
High-level Programming of Embedded Hard Real-Time Devices

Filip Pizlo Lukasz Ziarek Ethan Blanton Petr Maj† Jan Vitek†

Fiji Systems Inc. † Purdue University

Abstract
While managed languages such as C# and Java have become
quite popular in enterprise computing, they are still consid-
ered unsuitable for hard real-time systems. In particular, the
presence of garbage collection has been a sore point for their
acceptance for low-level system programming tasks. Real-
time extensions to these languages have the dubious distinc-
tion of, at the same time, eschewing the benefits of high-
level programming and failing to offer competitive perfor-
mance. The goal of our research is to explore the limita-
tions of high-level managed languages for real-time systems
programming. To this end we target a real-world embed-
ded platform, the LEON3 architecture running the RTEMS
real-time operating system, and demonstrate the feasibility
of writing garbage collected code in critical parts of embed-
ded systems. We show that Java with a concurrent, real-time
garbage collector, can have throughput close to that of C pro-
grams and comes within 10% in the worst observed case on
realistic benchmark. We provide a detailed breakdown of the
costs of Java features and their execution times and compare
to real-time and throughput-optimized commercial Java vir-
tual machines.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—interpreters, run-time environ-
ments; D.3.3 [Programming Languages]: Language Con-
structs and Features—classes and objects; D.4.7 [Operat-
ing Systems]: Organization and Design—real-time systems
and embedded systems.

General Terms Languages, Experimentation.

Keywords Real-time systems, Java virtual machine, Mem-
ory management.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’10, April 13–16, 2010, Paris, France.
Copyright c© 2010 ACM 978-1-60558-577-2/10/04. . . $5.00.

1. Introduction
Hard real-time software systems must operate in the pres-
ence of strong resource constraints. With applications rang-
ing from satellite control systems to high-frequency algorith-
mic trading, hard real-time systems vary widely in hardware,
operating system, and programming style. Yet there are
important commonalities. Predictability of the software is
paramount, with typical systems deployed on uni-processor
architectures and hard real-time operating systems. The soft-
ware is written to be analyzable, with simple control flow
and no dynamic memory allocation; without the former anal-
ysis of the software is difficult and without the latter it is hard
to make predictable. Therefore, it is common for real-time
programmers to rely on static allocation of data and object
pooling. The programming languages of choice are subsets
of C or Ada and for the adventurous C++.

As the size of real-time code bases keeps increasing –
million line systems are not unusual – factors such as pro-
ductivity, reusability, and availability of trained personnel
have spurred interest in Java as an alternative to low-level
languages and motivated the development of real-time ex-
tensions [9]. While Java has had some success in soft real-
time, every attempt that we are aware of to move into hard
real-time domain ended in defeat. The reasons are multiple.
The NASA/JPL Golden Gate project was too early, at the
time performance was between 10-100 times slower than
C. These conclusions were confirmed by an independent
study conducted by Thales, which also observed that region-
based memory management system offered at the time was
difficult to use and error-prone. It was only when IBM re-
searchers pushed real-time garbage collection into a produc-
tion VM [2] that Java started gaining traction. Since then,
real-time garbage collection has become part of all major
real-time virtual machines. Unlike regular run-of-the-mill
garbage collection, real-time garbage collection abstractly
limits the impact that memory management can have on the
execution of a thread; either by allowing the collector to be
interrupted at any moment or limiting the collector to small
quantums of work. Even with such advances, there is still
significant reluctance to take Java seriously for the most de-
manding of real-time tasks.

Scaling modern, mainstream languages and their associ-
ated runtimes down to resource-constrained embedded set-



tings is difficult, especially when hard real-time guarantees
must be met. This is because virtual machines are usually
tuned and engineered for maximal throughput on a small
set of common benchmarks. Implementation techniques of-
ten include fast paths for the common case, and expensive
slow-paths for less frequent cases. Examples include inline
caches on interface dispatch and type tests. Using bench-
mark suites to evaluate these optimizations can be mislead-
ing, as real-time workloads are unlikely to be represented by,
e.g. SpecJVM98. Furthermore, to guarantee against deadline
misses, one will have to make the pessimistic assumption
that all slow paths will be taken, and as a result estimates of
the worst-case execution time are likely to be needlessly pes-
simistic. Support for hard real-time requires an implementa-
tion that targets predictability over throughput and bench-
marks that are representative of real-time workloads. More-
over, evaluations must be done in the context of representa-
tive hardware and operating systems.

In this work we have selected a platform that has been
deployed on the Venus Express Mission by the European
Space Agency (ESA). The platform’s architecture hails from
the LEON processor family, which implements the SPARC
v8 instruction set, burnt on a Xilinx FPGA. The preferred
real-time operating systems is RTEMS. The ESA use radi-
ation hardened memory, either 32 or 64MB, and processors
clocked at 40MHz. Their implementation language is usu-
ally C. Real applications are hard to get a hold of, so we use
an idealized collision detection algorithm [15] as a work-
load. Collision detection algorithms have been implemented
in hardware in radar systems. Our benchmark has similar
characteristics to that of these real applications but is eas-
ier to retarget to different platforms. In the past, Java has
not been deemed suitable for use for what ESA refers to as
BSW (or Basic Software) since Java does not support in-
terrupt handling, measured latencies were too high and the
overhead of the Java Native Interface (JNI) was considered
prohibitive [17].

This paper addresses the perceived shortcomings of Java
in a hard real-time setting. The contributions of our work
are threefold. First, we describe a new Java virtual machine
implementation, called Fiji VM, which specifically targets
real-time embedded systems. Our implementation maps Java
bytecode directly to C leveraging knowledge of the entire
program to generate efficient code. We give a detailed de-
scription of how Java is mapped to C from a systems per-
spective, including a review of overheads that must be in-
troduced to maintain Java compatibility. Though the over-
heads in our VM are similar to other Java virtual machines,
we are unaware of any concise review of these overheads
in the literature. Thus, we hope to help real-time program-
mers in understanding the costs of utilizing Java. Second, we
demonstrate the feasibility of running full, unmodified, Java
code on an embedded LEON3 platform at high-speed while
meeting hard real-time deadlines. To validate our claims of

speed, we compare the performance of Java programs di-
rectly against C. To our knowledge, this is the first compar-
ison of Java to C for a significant real-time benchmark that
takes into account both throughput and predictability. Third,
we demonstrate the predictability of our garbage collector.
We want to convince real-time programmers to use dynamic
memory management provided by garbage collection. This
would be a major paradigm shift and a great simplification to
real-time programming. The complexity of managing mem-
ory using object pools has substantial costs both in terms of
productivity and ensuring correctness. We also include re-
sults comparing the performance of our VM to other pro-
duction Java virtual machines to better position Fiji VM in
the space of Java implementations.

2. State of the Art
Four commercial Java virtual machines support the Real-
time Specification for Java (RTSJ) [9]. These are the IBM
WebSphere Real-time VM [2], SUN’s Java RTS [8], Aonix’s
PERC [26], and Jamaica from AICAS [30]. PERC is note-
worthy in that it supports features similar to those offered by
the RTSJ but uses its own APIs. All of these systems sup-
port real-time garbage collection, though the algorithms are
markedly different ranging from time-based to work-based
with varying degrees of support for concurrency. In addition,
Oracle’s WebLogic Real-Time and Azul Systems’ virtual
machine [11] both offer low-pause-time garbage collectors
that approach real-time performance. The execution strate-
gies of these systems range from ahead-of-time compilation
to just-in-time compilation. PERC and Jamaica are the only
other products currently targeting resource constrained em-
bedded devices.

Ovm [1] is the most direct influence on the design of
Fiji VM. Ovm is a Java-in-Java metacircular virtual machine
that provides hard real-time guarantees. Like the Fiji VM it
generates C code, but it also has an interpreter and just-in-
compiler. It was used in the first Unmanned Aerial Vehicle
flight using avionics software written in Java [1] and the first
open-source real-time garbage collector with high through-
put and good mutator utilization [21]. Ovm lacks function-
ality essential for embedded hard real-time systems. Many
applications run on minimal hardware with a small real-
time OS kernel and performance close to C. Ovm’s perfor-
mance and footprint prevented us from experimenting with
a wide range of embedded devices. Furthermore, Ovm suf-
fered from an overly complex design and we could not en-
vision how the system could ever be certified. JRate was
a contemporary of Ovm that was integrated into the GCC
compiler [12]. There were early ahead-of-time compilers
that translated Java to C [19, 24] which performed, broadly
speaking, similar static optimizations to those included in
Fiji VM, but real-time support was not part of their design
goals and they targeted older versions of Java making per-
formance comparisons difficult.



Real-time garbage collection has been investigated for
many years in the context of Java. Nielsen [20], Baker’s [4]
and Henriksson’s [14] early works inspired a number of
practical algorithms including the ones used in all com-
mercial VMs. The IBM Metronome collector uses periodic
scheduling [3] to ensure predictable pause times. Jamaica
uses a work-based techniques with fragmented objects [29]
to get around the need for a moving collector to fight frag-
mentation. Java RTS [10] uses a non-moving variant of Hen-
riksson with a scheduler that leverage the slack in real-time
systems to collect garbage when no real-time task is active.
For overviews of the main alternatives readers are referred
to [16, 22]. The Real-time Specification for Java proposes a
form of region-based allocation to avoid the costs of garbage
collection. However, it has been found error-prone and in-
curs non-trivial runtime overheads due to dynamic memory
access checks [22].

3. Designing a Real-time Virtual Machine
The goal of Fiji VM is to provide developers with an auto-
mated tool for converting high-level, memory safe, Java ap-
plications into small, efficient, and predictable executables
for a wide range of embedded devices. We focus on ahead-
of-time compilation as an execution strategy. A just-in-time
compiler is under development but it will probably not be de-
ployed on embedded devices. The virtual machine consists
of a compiler, a runtime library, and a choice of open-source
class libraries. In addition to supporting Java 6 (without dy-
namic class loading) and JNI 1.4, the Fiji VM has an on-
the-fly concurrent real-time garbage collector and supports
region-based allocation in the style of the Real-time Specifi-
cation for Java.

3.1 An Ahead-of-time Java Compiler
Our VM parses Java 1.6 (or earlier) bytecodes and gener-
ates ANSI C. The generated code is automatically fed to
the chosen C compiler for the target platform, and linked
against the Fiji runtime, which consists of 10,000 lines of
code. Many Java features are mapped directly to C, while
most of the remaining features can be mapped directly, or
through a light-weight wrapper, to OS functionality. The rest
– including locking and type checking – is implemented by
our VM. Fig. 1 shows a summary of the mapping (with some
RTEMS operating system details added for concreteness).
We proceed with a detailed description of the various over-
heads involved in compiling Java.

Java is a type-safe language. The implication for the
programmer is two-fold: a program that compiles success-
fully will never cause memory corruption, and the compiler
will insert checks which may incur a runtime performance
penalty.

Null checks. Before any use of a pointer, the compiler
checks that the pointer is non-null. On some platforms, null
checks may be performed using virtual memory – but even

then, some compiler-inserted null checks will remain. Fiji
VM never uses virtual memory techniques for null check-
ing in order to reduce the worst-case cost of a failing null
check. Like most other VMs, we use control flow analysis to
remove the majority of these checks. A null check is:

if (unlikely(!variable)) throwNPE();

The out-of-line helper function throwNPE throws a null
pointer exception, while the intrinsic helper unlikely hints to
the C compiler that the condition is unlikely to be true. On
compilers such as GCC, we translate unlikely to a macro for
that compiler’s branch prediction pragma.

Array bounds checks. Before any access to an array, the
compiler checks that the array index is within bounds of
the array’s range. Arrays in Java are always indexed in the
range [0, n − 1], where n is the length given at allocation.
As with null checks, most implementations will optimize
away these checks – but bounds check removal is nowhere
near as successful as null check removal. Thus, these checks
typically incur a runtime penalty. A typical array bound
check is:

if (unlikely((unsigned)index < (unsigned)array.length))
throwABC();

Garbage collection checks. Ensuring type-safety requires
either provably correct manual memory management or
garbage collection. Although beneficial, garbage collection
requires run-time checks. Fiji VM requires sync-points and
store barriers. A sync-point checks if the stack of the current
thread should be scanned. A store barrier ensures that mod-
ifications to the heap performed by the program are seen by
the garbage collector, which may be operating concurrently.
Sync-points are inserted using a policy that ensures that the
worst-case latency between sync-points is bounded. This
implies that every loop will have at least one, which hurts
performance of tight loops. Optimizations such as loop un-
rolling can alleviate the overheads to some degree. A sync-
point looks as follows:

if (unlikely(threadState−>shouldSync)) synchronize();

The threadState pointer refers to the VM state for the cur-
rent thread. This includes the boolean field shouldSync,
which is true when the thread should yield. For high-priority
threads which preempt the garbage collector, these checks
never fire – if the collector is only running when the given
thread is not running, then no additional synchronization is
required. But, the presence of these checks will still result in
a throughput hit. With virtual memory, these checks can be
converted into the faster:

threadState−>poison=0;

The volatile poison field is on page that is marked as write-
protected whenever the VM wants the thread to yield. This is
faster as it is a store rather than a load and memory stores are



Java Source Feature Java Bytecode Feature C code implementation for RTEMS
under Fiji VM

Simple Arithmetic (+, -, etc.) iadd, isub, imul, etc. Direct C translation (+, -, etc.)

Division, remainder idiv, irem, etc. Calls to helper functions (Java semantics 
differ from C semantics)

if, switch, for, while if<cond>, goto, lookupswitch, 
tableswitch

if, switch, goto.  Loops require
sync-points (1 load, 1 branch).

Method invocation invokevirtual, invokeinterface, 
invokespecial, invokestatic

C function call with additional code at 
callsites, prologues, and epilogues

Throw/catch athrow, exception handlers if, goto

Static initialization - implicit 
on first use of class

Implicit on invocation, static 
field access, instantiation

Run-time check (1 load, 1 branch) on first 
use

Field access putfield, getfield, etc.
Null check and direct C pointer 

arithmetic load/store; reference putfield 
results in addition code for GC barriers.

Array access iaload, iastore, etc.

Null check, array bounds check, array 
store check, and C pointer arithmetic 
load/store.  As for fields, GC barriers 
inserted for reference array stores.

new new, newarray, anewarray, etc.

C code for bump-pointer allocation.  If 
this fails, call to helper function.  The 

entire heap is pre-allocated by Fiji VM by 
a single call to malloc, and then 

managed internally.

synchronized monitorenter, monitorexit

C code for fast lock acquisition, call to 
helper function on contention.  Fiji VM 
implements its own locks for Java code; 

OS locks are only used internally. 

Object.wait, Object.notify Object.wait, Object.notify Internal Fiji VM implementation written 
in C.

java.lang.Thread API java.lang.Thread API
rtems_task API, with additional Fiji VM 

per-thread data structures such as 
ThreadState

I/O libraries (java.io.*, 
java.nio.*, java.net.*, etc.)

I/O libraries (java.io.*, 
java.nio.*, java.net.*, etc.) POSIX I/O

Assignment (=) pop, dup, load, store, etc.

Direct C translation (=), except for 
assignments to references, which are also 

copied into a stack-allocated Frame 
datastructure.

Qualitative performance comparison to 
equivalent C/C++ code

Java is slightly slower for pointer 
assignments, but equivalent for other 

assignments.

Same performance.

Java will be slower but not by much; 
division is expensive already.

Small loops will be slower in Java.

Java method invocation is considerably 
slower, but inlining alleviates this.

N/A for C; Java exceptions will be faster 
than C++ exceptions.

Slower than C/C++, but often optimized 
away to reduce performance burden.

Often optimized by compiler to be as fast 
as C, except for reference field stores, 

which will incur a penalty.

Array accesses are considerably slower in 
Java than in C due to safety checks.  Even 
after optimization, many of these checks 

remain.

Faster than C/C++.  A garbage collector 
enables very fast allocation; the work of 

organizing the heap is offloaded to a 
separate task, which can be run in 

parallel on a multi-core architecture.

Faster than C/C++.  Like other JVMs, Fiji 
VM has a locking implementation that 

outperforms OS-provided locking such as 
pthread_mutex.

Same performance.  Implemented 
similarly to OS condition variables.

Same performance.

Same performance.

Casts f2i, d2i, i2c, etc., checkcast Numeric casts are directly translated; 
checked casts include a type check.

Same performance.  C++'s checked casts 
are no faster than Java's.

Figure 1. Java features and their mapping to C code and/or RTEMS operating system functionality under the Fiji VM.

much faster than loads, furthermore no branch is required.
However, as RTEMS does not have virtual memory, we rely
on the slower version of sync-points. Store barriers are the
other source of overheads introduced by garbage collection.
Primitive fields (integer, double, etc) need not be tracked, but
all modifications to pointer fields are translated to:

if (source != null && source.gcState != marked)
mark(source);

target.field = source;

The null-check on source is often optimized away, but even
then, a load and a branch remain in the fast path, and a
function call on the slow path.

Local variable assignment. Most local variable assign-
ments found in Java source are either optimized away by
copy propagation or translated to a C local variable assign-
ment. However, for any local variable that contains a pointer
that is live across an operation that may trigger garbage col-
lection (a sync-point, a Java method call, or a heap alloca-
tion), the variable will be stored into a special data structure.
This is needed because C compilers do not provide support
for accurate stack scanning. Thus it is up to the VM to en-
sure that a stack scan will accurately see all live pointers.
We accomplish this by having a stack-allocated data struc-
ture containing copies of local heap references as in [5, 13].
Given a local variable assignment a = b, where both are ref-



erence types, and a is live across a sync-point, method call,
or allocation, the compiler emit the following:

a = b;
Frame.refs[index of a] = a;

Where Frame is a local struct variable, and index of a is a
compiler-chosen index for the variable a in the Frame’s list
of references. This instrumentation is inserted rarely enough
to not significantly impact performance.

Division and remainder. Java division has slightly differ-
ent semantics than C division. It includes a division-by-zero
check which is done similarly to null-checks, and benefits
from similar optimizations. It has slightly different over-
flow rules which require a helper that performs some ad-
ditional checks. We have found that the overhead of calling
this helper is smaller than the cost of performing a division
on most architectures. Therefore, this does not significantly
contribute to performance overhead.

Loops. Loops require the insertion of sync-points. For
small loops, this is a significant overhead – a loop that would
have otherwise only had a single branch per iteration will
now have two branches. For large loops, this overhead is
negligible. To demonstrate the impact of sync-points, con-
sider a program that sums an array of 100,000 integers on a
Xeon 2.33 GHz machine running Linux, with the loop be-
ing re-executed 10,000 times. The C version needs 63.5 µs
whereas Java runs in 108.7 µs. A 71% slow down for this
pathological program. Luckily, benchmarks show, that this
is not representative of the performance of larger programs.

Method invocations. A Java method invocation is trans-
lated to a C function call. Invocations have a number of indi-
rect overheads: (i) spilling of some local variables to the GC
map stored in the Frame, (ii) checks for exceptions following
the C function’s return, and (iii) additional code to link the
Frame to enable stack scans. To mitigate these costs Fiji VM
does aggressive de-virtualization and inlining. In practice,
almost all small methods end up being inlined, and methods
thought to be called frequently are also inlined provided that
they are not too large. Thus, fewer method invocations will
remain than what is apparent in the original program. Recur-
sive code is penalized by our translation scheme, as recursive
inlining is generally undesirable, but non-recursive code is
usually as fast as the C equivalent.

Exception handling. The cost of throwing and catching
exceptions is small. All exceptional control flow is converted
to C-style if and goto statements.

Static initialization. Java prescribes that before a class is
used, it must be initialized. Initialization checks are inserted
before every static method call, static field access, and object
instantiation. However, optimization is performed on static
initializers. Initializers which are simple enough to be exe-
cuted statically in the compiler are eliminated. No static ini-
tialization needs to be performed for classes that do not have

static initializers. Control flow optimization is performed to
eliminate redundant initialization checks. Additionally, care
has been taken to ensure that the standard library classes
make minimal use of static initialization, or else to ensure
that the relevant initializers are called manually by the VM
before program start, thus enabling the compiler to remove
initialization checks for those classes. When a check re-
mains, the code is:

if (unlikely(Klass.initState != initialized)) initClass(Klass);

Klass is a global struct variable containing data about the
class in question. Note that C++ has a similar feature to
Java’s static initializers: a code module may declare global
variables of object type, and the respective classes may have
constructors with arbitrary code. However, unlike our im-
plementation that uses injected checks, C++ uses sophisti-
cated linker techniques to reduce the performance penalty.
We have considered this, but have not implemented it be-
cause we have not found static initialization to lead to any
significant overhead in the programs we have thus far tested.

Field accesses. Most field accesses are compiled to simple
load-from-offset or store-to-offset operations in C, thus mak-
ing them as fast as their C equivalents. As mentioned above
stores to reference fields may include a barrier. Fortunately,
stores are much less common than loads, and stores of ref-
erences are less common than stores of primitives. Hence
these checks end up having a small effect on throughput, as
documented in [6].

Array accesses. Array accesses can be a large source of
overheads in Java programs due to the combination of null-
checks, bounds check, array store check, and store barrier.
Array store checks only apply to stores on object arrays
and are used to ensure that the object being stored is a
subtype of the array element type. This check is needed
to maintain type safety in the presence of covariant arrays.
Put together, these checks may incur a substantial amount
of overhead in certain programs. However, programs which
primarily access arrays in a sequential fashion, and primarily
use arrays of primitives, will often have all of these checks
eliminated by the compiler.

Allocation. In Fiji VM, the Java new statement is efficient.
It is roughly:

result = threadState−>bumpPtr + size;
if (result > threadState−>limitPtr) result = allocSlow();
else threadState−>bumpPtr = result;
initObject(result);

The code implements bump-pointer allocation, where the
thread-local bumpPtr indicates the location where the next
object may be placed, and the limitPtr indicates the limit
up to which objects may be safely allocated. If memory is
plentiful, threads will be given page-size regions to allocate
in; if memory is scarce or fragmentation has occurred, the
memory regions will be small and allocSlow will attempt



first-fit allocation. The initObject routine is a simple inline
function that establishes the object’s header, and typically
involves two stores.

In the common case, this code is much faster than calling
malloc, since no synchronization is required, and the rele-
vant fast path code is inlined. In the slow path, this code is no
worse than most malloc implementations – unless memory
is exhausted. The Fiji VM garbage collector is designed to
run concurrently to the program, and thus fresh memory will
be freed all the time. However, if the collector is not paced
appropriately, memory may be exhausted requiring allocat-
ing threads to pause until the collector completes.

Synchronization. The synchronized statement is the pri-
mary locking facility provided in Java. Like most Java lock
implementations, the Fiji VM has its own locking code. In
our case, locks must also support the priority inheritance
protocol [27] to avoid cases of priority inversion due to lock-
ing. The fast path, for uncontended lock acquisition, is basi-
cally a compare-and-set and the slow path is mostly func-
tionally identical to a POSIX mutex lock in PRIO INHERIT
mode. However, unlike POSIX locks, the Fiji locking code
also implements full debugging, profiling, and lock recur-
sion support by default. Thus Fiji locks can be viewed as
implementing a superset of POSIX locking functionality.
Nonetheless, Fiji locks are faster than POSIX locks in the
common case, and asymptotically no worse in the worst
case. The main source of speedups is that our fast path is in-
lined, and that it only has one mode thus removing the need
to perform mode checks on every lock operation. To demon-
strate the speed of locking, we wrote a simple test program
that makes 10,000,000 lock acquisitions and releases in both
Java and C. The Java version is using synchronized while the
C version is using pthread mutex using the default config-
uration (i.e. the C lock is configured for strictly less function-
ality, as it will lack recursion and priority inheritance; we do
this to give the C code a “head start”). Both versions were
run on a Xeon 2.33GHz running Linux; the Linux version is
2.6.27 and includes the optimized futex-based locking. The
performance of an average lock acquisition and release pair
from this test is as follows.

C version: 54.3 ns Java version: 31.1 ns

The C locking implementation is 74% slower than Fiji VM’s
locks. The Linux lock implementation is one of the fastest
available, relying on Fast User level Mutexes to allow fast-
path locking to occur entirely in user-space, using a sin-
gle atomic operation. However, even which futexes, POSIX
locks still require out-of-line calls and additional checks that
are neither mandatory nor desirable in Java. This demon-
strates that although Java maybe slower on some programs,
the reverse case – pathological programs for which Java is
substantially faster – also exists.

3.2 Object layout
Java objects are laid out contiguously by our VM – i.e. a
Java object will have a similar memory structure to a C++
object or C struct. This allows for the fastest possible array
accesses and field accesses, as described above. As for C++
objects that are not POD (plain-old-data; C++ objects qual-
ify as POD if they have no virtual methods), Java objects
require a “vtable” header for virtual dispatch and run-time
type identification. The Fiji VM “vtable” pointer refers to
either a TypeData structure, which contains the vtable as
well as type identification information used for type checks,
or a Monitor structure. The Monitor is used for storing the
lock, in case the object was used for locking. Thus, for Java
objects that never flow into a synchronized statement, there
is no space overhead for locking. The Monitor points to the
TypeData of the object; the latter contains a pointer at the
same offset pointing to itself.1 Thus, getting the TypeData
for an object requires a double-indirection. In addition, ev-
ery object has a GC header, which includes everything nec-
essary for garbage collection (such as the mark state of the
object, which indicates whether the object is marked in this
collection cycle, and a pointer to the next-marked object,
used by the GC to create a linked list of marked objects)
as well as everything needed to implement scoped memory
in the RTSJ. Thus, every Java object requires two words of
overhead. Additionally, Java arrays have an additional word
devoted to the array length. Thus, a zero-length array will re-
quire a total of three words of memory, while an object with
no fields will require two words of memory. In summary,
Fiji VM’s object overheads are no worse than those found in
a typical C++ runtime: consider that a C++ object will have
one word for the vtable, and at least one other word used for
bookkeeping by the malloc implementation.

3.3 High-level optimizations
The Fiji compiler performs a variety of optimizations,
at multiple stages of compilation, using a static-single-
assignment (SSA) intermediate representation. The opti-
mizations currently performed include:

• Virtualization – turning interface calls into virtual calls
• Devirtualization – turning virtual calls into direct calls
• Inlining

• Copy propagation

• Sparse conditional constant propagation

• Tail duplication

• Type propagation (0CFA) both intra- and inter-procedural.
• Null check elimination

• Array bounds check elimination

1 Strictly speaking there is one word of overhead per TypeData (i.e. one
word per class). In our case this is a compile-time constant as we do not
consider dynamic loading.



• Global value numbering

• Load-load optimization

• Loop peeling and unrolling

The majority of these optimizations – all but virtualization,
whole-program control flow analysis (0CFA from [28]), and
array bounds check elimination – would also be found in
a C++ compiler, or even a C compiler. Devirtualization in
Java or C++ is equivalent to function pointer alias analysis,
something that GCC does. The reason why we include these
analyses in Fiji VM even though GCC includes them as well
is two-fold: first, we have the benefit of richer type informa-
tion; and second, we are inserting additional code into the
program as shown in Fig. 1. Java type information allows us
to observe optimization opportunities that GCC would have
been obligated to conservatively overlook. Doing optimiza-
tions like loop unrolling and peeling early – before emitting
C code – allows us to reduce the overheads of code we later
insert, such as sync-points. However, though these optimiza-
tions all provide some speed-ups, the most profitable opti-
mization remains inlining. In particular, we have found it to
be most profitable when applied only to the smallest meth-
ods. We always inline non-recursive methods whose bodies
are smaller than a callsite. For other methods we inline based
on a variety of heuristics, such as frequency of execution of
the call based on static estimates, and further size estimates
of the callee as well as caller. However, it should be noted
that even if our compiler inlined only methods with bodies
smaller than the native code for a call, we would reap most
of the benefits of our more complicated approach.

In our implementation, we have made the following three
observations: (i) inlining works best with devirtualization,
(ii) devirtualization works best with virtualization, and (iii)
both devirtualization and virtualization work best in the pres-
ence of an analysis that can accurately identify the points-to
set of the receiver at a callsite. For this, we employ a scalable
control flow analysis (0CFA), in which all points-to sets are
represented using a single machine word. 0CFA is short for
monomorphic (zero context sensitivity, hence the ‘0’) con-
trol flow analysis; all compilers include some form of this
analysis at the intra-procedural level. Fiji VM does it over
the whole program in order to determine, for each variable,
what kinds of objects it might point to. Our points-to sets
are tuned so that they either represent null (i.e. the variable
in question never points to any valid object), uniquely iden-
tify a type (for example: an instance of a HashMap), identify
any types that are subtypes of a type (for example: HashMap
or any subtype of HashMap), or the set of all possible types.
Care is taken to ensure that program variables accessed re-
flectively or via native code are presumed to point to any
object; hence this analysis rewards programs that do not use
reflection, which is typically the case for embedded Java pro-
grams as the reflective APIs are severely restricted in Java
Micro Edition. The results of the analysis are used to more

aggressively virtualize, devirtualize, and inline method calls,
as well as to remove unnecessary type checks. Because of
its simplicity, our 0CFA analysis converges very rapidly (20
seconds for all of SpecJVM98 with the full GNU Classpath
0.97.2 2, and less than a second for either smaller programs
or programs that use our FijiCore library that targets embed-
ded systems). Although the analysis is crucial to our per-
formance, giving us a 50% to 2× performance win on most
programs, a thorough comparison of this algorithm’s perfor-
mance relative to other scalable 0CFA algorithms has not yet
been made.

3.4 Type inclusion and interface dispatch
The TypeData record contains all information necessary
to perform virtual method dispatch, interface method dis-
patch, reflective invocations, reflective field accesses, and
type inclusion tests (instanceof and checked casts). Virtual
method dispatch is done as in other statically typed single-
subclassing object-oriented languages; the TypeData record
has a vtable appended to it, through which virtual calls are
made. Interface dispatch and type inclusion are more in-
teresting since these operations often have implementations
that are not constant-time. In Fiji both operations are guaran-
teed constant-time. In the case of type inclusion, we use type
displays [18] generated using graph coloring. For interface
method dispatch, we use graph coloring to allow interface
methods that are never implemented in the same classes to
share the same interface table entry. For all of SpecJVM98,
this approach leads to 12 buckets (12 bytes per type) for type
inclusion and 10 interface table entries. The interface tables
are further compressed by only including an interface table
in types that implement interface methods, and then strip-
ping interface tables that have leading or trailing NULL en-
tries.

3.5 The Runtime System
The runtime is light-weight; it contains two components: the
memory manager (for scoped-memory and garbage collec-
tion) and an OS abstraction layer for threading and locking.
The runtime currently runs on POSIX-like platforms like
Linux, NetBSD, and Mac OS X, and on top of the RTEMS
classic API. In this section, we discuss our memory man-
agement, locking, and threading in some detail. Note that
the Java libraries have its own OS abstractions for I/O and
whatever other facilities the libraries may choose to support.

3.6 Garbage Collection
Fiji VM currently supports an Immix-style [7] on-the-fly
concurrent real-time garbage collector. This collector can be
run in either a purely concurrent, or a purely slack-based
mode [16]. Immix is a “mark-region” collector that segre-
gates free memory into regions and lines. The collector pro-
ceeds by first marking those objects that are reachable by

2 http://www.gnu.org/software/classpath



the program, and then identifying large contiguous chunks
of free memory (regions) that can be reclaimed rapidly, as
well as small chunks of memory (lines), which constitute
fragmentation. In this system, objects are allocated in either
a bump-pointer fashion (for regions) or first-fit fashion (for
lines); first-fit allocation over lines is preferred and bump-
pointer is only used when all lines have been exhausted.
Free lines occur rarely in practice, and filling them quickly
as soon as they are found minimizes fragmentation. Due to
the sparsity of lines, bump-pointer allocation is used most
of the time in typical programs. While this approach does
not support defragmentation, it is mostly lock-free, on-the-
fly (i.e. no global stop-the-world phase), and has very short
pauses. In fact, the only “pauses” are due to stack scanning,
which only affects low-priority threads. This collector can
be thought of as similar to the WebSphere Metronome [3],
in that like that collector, it lacks defragmentation, but is oth-
erwise well suited for real-time applications. We have sepa-
rately measured the throughput of this collector to be compa-
rable to non-real-time collectors [23]. We believe this to be
largely thanks to its use of Immix-style allocation and highly
concurrent design.

The Fiji collector runs either concurrently to the pro-
gram (when running on a multiprocessor machine) or at a
predefined priority. In either mode, the collector never of-
floads work into application actions. In particular, an alloca-
tion will never perform collection work. When running at
a priority that is lower than some application thread, that
thread is only suspended if it makes a request for memory
that cannot be immediately satisfied. Proving that this does
not happen is an analogous problem to proving the schedu-
lability of a real-time system. In fact, a fixed-priority col-
lector that can run at priorities lower than the application
(the so called “slack-based” strategy) has very well defined
schedulability tests as shown in Kalibera et al’s work on the
Minuteman garbage collector [16]. Of course, just as with
any schedulability analysis, one that includes a collector is
not an easy task and is always OS-, hardware-, runtime-, and
application-dependent. We do not include such an analysis in
this paper though we are aware of empiric approaches [16]
that make it possible.

Compiling Java bytecode to C has traditionally been seen
as a challenge for accurate garbage collectors such as ours,
as C compilers do not support the generation of stack maps.
However, a number of well-known approaches exist for cir-
cumventing this [5]. We use the Henderson-style linked list
approach in which every pointer local variable is stored in
a thread-local data structure accessible to the collector. We
further optimize this approach for the fact that in Fiji VM
objects are never moved by the collector. Since object point-
ers only need to be stored into this data structure when (i)
they are known to not already be there and (ii) they will be
live after the next sync-point or method call, we can optimize
away a large number of these stores. This allows for object

pointers to be register-allocated by the C compiler in most
cases allowing very good performance. Though this solves
the accurate GC problem, it does not address the need to
scan every thread’s stack at the beginning of a collection cy-
cle. To do this we leverage the observation that (i) real-time
threads only yield the CPU at shallow stacks [25], and (ii) a
slack-based collector can only commence stack scanning if
it was yielded to by the real-time threads. Thus, if the collec-
tor is scanning stacks it is guaranteed that it will be able to do
so very rapidly for real-time threads (due to shallow stacks)
and will never have to wait for those threads to converge
to a safepoint where stack scanning is possible since those
threads must already be at such a point. Stack scanning thus
causes real-time threads to not be able to run during the very
short (microsecond-level) interval during which their shal-
low stacks are scanned. But we have never seen this affect
the predictability or performance of those threads.

3.6.1 Threading and Locking
The threading and locking implementations are simple: we
pass all of the hard work to the underlying operating system.
Java threads become native threads. This leads to a simple
implementation; our entire threading and locking implemen-
tation for both POSIX and RTEMS is under 6,000 lines of C
code. As well, the use of the operating system’s threading
implementation allows for natural multiprocessing support;
Fiji VM simply had multiprocessor support from the start.
Java I/O calls result in calls to POSIX I/O functions. Thus
code that relies heavily on threading and I/O will not see any
performance degradation under Fiji VM.

4. Evaluation
The goal of this section is to demonstrate that Java is suit-
able for use in hard real-time settings. To this end, we strive
to set a up representative workload on a realistic evaluation
platform and compare the costs of idiomatic Java to C. To
this end we select the CDx benchmark which models an
air traffic Collision Detector algorithm. The Java version of
the code, CDj, was originally implemented by the first au-
thor, while the C version, CDc, was created by Gaith Had-
dad at UCF and modified by us [15].3 The benchmark is ar-
ray intensive and performs significant mathematical compu-
tations, making it well suited to low-level C programming
idioms and a good challenge for a Java implementation.
Furthermore, the benchmark has interesting allocation pat-
terns, which do not permit a successful completion of the
benchmark without some form of memory management.4

The platform we selected for our experiment is the LEON3 –
a SPARC-based architecture that is used both by the NASA

3 Sources are available from http://www.ovmj.net/cdx. The version
used for this paper is tagged as “eurosys”.
4 We observe that the CDc version of the code is using malloc/free whereas
many real-time programmers would rather use object pooling to prevent
fragmentation and have more predictable allocation times.



and the European Space Agency [17] – and the RTEMS real-
time operating system.

We also compare Fiji VM to other commercial virtual
machines to elucidate the importance of our design choices
on predictability and to verify how our performance stacks
up to that of other real-time virtual machine and to mature
throughput oriented VMs. As most Java implementations
do not run on the LEON3 platform, we switch to a desk-
top setting and evaluate IBM’s WebSphere SRT and SUN’s
Hotspot Client and Server. As WebSphere is optimized for
multicores, we use the multicore version of the Fiji VM.

Our real-time experiments were run on a GR-XC3S-1500
LEON development board.5 The board’s Xilinx Spartan3-
1500 field programmable gate array was flashed with a
LEON3 configuration running at 40Mhz. The develop-
ment board has an 8MB flash PROM and 64MB of PC133
SDRAM split into two 32MB banks. The version of RTEMS
is 4.9.3. We used the Rapita Systems RTBx Data Logger6 for
on-device profiling. The desktop were run on an 8-core Intel
Xeon X5460 3.16GHz machine with 8GB of RAM, running
Ubuntu 7.10 with the 2.6.22-14-server 64-bit SMP kernel.
The version of Hotspot used is jdk1.6.0 12 and WebSphere
reports “IBM J9 VM (build 2.5, J2RE 1.6.0 IBM J9 2.5
Linux x86-32 jvmxi3260srt-20081016 24573 (JIT enabled,
AOT enabled)”.

4.1 CDx Overview
The CDx benchmark suite is open source family of bench-
marks with identical algorithmic behavior that target differ-
ent hard and soft real-time platforms. While a complete de-
scription is given in [15], we will present enough informa-
tion for readers to understand the overall nature of the com-
putation performed in CDx.

The benchmark is structured around a periodic real-time
thread that detects potential aircraft collisions based on sim-
ulated radar frames. The benchmark can thus be used to mea-
sure the time between releases of the periodic task as well as
the time it takes to compute the collisions. The need for de-
tection of potential collisions prior to their occurrence makes
CDx a real-time benchmark. Each frame must be processed
in a timely fashion.

The algorithm detects a collision whenever the distance
between any two aircraft is smaller than a pre-defined prox-
imity radius. The distance is measured from a single point
representing an aircraft location. As locations are only
known at times when the radar frames are generated, they
have to be approximated for the times in between. The ap-
proximated trajectory is the shortest path between the known
locations. A constant speed is assumed between two consec-
utive radar frames. For this assumption to be realistic, the
frequency of the radar frames should be high and the detec-
tion has to be fast. This is achieved by splitting detection into

5 Further specifications can be found at http://www.gaisler.com.
6 For more information see http://www.rapitasystems.com.

two steps. First, the set of all aircraft is reduced into multi-
ple smaller sets. This step allows to quickly rule out aircrafts
that are far from each other. Second, for each cluster, every
two aircraft are checked for collisions. Both the reduction
and the checking operate on pairs of 3-d vectors describing
the initial position,~i, and the final position, ~f , of an aircraft
(~i is from the previous frame, ~f is from the current frame). A
frame also contains a call sign which identifies the aircraft.
A motion vector ~m is then defined as ~m = ~f −~i.

The code size of the Java version, CDj, is 3859 lines of
code while the C version is 3371. CDc is somewhat simpler
since it does not have hooks for the multiple configurations
supported by the Java version. CDc is written in an idiomatic
C style that tries to follow the algorithmic behavior of the
Java code with some small differences. For instance, the
hash table used by the C code does not require as much
allocation and have constant time traversal.

In a departure from the CDx benchmark we modified the
collision detection code to compute the radar frames. One
configuration of CDx is using another thread for this, we
did not use it to avoid the interference for our experiment.
The other configuration uses pre-computed frames, but due
to memory constraints it was not possible to load 10,000 pre-
computed frames on our embedded board. The main impact
of this change is that it forced us to have longer periods.

4.2 Comparing C to Java
The version of CDx used in our benchmark has a single
real-time periodic tasks (CD) configured to run every 300
milliseconds. We configured the benchmark with 6 airplanes
and executed the algorithm for 10,000 iterations. The Java
version ran with a GC thread enabled. The GC is set to run
at a lower priority than the CD task. As the CD thread takes
between 147 and 275 milliseconds (see Fig. 2), this leaves
the collector substantially less than 50% of the schedule to
perform memory reclamation. Still, the collector keeps up,
and no outliers are ever produced due to memory exhaustion.

The raw runtime performance of CDc compared to CDj
is presented in Fig. 2. For real-time developers the key met-
ric of performance is the worst observed time, in our bench-
marks Java is only 10% slower than C in the worst-case. On
average CDc is 30% faster than CDj. In both executions no
deadlines were missed. The computation took roughly 45
minutes to complete on the LEON3 platform. A more de-
tailed view of the performance of CDc and CDj for a subset
of the iterations is presented in Fig. 3. The graph clearly in-
dicates that there is a strong correlation between the peaks
observed in CDc and CDj. Notice, however, that the peaks
in CDj are on average smaller than those in CDc relative to
baseline performance (i.e. the distance from average to peak
is greater for C than for Java). Overall this data suggests that
while Java is somewhat slower, there are no sources of un-
predictability in our implementation.



100 150 200 250 300
1

5

10

50

100

500

1000

100 150 200 250 300
1

5

10

50

100

500

1000

CDc: Duration of Iteration Execution on RTEMS/LEON3 
in Milliseconds

CDj on Fiji VM: Duration of Iteration Execution on 
RTEMS/LEON3 in Milliseconds

N
um

be
r 

of
 S

am
pl

es
 

(L
og

ar
ith

m
ic

 S
ca

le
)

Figure 2. Histograms of iteration execution times for CDc and CDj on RTEMS/LEON3. Java’s worst observed case is 10% slower than
C, and the median is 30% slower.

2000 2050 2100 2150 2200

100

150

200

250

300

Iteration number

Ite
ra

tio
n 

Ex
ec

ut
io

n 
Ti

m
e 

in
 M

ill
is

ec
on

ds

CDc CDj on Fiji VM

CDj worst case

CDc worst case

Figure 3. A detailed runtime comparison of CDc and CDj for 200 iterations. Java and C execution times are closely correlated. CDj is
run with GC enabled. In 10,000 iterations there are 15 collections, but they never impact execution time.

Figure 4 shows correlations between the execution time
of each iteration in Java to that of the same iteration in C.
Iterations that take longer are ones that have either more
suspected collisions, or more actual collisions. A “suspected
collision” is a condition in which the aircraft are sufficiently
close that the algorithm must perform more work in order
to determine if an actual collision occurred. An actual col-
lision requires more work because a collision report must
be produced. The former requires more data structure ac-
cesses, more arithmetic, and more allocation, while the latter
requires more allocation. The C code does not have any over-
head penalties for data structure accesses: no null checks, no
array bounds checks, and no type checks. The Java code, on
the other hand, makes heavy use of Java container classes.
Container class accesses will introduce at a minimum a
nullcheck, and sometimes an array bounds check or a type

check. Thus we expect that the amount of extra work dur-
ing longer iterations will result in greater penalties for Java.
Yet this correlation shows this not to be the case: longer it-
erations do not penalize Java any more than they penalize
C, indicating that either many of the checks can be elimi-
nated by the Fiji VM compiler or else that they simply do
not cost much. For a more detailed look, we plotted the
Java iteration execution time versus the number of various
checks in Figures 5, 6, and 7. The number of checks per it-
eration were measured using RTBx instrumentation. These
figures show that the benchmark’s iterations have six dis-
tinct “modes” – i.e. the number of checks executed is fairly
discretized. This likely corresponds to the number of sus-
pected collisions (since there are six planes, we would expect
six such modes). Two additional conclusions can be drawn
from these figures. First, even though the code is dominated



100 150 200 250

150

200

250

C
D

j o
n 

Fi
ji 

V
M

: I
te

ra
tio

n 
Ex

ec
ut

io
n 

Ti
m

e 
in

 M
ill

is
ec

on
ds

CDc: Iteration Execution Time in Milliseconds

Figure 4. Execution time correlation between CDc and CDj.

1200 1300 1400 1500 1600 1700 1800

150

200

250

Number of Null Checks

Ite
ra

tio
n 

Ex
ec

ut
io

n 
Ti

m
e 

in
 M

ill
is

ec
on

ds

Figure 5. Correlation between number of null checks in an itera-
tion and that iteration’s execution time in CDj.

by operations that would appear to cause safety checks, the
rate at which these checks are executed is quite small. Sec-
ond, for longer iterations the execution time can vary by a lot
even though the number of checks remain the same, indicat-
ing that safety checks are not much of a factor in execution
time. For example: null checks, which are the most frequent,
are only executed at most at a rate of about ten per millisec-
ond. A null check that does not fail results in nothing but a
branch at the machine code level (and indeed, in CDj none
of the safety checks ever fail). This means that the presence
of Java’s null checks only adds about one additional branch

1100 1200 1300 1400 1500 1600

150

200

250

Number of Array Bounds Checks

Ite
ra

tio
n 

Ex
ec

ut
io

n 
Ti

m
e 

in
 M

ill
is

ec
on

ds

Figure 6. Correlation between number of array bounds checks in
an iteration and that iteration’s execution time in CDj.

500 550 600 650 700 750

150

200

250

Number of Type Checks

Ite
ra

tio
n 

Ex
ec

ut
io

n 
Ti

m
e 

in
 M

ill
is

ec
on

ds

Figure 7. Correlation between number of type checks in an iter-
ation and that iteration’s execution time in CDj.

per 100 microseconds of execution on a 40MHz processor,
which adds up to about one branch every 4,000 cycles. This
implies that Java’s safety guarantees are not a major factor
in performance for this program. However, we do see that
Java is indeed slower than C and suspect that this is due to
the overall performance degradation from the sum total of
all of Java’s overheads, including ones we were unable to
study in greater detail: for example the Henderson frames
used for accurate stack scanning, sync-points, procedure call
overheads, etc.

4.3 Java VM Comparison
In this experiment we compare WebSphere SRT, Hotspot
Client, Hotspot Server and Fiji VM using the same bench-
mark but running on a multicore. CDj was configured to use
up to 60 planes with a 10 milliseconds period and 10,000 it-
erations. All VMs were given maximum heap sizes of 35MB
to execute CDj and were run with default options. The goal
of the experiment is to have a rough idea of the difference
in predictability between WebSphere and Fiji, and in per-



50 100 150 200 250 300 350
1

5

10

50

100

500

1000

50 100 150 200 250 300 350
1

5

10

50

100

500

1000

50 100 150 200 250 300 350
1

5

10

50

100

500

1000

50 100 150 200 250 300 350
1

5

10

50

100

500

1000

CDj on Fiji VM: Duration of Iteration Execution on 
Linux/x86 in Microseconds

CDj on IBM Websphere Metronome SRT: Duration 
of Iteration Execution on Linux/x86 in Microseconds

N
um

be
r 

of
 S

am
pl

es
 e

xc
lu

di
ng

 fi
rs

t 1
00

0 
(L

og
ar

ith
m

ic
 S

ca
le

)

CDj on JDK HotSpot 1.6 Client: Duration of Iteration 
Execution on Linux/x86 in Microseconds

CDj on JDK HotSpot 1.6 Server: Duration of 
Iteration Execution on Linux/x86 in Microseconds

N
um

be
r 

of
 S

am
pl

es
 e

xc
lu

di
ng

 fi
rs

t 1
00

0 
(L

og
ar

ith
m

ic
 S

ca
le

)

Figure 8. Histograms of iteration execution times for CDj on Linux/x86. Fiji VM achieves the best observed worst-case and has the tightest
distribution of execution times – representing the best predictability. WebSphere SRT has a slightly better average performance but with a
larger variance. Hotspot client and server have the best average-case performance but exhibit poor worst-case performance with outliers
above 300 microseconds. We exclude the first 1,000 iterations from the measurements to avoid initialization bias.

0 100 200 300 400
0

1000

2000

3000

4000

Number of CDj Iterations dropped at the beginning of execution

W
or

st
-c

as
e 

Ite
ra

tio
n 

Ex
ec

ut
io

n 
Ti

m
e 

in
 M

ic
ro

se
co

nd
s

Fiji VM

IBM Websphere Metronome SRT

Sun JDK HotSpot 1.6 Client

Sun JDK HotSpot 1.6 Server

Figure 9. Start-up costs. The Y-axis shows the worst-case observed execution time, while the X-axis shows iterations dropped from the
10,000 performed for each VM. The initial iterations are dominated by the just-in-time compiler. This is particularly true for Hotspot server.
WebSphere also has a JIT but it is tuned to stabilize faster. In comparison, the Fiji VM does not suffer from start-up jitter. If roughly 300 or
more iterations are dropped, the JIT-based systems have a worst-case that approaches Fiji VM’s. At that point the worst-case is dominated
by garbage collection where the Fiji VM performs well due to its fully concurrent and slack-based collection strategy.



formance between real-time VMs (WebSphere and Fiji) and
production throughput optimized VMs (Hotspot).

The histogram of Fig. 8 show the frequency of execution
times for each VM with the first 1,000 iterations of the algo-
rithm dropped to avoid bias due to the just-in-time compiler.
The data demonstrates that average case performance is bet-
ter for Hotspot. Specifically, Hotspot Server is 37% faster
than Fiji and client is 4.7% faster. This is to be expected as it
does not emphasizes predictability. The worst observed case
is more important for real-time developers. There Hotspot
performs between 185% and 200% worse than Fiji, these
difference are caused by garbage collection pauses. As for
the comparison with WebSphere, Fiji has an observed worst-
case that is 4% better than WebSphere but run 15% slower
on average. Fiji VM has the tightest distribution (i.e. least
deviation from peaks to valleys) of any virtual machine for
this benchmark.

In many real-time applications start-up behavior is im-
portant. Fig. 9 illustrates the evolution of the worst observed
time as we remove initial iterations of the benchmark. By
this we mean that position 0 on the X-axis shows the worst
observed case for 10,000 iterations of the algorithm. This
measure is dominated by the cost of just-in-time compila-
tion. At offset 100, for example, the graph shows the worst-
case observed between iterations 101 and 10,000. Finally,
the far right of the graph shows the worst-case times when
the first 400 iterations are ignored. At that point the worst-
case time is dominated by GC. It is interesting to observe that
the costs of JIT compilation are highest in Hotspot Server
and they take longer to stabilize. Hotspot Client is less ag-
gressive and reaches fixpoint in around 60 iterations of the
benchmark. WebSphere tries to compile code quickly, but
the data shows that some compilation is still happening un-
til around 200 iterations. Unsurprisingly, Fiji has no start up
jitters as it is an ahead-of-time compiler.

5. Conclusion
Programming hard real-time embedded devices is particu-
larly demanding as code must be both predictable and effi-
cient. As the size of embedded code bases rises, ensuring the
correctness and safety of critical programs written in low-
level languages such as C is becoming increasingly difficult.
While high-level languages such Java and C# have been ad-
vocated as being better suited for developing large software
systems, their suitability for embedded development is still
being debated.

This paper highlights the overheads of using Java for hard
real-time development by contrasting the performance of a
representative benchmark written in C and Java on a LEON3
processor with the RTEMS operating system. The Java pro-
gram is executed by a new Java virtual machine, the Fiji VM,
which compiles Java ahead-of-time to C and which has run-
time system that includes a real-time garbage collector. The
results are encouraging as the throughput overhead of Java

is about 30% and, more importantly, the worst observed exe-
cution time of the Java program is only 10% higher than that
of the corresponding C program. The implication of these
results is that Java, even with the presence of a garbage col-
lector, can be used in many hard real-time contexts.

Acknowledgments. The authors thank Tomas Kalibera and
Gaith Haddad for their work on the CDx benchmark, the
anonymous reviewers and Gilles Muller for their helpful
comments.

References
[1] ARMBUSTER, A., BAKER, J., CUNEI, A., HOLMES, D.,

FLACK, C., PIZLO, F., PLA, E., PROCHAZKA, M., AND

VITEK, J. A Real-time Java virtual machine with applications
in avionics. ACM Transactions in Embedded Computing
Systems (TECS) 7, 1 (2007), 1–49.

[2] AUERBACH, J. S., BACON, D. F., BLAINEY, B., CHENG,
P., DAWSON, M., FULTON, M., GROVE, D., HART, D.,
AND STOODLEY, M. G. Design and implementation
of a comprehensive real-time Java virtual machine. In
International conference on Embedded software (EMSOFT)
(2007), pp. 249–258.

[3] BACON, D. F., CHENG, P., AND RAJAN, V. T. A real-time
garbage collecor with low overhead and consistent utilization.
In Symposium on Principles of Programming Languages
(POPL) (Jan. 2003).

[4] BAKER, H. G. The treadmill: real-time garbage collection
without motion sickness. SIGPLAN Notices 27, 3 (1992),
66–70.

[5] BAKER, J., CUNEI, A., KABILERA, T., PIZLO, F., AND

VITEK, J. Accurate garbage collection in uncooperative
environments revisited. Concurrency and Computation:
Practice and Experience (2009).

[6] BLACKBURN, S., AND HOSKING, A. Barriers: friend or
foe? In International Symposium on Memory Management
(ISMM) (2004), pp. 143–151.

[7] BLACKBURN, S. M., AND MCKINLEY, K. S. Immix: a
mark-region garbage collector with space efficiency, fast
collection, and mutator performance. In Conference on
Programming Language Design and Implementation (PLDI)
(2008), pp. 22–32.

[8] BOLLELLA, G., DELSART, B., GUIDER, R., LIZZI, C.,
AND PARAIN, F. Mackinac: Making HotSpot real-time.
In International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC) (2005), pp. 45–54.

[9] BOLLELLA, G., GOSLING, J., BROSGOL, B., DIBBLE, P.,
FURR, S., AND TURNBULL, M. The Real-Time Specification
for Java. Addison-Wesley, June 2000.

[10] BRUNO, E., AND BOLLELLA, G. Real-Time Java Program-
ming: With Java RTS. Addison-Wesley, 2009.

[11] CLICK, C., TENE, G., AND WOLF, M. The pauseless GC
algorithm. In International Conference on Virtual Execution



Environments (VEE) (2005), pp. 46–56.

[12] CORSARO, A., AND SCHMIDT, D. The design and
performace of the jRate Real-Time Java implementation.
In The 4th International Symposium on Distributed Objects
and Applications (DOA’02) (2002).

[13] HENDERSON, F. Accurate garbage collection in an uncooper-
ative environment. In Proceedings of the ACM International
Symposium on Memory Management (Feb. 2002), vol. 38,
ACM, pp. 256–263.

[14] HENRIKSSON, R. Scheduling Garbage Collection in
Embedded Systems. PhD thesis, Lund University, July 1998.

[15] KALIBERA, T., HAGELBERG, J., PIZLO, F., PLSEK, A.,
AND BEN TITZER AND, J. V. Cdx: A family of real-time Java
benchmarks. In International Workshop on Java Technologies
for Real-time and Embedded Systems (JTRES) (September
2009).

[16] KALIBERA, T., PIZLO, F., HOSKING, A., AND VITEK, J.
Scheduling hard real-time garbage collection. In Proceedings
of the IEEE Real-Time Systems Symposium (RTSS) (Dec.
2009).

[17] KALIBERA, T., PROCHAZKA, M., PIZLO, F., VITEK, J.,
ZULIANELLO, M., AND DECKY, M. Real-time Java in
space: Potential benefits and open challenges. In Proceedings
of DAta Systems In Aerospace (DASIA) (2009).

[18] KRALL, A., VITEK, J., AND HORSPOOL, N. R. Near
optimal hierarchical encoding of types. In Proceedings of
the European Conference on Object-Oriented Programming
(ECOOP) (Jyvaskyla, Finland, June 1997).

[19] MULLER, G., AND SCHULTZ, U. P. Harissa: A hybrid
approach to Java execution. IEEE Software 16, 2 (1999).

[20] NILSEN, K. Garbage collection of strings and linked data
structured in real time. Software, Practice & Experience 18,
7 (1988), 613–640.

[21] PIZLO, F., AND VITEK, J. An empirical evalutation of
memory management alternatives for Real-time Java. In
Proceedings of the 27th IEEE Real-Time Systems Symposium
(RTSS) (Dec. 2006).

[22] PIZLO, F., AND VITEK, J. Memory management for real-
time Java: State of the art. In Proceedings of the IEEE
International Symposium on Object-oriented Real-Time
Distributed Computing (ISORC) (Orlando, FL, May 2008).

[23] PIZLO, F., ZIAREK, L., AND VITEK, J. Towards Java on
bare metal with the Fiji VM. In International Workshop
on Java Technologies for Real-time and Embedded Systems
(JTRES) (September 2009).

[24] PROEBSTING, T., TOWNSEND, G., BRIDGES, P., HART-
MAN, J., NEWSHAM, T., AND WATTERSON, S. Toba: Java
for applications – A way ahead of time (WAT) compiler. In
Conference on Object-Oriented Technologies and Systems
(1997).

[25] PUFFITSCH, W., AND SCHOEBERL, M. Non-blocking root
scanning for real-time garbage collection. In International
Workshop on Java Technologies for Real-Time and Embedded
Systems (JTRES) (2008), pp. 68–76.

[26] SCHOOFS, T., JENN, E., LERICHE, S., NILSEN, K.,
GAUTHIER, L., AND RICHARD-FOY, M. Use of PERC pico
in the AIDA avionics platform. In International Workshop
on Java Technologies for Real-Time and Embedded Systems
(JTRES) (2009), pp. 169–178.

[27] SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. P. Priority
inheritance protocols: An approach to real-time synchroniza-
tion. IEEE Transactions on Computers 29, 9 (Sept. 1990),
1175–1185.

[28] SHIVERS, O. Control flow analysis in scheme. In Conference
on Programming Language design and Implementation
(PLDI) (1988), pp. 164–174.

[29] SIEBERT, F. The impact of realtime garbage collection on
realtime Java programming. In International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC)
(2004), pp. 33–40.

[30] SIEBERT, F., AND WALTER, A. Deterministic execution of
Java’s primitive bytecode operations. In Java Virtual Machine
Research and Technology Symposium (JVM) (2001), pp. 141–
152.


	1 Introduction
	2 State of the Art
	3 Designing a Real-time Virtual Machine
	3.1 An Ahead-of-time Java Compiler
	3.2 Object layout
	3.3 High-level optimizations
	3.4 Type inclusion and interface dispatch
	3.5 The Runtime System
	3.6 Garbage Collection
	3.6.1 Threading and Locking


	4 Evaluation
	4.1 CDx Overview
	4.2 Comparing C to Java
	4.3 Java VM Comparison

	5 Conclusion

