3 = store (a , i , t2 )
call t4 = store (a , j , t1 )
i ← j

goto Lt
Lrt . . .

Figure 2.1: Compiled function from Listing 2.1

transformations explicit and simplifies reasoning. The assume instruc-
tion is more than a branch: when deoptimizing it replaces the current
stack frame with a stack frame that has the variables and values ex-
pected by the target version, and, in case the function was inlined, it
synthesizes missing stack frames. Furthermore, unlike a branch, its
deoptimization target is not considered by the compiler during analysis
and optimization. The code executed in case of deoptimization is invisi-
ble to the optimizer. This simplifies optimizations and reduces compile
time as the analysis remains local to the version being optimized and the
deoptimization metadata is considered to be a stand-in for the target
version.

As an example consider the loop from Listing 2.1. A possible trans-
lation to sourir is shown in Figure 2.1 (less relevant code elided). Vbase
contains the original version. Helper functions Get and store imple-
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Figure 2.2: Speculation

ment JavaScript (JS) array semantics, and the function add implement
JS addition. Version Vnative contains only primitive sourir instructions.
This version is optimized under the assumption that the variable a is
an array of primitive numbers, which is represented by the first assume

instruction. Further, JS arrays can be sparse and contain holes, in which
case access might need to be delegated to a getter function. For this
example HL denotes such a hole. The second assume instruction rei-
fies the compiler’s speculation that the array has no holes, by asserting
the predicate t 6= HL . It also contains the associated deoptimization
metadata. In case the predicate does not hold, we deoptimize to a
related position in the base version by recreating the variables in the
target scope. As can be seen in the second assume, local variables are
mapped as given by the so called varmap [ i = i , j = i + 1 ]; the
current value of i is carried over into the target frame’s i , whereas
variable j has to be recomputed.

To visualize the approach let us consider an abstract graph of the
execution. The speculative optimization appears as shown in Figure 2.2,
gray boxes representing function versions. Calling the function invokes
the speculatively optimized version. If a dynamic guard fails, then a
deoptimization happens, we transfer execution to the target version,
into the middle of the function at deopt, discarding the optimized code.

2.1 On-Stack Replacement

Before going into details about how to correctly create and use the
assume instruction in the compiler IR, this section takes a step back
and presents the underlying implementation techniques and identifies
the different pieces in a real-world deoptimization. This includes a pre-
view of how to eventually lower an assume instruction to something a
CPU can execute. In general the relevant implementation technique is
known as on-stack replacement. OSR refers to an exceptional trans-
fer of control between two versions of a function. It is employed by
just-in-time compilers in situations where a function can or has to
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be replaced at once, without waiting for it to exit normally. To the
user, this exchange is not observable, the new function transparently
picks up where the old one stopped. On-stack refers to the fact that the
involved functions have active stack frames that need to be rewritten.
OSR is an umbrella term used in literature and practice to describe
exceptional transfer of control for different reasons and using different
kind of mappings between stack frames or program states. The term
deoptimization and on-stack replacement are often used interchange-
ably. Although their meanings overlap, we should be more precise in
their use.1 The term deoptimization highlights the fact, that optimiza-
tions are being undone. A deoptimization transfers control from a
speculatively optimized version with a failing assumption, to a less spec-
ulatively optimized version, undoing the failing assumption. On the
other hand, the term OSR focuses on the implementation technique,
whereby stack-frames are rewritten. OSR can be used for other appli-
cations, such as implementing exceptions, or tiering-up, i.e. , changing
from a less to a more optimized version. Similarly, deoptimization can
be implemented without OSR, for instance by relying on a execution
environment with support for stack-switching, or simply using tail-calls
and lazy replacement. The latter strategy is employed by Ř.

As shown in the previous section, speculative optimizations and in
particular deoptimization, needs a way of exiting and entering functions
in the middle of execution, with low performance impact on the case
where the guards hold. When the guard fails, then instead of continuing
normally, the function is exceptionally terminated and replaced with
the unoptimized baseline function, as visualized in Figure 2.2. A correct
deoptimization requires the system to extract the state of the optimized
function, transform it into a corresponding unoptimized state and then
materialize it to continue the execution.

Definitions We call functions that should be exited origins and their
replacements targets. Each function has an execution state, or stack frame,
that is dependent on the code format but typically consists of at least
the position in the code and the values of local variables. The format
of origin and target can be vastly different if, for instance, one of
them is interpreted and the other runs natively. A mapping between
states captures the steps needed to rewrite origin states to target states.
Since both origin and target are derived from the same source code,
we sometimes use the term source to refer to the common ancestry of

1Adding to the confusion some authors use OSR exclusively to refer to tiering-up,
a convention we do not want to follow in this work.
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Figure 2.3: Parts of an OSR event

various compiled code fragments. Figure 2.3 shows an idealized OSR
that (a) extracts the state of the origin, (b) maps it to the source, (c)
maps it to the target, and finally (d) materializes the target state. Origin
and target do not need to be constrained to a single stack frame and
a single function. For example when exiting an inlined function, one
origin function maps to multiple target functions. In other words, the
stack frame of the origin needs to be split into multiple target stack
frames.

OSR has been described as blackmagic due to the non-conventional
control-flow that it introduces. A significant part of the complexity
comes from the fact that most implementations do not provide clean
abstractions for OSR. For example, extracting and rewriting the pro-
gram state, i.e. , steps (a) and (b) in Figure 2.3, are often not separated
cleanly. Both of these two steps provide challenges, but for different
reasons. Extracting the program state is challenging due to low-level
concerns. We need very fine grained access to the internal state of the
computation at the OSR points. This access has to be provided by the
backend of our compiler, e.g., by exposing how the execution state is
mapped to the hardware or the interpreter. On the other hand, map-
ping the extracted program state to a target state, i.e. , creating a correct
varmap, relies on the optimizer providing the required information.

Simplifications In practice, many implementations follow a simplified
design combining (b) and (c) into one mapping that translates directly
from one state to another. This works particularly well, if the compiler
of one end of the OSR uses the code of the other end of the OSR as
source code. For instance a typical implementation uses the bytecode
of the first tier interpreter as the source code of the optimizing native
compiler:

source→BC

BC→ native
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In this architecture, there is only one compiler and one compilation
direction between the two ends of the OSR. In other words, the origin
code is the source code of this compiler, therefore the mapping takes
just one step, from native to bytecode (BC). On the other hand, in the
case where both ends of the OSR are compiled from some common
source code, the mapping of execution states has two steps, as it needs to
pass through the original source. Given the following two compilation
tiers:

source→ BC

source→ native

the second compilation mandates a mapping that lifts the state from an
origin (native) state to a source state, the first compilation a mapping
that lowers it to a target (BC) state. Therefore, the generic model is
important in cases where OSR transitions from optimized to optimized
code.

In sourir, the origin and target state of a deoptimization have the
same representation. In other words the varmap corresponds to (c),
the mapping (b) is the identity, since source and origin are identical.
Furthermore (a) and (d) are trivial, since our execution states are se-
mantic states of the sourir IR. This simplification was made to focus on
the main problem of creating and maintaining a correct mapping for
deoptimization.

Directions If OSR jumps from optimized to unoptimized code, we
call it OSR-out, or deoptimization, when it is used to bail out of failing
speculative optimizations. As a simple example, if the user debugs opti-
mized code with constant-folding applied to, then deoptimization can
be used to restore the constant values. If OSR jumps from unoptimized
to optimized code, we call it OSR-in or tiering up. This is useful, for
instance, when the program is stuck in a long-running loop. In the gen-
eral case where it jumps from optimized to optimized code, both apply
and we simply call it OSR. Typically OSR cannot happen at arbitrary
locations; we call the possible locations OSR exit or OSR entry points.
OSR is general as it allows to undo arbitrary transformations. When
OSR is used to transition between different optimization levels, it must
be transparent, i.e. , deoptimization becomes part of the correctness
argument for optimizations. In turn, deoptimization enables compiler
transformations that would otherwise be unsound.

Implementation Choices for OSR-out The lowest overhead to peak
performance for OSR exit points can be achieved by extracting the
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execution state by an external mechanism. Typically, at a defined lo-
cation execution is conditionally stopped and control transferred to
an OSR-out implementation, e.g., by tail-calling it. The OSR-out im-
plementation needs metadata produced by the compiler that describes
how the execution state can be retrieved from the registers and native
run-time stack. This is only possible with fine-grained control over the
code layout produced by the native backend. For efficiency, certain
implementations will go to great lengths to implement the conditional
guard of assume instructions such that it has the lowest overhead on
the fast-case. This can go as far as compiling it to a nop, that will
be patched inline, in case some external condition is invalidated. A
simpler alternative implementation is to pass all the required state as
arguments to a dedicated OSR-out primitive function. This approach
generates more code, as the state extraction is effectively embedded
into the emitted code but is easy to implement and efficient in case
deoptimization triggers.

Simplified OSR-in Whereas OSR-out relies on the ability to extract
the source execution state at many locations, OSR-in is simpler. While
one could arrange for OSR-in to enter optimized code in the middle of a
function, these entry points would limit optimizations andwould not be
easy to implement, in particular if using an off-the-shelf code generator
such as LLVM. Instead, one can compile a continuation starting from
the current program location to the end of the current function. This
continuation is executed once and on the next invocation the function
is compiled a second time from the beginning of the function. This
approach simplifies the mapping of execution states, as there is only
one concrete state that needs to be mapped instead of multiple abstract
states at every potential entry point. The current state is simply passed
as an argument to the continuation. This is a popular implementation
choice.

2.2 Contributions and Limitations

We now turn our attention back to the optimizations. From now on
this chapter stays at the abstraction level of a compiler intermediate rep-
resentation. In that representation we develop notions and techniques
to correctly produce and maintain the mapping (c) from Figure 2.3. We
prove the correctness of a selection of traditional compiler optimiza-
tions in the presence of speculation; these are constant propagation,
unreachable code elimination, and function inlining. The main chal-
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lenge for correctness is that the transformations operate on one version
in isolation and therefore only see a subset of all possible control flows.
We show how to split the work to prove correctness between the pass
that establishes a version-to-version correspondence and the actual
optimizations. Furthermore, we introduce and prove the correctness of
three optimizations specific to speculation, namely unrestricted deop-
timization, predicate hoisting, and assume composition.

Our work makes several simplifying assumptions. We ignore the
issue of generation of versions: we study optimizations operating on a
program at a certain point in time, on a set of versions created before
that time. We do not model the low-level details of code generation.
Sourir is not designed for implementation, but about reasoning support
for existing or new JIT implementations.

Most importantly, in sourir the origin and target state of a deopti-
mization have the same representation. This simplification was made
to focus on the main problem of mapping the states. For an actual
implementation the target state most likely has a different representa-
tion. For instance in Ř, and similarly in Java, the target is the bytecode
interpreter. In other words deoptimization materializes program states
of an interpreter — the deoptimization target is a bytecode offset, the
target values are placed on the operand stack of the interpreter, and
so on. We refer to Chapter 4 for an example of how to bridge this
gap. If we compare the varmaps of this implementation with the sourir
model, then what changes are the left-hand sides of the mapping. In-
stead of creating a sourir environment of local variables, the target
state for instance consists of an operand stack. For instance, instead of
[ i = i , j = i + 1 ], the varmap might be [ stack = 〈i , i + 1 〉]. Since
the optimizer operates only on the right-hand sides of the varmaps, the
changes affect only the front-end of the full compiler and do not affect
the results from this chapter.

Finally, the assume IR might be lowered to some more optimized
execution format, say a native binary. Lowering assume instructions
is outside the scope of this chapter. The issues in doing so are similar
to lowering a call instruction, but often great additional care is taken
for the instruction to have as little overhead as possible if the guarding
condition holds, as we expect this to be the default case. How the proofs
can be extended to include native code is future work.
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2.3 Related Work

OSR for deoptimization was pioneered in SELF by Hölzle, Chambers,
and Ungar [1992]. At first, the idea was simply to deoptimize code
to provide a source-level debugging experience. In that sense, it was
a speculative optimization on the assumption that debugging is not
used. Soon the idea was applied to speculatively optimize for all kinds
of assumptions, from the stability of class hierarchies [Paleczny et al.,
2001] to unlikely behavior in general [Burke, Choi, Fink, Grove, Hind,
Sarkar, Serrano, Sreedhar, Srinivasan, andWhaley, 1999], and providing
more and more flexibility to the optimizer in the presence of deopti-
mization [Soman and Krintz, 2006]. We are reaching the point where
deoptimization is an off-the-shelf technique that more and more com-
pilers are relying on for diverse purposes [Odaira and Hiraki, 2005,
Schneider and Bolz, 2012, Duboscq, Würthinger, and Mössenböck, 2014,
Stadler, Welc, Humer, and Jordan, 2016, Ap and Rohou, 2017, Qunaibit,
Brunthaler, Na, Volckaert, and Franz, 2018, Pizlo, 2014]. The common
idea is that deoptimization leads the control-flow back to less opti-
mized code. Most modern just-in-time compilers rely on speculative
compilation to generate code for a subset of the possible behaviors of
a function. The drawback of speculation is that it does not scale well
with very dynamic behavior, as the speculation applies indiscriminately.
Another drawback of speculation is that deoptimization is costly, as
the compiler needs to add and maintain safe-points which inhibit some
optimizations.

OSR-in (i.e. , using OSR to transition from a less to a more opti-
mized version) was first described by Hölzle and Ungar [1994a] in their
recompilation strategy. When a small function is invoked often, they
rather recompile the caller and replace it using OSR-in. SELF, being an
interactive system, was concerned with compilation pauses. Especially
with splitting-based optimizations that could lead to an explosion of
code size. Chambers and Ungar [1991] address this issue by identifying
uncommon source-level control-flows and deferring their compilation.
Suganuma, Yasue, and Nakatani [2003] describe the natural extension
of this idea where the deferred compilation is implemented by means
of OSR. The Jikes RVM extensively relied on OSR-in for profile-driven
deferred compilation as described by Fink and Qian [2003]. Deferred
compilation can be understood as a speculative optimization that as-
sumes an unlikely source-level branch is not taken.

Several works discuss implementation challenges and ease of use
with regards to OSR. Duboscq, Würthinger, Stadler, Wimmer, Simon,
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and Mössenböck [2013] present how deoptimization points and meta-
data are implemented in the Graal compiler IR. Lameed and Hendren
[2013], Kedlaya, Robatmili, Cas caval, and Hardekopf [2014], D’Elia and
Demetrescu [2016] provide frameworks for supporting OSR in LLVM.

Most compilers use an architecture, where OSR transitions are only
possible between versions linked by one compilation step. A notable
exception are Wimmer, Jovanovic, Eckstein, and Würthinger [2017]
who present OSR from optimized to optimized code. The goal is to
use an optimizing compiler as the baseline compiler. They note that
it requires “a two-way matching of two scope descriptors describing
the same abstract frame.” In terms of our definitions in the previous
section, this corresponds to an origin and a target state, which are
related through a corresponding source state.

On the other hand, the one-step architecture is sometimes further
simplified by the optimizer having the same source and target language.
For example Béra, Miranda, Denker, and Ducasse [2016] advocate a
VM architecture that uses a bytecode-to-bytecode optimizer, or Esser-
tel, Tahboub, and Rompf [2021] implement OSR as source-to-source
transformation. Wang, Blackburn, Hosking, and Norrish [2018] argue
for a common low-level code format for all optimization levels and a
low-level virtual machine, the Mu micro VM [Wang, Lin, Blackburn,
Norrish, and Hosking, 2015], to efficiently execute this code. OSR as
a mechanism is provided by the virtual machine, e.g.,, by means of a
swapstack primitive operation. A similar argument is made by Deshar-
nais and Brunthaler [2021]. As a result OSR is trivial to implement on
top of such an architecture, since all the implementation complexity
has to be handled already by the lower layer. Note however, that such a
one-language approach, while simplifying the implementation, does not
simplify the creation of a correct mapping for undoing optimizations.
The problem of keeping two versions’ execution states synchronized
across optimization passes still applies. That’s why the assume model in
this dissertation also makes this one-language simplifying assumption,
because it aims to solve the problem of correct mappings in isolation.

Some dynamic languages go to great lengths to avoid introducing
speculation and deoptimization at all [Belyakova, Chung, Gelinas, Nash,
Tate, and Vitek, 2020].

JIT Correctness

Previous work has made in-roads in demystifying JIT compilation.
Myreen [2010] presents a verified JIT compiler from a stack-based byte-
code to x86. The work focuses on self-modifying code, which modern
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JITs typically do not use anymore. The reasons are that for security
reasons memory cannot be writable and executable at the same time,
plus invalidating instruction caches is an expensive operation. What
is not covered by Myreen are compiler optimizations and any kind of
speculation, deoptimization, or specialization.

Guo and Palsberg [2011] discussed the soundness of trace-based
compilers. When optimizing a trace, the rest of the program is not
known to the optimizer, so optimizations such as dead-store elimination
are unsound: a store might seem useless in the trace itself, but actually
impacts the semantics of the rest of the program. On the other hand,
free variables of the trace can be considered constant for the entire
trace.

D’Elia and Demetrescu [2018] present an LLVM extension withOSR
exit and entry points, and their interaction with optimization passes.
Béra et al. [2016] present a verifier for a bytecode-to-bytecode optimizer.
By symbolically executing optimized and unoptimized code, they verify
that the deoptimizationmetadata produced by their optimizer correctly
maps the symbolic values of the former to the latter at all deoptimization
points.

There is a rich literature on formalizing compiler optimizations.
The CompCert project [Leroy and Blazy, 2008] for example implements
many optimizations, and contains detailed proof arguments for a data-
flow optimization used for constant folding that is similar to ours.
In fact, sourir is close to CompCert’s RTL language but comes with
versions and assumptions. There are formalizations for tracing com-
pilers [Guo and Palsberg, 2011, Dissegna, Logozzo, and Ranzato, 2014],
but we are unaware of any other formalization effort for speculative
optimizations in general.

2.4 Speculation in a Nutshell

This section introduces our IR and its design principles. We first present
the structure of programs and the assume instruction. Then, the fol-
lowing subsections explain how sourir maintains multiple equivalent
versions of the same function, each with a different set of assumptions
to enable speculative optimizations. All concepts introduced in this
and the next section are formalized in Section 2.6.

Sourir is an untyped language with lexically scoped mutable vari-
ables and first-class functions. As an example the function in Figure 2.4
queries a number n from the user and initializes an array with values
from 0 to n-1. By design, sourir is a cross between a compiler represen-
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var n = nil

read n

array t [n]
var k = 0

goto L1
L1 branch k < n L2 L3
L2 t [ k ]← k

k ← k + 1

goto L1
L3 drop k

stop

Figure 2.4: Example sourir code

tation and a high-level language. We have equipped it with sufficient
expressive power so that it is possible to write interesting programs
in a style reminiscent of dynamic languages.2 The only features that
are critical to our result are versions and assumptions. Versions are the
counterpart of dynamically generated code fragments. Assumptions,
represented by the assume instruction, support dynamic deoptimiza-
tion of speculatively compiled code. The syntax of sourir instructions
is shown in Figure 2.5.

Sourir supports defining a local variable, removing a variable from
scope, variable assignment, creating arrays, array assignment, (unstruc-
tured) control flow, input and output, function calls and returns, as-
sumptions, and terminating execution. Control-flow instructions take
explicit labels, which are compiler-generated symbols but we sometimes
give them meaningful names for clarity of exposition. Literals are inte-
gers, Booleans, and nil. Together with variables and function references,
they form simple expressions. Finally, an expression is either a simple
expression or an operation: array access, array length, or primitive
operation (arithmetic, comparison, and logic operation). Expressions
are not nested—this is common in intermediate representations such
as A-normal form [Sabry and Felleisen, 1992]. We do allow bounded
nesting in instructions for brevity.

A program P is a set of function declarations. The body of a func-
tion is a list of versions indexed by a version label, where each version is
an instruction sequence. The first instruction sequence in the list (the
active version) is executed when the function is called. F ranges over

2An implementation of sourir and the optimizations presented here is available
at https://github.com/reactorlabs/sourir.

https://github.com/reactorlabs/sourir
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i ::= instructions
| var x = e variable declaration
| drop x drop a variable from scope
| x ← e assignment
| array x[e] array allocation
| array x = [e∗] array creation
| x[e1]← e2 array assignment
| branch e L1L2 conditional branch
| goto L unconditional branch
| print e print
| read x read
| call x = e(e∗) function call
| return e return
| assume e∗ else ξ ξ̃∗ assume instruction
| stop terminate execution

e ::= expression
| se simple expression
| x[se] array access
| length(se) array length
| primop (se∗) primitive operation

se ::= simple expressions
| lit literals
| F function reference
| x variables

lit ::= literals
| . . . ,−1, 0, 1, . . . numbers
| nil | true | false others

ξ ::= F.V.L VA target and varmap
ξ̃ ::= F.V.L x VA extra continuation
VA ::= [x1 = e1, .. , xn = en] varmap

Figure 2.5: The syntax of sourir
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function names, V over version labels, and L over instruction labels.
An absolute reference to an instruction is thus a triple F.V.L. Every
instruction is labeled, but for brevity we omit unused labels.

Versions model the speculative optimizations performed by the
compiler. The only instruction that explicitly references versions is
assume. It has the form assume e∗ else ξ ξ̃∗ with a list of predicates
(e∗) and deoptimization metadata ξ and ξ̃∗. When executed, assume

evaluates its predicates; if they hold execution skips to the next instruc-
tion. Otherwise, deoptimization occurs according to the metadata.
The format of ξ is F.V.L [x1 = e1, .. , xn = en ], which contains a
target F.V.L and a varmap [x1 = e1, .. , xn = en ]. To deoptimize, a
fresh environment for the target is created according to the varmap.
Each expression ei is evaluated in the old environment and bound to
xi in the new environment. The environment specified by ξ replaces
the current one. Deoptimization might also need to create additional
continuations, if assume occurs in an inlined function. In this case
multiple ξ̃ of the form F.V.L x [x1 = e1, .. , xn = en ] can be ap-
pended. Each one synthesizes a continuation with an environment
constructed according to the varmap, a return target F.V.L, and the
name x to hold the returned result—this situation and inlining are
discussed in Section 2.5. The purpose of deoptimization metadata is
twofold. First, it provides the necessary information for jumping to the
target version. Second, its presence in the instruction stream allows the
optimizer to keep the mapping between different versions up-to-date.

For simplicity, assumptions are modeled as guard expressions which
are always checked at the point of the assume instructions. This is not
a limitation and still allows us to have remote dependencies using a
global dependency array to store their state. See Section 2.7 for details.

Example Consider the function size in Figure 2.6 which computes
the size of a vector x . In version Vb, x is either nil or an array with
its length stored at index 0. The optimized version Vo expects that the
input is never nil. Classical compiler optimizations can leverage this
fact: unreachable code removal prunes the unused branch. Constant
propagation replaces the use of el with its value and updates the varmap
so that it restores the deleted variable upon deoptimization to the base
version Vb.

Deoptimization Invariants

A version is the unit of optimization and deoptimization. Thus we
expect that each function will have one original version and possibly
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size ( x )
Vo

assume x 6= nil else size.Vb.L2 [ el = 32 , x = x ]
var l = x [ 0 ]
return l ∗ 32

Vb

L1 var el = 32

L2 branch x = nil L4 L3
L3 var l = x [ 0 ]

return l ∗ el

L4 return 0

Figure 2.6: Speculation on x

show ( x )
Vo

assume x = 42 else show.Vb.L1 [ x = x ]
print 42

Vw

assume true else show.Vb.L1 [ x = 42 ]
print x

Vb

L1 print x

Figure 2.7: The version w violates the deoptimization invariant

many optimized versions. Versions are constructed such that they pre-
serve two crucial invariants: (1) version equivalence and (2) assumption
transparency. By the first invariant all versions of a function are ob-
servationally equivalent. The second invariant ensures that even if the
assumption predicates do hold, deoptimizing to the target should be
correct. Thus one could execute an optimized version and its base in
lockstep; at every assume the varmap provides a complete mapping
from the new version to the base. This simulation relation between
versions is our correctness argument. The transparency invariant al-
lows us to add assumption predicates without fear of altering program
semantics. Consider a function show in Figure 2.7, which prints its
argument x . Version Vo respects both invariants: any value for x will
result in the same behavior as the base version and deoptimizing is
always possible. On the other hand, Vw, which is equivalent because
it will never deoptimize, violates the second invariant: if it were to
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fun ( )
V2

L0 assume true else fun.V1 .L0 [ ]
var x = 1

L1 assume e else fun.V1 .L1 [ x = x ]
L2 print x + 2

V1

L0 var x = 1

L1 assume e else fun.V0 .L1 [ g = x ]
L2 assume true else fun.V0 .L2 [ g = x , h = x + 1 ]

print x + 2

V0

L0 var g = 1

L1 var h = g + 1

L2 print h + 1

Figure 2.8: Chained assume instructions: Version 1 was created from
0, then optimized. Version 2 is a fresh copy of 1.

deoptimize, the value of x would be set to 42, which is almost always
incorrect. We present a formal treatment of the invariants and the
correctness proofs in Section 2.6.

Creating Fresh Versions

We expect that versions are chained. A compiler will create a new
version, say V1 , from an existing version V0 by copying all instructions
from the original version and chaining their deoptimization targets.
The latter is done by updating the target and varmap of assume instruc-
tions such that all targets refer to V0 at the same label as the current
instruction. As the new version starts out as a copy, the varmap is the
identity function. For instance, if the target contains the variables x

and y , then the varmap is [ x = x , z = z ]. Additional assume

instructions can be added; assume instructions that bear no predicates
(i.e. ,, the predicate list is either empty or just tautologies) can be re-
moved while preserving equivalence. As an example in Figure 2.8, the
new version V2 is a copy of V1 ; the instruction at L0 was added, the
instruction at L1 was updated, and the one at L2 was removed.

Updating assume instructions is not required for correctness. But
the idea behind a new version is that it captures a set of assumptions that
can be undone independently from the previously existing assumptions.
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size ( x )
Vdup

L1 assume true else size.Vb.L1 [ x = x ]
var el = 32

L2 assume true else size.Vb.L2 [ el = el , x = x ]
branch x = nil L4 L3

L3 var l = x [ 0 ]
return l ∗ el

L4 return 0

Vb . . .

Figure 2.9: A fresh copy of the base version of size

Thus, we want to be able to undo one version at a time. In an implemen-
tation, versions might, for example, correspond to optimization tiers.3

This approach can lead to a cascade of deoptimizations if an inherited
assumption fails; we discuss this in Section 2.5. In the following sections
we use the base version Vb of Figure 2.6 as our running example. As a
first step, we generate the new version Vdup with two fresh assume

instructions shown in Figure 2.9. Initially the predicates are true and
the assume instructions never fire. Version Vb stays unchanged.

Injecting Assumptions

We advocate an approach where the compiler first injects assumption
predicates, and then uses them for optimizations. In contrast, earlier
work would apply an unsound optimization and then recover by adding
a guard (see, for example, Duboscq et al. [2013]). While the end result
is the same, the different perspective helps with reasoning about cor-
rectness. Assumptions are Boolean predicates, similar to user-provided
assertions. For example, to speculate on a branch target, the assumption
is the branch condition or its negation. It is therefore correct for the
compiler to expect that the predicate holds immediately following an
assume. Injecting predicates is done after establishing the correspon-
dence between two versions with assume instructions, as presented
above. Inserting a fresh assume into a function is difficult in general,
as one must determine where to transfer control to or how to recon-
struct the target environment. On the other hand, it is always correct

3A common strategy for VMs is to have different kind of optimizing compilers
with different compilation speed versus code quality trade-offs. The more a code
fragment is executed, the more powerful optimizations will be applied to it.



Optimizations 29

to add a predicate to an existing assume. Thanks to the assumption
transparency invariant it is always safe to deoptimize more often. For
instance, in assume x 6= nil, x > 10 else . . . the predicate x 6= nil

was narrowed down to x > 10 .

2.5 Optimizations

In the previous section we introduced our approach for establishing a
fresh version of a function that lends itself to speculative optimizations.
Next, we introduce classical compiler optimizations that are exemplary
of our approach. Then we give additional transformations for the
assume instruction and concludewith a case study. All transformations
introduced in this section are proved correct in Section 2.6.

Constant Propagation

Consider a simple constant propagation pass that finds constant vari-
ables and then updates all uses. This pass maintains a map from variable
names to constant expressions or unknown. The map is computed for
every position in the instruction stream using a data-flow analysis.
Following the approach by Kildall [1973], the analysis has an update
function to add and remove constants to the map. For example analyz-
ing var x = 2 or x ← 2 adds the mapping x → 2. The instruction
var y = x + 1 adds y → 3 to the previous map. Finally, drop x

removes a mapping. Control-flow merges rely on a join function for in-
tersecting two maps; mappings which agree are preserved, while others
are set to unknown. In a second step, expressions that can be evaluated
to values are replaced and unused variables are removed. No additional
care needs to be taken to make this pass correct in the presence of
assumptions. This is because in sourir, the expressions needed to recon-
struct environments appear in the varmap of the assume and are thus
visible to the constant propagation pass. Additionally, the pass can
update them, for example, in assume true else F.V.L [ x = y + z ], the
variables y and z are treated the same as in call h = foo (y + z ).
They can be replaced and will not artificially keep constant variables
alive.

Constant propagation can become speculative. After the instruc-
tion assume x = 0 else . . . , the variable x is 0. Therefore, x → 0

is added to the state map. This is the only extension required for spec-
ulative constant propagation. As an example, in the case where we
speculate on a nil check



30 Assume: Speculation with Deoptimization

size ( x )
Vpruned

L1 assume true else size.Vb.L1 [ x = x ]
var el = 32

L2 assume x 6= nil else size.Vb.L2 [ el = el , x = x ]
var l = x [ 0 ]
return l ∗ el

Vb . . .

Figure 2.10: A speculation that the argument is not nil

. . .
L2 assume x 6= nil else size.Vb.L2 [ el = el , x = x ]

branch x = nil L4 L3
. . .

the map is x → ¬nil after L2 . Evaluating the branch condition under
this context yields ¬nil == nil, and a further optimization opportunity
presents itself.

Unreachable Code Elimination

As shown above, an assumption coupled with constant folding leads to
branches becoming deterministic. Unreachable code elimination bene-
fits from that. We consider a two step algorithm: the first pass replaces
branch e L1 L2 with goto L1 if e is a tautology and with goto L2 if it
is a contradiction. The second pass removes unreachable instructions.
In our running example from Figure 2.9, we add the predicate x 6= nil

to the empty assume at L2 . Constant propagation shows that the
branch always goes to L3 , and unreachable code elimination removes
the dead statement at L4 and branch. This creates the version shown in
Figure 2.10. Additionally, constant propagation can replace el by 32.
By also replacing its mention in the varmap of the assume at L2 , el

becomes unused and can be removed from the optimized version. This
yields version Vo in Figure 2.6 at the top.

Function Inlining

Function inlining is our most involved optimization, since assume

instructions inherited from the inlinee need to remain correct. The
inlining itself is standard. Name mangling is used to separate the caller
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main( )
Vinl

array pl = [ 1 , 2 , 3 , 4 ]
array vec = [length( pl ), pl ]
var s = nil

var x = vec

assume x 6= nil else size.Vb.L2 [ el = 32 , x = x ]
main.Vb.Lret s [ pl = pl , vec = vec ]

var l = x [ 0 ]
s ← l ∗ 32

drop l

drop x

print s

stop

Vb

array pl = [ 1 , 2 , 3 , 4 ]
array vec = [length( pl ), pl ]
call s = size (vec )

Lret print s

stop

size ( x )
Vo

L2 assume x 6= nil else size.Vb.L2 [ el = 32 , x = x ]
var l = x [ 0 ]
return l ∗ 32

Vb . . .

Figure 2.11: An inlining of size into a main

and callee environments. As an example Figure 2.11 shows the inlining
of size into a function main. Naïvely inlining without updating the
metadata of the assume at L2 will result in an incorrect deoptimization,
as execution would transfer to size.Vb.L2 with no way to return to the
main function. Also,main’s part of the environment is discarded in the
transfer and permanently lost. The solution is to synthesize a new stack
frame. As shown in the figure, the assume at in the optimizedmain

is thus extended with main.Vb.Lret s [ pl = pl , vec = vec ].This
creates an additional stack frame that returns to the base version of
main, and stores the result in s with the entire caller portion of the
environment reconstructed. It is always possible to compute the contin-
uation, since the original call site must have a label and the scope at this
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label is known. Overall, after deoptimization, it appears as if version Vb

of main had called version Vb of size . Note, it would be erroneous
to create a continuation that returns to the optimized version of the
caller Vinl. If deoptimization from the inlined code occurs, it is precisely
because some of its assumptions are invalid. Multiple continuations
can be appended for further levels of inlining. The inlining needs to be
applied bottom up: for the next level of inlining, e.g.,, to inline Vinl into
an outer caller, renamings must also be applied to the expressions in
the extra continuations, since they refer to local variables in Vinl.

Unrestricted Deoptimization

The assume instructions are expensive: they create dependencies on
live variables and are barriers for moving instructions. Hoisting a
side-effecting instruction over an assume is invalid, because if we de-
optimize the effect happens twice. Removing a local variable is also
not possible if its value is needed to reconstruct the target environ-
ment. Thus it makes sense to insert as few assume instructions as
possible. On the other hand it is desirable to be able to “deoptimize
everywhere”—checking assumptions in the basic block in which they
are used can avoid unnecessary deoptimization—so there is a tension
between speculation and optimization. Reaching an assume marks a
stable state in the execution of the program that we can fall back to,
similar to a transaction. Implementations like the one by Duboscq et al.
[2013] separate deoptimization points and the associated guards into
two separate instructions to be able to deoptimize more freely. As long
as the effects of instructions performed since the last deoptimization
point are not observable, it is valid to throw away intermediate results
and resume control from there. Effectively, in sourir this corresponds
to moving an assume instruction forward in the instruction stream,
while keeping its deoptimization target fixed.

An assume can be moved over another instruction if that instruction:

1. has no side-effects and is not a call instruction,

2. does not interfere with the varmap or predicates, and

3. has the assume as its only predecessor instruction.

The first condition prevents side-effects from happening twice. The
second condition can be enabled by copying the affected variables at
the original assume instruction location (i.e. ,, taking a snapshot of
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size ( x )
Vany

assume true else size.Vb.L1 [ x = x ]
var el = 32

branch x = nil L4 L3
L3 x ← x [ 0 ]

return x ∗ el

L4 . . .
Vb . . .

Figure 2.12: Snippet with empty assume and a branch

size ( x )
Vany

var x0 = x

var el = 32

branch x = nil L4 L3
L4 x ← x [ 0 ]

assume x = 1 else size.Vb.L1 [ x = x0 ]
return 1 ∗ el

L3 . . .
Vb . . .

Figure 2.13: Moving an assume from Figure 2.12 forward in the instruc-
tion stream

the required part of the environment).4 The last condition prevents
capturing traces incoming from other basic blocks where (1) and (2) do
not hold for all intermediate instructions since the original location.
This is not the weakest condition, but a reasonable, sufficient one.

Let us consider a modified version of our running example in Fig-
ure 2.12. Again, we have an assume before the branch. However, now
we would like to place a guard only inside one of the branches. There
is an interfering instruction at L4 that modifies x . By creating a tem-
porary variable to hold the value of x at the original assume location,
so it is possible to resolve the interference. As shown in Figure 2.13 the
assume can now move inside the branch and a predicate can be added
on the updated x . Note that the target is unchanged. This approach

4In an SSA based IR this step is not necessary for SSA variables, since the captured
ones are guaranteed to stay unchanged.
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allows for the (logical) separation between the deoptimization point
and the position of assumption predicates. In the transformed example
a stable deoptimization point is established at the beginning of the
function by storing the value of x , but then the assumption is checked
only in one branch. The intermediate states are ephemeral and can be
safely discarded when deoptimizing. For example the variable el is
not mentioned in the varmap here, so it is not captured by the assume.
Instead it is recomputed by the original code at the deoptimization
target size.Vb.L1 . To be able to deoptimize from any position it is
sufficient to have an assume after every side-effecting instruction, call,
and control-flow merge.

Predicate Hoisting

Moving an assume backwards in the code would require replaying
the moved-over instructions in the case of deoptimization. Hoisting
assume true else size.Vb.L2 [ el = el , . . . ] above var el = 32 is
allowed if the varmap is changed to [ el = 32 , . . . ] to compensate for
the lost definition. However this approach is tricky and does not work
for instructions withmultiple predecessors as it could lead to conflicting
compensation code. But a simple alternative to hoisting assume is to
hoist a predicate from one assume to a previous one. To understand
why, let us decompose the approach into two steps. Given an assume

at L1 that dominates a second one at L2 , we copy a predicate from the
latter to the former. This is valid because the assumption transparency
invariant allows strengthening predicates. A data-flow analysis can
determine if the copied predicate from L1 is available at L2 , in which
case it can be removed from the original instruction. In our running
example, version Vpruned in Figure 2.10 has two assume instructions
and one predicate. It is trivial to hoist x 6= nil, since there are no
interfering instructions. This allows us to remove the assume with
the larger scope. More interestingly, in the case of a loop-invariant
assumption, predicates can be hoisted out of the loop.

Assume Composition

As we have argued in Section 2.4, it is beneficial to undo as few as-
sumptions as possible. On the other hand, deoptimizing an assumption
added in an early version cascades through all the later versions. To
be able to remove chained assume instructions, we show that assump-
tions are composable. If an assume in version V3 transfers control to
a target V2 .La that is itself an assumption with V1 .Lb as target, then
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div ( tagx , x , tagy , y )
Vbase

L1 branch tagx 6= NUM Lslow L2
L2 branch tagy 6= NUM Lslow L3
L3 branch x = 0 Lerror L4
L4 return y / x

Lslow . . .
(a)

assume tagx = NUM , tagy = NUM else div.Vb.L1 [. . . ]
branch x = 0 Lerror L4

L4 return y / x

. . .
(b)

assume tagx = NUM , x 6= 0 else div.Vb.L1 [. . . ]
branch tagy 6= NUM Lslow L4

L4 return y / x

. . .
(c)

assume tagx = NUM , tagy = NUM , x 6= 0 else div.Vb.L1 [. . . ]
return y / x

(d)

Figure 2.14: Case study

we can combine the metadata to take both steps at once. By the as-
sumption transparency invariant, the pre- and post-deoptimization
states are equivalent: even if the assumptions are not the same, it is
correct to conservatively trigger the second deoptimization. For ex-
ample, consider the instruction assume e else F.V2 .La [ x = 1 ] that
jumps to assume e′ else F.V0 .Lb [ y = x ]. They can be combined into
assume e, e′ else F.V0 .Lb [ y = 1 ]. This new unified assume skips
the intermediate version V2 and goes to V0 directly. This could be
an interesting approach for multi-tier JITs: after the system stabilizes,
intermediate versions are rarely used and may be discarded.

Case Study

We conclude with an example. In dynamic languages code is often
dispatched on runtime types. If types were known, code could be



36 Assume: Speculation with Deoptimization

specialized, resulting in faster code with fewer checks and branches.
Consider Figure 2.14(a) which implements a generic binary division
function that expects two values and their type tags. No static informa-
tion is available; the arguments could be any type. Therefore, multiple
checks are needed before the division; for example the slow branch will
require even more checks on the exact value of the type tag. Suppose
there is profiling information that indicates numbers can be expected.
The function is specialized by speculatively pruning the branches as
shown in Figure 2.14(b). In certain cases, sourir’s transformations can
make it appear as though checks have been reordered. Consider a varia-
tion of the previous example, that speculates on x , but not y as shown
in Figure 2.14(c). In this version, both checks on x are performed first
and then the ones on y , whereas in the unoptimized version they are
interleaved. By ruling out an exception early, it is possible to perform
the checks in a more efficient order. The fully speculated-on version
contains only the integer division and the required assumptions (Fig-
ure 2.14(d)). This version has no more branches and is a candidate for
inlining.

Limitations

A limitation of the assume model is that the varmap contains only silent
expressions. Implementations may try to defer some instructions to
occur only when deoptimizing. As an example consider an optimization
to elide array allocation, e.g., rewriting the definition ‘array x = [ 3 ]’
to ‘var x = 3 ’. If x was captured by an assume instruction, then
deoptimization would have to be able to convert the scalar 3 into a sin-
gleton array, which is not possible with an expressions. For this reason
Ř allows for arbitrary instructions to be deferred and only executed
when a guard fails.

Further, unrestricted deoptimization as shown above requires mov-
ing the assume instruction and therefore prevents speculation at its
original location. Also, before inlining we need to preserve a copy of
the current caller version. Both of these limitations are overcome by
Barrière et al. [2021].
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P ::=
F(x∗)

V
L i

indentation-based syntax

P ::= F(x∗) : DF , ... a program is a list of named functions
DF ::= V : I , ... a function is a list of instruction streams
I ::= L : i, ... an instruction stream with labeled instructions

Figure 2.15: Program syntax

2.6 Assume Formalized

A sourir program contains several functions, each of which can have
multiple versions. This high-level structure is described in Figure 2.15.
The first version is considered the currently active version and will
be executed by a call instruction. Each version consists of a stream of
labeled instructions. We use an indentation-based syntax that directly
reflects this structure and omit unreferenced instruction labels.

Besides grammatical and scoping validity, we impose the follow-
ing well-formedness requirements to ease analysis and reasoning. We
require all guard expressions e in assume e∗ else ξ ξ̃∗ to be statically
known to produce a value. In practice this is not a limitation since par-
tial functions can be extended to evaluate to false. The last instruction
of each version of the main function is stop. Two variable declarations
for the same name cannot occur in the same instruction stream. This
simplifies reasoning by letting us use variable names to unambiguously
track information depending on the declaration site. Different versions
have separate scopes and can have names in common. If a function
reference F is used, that function F must exist. Origin and target of
control-flow transitions must have the same set of declared variables.
This eases determining the environment at any point. To jump to a
label L, all variables not in scope at L must be dropped (drop x ).

Operational Semantics

Expressions Figure 2.16 and Figure 2.17 give the semantics of expres-
sions. Evaluation e returns a value v, which may be a literal lit , a
function, or an address a. Arrays are represented by addresses into heap
M . The heap is a map from addresses to blocks of values [v1, .. , vn ].
An environment E is a mapping from variables to values. Evaluation
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v ::= values
| lit
| F
| a

addr ::= a addresses
M ::= (a → [v1, .. , vn])∗ heap
E ::= ( x → v)∗ environment

[Literal]

E lit ⇀ lit

[Funref]

E F ⇀ F

[Lookup]

E x ⇀ E(x)

[SimpleExp]
E se ⇀ v

M E se → v

[Primop]
E se1 ⇀ v1 .. E sen ⇀ vn

M E primop(se1, .. , sen)→ [[primop]](v1, .. , vn)

Figure 2.16: Evaluation M E e → v of expressions

[VecLen]
E se ⇀ a M (a) = [v1, .. , vn]

M E length(se)→ n

[VecAccess]

a def= E(x) M (a) = [v0, .. , vm]
E se ⇀ n 0 ≤ n ≤ m

M E x[se]→ vn

Figure 2.17: Evaluation E se ⇀ v of simple expressions

is defined by a relation M E e → v : under M and environment E , e
evaluates to v. This definition in turn relies on a relation E se ⇀ v
defining evaluation of simple expressions se, which does not access
arrays. The notation [[primop]] to denote, for each primitive operation
primop, a partial function on values. Arithmetic operators and arith-
metic comparison operators are only defined when their arguments
are numbers. Equality and inequality are defined for all values. The
relation M E e → v, when seen as a function from M , E , e to v, is
partial: it is not defined on all inputs. For example, there is no v such
that the relation M E x [se]→ v holds if E( x ) is not an address a, if
a is not bound in M , if se does not reduce to a number n, or if n is out
of bounds.

Instructions and Programs We define a small-step, labeled oper-
ational semantics with a notion of machine state, or configuration,
that represents the dynamic state of a program being executed, and a
transition relation between configurations. A configuration is a six-
component tuple 〈P I L K∗ M E〉 described in Figure 2.18. Con-
tinuations K are tuples of the form 〈I L x E〉, storing the infor-
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mation needed to correctly return to a caller function. On a call
call x = e(e1, .. , en), the continuation pushed on the stack contains
the current instruction stream I (to be restored on return), the label L
of the next instruction after the call (the return label), the variable x
to name the returned result, and environment E . For details, see the
reduction rules for call and return in Figure 2.20.

C ::= 〈P I L K∗ M E〉
configuration


P program
I instructions
L next label
K∗ ::= (K1, .. , Kn) call stack
M heap
E environment

K ::= 〈I L x E〉
continuation


I code of calling function
L return label
x return variable
E environment at call site

Figure 2.18: Abstract machine state

A ::= I/O action
| print lit
| read lit
| stop

Aτ ::=
| A
| τ silent label

T ::= action trace
| (empty trace)
| A
| Aτ

| T A
| T Aτ

[Refl]

C −→∗ C

[SilentCons]

C T−→∗ C ′ C ′ τ−→ C ′′

C T−→∗ C ′′

[ActionCons]

C T−→∗ C ′ C ′ A−→ C ′′

C T A−→∗ C ′′

Figure 2.19: Actions and traces
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The relation C Aτ−→ C ′ specifies that executing the next instruction
may result in the configuration C ′. The action Aτ indicates whether
this reduction is observable: it is either the silent action, written τ , an

I/O action read lit or print lit , or stop. We write C T−→∗ C ′ when
there are zero or more steps from C to C ′. The trace T is a list of non-
silent actions in the order in which they appeared. Actions are defined
in Figure 2.19, and the full reduction relation is given in Figure 2.20.

Most rules get the current instruction, I (L), perform an operation,
and advance to the next label, referred to by the shorthand (L+1). The
read lit and print lit actions represent observable I/O operations. They
are emitted by Read and Print in Figure 2.20. The action read lit on the
read x transition may be any literal value. This is the only reduction

rule that is non-deterministic. Note that the relation C −→∗ C ′,
containing only sequences of silent reductions, is deterministic.

The stop reduction emits the stop transition, and also produces
a configuration with no instructions, ε. This is a technical device to
ensure that the resulting configuration does not reduce further. A
program with a silent loop has a different trace from a program that
halts.

[StartConf]

I def= P(main, active) L
def= start(I )

start(P) def= 〈P I L ∅ ∅ ∅〉

reachable(P) def= {C | ∃T , start(P) T−→∗ C}

Given a program P , let start(P) be its starting configuration, and
reachable(P) be the set of configurations reachable from it; they are
all the states that may be encountered during a valid run of P .

Equivalence of Configurations: Bisimulation

We use weak bisimulation to prove equivalence between configurations.
The idea is to define, for each program transformation, a correspon-
dence relation R between configurations over the original and trans-
formed programs. We show that related configurations have the same
observable behavior, and reducing them results in configurations that
are themselves related. Two programs are equivalent if their starting
configurations are related.

Definition 1 (Weak Bisimulation). Given programs P1 and P2 and relation
R between the configurations of P1 and P2, R is a weak simulation if
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[Decl]
I (L) = var x = e M E e → v
〈P I L K∗ M E〉 τ−→ 〈P I (L+1) K∗ M E [x ← v]〉

[Drop]
I (L) = drop x
〈P I L K∗ M E〉 τ−→ 〈P I (L+1) K∗ M E\{x}〉

[ArrayDef]
I (L) = array x = [e1, .. , en] M E e1 → v1 .. M E en → vn

a /∈ dom(M ) M ′ def= M [a ← [v1, .. , vn]]
〈P I L K∗ M E〉 τ−→ 〈P I (L+1) K∗ M ′ E [x ← a ]〉

[ArrayDecl]
I (L) = array x[e] M E e → n

a /∈ dom(M ) M ′ def= M [a ← [nil1, .., niln]]
〈P I L K∗ M E〉 τ−→ 〈P I (L+1) K∗ M ′ E [x ← a ]〉

[Update]
I (L) = x ← e x ∈ dom(E) M E e → v
〈P I L K∗ M E〉 τ−→ 〈P I (L+1) K∗ M E [x ← v]〉

[ArrayUpdate]

I (L) = x[e′]← e a
def= E(x) M E e′ → n M E e → v

M (a) = [v0, .. , vm] 0 ≤ n ≤ m
M ′ def= M [a ← [v0, .. , vm]{vn/v}]

〈P I L K∗ M E〉 τ−→ 〈P I (L+1) K∗ M ′ E〉

[Read]
I (L) = read x
〈P I L K∗ M E〉 read lit−→ 〈P I (L+1) K∗ M E [x ← lit]〉
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[Print]
I (L) = print e M E e → lit
〈P I L K∗ M E〉 print lit−→ 〈P I (L+1) K∗ M E〉

[BranchT]
I (L) = branch e L1L2 M E e → true

〈P I L K∗ M E〉 τ−→ 〈P I L1 K∗ M E〉

[BranchF]
I (L) = branch e L1L2 M E e → false

〈P I L K∗ M E〉 τ−→ 〈P I L2 K∗ M E〉

[Goto]
I (L) = goto L′

〈P I L K∗ M E〉 τ−→ 〈P I L′ K∗ M E〉

[Stop]
I (L) = stop

〈P I L K∗ M E〉 stop−→ 〈P ε L K∗ M E〉

[Call]
I (L) = call x = e(e1, .. , en)
M E e → F

P(F ) = F (x1, .. , xn) : DF I ′ def= P(F, active)
L′ def= start(I ′) M E [x1 = e1, .. , xn = en] E ′

〈P I L K∗ M E〉 τ−→ 〈P I ′ L′ (K∗, 〈I (L+1) x E〉) M E ′〉

[Return]
I (L) = return e M E e → v
〈P I L (K∗, 〈I ′ L′ x E ′〉) M E〉 τ−→ 〈P I ′ L′ K∗ M E ′[x ← v]〉
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[AssumePass]
I (L) = assume e∗ else ξ ξ̃∗ ∀m, M E em → true

〈P I L K∗ M E〉 τ−→ 〈P I (L+1) K∗ M E〉

[AssumeDeopt]
I (L) = assume e∗ else ξ ξ̃∗ ¬(∀m, M E em → true)
〈P I L K∗ M E〉 τ−→ deoptimize(〈P I L K∗ M E〉, ξ, ξ̃∗)

[DeoptimizeConf]

M E VA E ′ I ′ def= P(F ′, V ′)
∀q ∈ 1, .., r ,

ξ̃q = Fq.Vq.Lq xq VAq

M E VAq  Eq Iq
def= P(Fq, Vq) Kq

def= 〈Iq Lq xq Eq〉
deoptimize(〈P I L K∗ M E〉, F ′.V ′.L′ VA, ξ̃1, .. , ξ̃r) def= 〈P I ′ L′ (K∗, K1, .. , Kr) M E ′〉

[EvalEnv]
M E e1 → v1 .. M E en → vn

M E [x1 = e1, .. , xn = en] [x1 → v1, .. , xn → vn]

Figure 2.20: Reduction relation C τ−→ C ′ (incl. previous 2 pages)

for any related states (C1, C2) ∈ R and any reduction C1
Aτ−→ C ′

1 over

P1, there exists a reduction C2
Aτ−→∗ C ′

2 over P2 such that (C ′
1, C ′

2) are
themselves related by R. Reduction over P2 is allowed to take zero or more
steps, but not to change the trace. In other words, the diagram on the left below
can always be completed into the diagram on the right.

C1 C ′
1

C2

R

Aτ C1 C ′
1

C2 C ′
2

R

Aτ

R

∗Aτ

R is a weak bisimulation if it is a weak simulation and the symmetric relation
R−1 also is—a reduction from C2 can be matched by C1. Finally, two
configurations are weakly bisimilar if there exists a weak bisimulation R
that relates them.
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In the remainder, the adjective weak is always implied. The follow-
ing result is standard, and essential to compose the correctness proof of
subsequent transformation passes.

Lemma 1 (Transitivity). If R12 is a weak bisimulation between P1 and P2,
and R23 is a weak bisimulation between P2 and P3, then the composed

relation R13
def= (R12; R23) is a weak bisimulation between P1 and P3.

Definition 2 (Version bisimilarity). LetV1, V2 be two versions of a function

F in P , and let I1
def= P(F , V1) and I2

def= P(F , V2). V1 and V2
are weakly bisimilar if the configurations 〈P I1 start(I1) K∗ M E〉 and
〈P I2 start(I2) K∗ M E〉 are weakly bisimilar for all K∗, M , E .

Definition 3 (Equivalence). P1,P2 are equivalent if start(P1), start(P2)
are weakly bisimilar.

Deoptimization Invariants

We can now give a formal definition of the invariants from Section 2.4:
Version Equivalence holds if any pair of versions (V1, V2) of a function
F are bisimilar; Assumption Transparency holds if for any configuration
C , at an assume e∗ else ξ ξ̃∗, C , is bisimilar to deoptimize(C , ξ, ξ̃∗),
as defined in Figure 2.20, DeoptimizeConf.

Creating Fresh Versions and Injecting Assumptions

ConfigurationC is over locationF.V.L if it is 〈P P(F , V ) L K∗ M E〉.
Let C [F.V.L ← F ′.V ′.L′] be 〈P P(F ′, V ′) L′ K∗ M E〉. More gen-
erally, C [X ← Y ] replaces various components of C . For example,
C [P1 ← P2] updates the program in C ; if only the versions change
between two locations F.V.L and F.V ′.L, write C [V ← V ′] instead
of repeating the locations, etc.

Theorem 1. Creating a new copy of the currently active version of a function,
possibly adding empty assume instructions, returns an equivalent program.

Proof. Consider P1 with a function F with active version V1. Adding
a version yields P2 with new active version V2 of F such that

– any label L of V1 exists in V2L: the instruction at L in V1 and
V2 are identical except for assume instructions updated so that
assume e∗ else ξ ξ̃∗ in V1 has an assume e∗ else F.V1.L Id in
V2 where Id is the identity over the environment at L.
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– V2 may contain extra empty assume instructions: for any in-
struction i at L in V1, V2 may contain an assume of the form
assume true else F.V1.L Id, where Id is the identity mapping
over the environment at L, followed by i at a fresh label L′.

Let us write I1 and I2 for the instructions of V1 and V2 respectively.
Stack K∗

2 is a replacement of K∗
1 if it is obtained from K∗

1 by replacing
continuations of the form 〈I1 L x E〉 by 〈I2 L x E〉. Replacement
is a device used in the proof and does not correspond to any of the
reduction rules. We define a relation R as the smallest relation such
that :

1. For any configurationC1 overP1, R relatesC1 toC1[P1 ← P2].

2. For any configuration C1 over a F.V1.L such that L in V2 is not
an added assume, R relates C1 to C1[P1 ← P2][V1 ← V2].

3. For any configuration C1 over a F.V1.L such that at L in V2 is a
newly added assume followed by label L′, R relates C1 to both
(a) C1[F.V1.L ← F.V2.L] and (b) C1[F.V1.L ← F.V2.L′].

4. For any related pair (C1, C2) ∈ R, where K∗
1 is the call stack of

C2, for any replacement K∗
2 , the pair (C1, C2[K∗

1 ← K∗
2 ]) is in

R.

The proof proceeds by showing that R is a bisimulation. If a related
pair (C1, C2) ∈ R comes from the cases (1), (2) or (3) of the definition
of R, we say that it is a base pair. A pair (C1, C2) in case (4) is defined
from another pair (C1, C ′

2) ∈ R, such that the call stack of C2 is a
replacement of the stack of C ′

2. If (C1, C ′
2) ∈ R is a base pair, we say

that it is the base pair of (C1, C2). Otherwise, we say that the base pair
of (C1, C2) is the base pair of (C1, C ′

2).

Bisimulation proof: generalities To prove that R is a bisimulation,
consider all related pairs (C1, C2) ∈ R and show that a reduction from
C1 can be matched by C2 and conversely. Without loss of generality,
assume thatC2 is not a newly added assume instruction – that the base
pair of (C1, C2) is not in the case (3,b) of the definition of R. Indeed,
the proof of the case (3,b) follows from proof of the case (3,a). In the case
(3,b), C2 is a newly added assume instruction assume true else . . . at

L followed by L′. C2 can only reduce silently into C ′
2

def= C2[L ← L′],
which is related to C1 by the case (3,a). The empty reduction sequence
from C1 matches this reduction from C2. Conversely, assume the result
in the case (3,a), then any reduction of C1 can be matched from C ′

2, and
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thus matched from C2 by prepending the silent reduction C2
τ−→ C ′

2
to the matching reduction sequence. Finally, if (C1, C2) comes from
case (4) and has a base pair (C1, C ′

2) from (3,b), and C2 has label L
followed byL′, then the bisimulation property for (C1, C2) ∈ R comes
from the one of (C1, C2[L ← L′]) ∈ R by the same reasoning.

Bisimulation proof: easy cases The easy cases of the proof are the

reductions C1
Aτ−→ C ′

1 where neither C1 nor C ′
1 are over V1, and the

reductions C2
Aτ−→ C ′

2 where neither C2 nor C ′
2 are over V2. For

C1
Aτ−→ C ′

1, define C ′
2 as C ′

1[P1 ← P2], and both C2
Aτ−→ C ′

2 and

(C ′
1, C ′

2) ∈ R hold. The C2
Aτ−→ C ′

2 case is symmetric, defining C ′
1 as

C ′
2[P2 ← P1].

Bisimulation proof: harder cases The harder cases are split in two
categories: version-change reductions (deoptimizations, functions call
and returns), and same-version reductions within V1 in P1 or V2 in
P2 respectively.

We consider same-version reductions first. Without loss of gener-
ality, assume that the pair (C1, C2) ∈ R is a base pair, that is a pair
related by the cases (2) or (3) of the definition of R, but not (4) – the
case that changes the call stack of the configuration. Indeed, if pair
(C1, C ′

2) ∈ R comes from (4), the only difference between this pair and
its base pair (C1, C2) ∈ R is in the call stack of C2 and C ′

2. This means
that C2 and C ′

2 have the exact same reduction behavior for non-version-
change reductions. As long as the proof that the related configurations
C1 and C2 match each other does not use version-change reductions
(a property that holds for the proofs of the non-version-change cases

below), it also applies to C1 and C ′
2. For a reduction C2

Aτ−→ C ′
2 that is

not a version-change reduction (deoptimization, call or return), prove
that it can be matched from C1 by distinguishing whether C2 or C ′

2
are assume instructions, coming from V1 or newly added.

– If none of them are assume instructions, then they are both in
the case (2) of the definition ofR, they are equal toC1[V1 ← V2]
and C ′

1[V1 ← V2] respectively, so C1
Aτ−→ C ′

1 and (C ′
1, C ′

2) ∈
R hold.

– If C2 or C ′
2 are assume instructions coming from V1, the same

reasoning holds – the problematic case where the assume is C2
and the guards do not pass is not considered here as the reduction
is not a deoptimization.
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– If C ′
2 is a newly added assume in V2 at L followed by L′, C2

is an instruction of V2 copied from V1, so (C1, C2) are in the
case (2) of the definition of R and C1 is C1[V2 ← V1]. The

reduction from C2 corresponds to a reduction C1
Aτ−→ C ′

1 in P1

with C ′
1

def= C ′
2[V2 ← V1], and (C ′

1, C ′
2) ∈ R by the case (3,a)

of the definition of R.

The reasoning for transitions C1
Aτ−→ C ′

1 that have to be matched from
C2 and are not version-change transitions (deoptimization, function
calls or return) is similar. C2 cannot be a new assume, so we have

C2
Aτ−→ C ′

2, and either C ′
2 is not a new assume and matches C1 by

case (2) of the definition of R, or it is a new assume and it matches it
by the case (3,a).

Bisimulation proof: final cases The cases that remain are the hard
cases of version-change reductions: function call, return and deopti-

mization. If C1
Aτ−→ C ′

1 is a deoptimization reduction, then C1 is over
a location F.V1.L in P1, and its instruction is assume e∗ else ξ ξ̃∗,
and C ′

1 is deoptimize(C1, ξ, ξ̃∗). C2 is over the copied instruction
assume e∗ else F.V1.L Id and Id is the identity. C2 also deoptimizes,
given that the tests yield the same results in the same environment,

so we have C2
τ−→ C ′

2 for C ′
2

def= deoptimize(C2, F.V.L1 Id, ∅). C ′
2

is over F.V1.L, that is the same assume instruction as C1, so it also

deoptimizes, to C ′′
2

def= deoptimize(C ′
2, ξ, ξ̃∗). We show that C ′

1 and
C ′′

2 are related by R:

– If (C1, C2) ∈ R is a base pair, then C1 is C2[V2 ← V1]. In
particular, the two configurations have the same environment,
and C ′

2 is identical to C2 except it is over F.V.L1. It is thus
equal to C1. As a consequence, C ′

1 and C ′′
2 , which are obtained

from C1 and C ′
2 by the same deoptimization reduction, are the

same configurations, and related in R.

– If C1 and C2 are related by the case (4) of the definition of R,
the stack of C2 is a replacement of the stack of C1. The same
reasoning as in the previous case shows that configurations C ′

1
andC ′′

2 are identical, except that the stack ofC ′′
2 is a replacement

of the stack ofC ′
1: they are related by the case (4) of the definition

of R.

Conversely, if C2
Aτ−→ C ′

2 is a deoptimization instruction then, by the
same reasoning as in the proof of matching a deoptimization of C1, C ′

2
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is identical to C1 (modulo replaced stacks). This means that the empty
reduction sequence from C1 matches the reduction of C2.

If C1
Aτ−→ C ′

1 is a function call transition,

〈P1 I1 L K∗
1 M E〉 τ−→ 〈P1 I ′

1 L′ (K∗, 〈I1 (L +1) x E〉) M E ′〉

C2 is on the same call with the same arguments, so it takes a transition
C2

τ−→ C ′
2 of the form

〈P2 I2 L K∗
2 M E〉 τ−→ 〈P2 I ′

2 L′ (K∗, 〈I2 (L +1) x E〉) M E ′〉

The stack of C ′
2 is a replacement of the stack of C ′

1: assuming that K∗
2 is

a replacement of K∗
1 , the difference in the new continuation is precisely

the definition of stack replacement — note that it is precisely this
reasoning step that required the addition of case (4) in the definition
of R. Also, the new instruction streams I ′

1 and I ′
2 are either identical

(if the function is not F itself) or equal to I1 and I2 respectively, so we
do have (C ′

1, C ′
2) ∈ R as expected. The proof of the symmetric case,

matching a function call from C2, is identical.

If C1
Aτ−→ C ′

1 is a function return transition

〈P1 I1 L (K∗, 〈I ′
1 L′ x E ′〉) M E〉 τ−→ 〈P1 I ′

1 L′ K∗
1 M E ′[x ← v]〉

then C2
Aτ−→ C ′

2 is also a function return transition

〈P2 I2 L (K∗, 〈I ′
2 L′ x E ′〉) M E〉 τ−→ 〈P2 I ′

2 L′ K∗
2 M E ′[x ← v]〉

We have to show that C ′
1 and C ′

2 are related by R. The environments
and heaps of the two configurations are identical. We know that the
stack of C2 is a replacement of the stack of C1, which means that K∗

2 a
replacement of K∗

1 , and that either I ′
1 and I ′

2 are identical or they are
respectively equal to I1 and I2. In either case, C ′

1 and C ′
2 are related by

R. The proof of the symmetric case, matching a function return from
C2, is identical. We have established that R is a bisimulation.

Finally, remark that our choice of R also proves that the new ver-
sion respects the assumption transparency invariant. A new assume

at L in V2 is of the form assume true else F.V1.L Id, with Id the
identity environment. Any configuration C over F.V2.L is related
by R−1 to C [F.V2.L ← F.V1.L], which is equal to the configuration
deoptimize(C , F.V1.L Id, ∅). These two configurations are related by
the bisimulation R−1, so they are bisimilar.

Lemma 2. Adding a new Boolean predicate e′ to an existing assume instruc-
tion assume e∗ else ξ ξ̃∗ of P1 returns an equivalent program P2.
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Proof. This is a consequence of the invariant of assumption transparency.
Let RP1 be the bisimilarity relation for configurations over P1, and
F.V.L be the location of the modified assume. Let us define the
relation R between P1 and P2 by

(C1, C2) ∈ R ⇐⇒ (C1, C2[P2 ← P1]) ∈ RP1

We show that R is a bisimulation. Consider (C1, C2) ∈ R. If C2
is not over F.V.L, the reductions of C2 (in P2) and C2[P2 ← P1]
(in P1) are identical, and the latter configuration is, by assumption,
bisimilar to C1, so it is immediate that any reduction from C1 can be
matched by C2 and conversely. If C2 is over F.V.L, we can compare
its reduction behavior (in P2) with the one of C2[P2 ← P1] (in P1).
The first configuration deoptimizes when one of the e∗, e′ is not true
in the environment of C2, while the second deoptimizes when one of
the e∗ is not true — in the same environment. If C2 gives the same
Boolean value to both series of test, then the two configurations have
the same reduction behavior, and (C1, C2) match each other by the
same reasoning as in the previous paragraph. The only interesting case
is the configurations C2 that pass all the tests in e∗, but fail e′. Let us
show that, even in that case, the reductions of C1 and C2 match each
other. The following diagram will be useful to follow the proof below:

C1 C ′
1

C2 deoptimize(C2, ξ, ξ̃∗) C ′′
1

R

Aτ

R R

τ Aτ

Let us first show that the reductions of C2 can be matched by C1. The
only possible reduction from C2, given our assumptions, is C2

τ−→
deoptimize(C2, ξ, ξ̃∗). We claim that the empty reduction sequence
from C1 matches it, that is, that (C1, deoptimize(C2, ξ, ξ̃∗)) ∈ R.
By definition of R, this goal means that C1 and the configuration
deoptimize(C2, ξ, ξ̃∗)[P2 ← P1] are bisimilar in P1. But the lat-
ter configuration is the same as in deoptimize(C2[P2 ← P1], ξ, ξ̃∗),
which is bisimilar to C2 by the invariant of assumption transparency,
and thus to C1 by transitivity. Conversely, we show that the reduc-

tions of C1 can be matched by C2. Suppose a reduction C1
Aτ−→ C ′

1.
deoptimize(C2, ξ, ξ̃∗)[P2 ← P1] is bisimilar to C1 (same reasoning
as in the previous paragraph), so there is a matching state C ′′

1 such that

deoptimize(C2, ξ, ξ̃∗)[P2 ← P1] Aτ−→ C ′′
1 in P1 with (C ′

1, C ′′
1 ) ∈
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RP1 . We can transpose this reduction inP2: deoptimize(C2, ξ, ξ̃∗) Aτ−→
C ′′

1 [P1 ← P2] in P2, and thus C2
Aτ−→∗ C ′′

1 [P1 ← P2]. This matches
the reduction of C1, given that our assumption (C ′

1, C ′′
1 ) ∈ RP1 ex-

actly means that (C ′
1, C ′′

1 [P1 ← P2]) ∈ R.

Optimization Correctness

The proofs of the optimizations from Section 2.5 are easier than the
proofs for deoptimization invariants in the previous section (although,
as program transformations, they seem more elaborate). This follows
from the fact that the classical optimizations rewrite an existing version
and interact little with deoptimization.

Constant Propagation

We say that given a version V , a static environment SE for label L maps
a subset of the variables in scope at L to values. A static environment
is valid, written SE � L, if for any configuration C over L reachable
from the start of V , SE is a subset of the lexical environment E . Con-
stant propagation can use a classic work-queue data-flow algorithm to
compute a valid static environment SE at each label L. It then replaces,
in the instruction at L, each expression or simple expression that can
be evaluated in SE by its value. This is speculative since assumption
predicates of the form x = lit populate the static environment with
the binding x → lit .

Lemma 3. For any version V1, let V2 be the result of constant propagation.
V1 and V2 are bisimilar.

Proof. The relation R to use here for bisimulation is the one that relates

each reachable C1 in reachable(P1) to the corresponding state C2
def=

C1[V1 ← V2] in reachable(P2). Consider two related C1, C2 over L,
and SE be the valid static environment at L inferred by our constant
propagation algorithm. Reducing the next instruction ofC1 andC2 will
produce the same result, given that they only differ by substitutions of
subexpressions by values that are valid under the static environmentSE,

and thus under E . If C1
Aτ−→ C ′

1 then C2
Aτ−→ C ′

2, and conversely.

The restriction of our bisimulation R to reachable configurations
introduced is crucial for the proof to work. Indeed, a configuration that
is not reachable may not respect the static environment SE. Consider
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the following example, with V1 on the left and V2 on the right.

L1 var x = 1

L2 print x + x

return 3

L1 var x = 1

L2 print 2

return 3

Now consider a pair of configurations at L1 with the binding x → 0

in the environment.

C1
def= 〈P P(F , V1) L2 K∗ M [ x → 0 ]〉

C2
def= 〈P P(F , V2) L2 K∗ M [ x → 0 ]〉

They would be related by the relation R used by the proof, yet they are

not bisimilar: we have C1
print 0−→ C ′

1 as the only transition of C1 in V1,

and C2
print 2−→ C ′

2 as the only transition of C2 in V2.

Unreachable Code Elimination

The following two lemmas are trivial: the simple version-change map-
ping between configurations on the two version is clearly a bisimulation.
In the first case, this comes from the case that branch true L1L2 and
goto L1 reduce in the example same way. In the second case, unreach-
able configurations are not even considered by the proof.

Lemma4. Replacingbranch true L1L2 bygotoL1 orbranch false L1L2
by goto L2 results in an equivalent program.

Lemma 5. Removing an unreachable label results in an equivalent program.

Function Inlining

Assume that the function F has active version Vcallee. If the new
version contains a call to F , call res = F(e1, .. , en) with return label
Lret (the label after the call), inlining removes the call and instead:

– declares a fresh mutable return variable var res = nil;

– for the formal variables x, .. of F , defines the argument variables
var x1 = se1, .., var xn = sen ;

– inserts the instructions from Vcallee, replacing each instruction
return e by the sequence:
res ← e; drop x1; ... ; drop xn ; goto Lret
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Theorem2. The inlining transformation presented returns a version equivalent
to the caller version.

Proof. Thekey idea of the proof is that any environmentE in the inlined
instruction stream can be split into two disjoint parts: an environment
corresponding to the caller function, Ecaller, and an environment corre-
sponding to the callee, Ecallee. To build the bisimulation, we relate the
inlined version, on one hand, with the callee on the other hand, when
the callee was called by the caller at the inlined call point. This takes
two forms:

– If a configuration is currently executing in the callee, and has the
caller on the top of the call stack with the expected return address,
we relate it to a configuration in the inlined version (at the same
position in the callee). The environment of the inlined version is
exactly the union of the callee environment (the environment of
the configuration) and the caller environment (found on the call
stack).

– If the stack contains a caller frame above a callee frame, we relate
this to a single frame in the inlined version; again, there is a
bidirectional correspondence between inlined environment and
a pair of a caller and callee environment.

To check that this relation is a bisimulation, there are three inter-
esting cases:

– If a transition is purely within the callee’s code on one side, and
within the inlined version of the callee on the other, it suffices to
check that the environment decomposition is preserved. During
the execution of inlinee, Ecaller never changes, given that the in-
struction coming from the callee do not have the caller’s variable
in scope—and thus cannot mutate them.

– If the transition is a call of the callee from the caller on one
side, and the entry into the declaration of the return variable
var res = nil on the other, we step through the silent transitions
that bind the call parameters var x1 = e1, .., var xn = en and
get to a state in the inlined function corresponding to the start
of the callee.

– If the transition is a return e of the callee to the caller on one side,
and the entry into the result assignment res ← e on the other,
we similarly step through the drop x for each x in the callee’s
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environment, and get to related state on the label ret following
the function call.

Unrestricted Deoptimization

Consider P1 containing an assume at L1, followed by im at L2
def=

(L1 +1). Let im be such it has a unique successor, is the unique pre-
decessor of L1, and is not a function call, has no side-effect, does not
modify the heap (array write or creation), and does not modify the
variables mentioned in the assume. Under these conditions, we can
move the assume immediately after the successor of im . Let us name
P2 the program modified in this way.

Lemma 6. Given a program P1, and P2 obtained by permuting an assume

instruction L1 after im at L2 under the conditions above, P1 and P2 are
bisimilar.

Proof. The applicability restrictions are specific enough that we can
reason precisely about the structure of reductions around the permuted
instructions. Consider a configurationC1 over the assume atL1 inP1,

and the corresponding configuration C2
def= C1[P1 ← P2][L1 ← L2]

over L2 in P2. Instruction im has a single successor, so there is only one
possible reduction rule. Since im is not an I/O instruction, it must be a

silent action. Hence there is a unique C ′
2 such that C2

Aτ−→ C ′
2 holds,

and furthermore Aτ is τ . Configurations C1 and C ′
2 are over the same

assume. LetE1 andE2 be environments ofC1 andC ′
2 respectively, and

E ′ be their common sub-environment that contain only the variables
mentioned in the assume (im does not modify its variables). If all tests
in the assume instruction are true under E ′, then C1 and C ′

2 silently
reduce to C ′

1 and C ′′
2 . C ′

1 is over im at L2, so it reduces C ′
1

τ−→ C ′′
1 ;

notice that C ′′
1 and C ′′

2 are over the labels (L2 +1) in P1 and (L1 +1)
in P2, which are equal. If not all tests of the assume are true under E ′,
then both C1 and C ′

2 deoptimize. The deoptimized configurations are
the same

– their function, version and label are the same: the assume’s
deoptimization target;

– they have the same call stack: it only depends on the call stack
of C1 and the interpretation of the assume’s extra frames under
environment E ′;
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– they have the same heap, as we assumed that im does not modify
the heap;

– they have the same deoptimized environment: it only depends
on E ′.

Let us call C0 the configuration resulting from either deoptimization
transitions.

We establish bisimilarity by defining a relationR and proving it is a
bisimulation. The following diagrams are useful to follow the definition
of R and the proofs.

L1 : C1 L2 : C ′
1 C ′′

1

L2 : C2 L1 : C ′
2 C ′′

2

assume im

R

im assume

R R
R

L1 : C1 C0

L2 : C2 L1 : C ′
2 C0

deoptimize

R

im

R

deoptimize

We define R as the smallest relation such that:

1. For any C1 and C2 as above, C1 and C ′
1 are related to C2.

2. For any C1 and C2 as above such that C1 passes the assume

tests (does not deoptimize), both C ′
2 and C ′′

2 are related to C ′′
1 .

3. For any C over P1 that is over neither L1 nor L2, the configura-
tions C and C [P1 ← P2] are related.

We now prove that R is a bisimulation. Any pair of configurations that
are not over either L1 or L2 come from the case (3), so they are identical
and it is immediate that they match each other. The interesting cases
are for matching pairs of configurations over L1 or L2.

In the case where no deoptimization happens, the reductions in P2
are either C2

τ−→ C ′
2, where both configurations are related to C1, or

C ′
2

τ−→ C ′′
2 which is matched by C1

τ−→ C ′
1. The reductions in P1

are either C1
τ−→ C ′

1, which is matched by C2
τ−→ C ′

2
τ−→ C ′′

2 and
C ′

2
τ−→ C ′′

2 , or C ′
1

τ−→ C ′′
1 , which are both related to C ′′

2 .
In the case where a deoptimization happens, the only reduction

in P1 is C1
τ−→ C0, which is matched by C2

τ−→ C ′
2

τ−→ C0 and
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C ′
2

τ−→ C0. The reductions in P2 are C2
τ−→ C ′

2, which are matched
by the empty reduction on C1 and C ′

2
τ−→ C0 are matched by C1

τ−→
C0.

Finally, we show preservation of the assumption transparency invari-
ant. We have to establish the invariant for P2, assuming the invariant
for P2. We have to show that C0 and C ′

2 are bisimilar. C0 is bisimilar
to C1 (this is the transparency invariant on P1), and C1 and C ′

2 are
bisimilar because they are related by the bisimulation R.

Predicate Hoisting

Hoisting predicates takes a version V1, an expression e, and two labels
L1, L2, such that the instruction at L1, L2 are both assume instruc-
tions and e is a part of the predicate list at L1. The pass copies e from
L1 to L2, if all variables mentioned in e are in scope at L2. If, after this
step the e can be constant folded to true at L1 by the optimization from
Section 2.5, then it is removed from L1, otherwise the whole version
stays unchanged.

Lemma 7. Let V2 be the result of hoisting e from L1 to L2 in V1. V1 and
V2 are bisimilar.

Proof. Copying is bisimilar due to the assumption transparency invari-
ant and to the fact that the constant-folded version is bisimilar due to
Lemma 3.

Assume Composition

Let V1, V2, V3 be three versions of a function F with instruction
streams I1, I2, I3, and labels L1, L2, L3, such that there are two in-
structions I1(L1) = assume e1 else F.V2.L2 VA1 and I2(L2) =
assume e2 else F.V3.L3 VA2. The composition pass creates a new pro-
gram P2 from P1 identical but the assume P2(F .V1.L1) is replaced
by assume e1, e2 else F.V3.L3 VA2 ◦ VA1 where the composition

([x1 = e1, .. , xn = en ] ◦ VA) is defined as [x1 = e1{VA(y)
y ∀y ∈

VA}, .., xn = en{VA(y)
y ∀y ∈ VA}].

Lemma 8. Let P2 be the result of composing assume instructions at L1 and
L2. P1 and P2 are bisimilar.

Proof. For C1
τ−→ C ′

1, C2
τ−→ C ′

2 over L1 in P1, P2, we distinguish
four cases:
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Lloop branch z 6= 0 Lbody Ldone
Lbody call x = dostuff ()

var y = x + 13

assume e elseF.V.L [ x = x , y = x + 13 ]
drop y

goto Lloop
Ldone . . .

Figure 2.21: Deoptimization keeps variables alive

1. If e1 and e2 both hold, the assume does not deoptimize in P1
and P2 and they behave identically.

2. If e1 and e2 both fail, the original program deoptimizes twice;
the modified P2 only once. Assuming deoptimizing under the
combined varmap M E VA2 ◦VA1  E ′′ produces an environ-
ment equivalent to M E VA1  E ′ and M E ′ VA2  E ′′ the
final configuration is identical. Since the extra intermediate step
is silent, both programs are bisimilar.

3. If e1 fails and e2 holds, we deoptimize to V3 in P2, but to V2 in
P1. As shown in case (2) the deoptimized configuration C ′

2 over
L3 is equivalent to a post-deoptimization configuration of C ′

1,
which, due to assumption transparency is bisimilar to C ′

1 itself.

4. If e1 holds and e2 fails, deoptimize to V3 in P2 but not in P1.
Again C ′

2 is equivalent to a post-deoptimization state, which is,
transitively, bisimilar to C ′

1.

Since a well-formed assume has only unique names in the deopti-
mization metadata, it is simple to show the assumption in (2) with a
substitution lemma.

2.7 Discussion

Our formalization raises new questions and makes apparent certain
design choices. In this section, we present insights into the design space
for JIT implementations.

The Cost of Assuming Assumptions restrict optimizations. Variables
needed for deoptimization must be kept alive. Consider Figure 2.21,
where an assume is at the end of a loop. As y is not modified, it can
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be removed. There is enough information to reconstruct it if needed.
On the other hand, x cannot be synthesized out of thin air because
it is computed by another function. Additionally, assume restricts
code motion in two cases. First, side-effecting code cannot be moved
over an assume. Second, assume instructions cannot be hoisted over
instructions that interfere with variables mentioned in metadata. It
is possible to move assume forward, since data dependencies can be
resolved by taking a snapshot of the environment at the original location.
For the inverse effect, we support hoisting the predicate from one
assume to another (see Section 2.5). Moving assume instructions up
is tricky and also unnecessary, since in combination the two primitives
allow moving checks to any position. In the above example, if e is
invariant in the loop body and there is an assume before Lloop , the
predicate can be hoisted out of the loop. If the assume is only relevant
for a subset of the instructions after the current location, it can be
moved down as a whole.

Lazy Deoptimization The runtime cost of an assume is the cost of
monitoring the predicates. Suppose we speculate that the contents of
an array remain unchanged throughout a loop. An implementation
would have to check every single element of the array. An eager strat-
egy where predicates are checked at every iteration is wasteful. It is
more efficient to associate checks with operations that may invalidate
the predicates, such as array writes, to invalidate the assumption, a
strategy sometimes known as lazy deoptimization. We could implement
dependencies by separating assumptions from runtime checks. Specifi-
cally, let GUARDS [ 13 ] = true be the runtime check, where the global
array GUARDS is a collection of all remote assumptions that can be
invalidated by an operation, such as an array assignment. In terms of
correctness, both eager and lazy deoptimization are similar; however,
we would need to prove correctness of the dependency mechanism that
modifies the global array.

Jumping Into Optimized Code We have shown how to transfer con-
trol out of optimized code. The inverse transition, jumping into opti-
mized code, is interesting as well. Consider executing the long running
loop of Figure 2.22. The value of debug is constant in the loop, yet
execution is stuck in the long running function and must branch on
each iteration. A JIT can compile an optimized version that speculates
on debug , but it may only use it on the next invocation. Ideally, the
JIT would jump into the newly optimized code from the slow loop;
this is known as OSR-in (for on-stack-replacement) or hot loop transfer.
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stuck ( )
Vbase

call debug = debug ()
Lh branch x < 1000000 Lo Lrt
Lo branch debug Lslow Lfast
Lslow . . .
Lfast . . .

goto Lh
Lrt . . .

Figure 2.22: Long running execution

cont ( x )
Vopt

Lh branch x < 1000000 Lfast Lrt
Lfast . . .

goto Lh
Lrt . . .

Figure 2.23: Switching to optimized code

undo ( )
Vs123

L0 assume e1, e2, e3 else undo.Vs12.L0 [. . . ]
Vs12

L0 assume e1, e2 else undo.Vs1.L0 [. . . ]
Vs1

L0 assume e1 else undo.Vbase.L0 [. . . ]

Figure 2.24: Undoing an isolated predicate
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. . .
Lloop branch e Lbody Ldone
Lbody x ← 0

. . .
goto Lloop

Ldone . . .

Figure 2.25: Loop with a dead store

Specifically, the next time Lo is reached, control is transferred to an
equivalent location in the optimized version. To do so, continuation-
passing style can be used to compile a staged continuation function
from the beginning of the loop where debug is known to be false.
The optimized continuation might look like cont in Figure 2.23. In
some sense, this is easier than deoptimization because it strengthens
assumptions rather than weakening them and all the values needed to
construct the state at the target version are readily available.

Fine-Grained Deoptimization Instead of blindly removing all assump-
tions on deoptimization, it is possible to undo only failing assumptions
while preserving the rest. As shown in Figure 2.24, if e2 fails in ver-
sion Vs123, one can jump to the last version that did not rely on this
predicate. By deoptimizing to version Vs1, assumption e3 must be
discarded. However, e1, e3 still hold, so we would like to preserve opti-
mizations based on those assumptions. Using the technique mentioned
above, execution can be transferred to a version Ls13 that reintroduces
e3. The overall effect is that we remove only the invalidated assumption
and its optimizations. We are not aware of an existing implementation
that explores such a strategy. The main problem is that such an ap-
proach requires us to keep all intermediate versions live and produces a
fresh version for every assumption. Section 3.4 presents an alternative
with a smaller overhead.

Simulating a Tracing JIT A tracing JIT [Bala, Duesterwald, and Baner-
jia, 2000, Gal, Eich, Shaver, Anderson, Mandelin, Haghighat, Kaplan,
Hoare, Zbarsky, Orendorff, Ruderman, Smith, Reitmaier, Bebenita,
Chang, and Franz, 2009] records instructions that are executed in a
trace. Branches and redundant checks can be discarded from the trace.
Typically, a trace corresponds to a path through a hot loop. On subse-
quent runs the trace is executed directly. The JIT ensures that execution
follows the same path, otherwise it deoptimizes back to the original
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program. In this context Guo and Palsberg [2011] develop a framework
for reasoning about optimizations applied to traces. One of their results
is that dead store elimination is unsound, because the trace is only a
partial view of the entire program. For example, a variable x might
be assigned to within a trace, but never used. However, it is unsound
to remove the assignment, because x might be used outside the trace.
We can simulate their tracing formalism in sourir. Consider a vari-
ant of their running example shown in Figure 2.25, a trace of the loop
while e (x← 0; . . .) embedded in a larger context. Instead of a JIT
that records instructions, assume only branch targets are recorded. For
this example, suppose the two targets Lbody and Ldone are recorded,
which means the loop body executed once and then exited. In other
words, the loop condition e was true the first time and false the second
time. The compiler could unroll the loop twice and assert e for the first
iteration and ¬e for the second iteration.

. . .
assume e elseF.Vbase.Lloop [ x = x , . . . ]
branch e Lbody0 Ldone

Lbody0 x ← 0

. . .
assume ¬e elseF.Vbase.Lloop [ x = x , . . . ]
branch e Lbody1 Ldone

Lbody1 x ← 0

. . .
goto Lloop

Ldone . . .

Then unreachable code elimination yields the following code, resem-
bling a trace.

. . .
assume e elseF.Vbase.Lloop [ x = x , . . . ]
x ← 0

. . .
assume ¬e elseF.Vbase.Lloop [ x = x , . . . ]
. . .

Say x is not accessed after the store in this optimized version. In sourir,
it is obvious why dead store elimination of x would be unsound: the
deoptimization metadata indicates that x is needed for deoptimization
and the store operation can only be removed it can be replayed. In
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this specific example, a constant propagation pass could update the
metadata to materialize the write of 0, only when deoptimizing at the
second assume. But, before the code can be reduced, loop unrolling
might result in intermediate versions that are much larger than the
original program. In contrast, tracing JITs can handle this case without
the drastic expansion in code size [Gal et al., 2009], but lose more
information about instructions outside of the trace.

Relation to Real-World Systems Modern virtual machines have all
incorporated some degree of speculation and support for deoptimiza-
tion. These include implementations of Java (HotSpot, Jikes RVM),
JavaScript (WebKit Core, Chromium V8, Truffle/JS, Firefox), Ruby
(Truffle/Ruby), and R (FastR), among others. Anecdotal evidence sug-
gests that the representation adopted in this work is representative of
the instructions found in the IR of production VMs: the TurboFan
IR from V8 [Chromium, 2022] represents assume with three distinct
nodes. First a checkpoint, holding the deoptimization target, marks a
stable point, to where execution can be rolled back. In sourir this corre-
sponds to the original location of an assume. A framestate node records
the layout of, and changes to, the local frame, roughly the varmap in
sourir. Assumption predicates are guarded by conditional deoptimiza-
tion nodes, such as deoptimizeIf. Graal [Duboscq et al., 2013] also has
an explicit representation for assumptions and associated metadata as
guard and framestate nodes in their high-level IR. In both cases guards
are associated with the closest dominating checkpoint. The relation
between Ř’s IR and sourir is discussed later.

2.8 CoreJIT: Towards a Verified JIT

Eventually the building blocks presented in this thesis could be the
foundation for writing an end-to-end verified JIT compiler. First steps
were already made by Barrière et al. [2021]. The main differences with
the formalization presented so far are that CoreJIT also models the
creation of optimized code at run-time, that the formalization is mech-
anized, and that the deoptimization invariant was made more precise,
by splitting Assume into two instructions Anchor and Assume. This
section summarizes our findings from that paper, with the focus on the
comparison to the sourir model.

CoreIR is inspired by CompCert’s RTL Leroy [2009]. As a simplifi-
cation over sourir, CoreIR only features two versions per function, an
optimized and a baseline one. Two CoreIR instructions are related to
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speculation, Anchor and Assume. Together they look and behave very
similar to assume from sourir. The split was made to better describe
the dynamics of the optimization process. The Anchor instruction rep-
resents a potential deoptimization point, i.e. , a location in an optimized
function where the correspondence with its baseline version is known
to the compiler and thus deoptimization can occur. For instance, in
Anchor F.l [r = r+1] the target F . l specifies the function (F) and label ( l)
to jump to, the mapping [r = r+1] is the varmap.

Anchors are inserted first in the optimization pipeline, before any
changes are made to the program. Choosing where to insert them is
important as they determine where speculation can happen. Speculation
itself is performed by inserting Assume instructions. An assume based
on the previous anchor is for instance Assume x=1 F.l [r = r ’+1] , which
expresses the expectation that register x has value 1 . This instruction
behaves like the assume instruction in sourir. Unlike anchors, assumes
can be inserted at any time during compilation.

The role of anchors is subtle. As already shown it is possible to move
an assume instructions to support deoptimization at any location. To make
this more practical, the Anchor stays at its original location, without
tying it to additional data-dependencies by guard expressions. To add
an Assume, the compiler finds the dominating Anchor and copies its
deoptimization metadata. If there is no anchor, then the assumption
cannot be made.

For the proofs, anchors have yet another role. They justify the
insertion of Assume instructions. For this, the Anchor instructions
have a non-deterministic semantics, an anchor can randomly choose
to deoptimize. Crucially, deoptimization is always semantically cor-
rect, nothing is lost by returning to the baseline code eagerly other
than performance. An inserted Assume is thus correct if it follows
an Anchor and the observable behavior of the program is unchanged
regardless which instruction deoptimizes. Let’s consider the example
in Figure 2.26. On the left is the version before inserting an assume,
on the right after. In this case there is an Anchor followed by a condi-
tional Branch and we insert the Assume instruction only in one of the
branches. As mentioned, Anchor has a non-deterministic semantic, it
can either continue or deoptimize. Therefore, the respective states must
be matched for all its successor instructions, i.e. , for both the case where
it falls through (solid lines), as well as when it deoptimizes (via dashed
lines). To that end the states between Anchor and Assume are matched
both to a fall-through Anchor and a deoptimizing Anchor trace. In
other words the assumption insertion pass codifies the assumption trans-
parency invariant. The benefit of having anchors is that the assumes
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before

Anchor tgt vm sl

Branch e ltrue lfalse

ltrue : instr

after

Anchor tgt vm sl

Branch e l lfalse

l : Assume e tgt vm sl

ltrue : instr

Figure 2.26: The ≈ relation for delayed Assume insertion

Function F(x,y,z):

Version Base:

d← 1

l1: a← x*y

Branch (z == 7) l2 l3

l2: b← x*x

c← z*y

Return b+c+d

l3: Return a

Listing 2.2: Baseline

they dominate can be placed further down the instruction stream. The
compiler must make sure that the intervening instructions do not affect
deoptimization. This separation is important in practice as it allows
a single Anchor to justify speculation at a range of different program
points. All Anchor instructions are removed in the last step of the opti-
mization pipeline. Initially the varmap of an Assume instruction will
be identical to its dominating Anchor, but, as the following example
shows, this can change through subsequent program transformations.

Illustrative Example Assume that, for the program in Listing 2.2, a
profiler detected that at label l2 of function F registers z and x always
have values 7 and 75. Function F can thus be specialized. Listing 2.3 adds
an Opt version to F where an anchor has been added at l4. In order to
deoptimize to the baseline, the anchor must capture all of the arguments
of the function (x, y, z) as well as the local register d. The compiler
is able to constant propagate d, so the anchor remembers its value.
The speculation is done by e.g., Assume z=7 ... which specifies what is
expected from the state of the program and the dominating anchor. The



64 Assume: Speculation with Deoptimization

Function F(x,y,z):

Version Base:

...

Version Opt:

l4: Anchor F.l1 [x,y,z,d=1]

Assume z=7 [x,y,z,d=1]

c← 7*y

Assume x=75 [x,y,z=7,d=1]

Return 5626+c

Listing 2.3: Optimized

optimized version has eliminated dead code and propagated constants.
If the speculation holds, then this version is equivalent to Base. Despite
the overhead of checking validity of the speculation, the new version
should be faster: the irrelevant computation of a has been removed and
x*x is speculatively constant folded. If the speculation fails, then the
execution should return to Base, at label l1 where the closest Anchor is
available, and reconstruct the original environment. This involves for
instance materializing the constant folded variable d. As we see here,
Assume does not have to be placed right after an Anchor instruction.
This will cause deoptimization to appear to jump back in time and
some instructions will be executed twice. It is up to the compiler to
ensure these re-executed instructions are idempotent. As can be seen in
the example, different Assume instructions originating from the same
Anchor, can end up with different varmaps.



3
Context Dispatch:

Splitting on Dynamic

State

After discussing the assume model for speculation and deoptimization,
we turn our attention to specialization by splitting. In our experience,
to achieve performance for dynamic languages, a compiler needs infor-
mation about the calling context of a function. This can be information
about the type and shape of the function’s arguments, or any other pred-
icates about program state that hold when the function is invoked. We
have observed that for instance inlining and speculation work well to-
gether to expose that contextual information to the optimizer. Inlining
allows to optimize the body of a function together with its arguments
and speculation is needed to enable inlining for dynamic calls. The
drawbacks of this approach are that inlining grows the size of compila-
tion units, that speculation may fail causing the compiled code to be
discarded, and that the caller needs to be recompiled to support a new
dynamic context.

This chapter presents an approach to structure a just-in-time com-
piler to better leverage information available at run time. Our starting
point is a compiler for a dynamic language geared to perform run-time
specialization: it uses speculative optimizations, guesses about poten-
tial invariants, and deoptimizes functions if any of their assumptions
fails to hold. Our goal is to extend this baseline compiler with a new
technique called context dispatch that provides contextual information
by specializing functions for different calling contexts. For every call,
one of the best versions given the current state of the system is invoked.
A key property of context dispatch is that it allows us to combine static
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Figure 3.1: Specialization

and dynamic analysis for optimizations.

When specializing to contextual information at the call-site, we get
a graph as shown in Figure 3.1. At the call-site differently optimized
versions can be selected. The choice happens at the time of the call.
In contrast to Figure 2.2, where the speculatively optimized version is
always called and when the guard fails it is discarded.1 At this abstract
level we already observe one of the main trade-offs between the two
approaches. Specialization implies code duplication. If we insert multi-
ple splits, or additionally perform tail-duplication, this quickly leads to
a path explosion problem, as can be observed for instance in tracing
JITs. This is not an issue with speculative optimizations. Typically the
optimized code is orders of magnitude smaller than the source, since all
the unlikely behavior can be trimmed. As we have seen, the drawback of
speculation is that it can be costly, because the optimized code needs to
be discarded and then re-compiled again, possibly several times, until all
assumptions are stable. Also it does not allow us to narrowly specialize
to two different contexts at the same time.

The inspiration for the approach in this chapter comes from cus-
tomized compilation, pioneered by Chambers and Ungar [1989], an
optimization that systematically specializes functions to the dynamic
type of their arguments. We extend this approach by specializing func-
tions to arbitrary contexts and dynamically selecting optimized versions
of a specialized function depending on the run-time state of the pro-
gram. We refer to the proposed approach as context dispatch, since at
its heart, it describes how to efficiently select a specialized version of a
code fragment, given a particular program state as context.

As an illustration, consider Listing 3.1 written in R. The semantics
of R is complex: functions can be invoked with optionally named
arguments that can be reordered and omitted. Furthermore, arguments
are lazy and their evaluation (when the value is needed) can modify any
value, including function definitions. In the above example, the max

1Of course the two can be combined, having specialized versions, which also
include speculation.
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max <- function(a, b=a, warning=F) {

if (warning && any(is.na(c(a,b))))

warn("NA Value")

if (a < b) b else a

}

max(x) + max(y,0)

Listing 3.1: max function

function is expected to return the largest of its first two parameters,
mindful of the presence of missing values (denoted NA in R). The third,
optional, parameter is used to decide whether to print a warning in
case a missing value is observed. If max is passed a single argument, it
behaves as the identity function. Since R is a vectorized language, the
arguments of max can be vectors of any of the base numeric types of the
language. Consequently, compiling this function for all possible calling
contexts is likely to yield inefficient code.

Context dispatch is motivated by the observation that, for any
execution of a program, there are only a limited, and often small, number
of different calling contexts for any given function. For example, if
max(y,0) and max(x) are the only calls to max, then we may generate
two versions of that function: one optimized for a single argument
and the other for two. Further specialization can happen on the type
and shape of the first argument, this may either be a scalar or a vector
of one of the numeric types. This shows that part of a context can be
determined statically, e.g., the number of arguments, but other elements
are only known at run time, e.g., the type and shape of arguments.
Context dispatch thus, in general, requires run-time selection of an
applicable call target.

We define a context to be a predicate on the program state, chosen
such that there exists an efficiently computable partial order between
contexts and a distinguished maximal element. Context dispatch pro-
vides a framework on how to incorporate dynamic information. Which
properties make up a context and how they are represented or imple-
mented is up to the concrete implementation. We will present a number
of options here and also detail Ř’s implementation in Chapter 4. The
contexts have to be efficiently comparable, since the comparison is used
for dispatching.

A version of a function is an instance of that function compiled
under the assumption that a given context holds at entry. The idea
is for the compiler to be able to use predicates from the context for
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optimizations. For instance if the context declares that it is Thursday
and the compiler can prove that the function terminates within 24
hours, then a call to isWeekend() can be replaced by false.

To leverage versions the compiler emits a dispatch sequence that
computes the call site context and invokes a version of the target func-
tion that most closely matches the calling context. The dispatch, which
can use a combination of static and dynamic information, ensures that
a good candidate version is invoked, given the current program state.
The unoptimized baseline version of the function is associated to the
maximal context and is the default version that will be called when no
other applies.

We evaluated context dispatch in the context of Ř and, as will be
discussed extensively later, found it to significantly improve the per-
formance of several benchmark programs with negligible regressions.
We consider R an interesting host to study compiler optimizations be-
cause of the challenges it presents to language implementers. However,
context dispatch is not specific to R. We believe that the approach
carries over to other dynamic languages such as JavaScript or Python.
In more static languages context dispatch could be employed to propa-
gate inter-procedural information, such as a dynamic escape analysis.
Moreover, we emphasize that context dispatch is not a replacement for
other optimization techniques; instead, it is synergistic.

Compared to Other Techniques

With context dispatch we provide the means to keep several differently
specialized function versions and then dynamically select a good candi-
date, given the dynamic context at the call-site. To gain some intuition,
let us revisit the example of Listing 3.1 and contrast speculation, inlining
and context dispatch. Figure 3.2 shows idealized compilation of that
code. On the left we observe the two call-sites to the max function. In
the first case, since both callers omit the warning parameter, a compiler
could speculatively optimize it away, by leaving an assume to catch calls
that pass the third argument. However any unrelated call-site in the
program could invalidate this assumption and undo the speculative
optimization for all callers simultaneously. Second, inlining allows us
to specialize the max function for each call site independently. In R,
inlining is generally unsound as functions can be redefined by reflection.
Therefore the assumption of a static target for the inlined call-site is
a speculative optimization. Also, inlining increases code size, reduces
sharing and is limited to specialize on statically known information.
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max(x)

+

max(y, 0)

function(a, b=a, warning=FALSE)

# assume(warning == FALSE)

if (a < b) b else a

# assume max unchanged

x + (if (y < 0) 0 else y)

max(x)

+

max(y, 0)

Eager,Missing,Missing

function(a) a

Integer[1],Real[1],Missing

function(a, b)

if (a[[1]] < b[[1]]) b else a

call-site callee
s
p
e
c
u
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Figure 3.2: Speculation, Inlining and Context dispatch

For instance in max(deserialize(readline()), 1), the argument
type is dynamic and inlining does not allow us to specialize for it.

In contrast, as depicted in the last example in Figure 3.2, context
dispatch allows the compiler to create two additional versions of the
target function, one for each calling context. At run-time the dispatch
mechanism compares the information available at the call-site with
the required contexts of each available version and dynamically dis-
patches to one of them. The types and length of x and y can generally
not be inferred from the source code, but can be checked at run-time.
Context dispatch consists of first approximating a current context C .
For instance if x is a scalar integer, then at the call-site max(x), where
just one argument is passed, a current context Integer[1], represent-
ing these facts, is established at runtime. Given C , a target version
with a compatible context C ′ is invoked. In our example the context
Eager,Missing,Missing is chosen. If no compatible specialized ver-
sion is available, then we dispatch to the original version of the function.
Compatibility is expressed in terms of ordering: contexts form a partial
order, such that any smaller context logically entails the bigger one.
Intuitively, a larger context matches more program states. In other
words, a function version can be invoked if its context is bigger than
the current one, i.e. , C < C ′.
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max(x) +

if (length(y)==1)

max2s(y, 0)

else

max2(y, 0)

function(a, b)

if (a[[1]] < b[[1]]) b else a

function(a, b)

if (a < b) b else a

Figure 3.3: Splitting

The target might not be unique. There might be several optimal
compatible versions, as we will discuss later. In our implementation a
context is an actual data structure with an efficient representation and
comparison. For each call-site the compiler infers a static approxima-
tion for the upper bound of the current context. Additional dynamic
checks further concretize the approximation and create a smaller cur-
rent context. This dynamically inferred context has two uses. First,
as described, it serves as the lower bound when searching for a target
version of a particular function. Secondly, if no good approximation
is found, then the current context serves as the assumption context to
compile a fresh version to be added to the function.

Context dispatch shares some similarities with splitting, as depicted
in Figure 3.3. Specialized clones of functions are created, for instance
here max2 is a copy of max which takes two arguments. Additionally,
if there are multiple static candidates, then those are disambiguated
at runtime by rewriting the call-site into a fixed sequence of branches.
In this example we test for the length and in case of 1 call the copy
max2s, specialized to receiving two scalar arguments. However, the
specialization happens at compile-time and cannot be extended with-
out recompilation. All those four techniques can be easily combined.
For instance the performance of inlining can be improved by inlining
an already optimized version using a static approximation of context
dispatch. Or statically known candidates of likely contexts can be used
statically by splitting on contexts.

3.1 Related Work

There is an abundance of code specialization techniques, besides specu-
lation. The common theme here is that the compiler tries to identify
common contexts, which can include dynamic types of arguments, val-



Related Work 71

ues of local variables, but also meta-properties, such as whether an
object escaped from a thread, and so on. Then a piece of code, often
a whole function, is cloned and optimized for that context. Overall,
keeping specialized copies of the same function is a well-known op-
timization technique. Existing approaches perform the selection by,
either, piggy-backing onto existing dispatching mechanisms in the VM,
by implementing an ad-hoc and fragmented approach, or by statically
splitting at each call site.

Inlining This powerful optimization has been used in static languages
for over forty years [Scheifler, 1977]. Replacing a call to a function
with its body has several benefits: it exposes the calling context thus
allowing the compiler to optimize the inlined function, it enables opti-
mizations in the caller, and it removes the function call overhead. In
dynamic languages, function calls are usually expensive, so inlining is
particularly beneficial. The limitations of inlining are related to code
growth: compilation time increases and cache locality may be negatively
impacted.

Customization Chambers and Ungar [1989] describe customized com-
pilation as the compilation of several copies of a method, each cus-
tomized for one receiver type. Method dispatch ensures that the correct
version is invoked. This idea of keeping several customized versions of a
function is generalized in the JalapeñoVM,which specializesmethods to
the types and values of arguments, static fields, and object fields [Wha-
ley, 1999]. Some specialization is enabled by static analysis, some by
dynamic checks. The Julia compiler specializes functions on all argu-
ment types and uses multimethod dispatch to ensure the proper version
is invoked [Bezanson et al., 2018]. In that sense the dispatching is used
in two different settings, once user-facing, allowing users to override
functions for particular signatures, with different behavior, but then
also by the compiler for specializing the same function to different
signatures. An interesting generalization of multimethod dispatch is
proposed by Ernst, Kaplan, and Chambers [1998], who generalize multi-
method dispatch to arbitrary Boolean properties. But the focus lies on
exposing the dispatching to users, thus statically ensuring that method
selection is unambiguous and complete.

Kennedy and Syme [2001] present dynamic specialization for para-
metrized types in the intermediate representation of the .NET virtual
machine; similarly for Java by Cartwright and Steele Jr [1998], or using
user-guidance by Dragos and Odersky [2009]. Costa, Alves, Santos,
and Pereira [2013] specialize on arbitrary values for JavaScript functions
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with a singular calling context and Hackett and Guo [2012] introduce a
type-based customization which combines dynamic and static informa-
tion. Liu, Millstein, andMusuvathi [2019] propose to specialize methods
under a dynamic thread-escaping analysis to have lock-free versions
of methods for thread-local receivers. Hosking, Eliot, and Moss [1990]
argue for customized compilation of persistent programs to specialize
code based on assumptions about the residency of their arguments.

For ahead-of-time compilers, Hall [1991] introduces method cloning,
for instance to support inter-procedural constant propagation. Many
similar context-sensitive optimization approaches follow, e.g., byCooper,
Hall, and Kennedy [1993]. Plevyak and Chien [1995] use a static tech-
nique to partition instances and calling contexts, such that more spe-
cialized methods can be compiled and then dynamically invoked. Ap
and Rohou [2017] present dynamic specialization to concrete arguments
using dynamic binary rewriting. Poesia and Pereira [2020] introduce
technique to reduce the number of clones, when applying context-
sensitive optimizations in the presence of longer call strings. Dean,
Chambers, and Grove [1995] propose to limit overspecialization by
specializing to sets of types. Overall, keeping customized copies of the
same function is a well-known optimization technique. In contrast to
existing techniques, the contribution of context dispatch is to provide
a unified framework for implementing all customization needs in a JIT,
and support sharing of compatible versions among different contexts.

Splitting Whereas customization duplicates methods, Chambers and
Ungar [1989] also introduce splitting to duplicate call-sites. Control
flow is split on the receiver, causing each branch to contain a stati-
cally resolved call-site. This transformation effectively pulls the target
method selection out of the dispatch sequence and embeds it into the
caller, thereby exposing it to the optimizer, which leads to further
optimization opportunities. For instance the combination with tail-
duplication allows SELF to statically resolve repeated calls to the same
receivers. Splitting is a common optimization in ahead-of-time com-
pilers, for instance LLVM [Lattner and Adve, 2004] has a pass to split
call-sites to specialize for non-null arguments. In a dynamic language
splitting can be thought of as the frozen version of a polymorphic in-
line cache [Hölzle et al., 1991]. Both, inline caches and splitting, are
orthogonal to context dispatch. Ř uses (external) caches for the targets
of context dispatch and we could use splitting to split call-sites for
statically specializing to the most commonly observed contexts.

Only few approaches besides trivial tail-duplication perform spe-
cialization at a lower granularity than a whole function. A noteworthy
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exception is the work by Chevalier-Boisvert and Feeley [2015], where dis-
patch happens at the basic block level. The approach was later adopted
in the HHVM compiler Ottoni [2018]. In trace based approaches there
is a related problem of stitching traces, where identical regions of dif-
ferent traces are to be identified and de-duplicated [Gal et al., 2009,
Ardö, Bolz, and FijaBkowski, 2012].

3.2 Context Dispatch in a Nutshell

This section provides a precise definition of contexts and context dis-
patch. Then, we present a more detailed account on the performance
trade-offs. The actual instance of context dispatch as implemented in Ř
is detailed in Chapter 4. We envision a number of possible implementa-
tions of context dispatch. The following provides a general framework
for the approach and defines key concepts.

Context Contexts C are predicates over program states S, with
an efficiently computable, reflexive partial order defined as C1 <
C2 iff ∀ S : C1(S) ⇒ C2(S), i.e. , C1 entails C2. For instance
given CI ≡ type(arg0)==int and CN ≡ type(arg0)==num, then
CI < CN since every integer is also a number. Let > be the context
that is always true; it follows that C < > for all contexts C .

Current Context A context is called current with respect to a state
S if C(S) holds. For instance if currently arg0 contains the integer 3,
then CI , CN , and > are all current.

Version 〈C, V 〉 is called a version, where V is code optimized under
the assumption that C holds at entry. A function is a set of versions in-
cluding 〈>, Vu〉, where Vu is the baseline version, i.e. , compiled without
contextual assumptions.

Dispatch To invoke a function F in state S, the implementation
chooses any current contextC ′ (with respect to S) and a version 〈C, V 〉 ∈
F such that C ′ < C and transfers control to V . For instance if the
current context is CN ≡ type(arg0)==num, then 〈CN , V 〉 is reach-
able by dispatch, but 〈CI , V 〉 where CI ≡ type(arg0)==int not. A
simple strategy for efficient dispatching is to sort versions according to
a compatible complete order (for instance using the binary representa-
tion when elements are incomparable) and then using a linear search
for the first compatible context.
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The above definitions imply a notion of correctness for an implementa-
tion.

Theorem 3. Dispatching to version 〈C, V 〉 ∈ F from a stateS and a current
context C ′ implies C(S).

This follows immediately from the definition of the order relation.
It means that dispatch transfers control to a version of the function
compiled with assumptions that hold at entry.

Applying Context Dispatch

The above definitions may not necessarily lead to performance im-
provements; indeed, an implementation may choose to systematically
dispatch to 〈>, Vu〉. This is a correct choice as the version is larger than
any current context but it also provides no benefits. The definition
allows for imprecision from both sides. First, we can choose an arbitrary
loose current context. Second, given a current context we can choose an
arbitrarily bigger target version. Both of these imprecisions are by de-
sign, as they are in fact implementation trade-offs. An implementation
could try to always compute a smallest current context, as such a con-
text captures the most information about the program state at the call
site. On the other hand, increased precision might be costly, and thus
an approximation may be warranted — a less precise current context is
cheaper to compute and prevents over-specialization. Dispatching to a
larger than necessary target version again prevents compiling too many
versions and enables fast dispatching implementations.

An implementation may also compute the current context by com-
bining static and dynamic information. For that we might want to
require contexts be closed under conjunction. The benefits are that
a unique smallest current context exists and the intersection of two
current contexts is a more precise current context. In other words two
independent measurements of the current state can be combined for
a more precise context. For instance, one may be able to determine
statically that C ≡ type(arg0)==int holds, perhaps because that ar-
gument appears as a constant, whereas C ′ ≡ type(arg1)==string

must be established by a run-time check. Given C ∧ C ′ exists, it is a
more precise current context. Thus the compiler can emit a check for
only C ′, but then dispatch on C ∧ C ′.

Similarly, dispatch can select any version that is larger than the
current context. Typically, one would prefer the smallest version larger
than the current context, as it is optimized with the most information.
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〈CI?, VI?〉

〈C?I , V?I〉

〈CSS , VSS〉
S

〈>, Vu〉

Figure 3.4: Versions and current program state

But this choice can be ambiguous, as illustrated in Figure 3.4. There are
four versions of the binary function F : Vu can always be invoked, VSS

assumes two strings as arguments, VI? assumes the first argument is an
integer, and V?I assumes the second is an integer. Given F is invoked
with two integers, i.e. , in state S, the smallest current context CI? ∧
C?I = CII is not available as a version to invoke. The implementation
can dispatch to either CI? or C?I ; however, neither is smaller than the
other (Vu is also reachable, VSS is not).

Of course a JIT compiler can compile a fresh version 〈CII , VII〉
to invoke. This is how we envision an implementation to gradually
populate the dispatch tables. An implementation must decide when
to add (or remove) versions. Each dispatch where the current context
is strictly smaller than the context of the version dispatched to is po-
tentially sub-optimal. The implementation can rely on heuristics for
when to compile a new version that more closely matches the current
context. For instance for every dispatch we count the sub-optimal ones
and then lazily compile new versions for contexts that occur frequently.

The efficiency of context dispatch depends only on the cost of
computing a current context and the order relation. This allows for
arbitrary complex properties in contexts, if these particular properties
do not have to be checked at run-time. For instance “the first argument
does not diverge” is a possible context. Given a call site f(while(a){}),
we can establish this context using the conjunction of “if a==FALSE then
while(a){} does not diverge” and “a==FALSE.” The former is static,
and the latter is a simple dynamic check.

The compiler may replace context dispatch with a direct call to a
version under a static current context. This has the benefit of removing
the dispatch overhead, or even allows inlining of context dispatched
versions. The drawback is that the static context might be less precise
than the dynamic one and it forces the implementation to commit to
a version early. A better strategy is to speed up the dynamic dispatch
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using an inline cache to avoid repeating the dispatch for every call.
However, conversely to a traditional inline cache, if the target version
is sub-optimal, we should re-check from time to time, if the dispatch
table contains a better version by now.

To make matters concrete, we detail two examples of ad-hoc contextual
specialization schemes and how they can be encoded in the context
dispatch framework:

Customized Compilation This technique introduced in SELF spe-
cializes methods to concrete receiver types by duplicating them down
the delegation tree. The technique can be understood as an instance
of context dispatch. The contexts are type tests of the method re-
ceiver CA ≡ typeof(self ) == A. The order of contexts is defined
as CA < CB iff A <: B. It follows that if the receiver is of class A,
and A is a subtype of B, dispatch can invoke a version compiled for
B. In the Julia language, this strategy is extended to the types of all
arguments.

Splitting It is possible to customize functions to certain contexts by
splitting the call-site. For instance an optimization in LLVM involves
converting the call f(x) with a potential null pointer argument to
if (x != NULL) fNonnull(x) else f(x), to support an optimized
version that can assume the argument to not be NULL. In terms of context
dispatch this could be implemented using contexts to check for certain
values, e.g., Cx,v ≡ x==v and C̃x,v ≡ x!=v. This optimization would
then be available under the context C̃x,NULL. Compared to splitting,
the advantage is that the target versions do not need to be decided
upon statically, in other words the splitting happens dynamically, only
if actually needed, and we could still decide to add other value based
specializations later.

Global Assumptions Contexts can capture predicates about the val-
ues of global variables, e.g.,C ≡ debug == true or C ′ ≡ display ==
headless. If we allow such contexts to be combined, we get a natural
order from C ∧ C ′ < C , i.e. , a smaller context is one that tests more
variables. The smallest current context is the conjunction of all current
singleton contexts. An interesting application is shown by Liu et al.
[2019], where a dynamic analysis detects thread-local objects. The prop-
erty is then used to dispatch to versions of their methods that elide
locks.
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3.3 An Illustrated Example

To illustrate the trade-offs when specializing functions consider List-
ing 3.2, a map-reduce kernel written in R. The reduce function takes a
vector or list x and iteratively applies map. The map function has two
optional arguments, op which defaults to "m", and b, which defaults
to 1 when op is "m". map is called twice from reduce: the first call
passes a single argument and the second call passes two arguments. The
type of the result depends on the type of x and the argument y. As a
driver, we invoke reduce ten times with a vector of a million integers,
once with a list of tuples, and again ten times with an integer vector.
This example exposes the impact of polymorphism on the performance.

map <- function(a,

b = if(op=="m") 1,

op= "m") {

if (op=="m") a * b

else if (op=="a") a + b

else error("unsupported")

}

reduce <- function(x, y=3, res=0) {

for (i in x)

res <- res + map(i) + map(i, y)

res

}

for (i in 1:10)

system.time(reduce(1L:1000000L))

reduce(list(c(1L,1L), c(2L,2L)))

for (i in 1:10)

system.time(reduce(1L:1000000L))

Listing 3.2: An example program

Figure 3.5 illustrates the execution time of each of the twenty mea-
surements in seconds (smaller is better). The red line describes the
results with inlining and speculation enabled. In this case, map is in-
lined twice. The point marked with (1) shows optimal performance
after the compiler has finished generating code. However, the call to
reduce with a list of tuples leads to deoptimization and recompilation
(2). Performance stabilizes again (3), but it does not return to the opti-
mal, as the code remains compiled with support for both integers and
tuples. The green line shows the results with inlining of the map function
manually disabled. After performance stabilizes (4), the performance
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Figure 3.5: Optimization strategies for Listing 3.2

gain is small. This can be attributed to the high cost of function calls
in R. Again, we observe deoptimization (5) and re-optimization (6).
The curve mirrors inlining, but with smaller speedups. Finally, the
blue line exposes the results when we enable context dispatch (without
inlining). The first iteration (7) is fast because reduce can benefit from
the compiled version of map earlier, thanks to context dispatch of calls.
Performance improves further when the reduce function is optimized
(8). We see a compilation event at (9). Finally, we return to the previous
level of performance (10), in contrast to the two previous experiments,
where the deoptimization impacted peak performance. The reason is
that the version of map used to process integer arguments is not polluted
by information about the tuples, since they are handled by a different
version.

3.4 Deoptless: Context Dispatched OSR

An interesting combination of context dispatch with speculation is to
avoid deoptimization. A problem of speculative optimizations is that
when speculations fail, the optimized code is discarded and eventu-
ally replaced with a more generic version, which might be slower. To
illustrate, consider a function that operates on a list of numbers. At run-
time, the system observes the type of the values stored in the list. After
a number of calls, if the compiler determines that the list holds only
integers, it will speculate that this will remain true and generate code
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Figure 3.6: Deoptimization: OSR-out, profile, recompile

optimized for integer arithmetic. If, at some later point, floating point
numbers appear instead, a deoptimization will be triggered. As shown
in Figure 3.6, deoptimization makes it possible to swap the optimized
code in-place with the baseline version of the function. In subsequent
calls to the function the compiler refines its profiling information to
indicate that the function can operate on lists of integers and floating
point numbers. Eventually, the function will be recompiled to a new
version that is slightly more general. That version will not need to
deoptimize for floating point values, but likely will not be as efficient
as the previously optimized one.

Speculative compilation can cause hard to predict performance
pathologies. Failed speculations lead to two kinds of issues. First,
deoptimization causes execution to suddenly slow down as the new code
being executed does not benefit from the same level of optimization
as before. Second, to avoid repeated deoptimizations, the program
eventually converges to code that is more generic, i.e. , that can handle
the common denominator of all observed executions. From a user’s
point of view, the program speeds up again, but it does not regain its
previous performance.

Deoptless is a strategy for avoiding deoptimization to a slower tier.
The idea is to handle failing assumptionswith an optimized-to-optimized
transfer of control. At each deoptimization point, the compiler main-
tainsmultiple optimized continuations, each specialized under different
assumptions. When OSR is triggered, a continuation that best fits the
current state of execution is selected. The function that triggered OSR
is not retired with deoptless (as would occur in the normal case), rather
it is retained in the hope that it can be used again.

Figure 3.7 illustrates what happens when speculation fails with
deoptless. Instead of going to the baseline, the compiler generates
code for the continuation, and execution continues there. This can
result in orders-of-magnitude faster recovery from failed speculation.
Furthermore, deoptless not only avoids tiering down, it also gives the
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Figure 3.7: Deoptless: dispatched OSR to specialization

compiler an opportunity to generate code that is specific to the current
execution context. As we later demonstrate, this can significantly
increase the peak performance of generated code. For instance, if an
assumption fails, as above, because a list holds floating point numbers
rather than integers, then the continuation can be specialized to handle
floats. In subsequent executions, if the same OSR point is reached, the
continuation to invoke will be selected by using context dispatch. If no
previously compiled continuation matches the execution context, then
a new one will be compiled. Of course, the number of continuations is
bounded, and when that bound is reached deoptless will deoptimize.

Example

Deoptless is a compilation strategy that explores the idea of having a
polymorphic OSR-out as a backup for failed speculation, while retain-
ing the version of the function that triggered deoptimization. Consider
the sum function of Listing 3.3, which naively adds up all the elements

sum <- function() {

total <- 0

for (i in 1:length) total <- total + data[[i]]

total

}

Listing 3.3: Summing vectors

in the data vector. Assume the function is called in situations where
the values of data change from float to integer to complex numbers and
back to float. As a preview, we run this code in our implementation.
Figure 3.8 shows both normal executions and executions with deoptless.
We see the warmup time spent in the interpreter and compilation to
faster native code in the first phase with 5 iterations. Each of the fol-
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Figure 3.8: Performance comparison (log scale)

Figure 3.9: Deoptless combines OSR-out with OSR-in

lowing 3 phases (also with 5 iterations each) correspond to a different
type of data vector. In the normal environment each change of the
dynamic type results in deoptimization, followed by slower execution.
In deoptless, there is a slowdown in the first iteration, as the contin-
uation must be compiled, then code is fast again. Complex numbers
are slow in both versions as their behavior is more involved. Finally,
when the function deals with floats again, deoptless is as fast as the first
time, whereas the original version is stuck with slow code. We show
this example here to motivate the technique and give an intuition for
our goals and the expected gains. This graph effectively illustrates many
of the trade-offs with deoptless that we are aware of, and we’ll discuss
it again in detail at the end of the section.

Approach

Conceptually, deoptless performs OSR-out and OSR-in in one step,
to achieve an optimized-to-optimized and native-to-native handling
of failing speculation. As can be seen in Figure 3.9 this is realized by
following an OSR-out immediately with an OSR-in. By performing
this transition directly, it is possible to never leave optimized code.
For deoptless, the OSR-in must be implemented by compiling an op-
timized continuation, specifically for that particular OSR exit point.
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The key idea is that we can compile multiple specialized continuations,
depending on the failing speculation — and in general, depending on
the current state of the execution. The continuations are placed in a
dispatch table to be reused in future deoptimizations with compatible
execution states.

We effectively turn deopt points into assumption-polymorphic dis-
patch sites for optimized continuations. If the same deoptimization
exit point is taken for different reasons, then, depending on the reason,
differently specialized continuations are invoked. Going back to List-
ing 3.3, the failing assumption is a typecheck. Given earlier runs, the
compiler speculates that data is a vector of floats. This assumption al-
lows us to access the vector as efficiently as a native array. Additionally,
based on that assumption, the total variable is inferred to be a float
scalar value and can be unboxed. When the variable becomes an integer,
this speculation fails. Normally we would deoptimize the function and
continue in the most generic version, e.g., in the baseline interpreter.
Deoptless allows us to split out an alternate universe where we speculate
differently and jump to a continuation optimized for that case.

We keep all deoptless continuations of a function in a common
dispatch table. At aminimum the continuationwewant to invoke has to
be compiled for the same target program location. But we can go further
and use the current program state, that we extracted from the origin
function for OSR, to have many specialized continuations for the same
exit. In order to deduce which continuations are compatible with the
current program state we employ a context dispatching mechanism. To
choose a continuation, we take the current state at the OSR exit point,
we compute a current context C for it, and then select a continuation
compiled for a context C ′, such that C < C ′. If there is no such
continuation available, or we find the available ones to be too generic
given the current context, we can choose to compile a new continuation
and add it to the dispatch table.

In our implementation we add an abstract description of the deop-
timization reason, such as ”typecheck failed, actual type was an integer
vector”, to the context. Our source states are expressed in terms of
the state of the bytecode interpreter. Therefore, the deoptimization
context additionally contains the program counter of the deoptimiza-
tion point, the names and types of local variables, and the types of the
variables on the bytecode stack. Deoptimization contexts are only com-
parable if they have the same deoptimization target, the same names of
local variables, the same number of values on the operand stack, and
a compatible deoptimization reason. This means, for instance, that
a deoptimization on a failing typecheck is not comparable with a de-
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optimization on a failing dynamic inlining, and thus we can’t reuse
the respective continuation. Or, if there is an additional local variable
that does not exist in the continuation context. Comparable contexts
are then sorted by the degree of specialization. For instance, they are
ordered by the subtype relation of the types of variables and operands.
If the continuation is compiled for a state where sum is a number, then
it can for example be called when the variable sum holds an integer or a
floating-point number. Or, if we have a continuation for a typecheck,
where we observed a float vector instead of some other type, then this
continuation will be compatible when we observe a scalar float instead,
as in R scalars are just vectors of length one.

Dispatching is based on the execution states of the source code of
the optimizer, e.g., in our case states of a bytecode interpreter. This
does not mean that deoptless requires these states to be materialized.
For instance when dispatching on the type of values that would be on
the operand stack of the interpreter at the deoptimization point, they
are not actually pushed on the stack. Instead their type is tested where
they currently are in the native state.

Potential and Limitations

Deoptless does not add much additional complexity over OSR-out and
OSR-in to an implementation. There are some considerations that
will be discussed when we present our prototype in the next section.
Most prominently, OSR-out needs to be more efficient than when it is
used only for deoptimization, because we expect to trigger OSR more
frequently when dispatching to optimized continuations. Currently our
proof-of-concept implementation is limited to handle deoptimizations
where the origin and target have one stack frame, i.e. , we do not handle
inlined functions. This is not a limitation of the technique, but rather
follows from the fact that also theOSR-in implementation currently has
the same limitation. We can therefore not answer how well deoptless
would perform in the case of inlined functions.

There are also a number of particular trade-offs, which are already
visible in the simple example in Figure 3.8. Going through the four
phases of the example, we can observe the following. In the first phase
both implementations warm up equally fast. There is no difference, as
there is also no deoptimization event up to this point. In the second
phase, when the type changes to float, the normal implementation
triggers a deoptimization, we fall back to the interpreter and it takes
some time for the code to be recompiled. This replacement code is more
generic as it can handle floats and integers at the same time and it is
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much slower than the float-only case. The effect is inflated here due to
the fact that our particular compiler supports unboxing only if the types
are static. This can be seen in the first phase of the deoptless variant,
where a specialized continuation for floats is compiled and executed
very efficiently. We see a small overhead over the integer case, that is
due to the dispatch overhead of deoptless. Next, in the third phase, yet
another specialized continuation is compiled, this time for the data
vector being a generic R object. While we avoid going back to the
interpreter yet again, this continuation is slower at peak performance
than the generic version from the normal execution. This is not a
fundamental limitation, but does exemplify a difficulty with deoptless
that we will get back to: deoptless operates on partial type-feedback
from the lower tier. Because the remainder of the sum function has
never been executed with the new type, we cannot fully trust the type-
feedback when compiling the continuation, as it is likely stale to some
extent. We address the problem with a selective type-feedback cleanup
and inference pass, which can, as in this case, lead to less optimal code.
In the final phase of the benchmark deoptless greatly outperforms the
normal implementation. That is because in deoptless we are running the
same code again as in the first phase, as this code was never discarded.
On the other hand in the normal case we replaced the sum function
in-place and it is now much more generic and slow.

Speculative optimizations are key for the performance of just-in-
time compilers. Deoptless presents a way of dealing with failing spec-
ulations that does not tier down, i.e. , does not have to continue in a
slower tier. Instead of having functions become gradually more and
more generic on every deoptimization, we take this opportunity for
splitting and compile functions which become more and more spe-
cialized. Our preliminary evaluation shows the big potential of the
technique. As we will show, when presented with randomly failing
assumptions, deoptless is able to execute benchmarks up to 9.1× faster
than with normal deoptimization, with most benchmarks being at least
1.9× faster and none slower. As with every forward escape strategy,
there is a danger of committing follow-up mistakes. Deoptless struggles
with cases where it is hard to infer from the failing speculation how
the remainder of the function will be affected, before actually running
it. We approach this problem by incorporating information from the
current state of the execution at the OSR exit point. Additionally, we
use type-inference on the type-feedback to override stale profile data.
Our evaluation shows that this strategy is robust and able to produce
good code for the continuations.



Discussion 85

3.5 Discussion

In conclusion, context dispatch allows the compiler to manage multiple
specialized versions of a function, and to select the most appropriate
version dynamically based on information available at the call site.
The difference with inlining and speculation is that context dispatch
allows a different version of a function to be chosen at each and every
invocation of that function withmodest dispatching overhead. Whereas
inlining requires the compiler to commit to one particular version, and
speculation requires the compiler to deoptimize the function each time
a different version is needed. We envision context dispatch to allow
just-in-time compilers to rely more on inter-procedural optimizations
for performance in the future.

Like inlining, context dispatch allows to specialize a function to its
calling context. Unlike inlining, the specialized function can be shared
across multiple call sites. While speculation needs deoptimization to
undo wrong assumptions, context dispatch does not. Context dispatch
applies at call boundaries, while speculation can happen anywhere in a
function. Finally, let us repeat that these mechanisms are not mutually
exclusive: the implementation of Ř supports all of them and we look
forward to studying potential synergies in future work.

The key design choice for an implementation of this approach is to
pick contexts that have an efficiently computable partial ordering. We
envision compilers for different languages defining their own specific
contexts. The choice of context is also driven by the cost of deriving
them from current program state, and the feasibility of approximation
strategies.

The context dispatch framework was initially designed to select
versions at the function level. But, as we have shown with deoptless,
it is also possible to apply it for dispatching code fragments at a finer
granularity.





4
Ř: Implementation

This chapter provides an in-depth look at Ř1. This implementation
of the R language [R Core Team, 2022] is the main case-study and it
co-evolved with the models and implementation recipes presented so
far. It will be used in the evaluation in the next Chapter 5.

The explanation starts with a primer on the R language in Figure 4.1
with a particular focus on the main obstacles for a compiler. Even to
readers familiar with the R language it might hold some surprises. In
particular it introduces the problems which arise from the late-bound
variable scope of closures, which can be reflectively altered at run-
time. Then Section 4.2 describes the architecture of Ř and how it is
built on top of the reference implementation GNU R. Then we turn
our attention to the protagonist; to the optimizing compiler of the Ř
implementation. In Section 4.4 its intermediate representation PIR
is introduced. The distinguishing features of the representation, next
to speculation and contextual optimizations, are its first-class support
for R environments (i.e. , late bound variable scopes) and promises (i.e. ,
thunks for lazy evaluation). Finally, the remaining three sections detail
the implementation of the main contributions from Chapter 2 and
Chapter 3. The Section 4.7 describes how sourir is implemented in PIR
and used for speculative optimizations, Section 4.8 presents the context
dispatch implementation, and Section 4.9 deoptless.

4.1 Background

The R language presents interesting challenges for implementers. R
is a dynamic imperative language with vectorized operations, copy-
on-write of shared data, a call-by-need evaluation strategy, context-

1Pronounced like “sh“ and a trilled “r” simultaneously, the sound one makes upon
realizing that arguments can modify the environment of the function they are given to.
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sensitive lookup rules, multiple dispatch, and first-class closures. A rich
reflective interface and a permissive native interface allow programs to
inspect and modify most of R’s runtime structures. This section focuses
on the interplay of first-class, mutable environments and lazy evaluation.
In particular, we focus on their impact on compiler optimizations.

One might see the presence of eval as the biggest obstacle for static
reasoning. With eval, text can be turned to code and perform arbitrary
effects. However, the expressive power of eval can be constrained by
careful language design. Julia, for instance, has a reflective interface that
does not hamper efficient compilation. Even an unconstrained eval is
bound by what the language allows; for example, most programming
languages do not allow code to delete a variable. Not so in R. Consider
one of the most straightforward expressions in any language, variable
lookup:

f <- function(x) x

In most languages, it is compiled to a memory or register access. From
the point of view of a static analyzer, this expression usually leaves the
program state intact. Not so in R. Consider a function doubling its
argument:

g <- function(x) x+x

In most languages, a compiler can assume it is equivalent to 2*x and
generate whichever code is most efficient. At the very least, one could
expect that both lookups of x resolve to the same variable. Not so in R.

Difficulties come from two directions at once. R variables are bound
in environments, which are first-class values that can be modified. In
addition, arguments are evaluated lazily; whenever an argument is
accessed for the first time, it may trigger a side-effecting computation
– which could modify any environment. Consequently, to optimize the
body of a function, a compiler must reason about effects of the functions
that it calls, as well as the effects from evaluating its arguments. In the
above example, `+` could walk up the call stack and delete the binding
for variable x. One could also call g with an expression that deletes x
and causes the second lookup of x to fail. While unlikely, a compiler
must be ready for it. Considering these examples in combination with
eval, it is impossible to statically resolve the binding structure of R
programs.

Ř’s optimizing compiler has a custom intermediate representation
for R, called PIR. This IR is in single-static assignment form [Rosen,
Wegman, and Zadeck, 1988] and has explicit support for environments
and lazy evaluation. In our experience, some of the most impactful
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optimizations are high-level ones that require understanding how val-
ues are used across function boundaries. We found that the GNU R
bytecode was too high level; it left too many of the operations implicit.
In contrast, we found LLVM’s IR too low level for easily expressing
some of our target optimizations.

Environments in R

Inspired by Scheme and departing from its predecessor S, R adopted a
lexical scoping discipline [Gentleman and Ihaka, 2000]. Variables are
looked up in a list of environments. Consider this snippet:

g <- function(a) {

f <- function() x+y

if (a) x <- 2

f()

}

y <- 1

The evaluation of x+y requires finding x in the enclosing environment of
the closure f, and y at the top level. It is worth pointing out that, while
R is lexically scoped, the scope of a free variable cannot be resolved
statically. For instance, x will only be in scope in g if the argument a
evaluates to true.

R uses a single namespace for functions and variables. Environ-
ments are used to hold symbols like +. While primarily used for vari-
ables, environments can also be created explicitly, e.g., to be used as
hashmaps. Libraries are loaded by the attach() function that adds
an environment to the list of environments. A number of operations
allow interaction with environments: environment() accesses the cur-
rent environment; ls(...) lists bound variables; assign(...) adds
or modifies a binding; and rm(...) removes variables from an environ-
ment. R has functions to walk the environment chain: parent.frame()
returns the environment associated with the caller’s call frame and
sys.frame(...) provides access to the environment of any frame on
the call stack. In R, frames represent function invocations and they
have references to environments. Consider this code:

f <- function() get("x", envir=parent.frame())

g <- function() {x <- "secret"; f()}

Function f uses reflection to indirectly access g’s environment. This
illustrates that any callee may access (and change) the caller environ-
ment.
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Laziness in R

Since its inception, R has adopted a call-by-need evaluation strategy
(also called lazy evaluation). Each expression passed as argument to
a function is wrapped in a promise, a thunk that packages the expres-
sion, its environment, and a slot to memoize the result of evaluating
the expression. A promise is only evaluated when its value is needed.
Consider a function that branches on its second argument:

f <- function(a, b) if(b) a

A call f(x<-TRUE,x) creates two promises, one for the assignment
x<-TRUE, and one to read x. One could expect this call to return TRUE,
but this is not so. The condition is evaluated before variable x is de-
fined, causing an error to be reported. Combined with promises, the
sys.frame function allows non-local access to environments during
promise evaluation:

f <- function() sys.frame(-1)

g <- function(x) x

g(f())

Here g receives promise f() as argument. When the promise is forced,
there will be three frames on the stack: frame 0 is the global scope,
frame 1 is g’s, and frame 2 is f’s frame.

0: g(f())

1: x

2: sys.frame(-1)

During promise evaluation, parent.frame refers to the framewhere the
promise was created (frame 0 in this example, as promise f() occurs at
the top level). But, sys.frame(-1) accesses a frame by index, ignoring
lexical nesting, thus extracting the environment of the forcing context,
i.e. , the local environment of g at frame 1.

We leave the reader with a rather amusing brain twister. R has
context-sensitive lookup rules for variables in call position. Variables
that are not bound to functions are skipped:

f <- function(c) {c(1, 2) + c}

f(3)

The lookup of c in c(1,2) skips the argument c, since it is not a function.
Instead, primitive c() is called to construct a vector. The second read
of c is not in call position, thus it returns argument c, 3 in this case.
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The result is the vector [4,5] as addition is vectorized. Now, consider
the following variation:

bad <- function()

rm(list="c", envir=sys.frame(-1))

f(bad())

This time, evaluation ends with an error as we try to add a vector and
a function. Evaluation of c(1,2) succeeds and returns a vector. But,
during the lookup of c for that call, R first encounters the argument
c. In order to check if c is bound to a closure, it evaluates the promise,
causing bad() to delete the argument from the environment. On the
second use of c, the argument has been removed and a function object,
c, is returned.

Obstacles for Optimizers

A realistic language implementation helps to test models against re-
ality. We can assess the interplay of optimizations and if they work
in a language with complex features. The R language presents inter-
esting challenges for implementers. R’s rich reflective interface and
a permissive native interface allow programs to inspect and modify
most of R’s runtime structures. A particular challenge comes from the
interplay of first-class, mutable environments and lazy evaluation. The
list of challenges for optimizing R is too long to detail. We restrict the
presentation to seven headaches.

1. Out of order: A function can be called with a named list of argu-
ments, thus the call to add(y=1,x=2) is valid, even if arguments
x and y are out of order. Impact: To deal with this, GNU R
reorders its linked list of arguments on every call.

2. Missing: A function can be called with fewer arguments than it
defines parameters. For example, if function add(x, y) is called
with one argument, add(1), it will have a trailing missing argu-
ment. While the calls add(,2) and add(y=2) have an explicitly
missing argument for x. These calls are all valid. Impact: If the
missing parameters have default values, those will be inserted.
Otherwise, the implementation must report an error at the point
a missing parameter is accessed.

3. Overflow: A function can be called with more arguments than
it defines parameters. Impact: The call sequence must include a
check and report an error.
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4. Promises: Any argument to a function may be a thunk (promise
in R jargon) that will be evaluated on first access. Promises may
contain arbitrary side-effecting operations. Impact: A compiler
must not perform optimizations that depend on program state
that may be affected by promises.

5. Reflection: Any expression may perform reflective operations
such as accessing the local variables of any function on the call
stack. Impact: The combination of promises and reflection re-
quires implementations to be able to provide a first-class repre-
sentation of environments.

6. Vectors: The most widely used data types in R are vectorized.
Scalar values are vectors of length one. Impact: Unless it can
prove otherwise, the implementation must assume that values
are boxed and operations are vectorized.

7. Objects: Any value, even an integer constant, can have attributes.
Attributes tag values with key-value pairs which are used, among
other things, to implement object dispatch. Impact: The imple-
mentation must check if values have a class attribute, and, if so,
dispatch operations to the methods defined to handle them.

It is noteworthy that none of the above obstacles can be definitely ruled
out at compile time. Even with the help of static program analysis,
these properties depend on the program state at the point a function is
called. This should come as no surprise after having discussed reflective
environment access. There are however much more mundane parts of
the language with an equally surprising dynamic behavior. To illustrate
this, consider the number of arguments passed to a function. The
following code calls add() twice, once with a statically known number
of arguments and the second time with the result of expanding the
varargs parameter:

g <- function(...) add(1,3) + add(...)

The triple dots expand at run time to the list of arguments passed into
g. Thus, to know the number of arguments of add requires knowing
the number of arguments of g. The following are all legal invocations:

g(); g(1); g(,1); g(1,2,3); g(b=1, a=2);

g(..., a=1);

Further, implementations of the add function can exert the full name-
based argument matching facilities, having arguments dynamically
matched based on the names of arguments passed to g.
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Figure 4.1: Ř compilation pipeline

4.2 Architecture

Ř is a just-in-time compiler that plugs into the GNU R environment
and is fully compliant with the language’s semantics. It passes all GNU
R regression tests as well as those of recommended packages with only
minor modifications.2 Ř follows R’s native API which exposes a large
part of the language run-time to user-defined code. It is also binary
compatible in terms of data structure layout, even though this is costly
as GNU R’s implementation of environments is not efficient.

As shown in Figure 4.1, Ř features a two-tier optimization pipeline
with a bytecode called RIR, an optimizing compiler with a custom,
SSA based intermediate representation called PIR, and an LLVM based
native backend. For some unsupported operation the VM can also fall
back to the GNU R AST interpreter.

Source code is translated to RIR, which is then interpreted. For hot
functions, RIR is translated PIR. Optimizations such as global value
numbering, dead store and load removal, hoisting, escape analysis, and
inlining are all performed on PIR code. It is noteworthy that many of
the optimizations in Ř are also provided by LLVM. However, in PIR
they can be be applied at a higher level. For instance, function inlining
is complex due to first-class environments and therefore impossible
without specific support for them. There are also R specific optimiza-
tions, such as scope resolution, which lowers local variables in first-class
environments to PIR registers; promise inlining; or optimizations for
eager functions.

Ř relies on speculative optimizations. Profiling information from
previous runs is used to speculate on types, on shapes (scalars vs. vec-
tors), on the absence of attributes, and so on. The RIR interpreter
gathers type feedback that is later used for optimization decisions. To
that end there are several recording bytecodes that can be used to track

2Some error messages which are not fully stable in GNU R either can change and
some tests need a longer timeout to accommodate compile times.
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values, types, call targets and branch targets. This profiling information
is then used to annotate PIR values in the optimizer, and consumed
by speculative optimization passes. Ř also performs speculative dead
code elimination, speculative escape analysis to avoid materializing
environments, and speculative inlining of closures and builtins. Specu-
lation is orthogonal to context dispatch; every version of a function can
have its own additional speculative optimizations. When speculation
fails, a deoptimization mechanism transfers execution back to the RIR
interpreter. The design of speculative optimizations is based on sourir.
As a novel feature, PIR allows scheduling of arbitrary instructions, such
as allocations, only on deoptimization.

4.3 Related Work

TheR language is an imperative language for statistical computing with
vectorized operations, copy-on-write of shared data, a call-by-need eval-
uation strategy, multiple dispatch, first-class closures, and reflective
access to the call stack [R Core Team, 2022]. R has one reference im-
plementation, GNU R, and several alternative implementations. GNU
R includes a bytecode compiler with a number of carefully tuned op-
timizations [Tierney, 2019]. Unlike Ř, GNU R’s bytecode implicitly
assumes the presence of an environment for every function application.
Variable lookup, in the worst case, requires inspecting all bindings of
each environment in scope. To mitigate the lookup cost, GNU R caches
bindings when safe.

FastR’s first version featured a type-specializing tree interpreter
that outperformed GNU R [Kalibera, Maj, Morandat, and Vitek, 2014].
It split environments into a statically known part (represented by arrays
with constant-time accesses) and extensions that could grow and shrink
at runtime. Environments were marked dirty whenever a reflective
operation modified them. The second version of FastR uses Truffle
for specialization and Graal for code generation Stadler et al. [2016].
FastR speculatively specializes the code based on profile-driven global
assumptions. For instance, functions exhibiting a runtime stable bind-
ing structure are compiled under that assumption. The compiler elides
environments and stores variables on the stack. Code is added to detect
violation of assumptions and trigger deoptimization.

Type specialization was also used in the ORBIT project, an at-
tempt at extending GNU R with a type specializing bytecode inter-
preter [Wang, Wu, and Padua, 2014]. On the other hand, the Riposte
compiler tried to speed up R by recording execution traces for vector
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operations [Talbot, DeVito, and Hanrahan, 2012]. Riposte performed
liveness analysis on the recorded traces to avoid unnecessary vector
creations and parallelize code. None of these alternatives provides any
special treatment for environment bindings. Of these systems, only
GNU R and Oracle’s FastR are maintained as of this writing.

Ř departs from all these efforts in that we provide explicit support
for environments and promises in the compiler IR. This allows us to
combine static reasoning (when feasible) with speculative optimizations
(when needed).

Other languages have some of the same features R has but, usually,
are more amenable to compilation. MIT Scheme [Hanson and Team,
2020] has first-class environments, but they are immutable. Julia resem-
bles R in that it is dynamically typed, reflective, and targets scientific
computing. But, as shown by Bezanson et al. [2018], it exhibits much
better performance. This is due to a combination of careful language de-
sign and an implementation strategy that focuses on type specialization,
inlining, and unboxing. Julia does not have lazy evaluation, it restricts
eval to execute at the top level, and limits reflection. Another example
is JavaScript. While it is also dynamic, the only way to add variables
to a scope is using eval, which can only do so locally. Serrano [2018]
performs static reasoning on JavaScript by relying on type specialization
and occurrence typing [Tobin-Hochstadt and Felleisen, 2010], as well as
rapid atomic type analysis [Logozzo and Venter, 2010]. Whenever types
cannot be statically determined, the compiler assumes the most likely
structures ahead of time and relies on speculative guards for soundness.
Smalltalk also features first-class contexts, although adding bindings at
runtime is not supported. The Cog VM by Miranda [2011] maps context
objects to the native stack and materializes contexts on demand when
they are reflectively accessed.

4.4 PIR

One main design goal for the intermediate representation of the Ř
optimizer is to model R variables and lazy evaluation. We distinguish
between source-level R variables, which we call variables, and PIR local
variables, called registers. Variables are stored in environments while
the implementation of registers is left up to the compiler, and reflective
access is not provided.

We start with an example to illustrate how R variables are mod-
eled, and if possible lowered to registers. We use the following simple
function definition:
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function() {

answer <- 42

answer

}

The function defines a local variable and returns its value. It translates
to the following PIR instructions:

%0 = MkEnv ( : G)
%1 = LdConst 42

StVar ( answer , %1 , %0 )
%3 = LdVar ( answer , %0 )
%4 = Force (%3 ) %0

Return (%4 )

First, MkEnv creates an empty environment nested in G, the global
environment. As all values are vectorized, 42 is loaded as a vector of
length 1. StVar updates environment %0 with a binding for variable
answer. Then, LdVar loads variable answer again. As the examples in
Figure 4.1 have conveyed, the compiler cannot assume much about the
loaded value. Because returns are strict in R, the compiler inserts a
Force instruction to evaluate promises. It refers to environment %0
because a promise could reflectively access it. We record this fact as a
data dependency. In general, we use a notation where actual arguments
are inside parentheses and data dependencies outside. When Force is
passed a value, rather than a promise, it does nothing.

After translation, the compiler runs a scope resolution pass to lower
variables to registers. This requires combining an analysis and a transfor-
mation step. The analysis computes the reaching stores at each program
point. Its results are then used to remove loads. In the previous exam-
ple, the analysis proves that the value referenced by variable answer in
instruction %3 originates from StVar ( answer , %1 , %0 ). Thus, %3
can be substituted with %1 . In case of multiple dominating stores, we
insert a Phi instruction to combine them into a single register. Once
this load is resolved, the environment is not used anymore, except for a
dead store. Standard compiler optimizations, such as escape analysis of
the environment and dead store elimination, can now transform this
function into:

%1 = LdConst 42

Return (%1 )

This version has no loads, stores, or environment and does not require
speculation.
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Promise Elision Promises consume heap memory and hinder analysis,
since they might have side effects. Therefore, we statically elide them
when possible with the following three steps: first, inline the callee;
next, identify where the promise is evaluated; and last, inline the body of
the promise at that location. To preserve observable behavior, inlining
must ensure that side effects happen in the correct order. Consider the
following code snippet:

f <- function(b) b

f(x)

This snippet translates to the following PIR instructions. First we show
the creation of closure f and its invocation with a promise argument x:

%1 = MkClosure ( f , G)
%2 = MkArg ( pr0 , G)
%3 = Call % 1 (%2 ) G

pr0

%4 = LdVar ( x , G)
%5 = Force (%4 ) G

Return (%5 )

The closure is explicitly created by MkClosure. Similarly, the promise
%2 is created by MkArg from pr0. Analogous to Force, Call has a data
dependency on the environment because the callee can potentially
access it. The translation of pr0 does not optimize the read of x as this
would require the equivalent to an interprocedural analysis. Then, the
function f translates to the following PIR:

f

%6 = LdArg ( 0)
%7 = MkEnv ( b = %6 : G)
%8 = Force (%6 ) %7

Return (%8 )

The translation of f illustrates the calling convention chosen for PIR: it
requires environments to be callee-created, i.e. , callees initialize environ-
ments with arguments. Accordingly, the LdArg in f loads an argument
by position and MkEnv binds it to variable b.

We now walk through promise inlining. First, the callee must be
inlined. Performing inlining at the source level in R is not sound as this
would mix variables defined in different environments. However, this
is not an issue in PIR; since environments are modeled explicitly, the
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inlinee keeps its local environment as MkEnv is also inlined. Therefore,
after inlining f, we get:

%2 = MkArg ( pr0 , G)
inlinee

%7 = MkEnv ( b = %2 : G)
%8 = Force (%2 ) %7

The next step is to elide the promise by inlining it where it is evaluated.
We identify the Force instruction which dominates all other uses of a
MkArg instruction. If such a dominating Force exists, it follows that the
promise must be evaluated at that position. We inline pr0 to replace
%8 :

%2 = MkArg ( pr0 , G)
inlinee

%6 = MkEnv ( b = %2 : G)
inlined promise

%4 = LdVar ( x , G)
%5 = Force (%4 ) G

We have succeeded in tracking a variable captured by a promise through
a call and evaluation of that promise. The %2 and %6 instructions are
dead code and can be removed, leaving only the load and force of x.

Syntax and Semantics

Figure 4.2 shows the structure of programs. As in sourir, each func-
tion is versioned. The versions are compiled with different contextual
assumptions and have different levels of optimization applied. The
assumptions are recorded in a context C and dispatched using context
dispatch. A program is thus a set of functions, each with one or more
versions with a function body and the promises it creates. Promise and
function bodies are sets of basic blocks. Functions, promises, and basic
blocks are labeled by names. All labels (id) are unique. Promises and
functions in Figure 4.2 should not be confused with values that repre-
sent closures and promises; those are shown in Figure 4.4. A closure is
a pair with a function and its environment, while a promise value is a
triple with code, its environment, and a result. An environment is a
sequence of bindings from variables to values.
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F ::=
| id : V1, .. , Vn

V ::= Function
| C : B∗ P∗ context body and promises

P ::= Promise
| id : B∗

B ::= Basic Block
| L : st∗

L ::= Basic Block Label
| BBn

st ::= Statements
| T %n = instr non-void instruction
| instr void instruction

Figure 4.2: Programs, Functions, Versions, Statements

T ::=
| t
| t1|t2 union
| T m1 ... mn with flags

t ::= Base Types
| any

| int

| real

| lgl

| cls

| env

| stub Environment stub
| cp Checkpoint
| fs Framestate
| bool native bool
|

m ::= Type Modifiers
| $ scalar
| ∼ eager
| + might have attributes

Figure 4.3: Types
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v ::=
| ve environment
| vp promise
| vc closure
| lit literal

ve ::=
| (x : v)∗ : ve variables + enclosing env.

vp ::=
| <P, ve, _> unevaluated promise
| <P, ve, v > evaluated promise

vc ::=
| <F, ve > closure

Figure 4.4: Values

Figure 4.5 shows the remainder of the PIR grammar. PIR is in SSA
form: each statement (st) is constructed such that its result is assigned
to a unique register. While there is only one kind of register in PIR,
to help readability, our convention is to use (%n) for registers that
hold environments (or environment literals) and (%n) for everything
else. PIR has instructions for the following operations: performing
arithmetic; branching; deoptimizing a function; applying a closure;
jumping to a basic block; loading arguments, constants, functions,
and variables; creating promises, environments, and closures; forcing
a promise; phi merges; returning values; and storing variables. Most
of the instructions are unsurprising (and some have been elided for
brevity). We focus our explanation here on MkEnv, MkArg, MkClosure,
and Force. And later, when we explain speculation, Assume, Deopt,
Framestate, and Checkpoint.

MkEnv. This instruction takes initial variables and a parent environ-
ment as arguments:

MkEnv ( (x = a)∗ : env)

Theresulting environment contains the bindings (x = a)∗ and is scoped
inside env. By default functions start out with an environment that
contains all their declared arguments. Thus, a function defined at the
top level with an argument called a has the following body:

%0 = LdArg ( 0)
%1 = MkEnv ( a = %0 : G)

...
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instr ::=
| Binop (a1, a2) env binary op.
| Jump L jump
| Branch ( a, L1, L2) branch
| Call a0 ( a∗) env apply closure
| Checkpoint L deoptimization safepoint
| Assume ( a∗) a0 assumption, a0 : cp
| Is〈T 〉( a) typecheck
| Framestate ( id, 〈a∗〉, env = env, next = a0) framestate, a0 : fs
| Deopt ( a) deoptimization, a : fs
| Force ( a) env force promise
| LdArg ( n) load argument
| LdConst lit load constant
| LdFun ( x, env) load function
| LdVar ( x, env) load variable
| MkArg ( id, env)
| MkArg ( id, env, lit) create promise
| MkEnv ( (x = a)∗ : env) create environment, env : envir
| MkClosure ( id, env) create closure
| Phi ((L : v)∗) φ function
| Return ( a) return
| StVar ( x, a, env) store variable

a ::= Arguments
| %n register
| lit literal

Binop ::=
| Add

| Eq

| ...
lit ::= Literals

| G global env.
| missing missing argument
| nil nil
| true true
| [n1, ... , nm] vector
| ...

Figure 4.5: Instructions
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Variables can be added or updated with StVar and read with LdVar. The
latter returns the value of the first binding for the variable in the stack
of environments. That value can be a promise and may or may not be
evaluated. When searching for a function, LdFun is used instead. The
instruction evaluates promises and skips over non-function bindings.
An optimization pass converts LdFun into LdVar when possible.

MkArg. This instruction creates a promise from an expression in the
source program and an environment:

MkArg ( id, env)

The instruction is mainly used to create promises for function argu-
ments. A call such as f(a+b) translates to a load of a function f, the
creation of a promise with body p1 and a call. Assuming the environ-
ment is called %n, we get the following code:

%0 = LdFun ( f , %n)
%1 = MkArg ( p1 , %n)
%2 = Call %0 (%1 ) %n

p1

%0 = LdVar ( a , %n)
%1 = LdVar ( b , %n)
%2 = Force (%0 ) %n
%3 = Force (%1 ) %n
%4 = Add (%2 , %3 ) %n

Return (%4 )

The body of the promise contains two reads for a and b whose results
get forced, a binary addition, and a return. The code is known statically,
while the environment in which it is evaluated is a runtime value.

Force. This instruction takes any value as input. In case the input is a
promise it is evaluated (recursively if needed) and the resulting value is
returned. In case it is not a promise the value is returned unchanged:

Force ( a) env

Note that env is a synthetic argument that is not needed for evaluation
but describes a data dependency. The promise could access the current
environment using reflective operations. If a is not a promise then a
is returned intact. If a =< P, ve, _>, then P is evaluated in ve, and
the result is stored in the data structure and returned. Otherwise, if
a =<P, ve, v >, then v is returned.
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Typed Instructions. PIR instructions are typed, which allows more
precise register types. The types include environments, vectors, scalars,
closures, lists, etc. The type system also distinguishes between values
and both evaluated and unevaluated promises. We omit additional
details as the types are not relevant for the optimizations presented
here.

4.5 Scope Resolution

Scope resolution is an abstract interpretation over stores. The trans-
formation draws inspiration from the mem2reg pass in LLVM. Ř first
compiles variables to environment loads and stores and later lowers
them to registers. The domain s of the analysis consists of sequences of
abstract environments. Assume that we have environments %1 , . . . ,%n
and variables x1 . . . xm . Then, an abstract state s is an∗m vector of sets
of locations. A location is either a program point l or ε if the variable
is undefined. We write si,j to denote the abstract value of variable xj
in the environment accessed through register %i . The value> denotes
the set of all locations—it represents the case where we do not know
anything about a particular variable. The bottom value is represented
by a vector where each element is the empty set. The analysis is defined
by a transition function over statements and a merge function over
states.

Transition Function. The transition function takes three arguments: a
program point l, a statement st , and an abstract state s. The result is
a new abstract state s′. We discuss the three interesting cases. Let st
be the creation of a new environment stored in register %i with some
values for variables x1, . . . , xj :

%i = MkEnv ( x1 = a1, ... , xj = aj : %k)

Then, the resulting state s′ is initialized with location l for variables
x1, . . . , xj in the environment %i . Other variables in that environment
are set to ε to denote that they are undefined.

(s′)p,q =


{l} p = i, xq ∈ x1, . . . , xj

{ε} p = i, xq /∈ x1, . . . , xj

sp,q otherwise

For the second interesting case let st be the store instruction which de-
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fines or updates variable xi to a value held in register%j for environment
%k :

StVar ( xi , %j, %k)
This operation simply overwrites the state for that variable xi with the
current location.

(s′)p,q =
{
{l} p = k, xq = xi

sp,q otherwise

The last case we describe is when an instruction taints the environment,
i.e. , any instruction that may perform reflective manipulation; this
includes Call, Force, and LdFun. For example, let st be a call instruction:

Call a0 ( a1, .. , an) %k

To be safe, the defined parts of the abstract state are set to >, i.e. , we
know nothing after this point.

(s′)p,q =
{
> sp,q 6= ∅
∅ otherwise

We can improve precision by tracking parent relations between envi-
ronments to avoid tainting them all. Also, the analysis can be extended
to be interprocedural across Call or Force instructions. The state of
a scope resolution in progress can be queried to resolve the target of
a Call or Force instruction. Other mitigations to avoid tainting the
state, such as speculative stub environments or special treatment for
non-reflective promises, are discussed later.

Merge. States are merged at control-flow joins. The merge operation
is pointwise set union.

Transformation. Scope resolution computes the reachable stores. Based
on its results, some LdVar instructions can be removed. Given a load
instruction %i = LdVar ( xj , %k) with an abstract state s, there are
three possible cases. First, when sk,j = {l}, i.e. , the only observable
modification to xj is by the instruction at l, we can simply replace %i
with the register stored by the instruction at that location. The second
case is sk,j = {l1, . . . , ln}, i.e. , depending on the flow of control any
one of the n instructions could have caused the last store. We use an
SSA construction algorithm [Cytron, Ferrante, Rosen, Wegman, and
Zadeck, 1991] to combine all stored registers in a phi congruence class.
We replace %i with the Phi instruction produced by the SSA construc-
tion. Finally, the third case occurs if sk,j = > or ε ∈ sk,j , i.e. , the load
cannot be resolved and no optimization is applied.
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Example. We conclude with an example with flow-dependent stores:

function () {

if (...) x <- 1

else x <- 2

x

}

The translation starts by creating an empty environment. After some
branching condition either 1 or 2 is stored in x. Finally, the value of x
is loaded, forced, and returned.

BB0 :
%1 = MkEnv ( : G)
%2 = ...

Branch (%2 , BB1, BB2)
BB1 :

%4 = LdConst 1

StVar ( x , %4 , %1 )
Jump BB3

BB2 :
%7 = LdConst 2

StVar ( x , %7 , %1 )
Jump BB3

BB3 :
%10 = LdVar ( x , %1 )
%11 = Force (%10 ) %1

Return (%11 )

This function has one environment (%1 ) and one variable (x), thus
it is represented as vector of length one, starting empty 〈{}〉. The
scope analysis derives an abstract state 〈{5, 8}〉 (where 5 and 8 are the
locations of both stores). Therefore we place a Phi instruction in BB3 to
join those two writes. We can replace the load %10 with this phi.

BB0 :
%1 = ...

Branch (%2 , BB1, BB2)
BB1 :

%4 = LdConst 1

Jump BB3
BB2 :

%7 = LdConst 2

Jump BB3
BB3 :

%10 = Phi (BB1 : %4 , BB2 : %7 )
Return (%10 )
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Since the load is statically resolved, dead store elimination is able to
remove both StVar instructions. Combined with an escape analysis, the
environment is also elided. The Force instruction is removed, since we
know that the value is either of the two constants and not a promise.

Promise Inlining

The analysis needed for promise inlining is a simple dataflow analysis.
The values of interest are promises created byMkArg. The analysis uses a
lattice for the state of a promise that starts at bottom,⊥, and can either
be forced at program point l or leaked (O), and tops at >. There is one
such state per promise-creating instruction, thus the abstract state is
a vector of length n where n is the number of MkArg instructions in
the function. We present the abstract interpretation by discussing the
transition function that takes a statement and an abstract state, and
returns a new abstract state, and the merge function that combines two
states.

Transition Function. The abstract state is initialized to ⊥∗. There are
three interesting cases.

First, given an instruction Force (%i) %j at location l, where %i is
a MkArg instruction, we update the abstract state of the promise %i as
follows: if the state is ⊥, then it is set to l, indicating that this is the
dominating Force. If the state is O the result is >, otherwise it stays
unchanged. Second, given an instruction MkEnv ( x1 = a1, ... , xj =
aj : %p), for any input a1, . . . , aj that refers to a promise, the state of
that promise is set to leaked (O) if it is⊥, otherwise it stays unchanged.
Third, given any instruction which could evaluate promises, such as
Call, Force, or LdFun, all escaped (O) promises are updated to >.

Therefore, promises used first in a MkEnv and then in a Force in-
structions will end up at > and not be inlined. If we were to inline
such a promise it would cause the result slots of the promise in the
environment to be out of sync with the result of the inlined expression.
It is possible to support some of those edge cases with an instruction to
update the result slot of a promise.

Merge. When merging abstract states, identical states remain and
disagreeing states become >. The latter can happen for example in
Listing 4.1. Where a is forced depends on a condition; it could be
either line 1 or 2. While it would be possible to track those cases more
accurately, we did not need it in practice yet.
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1 function(a) {

2 if(...) a

3 a

4 }

Listing 4.1: conditional declaration

Code Transformation. The promise inlining pass uses the analysis to
inject promises at their dominating force instruction. As a precondition,
we need a MkArg and the corresponding Force instruction to be in the
same function. This only happens after inlining, since initially creation
and evaluation of promises is always separated by a call. The promise
inliner will inline the promise body at the location of the dominating
force, update all uses with the result of the inlinee, and remove both
the MkArg and the Force.

If this promise originates from a LdArg instruction, then the promise
originates from an argument passed to the current function. We do not
know its code and therefore cannot inline it. On the other hand we
can still replace all uses of the dominated Force instruction with the
dominating Force instruction.

Example. We now present an example that combines scope resolution
and promise inlining, shown in Figure 4.6. An inner closure f is called

g <- function() {

a <- 1

f <- function(b) b+a

f(2)

}

Figure 4.6: An example with promises to be inlined.

with 2 as an argument. f captures the binding of a from its parent
environment. This translates (after scope resolution) to the PIR code
shown in Figure 4.7. The parent environment O denotes the environ-
ment supplied by MkClosure. Since f is an inner function, it needs to
be closed over the environment at its definition.

The first step necessary to get the promise creation and evaluation
into the same PIR function, is to inline the inner function f. After this
transformation we obtain the code in Figure 4.8. The open environment
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g

%7 = LdConst 1

%8 = MkEnv ( a = %7 : G)
%9 = MkClosure ( f , %8 )
%10 = MkArg ( pr0 , %8 )
%11 = Call %9 (%10 ) %8

%12 = Force (%11 ) %8

Return (%12 )
pr0

%13 = LdConst 2

Return (%13 )
f

% 1 = LdArg ( 0)
%2 = MkEnv ( b = %1 : O)
%3 = Force (%1 ) %2

%4 = LdVar ( a , %2 )
%5 = Force (%4 ) %2

%6 = Add (%3 , %5 ) %2

Return (%6 )

Figure 4.7: PIR translation of the function from Figure 4.6.

g

%7 = LdConst 1

%8 = MkEnv ( a = %7 : G)
%10 = MkArg ( pr0 , %8 )
inlinee begins

%2 = MkEnv ( b = %10 : %8 )
%3 = Force (%10 ) %2

%4 = LdVar ( a , %2 )
%5 = Force (%4 ) %2

%6 = Add (%3 , %5 ) %2

inlinee ends

%12 = Force (%6 ) %8

Return (%12 )

Figure 4.8: After inlining function f in Figure 4.7.

O is replaced with %8 . And the argument LdArg ( 0) of the callee is
replaced by the MkArg ( pr0 , %8 ) instruction of the caller.

Now, we can identify the dominating Force instruction at %3 .
Therefore, the promise inliner replaces the Force instruction with the
body of the promise, yielding the result in Figure 4.9 (after another
scope resolution pass).
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g

%7 = LdConst 1

%8 = MkEnv ( a = %7 : G)
%10 = MkArg ( pr0 , %8 )
inlinee begins

%2 = MkEnv ( b = %10 : %8 )
inlined promise begins

%13 = LdConst 2

inlined promise ends

%6 = Add (%13 , %7 ) %2

inlinee ends

Return (%6 )

Figure 4.9: After inlining promise p r0 in Figure 4.8.

Only after these steps finish can traditional compiler optimizations,
such as escape analysis on the environment, dead code elimination, and
constant folding, reduce the code to a single LdConst instruction.

4.6 Discussion

Designing an intermediate representation for R has been a surprisingly
difficult endeavor. Our goal was to arrive at a code format that captures
the intricacies of the language while enabling compiler optimizations.
Our explicit goals were to distinguish between arguments that need lazy
evaluation and ones that do not, to distinguish between variables that
are truly local and can be optimized and variables that must be allocated
in environments and may be exposed through reflection, to allow for
elision of environments when they are known to not be needed.

To achieve this, we designed PIR, the intermediate representation
of the Ř compiler. It has explicit instructions for creating environments,
creating promises, and evaluating promises. Explicit modeling of con-
structs that are to be optimized away is a key design ingredient. For
example, explicit environments allow functions to be inlined without
fully resolving all R variables upfront.

The challenge presented by R is that it requires solving many prob-
lems at once. To get rid of laziness, onemust track the flow of arguments
and understand where they may be forced. To track arguments, one
has to reason about environments and how they are manipulated. To
discover if environments change, one has to analyze promises. The
approach presented so far provides the basic tools, but often does not al-
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low us to break these circular dependencies in the optimizer. Therefore
more optimistic assumption based optimization strategies are required,
which are discussed next.

4.7 Assumptions in PIR

PIR features speculative optimizations using the Assume instruction.
In sourir the assume instruction combines speculation, deoptimization
metadata and OSR-exit point. It provides a clean and simple abstrac-
tion for reasoning about speculation at a high level. In contrast to sourir,
in Ř OSR transitions from native code to bytecode for deoptimization
and from bytecode to native code for OSR-in. For now we describe the
transition at the PIR level, the lowering to LLVM and thus the mapping
to native code are shown later.

In practice, deoptimization always returns to the baseline and not
some intermediate version, because providing an entry point for deop-
timization in optimized code would severely restrict its optimizations.
However, this is not an inherent theoretical limitation and the assume
model allows for this possibility.

For the implementation we decided to split the different responsi-
bilities of the sourir assume instruction into different PIR instructions.

Framestate This instruction describes one interpreter frame. For
instance

Framestate ( pc , 〈%1 ,%2 ,%3 〉, env = %4 , next = nil)

represents one frame of the bytecode interpreter, where the program
counter register contains pc, the operand stack %1 ,%2 ,%3 , and the
R environment is %4 . Framestates can be joined to represent inlined
frames, in which case next points to the parent frame. Semantically
they are nops and could also be represented as a value instead of an
instruction. We chose this representation for ease of implementation.

Framestates are inserted by the first pass of the compiler, that
translates from RIR bytecode to PIR instructions. As such the creation
is straight-forward, since this pass already has to maintain an abstract
representation of the interpreter’s operand stack for the translation.
Framestates are attached to calls for inlining, to forces for inlining
promises, and to checkpoints.

Checkpoint This instruction marks the OSR-exit point in PIR. It
points to a code block to perform the deoptimization. This code block
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BB0 :
...

cp %1 = Checkpoint BB1
...

%2 = LdVar ( data , G)
bool %3 = Is〈real〉(%2 )

Assume (%3 ) %1

...
Return (%2 )

BB1 :
fs %10 = Framestate ( pc1 , 〈%j〉, env = G, next = nil)

env %11 = MkEnv ( foo = %k : G)
fs %12 = Framestate ( pc2 , 〈%p,%q〉, env = %11 , next = %10 )

Deopt (%12 )

Figure 4.10: OSR exit point in PIR

ends in a Deopt instruction that points to the corresponding RIR OSR-
entry point.

Deopt This instruction is a terminator instruction, like Return, but
instead it unconditionally deoptimizes. It refers to a Framestate for the
deoptimization metadata. For instance Deopt (%1 ) uses the informa-
tion from a %1 = Framestate . . . to synthesize the required interpreter
frames.

Assume Finally, the speculating instruction, that dynamically checks
assumptions and points back to a Checkpoint. It must be the case that
there is no observable effect between this instruction and its checkpoint.

As an example consider the PIR code in Figure 4.10 with a complete
deoptimization point and speculative optimizations. In this example
we see a speculative optimization on the type of a variable called data.
The deferred instructions at label BB1 represent the materialization of
the environment and describe the framestates required to exit from
this checkpoint. They describes an Ř bytecode execution context with
two frames. In general, Framestate instructions can be chained to
describe the states of multiple inlined functions. The basic block BB1
can contain arbitrary deferred instructions that are only executed upon
deoptimization, such as in this example the creation of an environment.
This is used frequently to defer computations which are not needed in
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the optimized code. As an example, R has a call-by-need semantics,
and function arguments are passed as thunks, so-called promises. After
inlining, the actual structure to hold the delayed computation typically
only has to be created on deoptimization, and the instructions for
creating promises can be delayed into deoptimization branches.

Let us compare Checkpoint, Framestate, Deopt, Assume with

assume e∗
else ξ ξ̃∗

from sourir. A Framestate corresponds to ξ, the linked additional
framestates to ξ̃. A Checkpoint corresponds to a fresh assume instruc-
tion inserted by the initial fresh version pass, where the deoptimization
metadata is pushed into a deferred code block. This code block referred
to by the Checkpoint is a novel PIR feature. In sourir the metadata ξ
contains only silent expressions and no deferred code is supported. The
Deopt instruction is needed to terminate the deferred code. Finally the
Assume instruction corresponds to the injecting assumptions transfor-
mation in sourir, where a new guard is added to an existing OSR-exit
point. The fact that there can be additional silent instructions between
Checkpoint and Assume corresponds to the unrestricted deoptimization
transformation in sourir. Instead of copying and moving an assume

instruction forward, like in sourir, here we only add the guard and refer
back to the Checkpoint.

Delaying Environments To avoid creating an environment at run-
time whenever a compiled function performs any kind of speculative
optimization, creation of environments should be delayed as much as
possible. Optimizations are allowed to move MkEnv instructions into
branches and even over writes to that environment. When that happens,
the StVar is removed and the value is added to the initialization list.
When an environment is used by multiple deoptimization points, then
this is not sufficient, since each deoptimization branch will require the
environment in a different state.

Partial escape analysis [Stadler, Würthinger, and Mössenböck, 2014]
intends to delay an allocation to only those branches where the ob-
ject escapes. Similarly, in PIR we aim to materialize an up-to-date
environment in each deoptimization branch, allowing us to elide the
environment in the main path. This requires replaying stores between
the original environment creation and the Deopt instruction. We use
the output of scope analysis to determine the state of the environment
in the deoptimization branch. A sufficient condition is that at the
Deopt instruction none of the variables in the abstract state s (see sec.
4.2) is >.
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Assume there is an StVar ( bar , %j, %1 ) instruction somewhere
between MkEnv and Deopt in the following example.

BB0 :
%1 = MkEnv ( foo = %i : %0 )

...
Checkpoint BB1

BB1 :
fs %3 = Framestate ( pc , 〈%1 , . . . , %n〉, env = %1 , next = nil)

Deopt (%3 )

We now proceed to assemble a synthetic environment to replace %1 in
the deoptimization branch. In this case the abstract environment %1
according to scope resolution is such that foo is defined by the MkEnv
instruction and bar is defined by the StVar instruction. In Section 4.5
we presented our technique to replace a LdVar instruction with a PIR
register. We now reuse the same technique to capture the current values
of foo and bar as registers and then include them in a fresh MkEnv

instruction:

BB0 :
%1 = MkEnv ( foo = %i : %0 )

...
StVar ( bar , %j, %1 )
...
Checkpoint BB1

BB1 :
%3 = MkEnv ( foo = %i, bar = %j : %0 )

fs %4 = Framestate ( pc , 〈%1 , . . . , %n〉, env = %3 , next = nil)
Deopt (%4 )

Assuming we are able to materialize a copy of the environment in every
deoptimization branch, it is then possible to remove the original MkEnv.
This transformation can duplicate variables for each deoptimization
branch. They can be cleaned up later using some form of redundancy
elimination, such as global value numbering.

Contrary to replacing LdVars, it is possible to materialize envi-
ronments even when the analysis results contain ε. For those cases a
runtime marker is used to indicate the absence of a binding. MkEnv
will simply skip a particular binding if its input value is equal to this
marker value.

Stub Environments If an environment is locally resolved, but could
be tainted during a call using reflection, then we speculatively elide that
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environment and replace it by a stub. At runtime a stub environment
has the same structure as a normal environment shown in Figure 4.4,
but a more compact representation, since it does not need to support
adding or removing variables. If the stub environment is modified
then it is transparently converted into a full environment. In PIR, stub
environments are created by a structurally identical variant of theMkEnv
instruction. After a call we check if the stub was materialized, in which
case we deoptimize the current function. Consequently, analyses on
PIR can assume stub environments to not experience any non-local
modifications.

Lowering to LLVM

Ř has an OSR-out implementation to transition from native code to
the interpreter in case of mis-speculation. It is realized by lowering
the deoptimization points from the previous section to LLVM. We
use the same approach for all different kinds of speculations, be they
on the stability of call targets, the declared local variables of closures,
uncommon branches, primitive types, and loops over integer sequences.

Ř also features an OSR-in implementation, a direct side-product
of our work to implement deoptless. It can be used to tier-up from the
interpreter to optimized code, and is triggered in long-running loops.
Supporting OSR-in adds little complexity to the compiler. The relevant
patch adds 300 and changes 600 lines of code. Mainly, the bytecode
to IR translation has to support starting at an offset, and the current
values on the interpreter’s operand stack need to be passed into the
optimized continuation.

OSR-out

In Ř, OSR exits are not performed by externally rewriting stack frames.
Instead, an OSR exit point is realized as a function call. Let us consider
the OSR exit point in Figure 4.10. The backend of the Ř compiler
generates code using LLVM. As can be seen in Listing 4.2, the Assume
is lowered to a conditional branch and the OSR exit is lowered to a
tail-call. The osr block executes all the deferred instructions, notably
it populates buffers for the local variables captured by the framestate
and the deoptimization reason. Finally, a deopt function is called.
This primitive performs the actual deoptimization, i.e. , it invokes the
interpreter, or, in the case of deoptless, dispatches to an optimized
continuation.
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br %isType, cont, osr

osr:

...

%f = alloca FrameState

%r = alloca Reason

; store current function,

; frame contents, and more

; metadata into %f and %r

%a = tail call Value @deopt(%f, %r)

ret %a

cont:

Listing 4.2: OSR exit from Figure 4.10 in LLVM

Value deopt(FrameState* fs, Reason* r) {

logDeoptimization(r);

pushInterpreterState(fs);

if (fs->next)

push(deopt(fs->next, r));

return interpret(fs->pc, fs->env);

}

Listing 4.3: Pseudocode for deoptimization implementation

The deopt primitive is able to recreate multiple interpreter con-
texts as we can see in the pseudocode in Listing 4.3. First, the outer
interpreter context is synthesized, i.e. , the necessary values pushed to
the interpreter’s operand stack. Then, the inner frames are recursively
evaluated, their results also pushed to the operand stack, as expected by
the outer frame. Finally, the outermost code is executed, and the result
returned to the deoptimized native code, which directly returns it to
its caller.

The osr basic block in Figure 4.10, as well as the deopt call, are
marked cold in LLVM. This causes LLVM optimization passes and code
generation to layout the function in such a way that the impact of the
osr code on the performance of the rest of the function is minimal.
However, the mere presence of the additional branch might interfere
with LLVM optimizations, and other OSR implementers therefore
chose to use the LLVM statepoint primitive. The statepoint API
provides access to metadata describing the stack layout of the generated
function. This stack layout allows an external deoptimization mecha-
nism to read out the local state without explicitly capturing it in LLVM
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code. This is a trade-off, and the impact is in our opinion limited. For
example, in the concrete case of Listing 3.3, we were not able to measure
any effect on peak performance. In fact, when we unsoundly dropped
all deoptimization exit points in the backend, the performance was
unchanged. There was, however, an effect on code size with an overhead
of 30% more LLVM instructions. The implementation strategy of using
explicit calls to deopt for Ř was chosen for ease of implementation long
before deoptless was added. In a lucky coincidence, this strategy is very
efficient in extracting the internal state of optimized code compared to
an external deoptimization mechanism, and therefore very well suited
for deoptless.

OSR-in

OSR-in allows for a transition from long-running loops in the bytecode
interpreter to native code. To that end, a special continuation function
is compiled, starting from the current bytecode, which is used only once
for the OSR-in. The full function is compiled again from the beginning
the next time it is called. This avoids the overhead of introducing
multiple entry-points into optimized code, for the price of compiling
these functions twice. Since OSR-in is not a very frequent event, the
trade-off is reasonable.

The mechanism is triggered by counting the number of backward
jumps in the interpreter. When a certain number of loop iterations
is reached, the remainder of the function is compiled using the same
compiler infrastructure that is used to compile whole functions. The
only difference is that we choose the current program counter value as
an entry point for the translation from bytecode to IR. Additionally,
we pre-seed the abstract stack used by the frontend of the Ř compiler
with all values on the interpreter’s operand stack. In other words, the
resulting native code will receive the current contents of the operand
stack as call arguments. OSR adds the lines, shown in Listing 4.4, to
the implementation of the branch bytecode.

An interesting anecdote from adding OSR-in to Ř is that out of
all the optimization passes of the normal optimizer, only dead-store
elimination was unsound for OSR-in continuations. The reason is that
objects can already escape before the OSR continuation begins, and
thus escape analysis would mistakenly mark them as local.
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case Opcode::branch: {

auto offset = readImmediate();

if (offset < 0 && OSRCondition()) {

if (auto fun = OSRCompile(pc, ...)) {

auto res = fun(...);

clearStack();

return res;

}

}

...

}

Listing 4.4: Pseudocode for OSR-in implementation

4.8 Context Dispatch

One particular problem with scope analysis presented earlier is that,
because of R’s semantics, any instruction that evaluates potentially
effectful code taints the abstract environment. There are two kinds of
non-local effects: callees may affect functions upwards the call stack by
accessing the caller’s environment, and callers pass promises that may
affect functions downwards the call stack, when those functions force
the promises. To make scope resolution useful in practice, the impact
of these non-local effects should be somewhat mitigated. For instance,
we rely on inlining to reduce the number of Call and Force instructions.
There is also the possibility to speculatively assume calls do not change
the environment using stub environments.

However, promises are a main source of imprecision when Ř tries
to analyze R code. When a function argument is accessed for the
first time the optimizer must be able to rule out non-local effects to
the current function. To that end we compile versions of functions
under the assumption that already evaluated values, or at least non-
reflective promises are passed to it. This specialization, among many
others, is implemented using context dispatch. Given the complexity of
function calls in R, our design focuses on properties that can optimize
the function call sequence and allow the compiler to generate better
code within the function.
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enum class ArgAssumption {

Arg0Eager, ..., Arg7Eager,

Arg0NotObj, ..., Arg7NotObj,

Arg0SimpleInt, ..., Arg7SimpleInt,

Arg0SimpleReal, ..., Arg7SimpleReal,

};

enum class Assumption {

NoExplicitlyMissingArgs, CorrectArgOrder,

NotTooManyArgs, NoReflectiveArg,

};

struct Context {

EnumSet<ArgAssumption, uint32_t> argFlags;

EnumSet<Assumption, uint8_t> flags;

uint8_t missing = 0;

int16_t unused = 0;

};

Listing 4.5: Context data structure

Contexts

The goal of context dispatch is to drive optimizations. Accordingly,
we design contexts in Ř mainly driven by the seven headaches for
optimizing R introduced in Section 4.1. Contexts are represented by
the Context structure presented in Listing 4.5, which consists of two
bit vectors (argFlags and flags) and a byte (missing). The whole
structure fits within 64 bits, with two bytes (unused) reserved for
future use. The EnumSet class is a set whose values are chosen from an
enumeration.

More specifically, argFlags is the conjunction of argument predi-
cates (ArgAssumption) for the first eight arguments of a function. For
each argument position N < 8, we store whether the argument has
already been evaluated (ArgNEager), whether the argument is not an
object, i.e. , it does not have a class attribute (ArgNNotObj), whether
the value is a scalar integer with no attributes (ArgNSimpleInt), and
whether the value is a scalar doublewith no attributes (ArgNSimpleReal
). Any subsequent arguments will not be specialized for. The limit is
informed by data obtained by Morandat, Hill, Osvald, and Vitek [2012],
suggesting that the majority of frequently called functions have no more
than three arguments and that most arguments are passed by position.

The flags field is a set of Assumption values that summarize infor-
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mation about the whole invocation. The majority of the predicates
are related to argument matching. In R, the process of determin-
ing which actual argument matches with formal parameters is sur-
prisingly complex. The GNU R interpreter does this by performing
three traversals of a linked list for each function call. The Ř compiler
tries to do this at compile time, but some of the gnarly corners of R
get in the way. For this reason, contexts encode information about
the order of arguments at the call site. Thus flags has a predicate,
NoExplicitlyMissingArgs, to assert whether any of the arguments is
explicitly missing. This matches in three cases: when an argument is ex-
plicitly omitted (add(,2)), when an argument is skipped by matching
(add(y=2)), and when a call site has more missing arguments than ex-
pected in the compiled code. CorrectArgOrder holds if the arguments
are passed in the order expected by the callee. NotTooManyArgs holds
if the number of arguments passed is less than or equal to the number of
parameters of the called function. NoReflectiveArg holds if none of
the arguments invoke reflective functions. Finally, missing arguments
that occur at the end of an argument list are treated specially; missing
records the number of trailing missing arguments (up to 255).

Ordering

Recall that contexts have a computable partial order, which is used to
determine if a function version can be invoked at a particular program
state. For example, let C ′ be the current context of program state S,
F be a function invoked at S, and 〈C, V 〉 be a version in F . Then the
implementation can dispatch to 〈C, V 〉 if C ′ < C .

In Ř, the order between contexts, C ′ < C , is defined mainly by
set inclusion of both assumption sets. For trailing missing arguments,
there are two cases that need to be considered. First, if C assumes
NotTooManyArgs, then C ′ must have at least as many trailing missing
arguments asC . Otherwise, this impliesC ′ has more arguments thanC
expects, contradicting NotTooManyArgs. Second, if context C allows
any argument to be missing, then it entails a context C ′ with fewer
trailing missing arguments (i.e. , more arguments). The reason is that
missing arguments can be passed as explicitly missing arguments, reified
by an explicit marker value for missing arguments. If we invert that
property, it means that a context with NoExplicitlyMissingArgs

does not accept more trailing missing arguments.

Some example contexts with their order relation (increasing from
left to right) are shown in Figure 4.11. Contexts with more flags are
smaller, contexts with a greater missing value are smaller, and contexts
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bool Context::smaller(const Context& other) const {

// argdiff positive = "more than expected",

// negative = "less than"

int argdiff = (int)other.missing - (int)missing;

if (argdiff > 0 &&

other.flags.contains(Assumption::NotTooManyArgs))

return false;

if (argdiff < 0 &&

other.flags.contains(Assumption::

NoExplicitlyMissingArgs))

return false;

return flags.includes(other.flags) &&

typeFlags.includes(other.typeFlags);

}

Listing 4.6: Implementation of Context ordering

> = ∅Arg0Eager

Arg0Eager,Arg1Eager

Arg0Eager, missing=1

Arg0Eager,

missing=1,

NoExplicitlyMissingArgs

Arg0Eager, missing=2

Figure 4.11: An example for the order of some Contexts

with NoExplicitlyMissingArgs require the same number of missing
arguments to be comparable. The comparison is implemented by the
code of Listing 4.6. Excluding mov and nop instructions, the smaller
comparison is compiled to fewer than 20 x86 instructions by GCC 8.4.

Evaluating Contexts

For every call the current context is needed, which is partially com-
puted statically and completed dynamically. The Ř optimizer enables
static approximation of many of the assumptions. For example, laziness
and whether values might be objects are both represented in the type
system of its IR.Therefore, those assumptions can sometimes be precom-
puted. Call sites with varargs passed typically resist static analysis. On
the other hand, NoExplicitlyMissingArgs, CorrectArgOrder, and
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NotTooManyArgs are static assumptions for call sites without named
arguments, or if the call target is known and the argument matching can
be done statically. Similarly, the number of missing trailing arguments
are only statically known if the call target is static.

NoReflectiveArg is themost interesting assumption in terms of its
computation. Since the context has to be computed for every dispatch,
the time budget is very tight. Therefore, this assumption is only set
dynamically if all arguments are eager, which is a very conservative over-
approximation. However, we perform a static analysis on the promises
to detect benign ones, which do not perform reflection. This shows
that even computationally heavy assumptions can be approximated by
a combination of static and dynamic checks.

The static context is computed at compile time and added to every
call instruction. At call time, a primitive function implemented in C++
supplements all assumptions which are not statically provided. This
seems like a gross inefficiency—given the static context, the compiler
could for each call site generate a specific and minimal check sequence.
We plan to add this optimization in the future. So far we have observed
the overhead of computing the context to be small compared with the
rest of the call overhead.

Dispatch Operation

All the versions of the same function are kept in a dispatch table structure,
a list of versions sorted by increasing contexts. Versions with smaller
contexts (i.e. , with more assumptions) are found at the front. To that
end we extend the partial order of contexts to a total order: if two
contexts are not comparable then the order is defined by their bit
patterns.

Listing 4.7 shows a pseudocode implementation of the dispatching
mechanism. Dispatching is performed by a linear search for the first
matching context (see Listing 4.6). The result of a dispatching operation
can be cached, since given the same dispatch table and context, the result
is deterministic. If the context of the dispatched version is strictly larger
than the current context, it means that there is still an opportunity
to further specialize. We rely on a counter based heuristic to trigger
the optimizer. At the time of writing, dispatch tables are limited to 15
elements; to insert an entry into a full table, a random entry (except
the first) is evicted.
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Version* dispatch(Context staticCtx, Cache* ic,

DispatchTable* dt) {

Context cc = computeCurrentContext(staticCtx);

if (ic->dt == dt && ic->context == cc)

return ic->target; // Cache hit

Version* res = dt->find([&](Version* v){ return cc.

smaller(v->context); });

// Maybe compile a better version

if (res->context != cc && jitThresholdReached(res))

res = optimize(dt, res, cc);

updateCache(ic, dt, res, cc);

return res;

}

Listing 4.7: Dispatching to function versions under the current context

Optimization under Assumptions

Below, we briefly illustrate some optimizations relying on the contextual
assumptions introduced previously. For the following examples, it is
important to remember that values in PIR (as in R) can be lazy. When a
value is used in an eager operation, it needs to be evaluated first, by the
Force instruction. PIR uses numbered registers to refer to the result of
instructions. Those are not to be confused with source-level R variables,
which must be stored in first-class environments. Environments are
also first-class entities in PIR, represented by the MkEnv instruction.

As a simple example, consider the R expression f(1) which calls
the function f with the constant 1. This translates to the following PIR
instructions:

cls %1 = LdFun ( f , G)
int$∼ %2 = LdConst [ 1 ]
any %3 = Call %0 (%1 ) G

The first instruction loads a function called f from the global envi-
ronment. The second instruction loads the constant argument, which
is a unitary vector [1]. This instruction has type integer and addi-
tionally the value is known to be scalar ($) and eager (∼). The third
instruction is the actual call. The static context for this call contains
the Arg0SimpleInt and Arg0Eager flags. Assuming the call target is
unknown, the result can be lazy and of any type.
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As an example, consider a call f(1) which invokes the identity
function, function(x) x. This reads as follows in PIR:

any %0 = LdArg ( 0)
env %1 = MkEnv ( x = %0 : G)

any∼ %2 = Force (%0 ) %1

Return (%2 )

The first instruction LdArg loads the first argument. In general, the
arguments can be passed in different orders, and the presence of varargs
might further complicate matters. However, all functions optimized
using PIR are compiled under the CorrectArgOrder assumption. This
allows us to refer to arguments by their position, since it is now the
caller’s responsibility to reorder arguments as expected. Additionally, R
variables are stored in first-class environments and GNU R has a calling
convention where the environment with bound arguments is created by
the caller. In Ř it is created by the callee by the MkEnv instruction. In
this example the name x is bound to the first argument and the global
environment is the parent. The later means that this closure was defined
at the top level. Finally, the argument, which is a promise, is evaluated
to a value (indicated by the∼ annotation) by the Force instruction and
then returned. Overall, the CorrectArgOrder assumption enables a
calling convention where the callee creates the environment, which is
the first step towards eliding it completely.

In our example we notice that the environment is kept alive by a
dependency from the Force instruction.

any %0 = LdArg ( 0)
any∼ %2 = Force (%0 )

Return (%2 )

While Force does not access the environment directly, the forced promise
can cause arbitrary effects, including reflective access to the local envi-
ronment of the function. To ensure that the environment is not tainted,
reflective access has to be excluded. To that end the NoReflectiveArg
assumption asserts that no argument will invoke a reflective function
and thus allows the compiler to remove the dependency. Since the de-
pendency was the only use of the local environment, it can be completely
removed.

At this point the Force instruction is still effectful. However, if we
can show that the input is eager, then the Force does nothing. Under
the Arg0Eager assumption, we know the first argument is evaluated
and therefore the Force instruction can be removed.
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any∼ %0 = LdArg ( 0)
Return (%0 )

In summary, if we establish the three assumptions CorrectArgOrder
NoReflectiveArg and Arg0Eager we conclude that the function im-
plements the identity function.

Another problem we target with context dispatch is R’s argument
matching. Consider the following function(a1, a2=a1) {a2}, which
has a default expression for its second argument. This function trans-
lates to the following PIR:

BB0 :
any %0 = LdArg ( 0)
any %1 = LdArg ( 1)
env %2 = MkEnv ( a0 = %0 , a1 = %1 : G)

lgl$∼ %3 = Eq (%1 , missing)
Branch (%3 , BB1, BB2)

BB1 :
any∼ %4 = Force (%0 ) %1

Return (%4 )
BB2 :
any∼ %5 = Force (%1 ) %1

Return (%5 )

As can be seen, the second argument must be explicitly checked against
the missing marker value. The default argument implies that we must
dynamically check the presence of the second argument and then evalu-
ate either a1 or a2 at the correct location. Default arguments are, like
normal arguments, evaluated by need.

Optimized under a context where the last trailing argument is
missing, this test can be statically removed. With this optimization,
basic block 2 is unreachable.

BB0 :
any %0 = LdArg ( 0)
any %1 = LdArg ( 1)
env %2 = MkEnv ( a0 = %0 , a1 = %1 : G)

any∼ %4 = Force (%0 ) %1

Return (%4 )

Note that as in the simpler example before, under the additional as-
sumption Arg0Eager, the Force instruction and the local environment
can be statically elided and the closure does not need an R environment.
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Almost all of these specializations can also be applied using spec-
ulative optimizations. For instance, the previous example could be
speculatively optimized as follows:

BB0 :
any %0 = LdArg ( 0)
any %1 = LdArg ( 1)
cp %4 = Checkpoint BB1

lgl$∼ %5 = Eq (%1 , missing)
lgl$∼ %6 = Is〈any∼〉(%0 )

Assume (%5 ,%6 ) %4

Return (%0 )
BB1 :
env %2 = MkEnv ( a0 = %0 , a1 = %1 : G)
fs %7 = Framestate ( baseline , 〈%0 ,%1 〉, env = %2 , next = nil)

Deopt (%7 )

instead of contextual assumptions, the speculative assumptions that
a1 is missing and that a0 is eager are explicitly tested. The Assume

instruction guards assumptions and triggers deoptimization through
the last checkpoint. Creation of the local environment is delayed and
only happens in case of a deoptimization. As can be seen here, the need
to materialize a local environment on deoptimization is a burden on
the optimizer. Additionally, this method does not allow us to specialize
for different calling contexts separately. However, there are of course
many instances where speculative optimizations are required, since the
property of interest cannot be checked at dispatch time. For instance,
the value of a global binding might change between function entry and
the position where speculation is required.

4.9 Deoptless

Adding deoptless to a VM with an existing implementation of OSR-in
and OSR-out requires only minimal changes. Starting with the code
in Listing 4.3, we extend it as shown in Listing 4.8. In this listing we
see five functions that we’ll detail to explain the implementation. The
deoptlessCondition decides if deoptless should be attempted. Cer-
tain kinds of deoptimizations do not make sense to be handled, and also
our proof of concept implementation has limitations and is not able to
handle all deoptimizations. Then, computeCtx computes the current
deoptimization context and dispatch tries to find an existing contin-
uation that is compatible with the current context. The recompile
function is our recompilation heuristic that decides if a continuation,
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Value deopt(FrameState* fs, Reason* r) {

if (deoptlessCondition(fs, r)) {

auto ctx = computeCtx(fs, r);

auto fun = fs->fun->deoptless->dispatch(ctx);

if (!fun || recompile(fun, ctx))

fun = deoptlessCompile(ctx);

if (fun)

return fun(fs);

}

// Rest same as normal deopt

}

Listing 4.8: Pseudocode for deoptless implementation

while matching, is not good enough. Next, the deoptlessCompile

function invokes the compiler to compile a new deoptless continuation.
Finally, we call the compiled continuation, directly passing the current
state. The calling convention is slightly different from normal OSR-in.
As we are originating from native code the values can have native rep-
resentations, whereas if we originate from the interpreter all values are
boxed heap objects.

Conditions and Limitations As mentioned, deoptless is not applied
to all deoptimization events. First of all, some deoptimizations are
rather catastrophic for the compiler and prevent most optimizations.
An example would be an R environment (the dynamic representation
of variable scopes) that leaked and was non-locally modified. Under
these circumstances the Ř optimizer cannot realistically optimize the
code anymore. Second, when global assumptions change, e.g., a library
function is redefined, we must assume that the original code is perma-
nently invalid and should actually be discarded. Furthermore, we also
prevent recursive deoptless. If a deoptless continuation triggers a failing
speculation, then we give up and perform an actual deoptimization.
There are also some cases which are not handled by our proof of concept
implementation. The biggest limitation is that we do not handle cases
where more than one framestate exists, i.e. , we exclude deoptimizations
inside inlined code. This is not an inherent limitation, and we might
add it in the future, but so far we have avoided the implementation
complexity.

Context Dispatch Deoptless continuations are compiled under an
optimization context, which captures the conditions for which it is
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struct DeoptContext {

Opcode* pc;

Reason reason;

unsigned short stackSize;

unsigned short envSize;

Type stack[MAX_STACK];

tuple<Name, Type> env[MAX_ENV];

bool operator<= (DeoptContext& other);

};

Listing 4.9: Deoptless optimization context

correct to invoke the continuation. The context is shown in Listing 4.9
in full. It contains the deoptimization target, the reason, the types of
values on the operand stack, and the types and names of bindings in the
environment. The deoptimization reason represents the kind of guard
that failed, as well as an abstract representation of the offending value.
For instance, if a type guard failed, then it contains the actual type, if a
speculative inlining fails, it contains the actual call target, and so on.

The (de-)optimization context is used to compile a continuation
from native to native code, so why does it contain the Opcode*pc field,
referring to the bytecode instead? Let’s reexamine Figure 3.9. The
state is extracted from native code and directly translated into a target
native state. However, logically, what connects these two states is the
related source state. For instance, the bytecode program counter is
used as an entry point for the Ř compiler. The bytecode state is never
materialized, but it bridges the origin and target native states on both
ends of deoptless.

Contexts are partially ordered by the <= relation. The relation is
defined such that we can call a continuation with a bigger context from
a smaller current context. In other words, the dispatch function from
Listing 4.8 simply scans the increasingly sorted dispatch table of con-
tinuations for the first one with a context ctx' such that ctx <=ctx',
where ctx is the current context. The dispatch tables uses a lineariza-
tion of this partial order. The linearization currently does not favor a
particular context, should multiple optimal ones exist. For efficiency
of the comparison we limit the maximum number of elements on the
stack to 16 and environment sizes to 32 (states with bigger contexts are
skipped), and only allow up to 5 continuations in the dispatch table.
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Compilation and Calling Convention Compilation of deoptless con-
tinuations is performed by the normal Ř optimizer using the same basic
facilities as are used for OSR-in. Additionally, information from the
DeoptContext is used to specialize the code further. For instance, the
types of values on the operand stack can be assumed stable by the opti-
mizer, since context dispatch ensures only compatible continuations
are invoked. The calling convention is such that the R environment
does not have to be materialized. The local R variables, which are de-
scribed by Framestate and MkEnv instructions at the deoptimization
exit point, are passed in a buffer struct.

Incomplete Profile Data An interesting issue we encountered is in-
complete type-feedback. As depicted in Figure 3.6, normally after a
deoptimization event, the execution proceeds in the lower-tier, e.g., in
the interpreter, which is also responsible for capturing run-time profile
data, such as type-feedback, branch frequencies, call targets, and so on.
When an assumption fails, this typically indicates that some of this pro-
file was incomplete or incorrect and more data is needed. In deoptless
we can’t collect more data before recompiling, therefore we lack the
updated feedback. If we were to compile the continuation with the
stale feedback data, most probably we would end up mis-speculating.
For instance if a typecheck of a particular variable fails, then the type-
feedback for operations involving that variable is probably wrong too.
We address this problem with an additional profile data cleanup and
inference pass.

The cleanup consists of marking all feedback that is connected to
the program location of the deoptimization reason, or dependent on
such a location, as stale. Additionally we check all the feedback against
the current run-time state and mark all feedback that is contradicting
the actual types. Additionally, we insert available information from
the deoptimization context. For instance, if we deoptimize due to a
typecheck, then this step injects the actual type of the value that caused
the guard to fail. Finally we use an inference pass on the non-stale
feedback to fill in the blanks. For inference we reuse the static type
inference pass of Ř, but run it on the type feedback instead and use the
result to update the expected type. These heuristics work quite well
for the evaluation in the next section, however, it is possible that stale
feedback is still present and causes us to mis-speculate in the deoptless
continuation, which leads to the function being deoptimized for good.



5
Performance Evaluation

The evaluation of my thesis is twofold. For one, it is a statement about
feasibility. It is possible to build a JIT that closely follows the pro-
posed designs. This is already shown in the previous Chapter 4, which
describes Ř in detail. Secondly, it states that it is possible to build a
competitive JIT compiler. This is what this chapter intends to demon-
strate.

5.1 Methodology

Non-determinism in processors, e.g., due to frequency scaling or power
management, combined with the adaptive nature of just-in-time compi-
lation, make measuring performance challenging. Instead of relying on
the one perfect measurement, we continuously monitor performance
on every commit. This allows us to spot unstable behavior and sanity
check all the reported numbers. All experiments are run on the same,
dedicated machine. We do not lock the CPU frequency, as this would
not correspond to a real-world scenario.

To deal with warmup phases of the virtual machine, i.e. , iterations
of a benchmark during which compilation events dominate perfor-
mance, we run each benchmark fifteen times in the same process and
discard the first five iterations. To further mitigate the danger of in-
correctly categorizing the warmup phase [Barrett, Bolz-Tereick, Killick,
Mount, and Tratt, 2017], we plot individual measurements in the order
of execution.

For the experiments we use the major benchmarks from the Ř
benchmark suite. The suite consists of several programs that range
from micro-benchmarks, solutions to small algorithmic problems, and
real-world code. Some programs are variants; they use different imple-
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mentations to solve the same problem. We categorize the programs by
their origin:

awf We translated three benchmarks to R from Marr, Daloze, and
Mössenböck [2016]: Bounce, a bouncing balls physics simulation;
Mandelbrot, to compute the Mandelbrot set; and Storage, a
program that creates trees.

sht TheComputer Language Benchmarks Game [Gouy, 2022], ported
to R by Kalibera et al. [2014]. The suite contains multiple versions
of classic algorithms, written to explore different implementation
styles. Most of the original programs had explicit loops, so the
suite provides more idiomatic R versions that rely on vectorized
operations.

re Flexclust is a clustering algorithm from the flexclust pack-
age [Leisch, 2006]. It exercises many features that are hard to
optimize, such as generic methods, reflection, and lapply. The
convolution benchmark consists of two nested loops updating
a numerical matrix; it is an example of code that is typically
rewritten in C for performance. Finally volcano is a raycast
renderer.

mi Code fragments known by the R community to be slow. These are
microbenchmarks, such as simple loops, which are well optimized
for, but too small to draw conclusions for real programs.

Experiments are run on a dedicated benchmark machine, with all back-
ground tasks disabled. The system features an Intel i7-6700K CPU,
stepping 3, microcode 0xea with 4 cores and 8 threads, 32 GB of RAM.
Unless noted otherwise, the experiments are run on Ubuntu 18.04 on a
4.15.0-151 Linux kernel. Experiments are built as Ubuntu 20.04.1 based
containers, and executed on the Docker runtime 20.10.7.1 Measurements
are recorded repeatedly and we keep a historical record to spot unstable
behavior. We used GNU R version 4.1, FastR from GraalVM 22.0.0.2;
and Ř commit 6a40e7ed.

5.2 Baseline

Studying the performance of GNUR, FastR, andŘ allows us to compare
a lightly optimizing bytecode interpreter and two optimizing just-in-

1We use a containerized environment to automate measurements and verified
that it does not distort the results.
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Table 5.1: Ř vs. GNU R

suite speedup min max

awf 3.234 1.193 17.849

re 1.804 0.744 18.272

sht 1.704 0.809 60.099

Table 5.2: Ř vs. FastR

suite speedup min max

awf 1.809 1.108 3.188

re 0.585 0.125 2.999

sht 0.919 0.222 116.340

Table 5.3: Warmup Ř vs. FastR

suite speedup min max

awf 2.132 0.537 5.719

re 0.912 0.205 2.485

sht 2.543 0.015 111.882

time compilers. The systems feature different implementation strategies
and trade-offs. This comparison allows us to answer if Ř is competitive
with regards to the reference implementation and also a state of the art
optimizing compiler.

An important question when comparing implementations is their
compliance; partial implementations can get speedups by ignoring
features that are difficult to optimize. The GNU R interpreter is the
reference implementation, so it is compliant by definition. As of this
writing, Ř is compliant with version 4.1 of GNU R, verified by running
the full GNU R test suite and the tests of its recommended packages.
The extent of FastR’s compliance is unclear.2

We first report the geometric mean of the speedup over the parts
of the benchmark suite, normalized to the median execution time of
GNU R (higher is better). On the microbenchmarks Ř is on average
28× faster than GNU R, however we consider it of limited value for
predicting performance of real-world code and thus exclude it from
further reporting. On the remainder, the speedup of Ř over GNU R

2In earlier experiments, we were unable to make FastR 3.6.1 from GraalVM 19.3.1
pass 5 out of 15 of the recommended packages in GNU R’s test suite.
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Figure 5.1: Speedup of Ř (left) and FastR (right) over GNU R (log scale)
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Table 5.4: Warmup Ř vs. GNU R

suite speedup min max

awf 0.365 0.229 0.924

re 0.497 0.315 0.795

sht 0.452 0.005 3.408

is reported in Table 5.1 and the speedup, or slowdown over FastR in
Table 5.2. To summarize these findings, Ř can be expected to run shy of
two times faster than the reference implementation and it is sometimes
competitive with FastR, though with a very different performance
profile. Over the whole suite Ř regresses on only 8 out of 64 benchmarks
over GNU R and never more than 35%. Compared to FastR, a JIT
compiler written by a well financed and large team, the performance
of Ř is mixed, but more stable, with less severe regressions over GNU
R. Additionally, if we focus on the warmup behavior and only measure
the first in-process iteration, we notice that in many cases Ř warms
up quicker, as can be seen in Table 5.3. Compilation overhead is still
significant due to our expensive optimizations and the LLVM backend.
As can be seen in Table 5.4 this can lead to very large slowdowns in the
worst case.

Finally, for a more fine-grained understanding of our performance,
we show the performance for each benchmark separately in Figure 5.1.
Each graph shows the relative speedup over GNU R for Ř (left) and
FastR (right) separately. This graph shows only peak performance, the
first 5 in-process iterations are excluded. The small dots represent the
individual iterations from left to right. The large dot and (if visible)
bars show the mean and confidence interval.

In summary Ř can achieve similar performance to FastR, but can
also be significantly slower when the benchmark relies on features
that are not optimized in Ř. For example in flexclust, because the
benchmark uses features that currently cause Ř to give up compiling
some methods. While FastR can indeed be fast, it is worth noting that
there is a large variance for peak performance in both directions, when
compared to the GNU R interpreter. For instance Storage, regexdna
and some knucleotide implementations are much slower in FastR
than in GNU R, pidigits and binarytrees have very large amounts
of variability. Overall Ř shows a more balance performance profile and
is equally capable of very large speedups for some benchmarks.
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Table 5.5: Ř without speculation

suite speedup min max

awf 0.271 0.024 0.912

mi 0.045 0.000 1.191

re 0.371 0.021 0.951

sht 0.555 0.016 1.187

5.3 Speculation

Next I report how much of the performance of Ř can be attributed to
speculation. To that end we disable speculative optimizations and run
the same benchmark suite. In particular we investigate the following
configurations:

C0 No speculation on environments not escaping. This is used to
speculate that an otherwise only locally accessed environment is
not accessed reflectively by callees.

C1 No speculative dead-branch removal. This affects the ability to
optimize for integer sequences, or exclude some slow array access,
when the vector could be an object.

C2 No speculative static call targets. This affects monomorphization
of calls, and this inter-procedural optimizations and inlining.

C3 No speculation on types. This mainly prevents unboxing of prim-
itive types and elision of environments, due to reduced analysis
precision because of lazy evaluation.

C4 All speculation disabled, i.e. , all of the above.

It is difficult to attribute performance differences to particular
optimizations in isolation. Many optimizations in Ř are designed to
work in combination and thus some of the observed effects here are
exaggerated. For instance disabling type speculation has a big effect
on Ř because the native backend only unboxes static types. Thus, as
an example, if it is not statically known modulo speculation, if the
result of an addition is an integer or a floating point number, then
the addition will be performed on tagged numbers. Nevertheless these
measurements should give us some intuition and in particular an upper
bound for how much Ř relies on speculation to achieve its performance.
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Figure 5.2: Slowdown of Ř without speculation

The results are summarized in Table 5.5, normalized to the median
execution time of normal Ř. Overall, excluding microbenchmarks, dis-
abling speculation leads to slowdowns of 0.56× to 0.27× on the bench-
mark suites, with individual benchmarks ranging between 0.016× to
1.19×. On the microbenchmarks the effect is even more dramatic.
Detailed results for each configuration by benchmark suite can be seen
in Figure 5.2. Again, the large dots show means and confidence interval,
additionally a violin plot reveals the large variance in the individual
benchmarks. In some of these plots two or or several modes are revealed
in the data, with some benchmarks heavily affected, while others not at
all. This is expected for two reasons. First, some benchmarks are not
sped up by Ř in general, thus disabling speculation is expected to have
a small effect on that subset. Second, since many of the benchmarks
are not that large, the typically few, but different impactful optimiza-
tions tend to focus on some key functions. These numbers show that
the speedups reported in Table 5.1 would be very difficult to achieve
without speculation.
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5.4 Context Dispatch

This section tries to answer the question of how much context dispatch
contributes to the baseline performance of Ř. To that end, we disable
individual assumptions that make up a context and study their impact
on performance. Importantly, each and every assumption has an equiv-
alent substitute speculative optimization in Ř’s optimizer as described
in subsubsection 4.8. Performance improvements in this section are
therefore not due to additional speculative capabilities, but solely due
to splitting into multiple versions and the specialization to multiple
contexts, or due to reduced overhead from having less deoptimization
points.

The experiments in this section are based on the Ř version bundles
by Flückiger et al. [2020a] and were run on a Linux kernel version
4.15.0-88, GitLab runner version 12.9.0, in Docker version 19.04.8.

Unfortunately, it is not possible to turn off context dispatch alto-
gether as it is an integral part of the Ř compiler. Each function starts
with a dispatch table of size one, populated with the unoptimized ver-
sion of the function. To achieve a modicum of performance, it is crucial
to add at least one optimized version to the dispatch table. The unopti-
mized version cannot be removed as it is needed as a deoptimization
target. What we can do is to disable some of the assumptions contained
within a context. Thus, to evaluate the impact of context dispatch, we
define seven, cumulative, optimization levels:

L0 NotTooManyArgs and CorrectOrder are fundamental assump-
tions required by Ř;

L1 ArgNEager for arguments that are evaluated promises;

L2 NoReflectiveArg specifies that promises do not use reflection;

L3 ArgNNotObj for arguments that do not have the class attribute;

L4 ArgNSimpleInt or ArgNSimpleReal for arguments that are scalars
of integers or doubles;

L5 missing for a lower bound on missing arguments (from the end
of argument list); and

L6 NoExplicitlyMissingArgs to ensure that missing is the exact
number of missing arguments.
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Figure 5.3: Impact of optimization levels 0 to 6 (from left to right)

For this experiment we, pick L0 as the baseline, as it is the optimization
level with the fewest assumptions in the context. For each benchmark,
we report results for each of L0 to L6, normalized to the median exe-
cution time of L0 (higher is better). Figure 5.3 shows the results of the
experiment for spectralnorm. Each level has its own box plot. The first
box plot from the left is for L0 (and its median is set to one) and the last
corresponds to L6. Dots show individual measurements. The blue line
is the lower bound of the 95% confidence interval of a linear model. In
other words, spectralnorm is predicted to improve at least 4.6% due to
context dispatch. The largest changes in the emitted code can be seen in
L2. The NoReflectiveArg assumption enables the optimizer to better
reason about several functions. These optimizations are preconditions
for the jump in L6, but yield fewer gains themselves. The improve-
ment in L6 can be pinpointed to the builtin double function, with the
signature function(length=0L). The NoExplicitlyMissingArgs as-
sumption allows us to exclude the default argument. The function is
very small and is inlined early. However, statically approximated con-
text dispatch allows the compiler to inline a version of the double

function, which is already more optimized. This gives the optimizer a
head start and leaves more optimization budget for the surrounding
code.

Results Figure 5.4 shows the performance impact of context dispatch
on a representative sample of 16 of the 59 benchmarks. In general, we
see a trend for higher levels to execute faster. The effects are sometimes
fairly small; note that each graph has a different scale. The outliers in
binarytrees are caused by garbage collection. Some benchmarks have
a large response on L1 or L2. The reason is that code that invokes all
of the benchmarks is passing a constant, to specify the workload, and
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Figure 5.4: Impact of optimization levels 0 to 6 (left to right)

the assumptions from L1 and L2 allow us to rely that this argument is
benign (e.g. that it does trigger reflection).

The aim of our experiment is to test if context dispatch significantly
contributes to the overall performance of Ř. Often, optimizations do
not benefit all programs uniformly, and can even degrade performance
in some cases. We are therefore interested in the number of bench-
marks which are significantly improved (or not worsened) over a certain
threshold. We formulate the null hypothesis:

H0 Context dispatch does not speed up the execution of a benchmark
by more than N%.

We testH0 for various improvement thresholds, by fitting a linearmodel
and testing its prediction for the lower bound of the 95% confidence
interval at L6 (see the blue line in Figure 5.3). As can be seen in the
summarized results from Table 5.6, we conclude that context dispatch
might slow down the execution of two benchmarks by more than 5%,
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Table 5.6: Number of benchmarks significantly improved (¬H0 with
p = .05) out of 46, and 13 ([mi])

speedup [awf][sht][re] [mi]
-5% 44 11
0% 18 10
2% 11 8
5% 6 8
10% 4 7
20% 1 7

Table 5.7: context dispatch statistics

measurement min max mean
contexts per call-site 1 4 1.00003
call-sites per version 1 88 1.89
versions per callee 1 38 1.58
occurrence per context 1 1131 31.37

improve 39% of benchmarks, and improves four benchmarks by more
than 10%. Additionally, more than half of the benchmarks in [mi] see a
speedup greater than 20%.

Executing the benchmark suite with level 6 we observe 199 dis-
tinct contexts. Across all call-site and context combinations the most
common context is NoExplicitlyMissingArgs, CorrectArgOrder,
NotTooManyArgs, NoReflectiveArg, i.e. , the context with no explic-
itly missing arguments, where the caller can pass arguments in the
correct order, does not pass too many arguments and all the passed
arguments do not invoke reflection. This context occurs 1131 times,
closely followed by the one without NoReflectiveArg, which is also
the minimal context for optimized code. There is a long tail of special-
ized contexts; 145 contexts occur less than 10 times and 61 contexts just
once. Table 5.7 shows some key numbers regarding the call-site and tar-
get version pairs. Almost all call-sites in our benchmark suite observe a
single dynamic context, in other words the contexts employed by Ř are
almost exclusively monomorphic. The individual function versions are
shared between 1 to 88 call-sites, on average every version has almost
2 originating call-sites. The number of invoked versions per closure is
surprisingly small, indicating that the benefit of context dispatch is
focused at a few call-sites. For these numbers we use the AST node of
a call-site as a proxy for call-sites and we have to exclude bogus call-
sites, i.e. , function version pairs from the flexclust benchmark, which
occur multiple times due to a bug causing excessive re-compilation.
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Discussion The effects reported in this section can sometimes be
subtle. Arguably Ř is already a fairly good optimizer without context
dispatch. It employs a number of optimizations and speculative opti-
mizations, which speculate on the same properties. We investigated
the number of versions per function in pidigits and found them to
range between 1 and 6. Many functions that belong to the benchmark
harness or are inlined stay at 1 or 2 versions with few invocations. The
functions with many versions concentrate on a few. A big hurdle for
context dispatch in R is that it is not possible to check the types of lazy
arguments at the time of the call. For instance, there is a user-provided
add function that has 12 call sites with several different argument type
combinations. However, Ř is not able to separate the types with context
dispatch, because all call sites pass both arguments lazily. As predicted,
this results in several deoptimizations and re-compilations, leading to a
fairly generic version in the end. We see this as an exciting opportunity
for future work, as it seems that context dispatch should be extended
from properties that definitely hold at function entry to properties that
are likely to hold at function entry. This would allow for multiple ver-
sions, each with different speculative optimizations, to be dispatched
to depending on how likely a certain property is.

We investigated if garbage collection interferes with measurements.
To that end, we triggered a manual garbage collection before each itera-
tion of the experiment. Indeed, we observed slightly more significant
results for the numbers reported in Table 5.6. To keep the methodol-
ogy consistent with the previous section, where manually triggering
a garbage collection would distort the results, we decided to keep the
unaltered numbers.

We find the results presented in this section very encouraging, as
they show a significant advantage of context dispatch over speculation.
Additionally, and this is difficult to quantify, we believe that context
dispatch has helped improve Ř in two important ways. First, there is
a one-stop solution for specialization. This makes it easy to add new
optimizations based around customizing functions, but we also use it
extensively in the compiler itself. The compiler uses static contexts
to keep different versions of functions in the same compilation run,
to drive splitting and for more precise inter-procedural analysis. The
second benefit is that context dispatch has helped to avoid having to
implement each and every one of the painstakingly many corner cases of
the R language. For instance, we can assume that arguments are passed
to functions in stack order, and if for one caller our system does not
manage to comply with this obligation, context dispatch automatically
ensures that the baseline version without this assumption is invoked.
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5.5 Deoptless

The final contribution to evaluate is deoptless. Speculation and context
dispatch are part of Ř in its default configuration. Therefore in the
previous sections we presented how much they contribute to the base-
line performance. Deoptless is a feature still under evaluation and the
reported numbers state how we would improve the baseline by enabling
deoptless. The stated goals of deoptless are to

1. reduce both the frequency and amplitude of the temporary slow-
downs due to deoptimizations, and

2. prevent the long-term over-generalization of code due to deopti-
mization and recompilation.

According to these goals, we try to answer the following questions: (1)
Given the same deoptimization triggering events, what is the speedup
of using deoptless? (2) Is deoptless able to prevent over-generalization?

The nature of deoptless makes it challenging to answer these ques-
tions as the events we are trying to alleviate are by definition rare.
In particular the code produced by Ř is not going to cause many de-
optimizations in known benchmark suites. Therefore, we decided to
perform our main evaluation of deoptless on the worst-case situation,
where we randomly fail speculations. Secondly, we will evaluate de-
optless on bigger programs, with known deoptimizations, due to the
nature of their computations.

The experiments in this section are based on a published artifact
[Flückiger et al., 2022a] and were run with the same configuration as
the baseline experiment.

Speedup over Deoptimization First we want to evaluate the per-
formance gains of deoptless from avoiding deoptimization alone. To
that end we take the default Ř main benchmark suite and randomly
invalidate 1 out of 10k assumptions. To be precise, we only trigger
deoptimization without actually affecting the guarded fact. This is
achieved by instrumenting the compiler to add a random trigger to ev-
ery run-time check of an assumption. This is an already existing feature
of Ř used in development to test the deoptimization implementation.
Enabling this mode causes a large slowdown of the whole benchmark
suite. We then measure how much of that slowdown can be recovered
with deoptless. Note that this is a worst-case scenario that does not
evaluate the additional specialization provided by deoptless, as the
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Figure 5.5: Deoptless speedup on mis-speculation (log scale)

triggered deoptimizations largely correspond to assumptions that in
fact still hold. We run this experiment with 30 in-process iterations
times 3 executions. The results are presented in Figure 5.5. The large
dots in the graph show the speedup of deoptless over the baseline on
a log scale on average. Improvements range from 1× to 9.1×, with
most benchmarks gaining by more than 1.9×. The small dots represent
in-process iterations from left to right, averaged over all executions. We
exclude the first 5 warmup iterations, as they add more noise and only
slightly affect the averages. Normalization is done for every dot individ-
ually against the same iteration number without deoptless. From the
main benchmark suite we had to exclude the nbody_naive benchmark,
as it takes over one hour to run in the deoptimization triggering test
mode. Though, we would like to add, that with deoptless this time is
cut down to less than five minutes. Overall this experiment shows that
deoptless is significantly faster then falling back to the interpreter for
the Ř benchmark suite.
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Memory Usage Deoptless causesmore code to be compiled, which can
lead to more memory being used. The R language is memory hungry due
to its value semantics and running more optimized code leads to fewer
allocations. Thus we expect deoptless to not use more memory overall.
In this worst-case experiment with randomly failing assumptions we
measured a median decrease of 4% in the maximum resident set size.
There is one outlier increase in flexclust by 45% and several decreases,
the largest being 22% in fannkuchredux. The trade-off could be different
for other languages or implementations. However, the overhead can
always be limited by the maximum number of deoptless continuations.

In the following we report the effects of deoptless on a selection of
benchmarks with known deoptimization events.

Volcano Deoptimizations can happen when user interaction leads to
events which are not predictable. To demonstrate the effect we package
a ray-tracing implementation [Morgan, 2008] as a shiny app [Chang,
Cheng, Allaire, Sievert, Schloerke, Xie, Allen, McPherson, Dipert, and
Borges, 2021]. It allows the user to select properties, such as the sun’s
position, selecting the functions for numerical computations and so
on. The app renders a picture using ggplot2 [Wickham, 2016] and the
aforementioned ray-tracer with a height-map of a volcano. At the core
of the computation is a loop nest which incrementally updates the
pixels in the image, by computing the angle at which rays intersect the
terrain. We record two identical sessions of a user clicking on different
features in the app. We then measure for each interaction how long the
application takes to compute and render the picture. In Figure 5.6 we
show the relative speedup of deoptless for that interactive session, sepa-
rate for the ray-tracing and the rendering step. The application exhibits
deoptimization events when the user chooses a different numerical in-
terpolation function. Deoptless results in up to 2× faster computations
for these particular iterations. In general deoptless is always computes
faster, except for one warmup iteration with a longer compile pause.
The produced image is then rendered by ggplot where we see deoptless’
ability to prevent over-generalization. The code consistently runs about
2.5× faster after warmup than without deoptless.

Versus Profile-Driven Reoptimization Finally, we compare the perfor-
mance profile of deoptless with a profile-driven reoptimization strategy
for Ř [Flückiger et al., 2020c]. The corresponding paper contributes
three benchmarks which exhibit problematic cases for dynamically op-
timizing compilers. First, a microbenchmark for stale type-feedback.
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Figure 5.7: Speedup on reoptimization benchmarks

Then, an RSA implementation, where a key parameter changes its type,
triggering a deoptimization and a subsequent more generic reoptimiza-
tion. Finally, a benchmark where a function is shared by multiple callers
and thus merges unrelated type-feedback. For the three benchmarks
they report on speedups of up to 1.2×, 1.4×, and 1.5× respectively. For
deoptless, we expect to improve only on RSA. In the other two cases
the phase change is not accompanied by a deoptimization, therefore
there is no chance for deoptless to improve performance. We ran these
benchmarks against our deoptless implementation with 3 invocations
and 30 iterations; Figure 5.7 presents the results. Each dot represents the
relative speedup of deoptless, for one iteration of the benchmark each.
As expected, the microbenchmark and the shared function benchmark
are unchanged. The RSA benchmark is sped up by the same amount as
in the best case of profile-driven recompilation.



6
Conclusions

This dissertation makes several contributions to the field of just-in-
time compilers. Sourir is the first formalization of deoptimization. It
allows for disentangling the problem of speculative optimizations and
how to correctly undo them, from the problem of how to implement
the mechanism that does it. Sourir marks a shift in how verification
and compiler correctness for just-in-time compilation is approached.
Instead of starting with properties about self-modifying code, i.e. , at the
bottom of any abstractions, it starts with invariants and contracts for
JITs and reasoning at a higher level of abstraction. JIT compilation does
not rely on unlimited self-modifying code, instead a small number of
well-defined interfaces, such as dispatch tables for specialization, small
patch-point regions for invalidation, or lookup caches suffice. As such
we can model these requirements at a high level and then reason about
how to lower them to actual hardware later. This approach already led to
further progress in an extended formalization called CoreJIT , which does
not only include the optimizer in the formalization, but also the run-
time code generation and modification of dispatch tables. This focus on
the interface of speculation allows us to understand the idea of speculative
optimizations detached from the actual implementation details. A
trend that has also picked up in practice, where we see more and more
speculative optimization approaches using high-level, sometimes even
source-to-source translation, implementation techniques.

In a similar vein, the second contribution context dispatch does not
provide a fundamentally new optimization for JIT compilers. Instead
it unifies a very fragmented landscape of code specialization. The way
context dispatch supports and provides optimizations up to a dynamic
context of assumptions proved itself fruitful in a number of situations.
It allow us to describe many existing dynamic code specialization tech-
niques in a unified way. But, it also provides a middle ground between
a hard call boundary and an inlined call, when an optimizer tries to
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optimize code with the help of contextual information from the caller.
Furthermore, context dispatch leads to a novel way of handling fail-
ing speculation with deoptless continuations. The idea is motivated
by the observation that deoptimization produces code that is getting
gradually more and more generic. Like a call-site, an OSR-exit point
from a failing speculation, naturally provides a context of dynamic in-
formation, that can be used to optimize the remainder of the function.
This allows for optimized-to-optimized recovery of speculation and
thus sub-method sized specialization, which could be understood as an
on-demand exploration of traces with similar behavior.

With this dissertation I have shown that the assume instruction
and context dispatch can tend to all the speculative needs of a language
implementer. The Ř virtual machine has an optimizing compiler that
uses speculation as suggested by sourir and context dispatch for all its
dynamic optimizations. It is therefore possible to directly apply these
design recipes to implement a competitive compiler and combined they
are sufficient to implement any required optimization up to dynamic
assumptions.

6.1 Future Work

Speculative Optimizations There are multiple avenues of future in-
vestigation. The optimizations presented here rely on intraprocedural
analysis and the granularity of deoptimization is a whole function. If we
were to extend this work to interprocedural analysis, it would become
much trickier to determine what functions are to be invalidated as a
speculation in one function may allow optimizations in many other
functions. When we interprocedurally analyze a callee function with
an assume instruction, then we have to consider that this assumption
could fail and the function could effectively do anything before return-
ing to the caller. It is an open problem how the effect on the analysis
state could be contained in such a situation.

The current style of assume instructions forces to check predicates
before each use, but some predicates are cheaper to check bymonitoring
operations that could invalidate them. We discuss an extension where
a global array of properties is used for monitored assumptions. Still, it
would be a good idea to incorporate this extension natively into the
model. This would require changes as the assume instruction would
need to be split between a monitor and a deoptimization point. Lastly,
the expressive power of predicates is an interesting question as there is
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a clear trade-off — richer predicates may allow more optimizations but
are likely to be costlier to monitor.

CoreJIT includes a semantic for a JIT optimization loop, where at
every call boundary it is possible to decide to either execute or first
optimize the target function. Future work includes proving more opti-
mizations and extend CoreIR and CoreJIT to a more realistic language
such as RTL. To establish the correctness of a translation to a native
code backend the methodology would need to be extended. It remains
an open questions, whether end-to-end verification of a JIT is possible,
using a black-box native backend. This raises the challenge of modular
verification and linking across languages.

Context Dispatch As is the explored set of predicates that make up a
context are basic. To add richer properties and increase flexibility, we
may have to change the dispatching technique. One idea would be to
develop a library of simple building blocks, such as predicates, decision
trees and numerical ordering; such that their combination still results
in a context with efficient implementation and representation. The key
challenge will be to control the cost of deriving contexts at run-time.
For this we are considering improving our compiler’s ability to evaluate
contexts statically. Another direction comes from the observation that
different contexts can lead to code that is almost identical, it is an
interesting question how to prevent generating versions that do not
substantially improve performance.

As for broader applicability, we believe contextual dispatch can be
used even in typed languages to capture properties that are not included
in the type system of the language. For instance, in Java one could
imagine dispatching on the erased type of a generic data structure, on
the length of an array, or on the fact that a reference is unique. Whether
this will lead to benefits is an interesting research question.

An interesting avenue for future work, in particular in combination
with deoptless, would be to try to recombine contextually optimized
fragments into one function. The information from the contexts could
be used to fuse all versions into one optimized function, which is still
specialized to the observed contexts, but gets rid of dispatching and
code-size overhead.
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