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ABSTRACT

Software transactional memory (STM) is a promising tech-
nique for controlling concurrency in modern multi-processor
architectures. STM aims to be more scalable than explicit
coarse-grained locking and easier to use than fine-grained
locking. However, STM implementations have yet to demon-
strate that their runtime overheads are acceptable. To date,
empiric evaluations of these implementations have suffered
from the lack of realistic benchmarks. Measuring perfor-
mance of an STM in an overly simplified setting can be at
best uninformative and at worst misleading as it may steer
researchers to try to optimize irrelevant aspects of their im-
plementations.

This paper presents STMBench7: a candidate bench-
mark for evaluating STM implementations. The underly-
ing data structure consists of a set of graphs and indexes
intended to be suggestive of many complex applications,
e.g., CAD/CAM. A collection of operations is supported to
model a wide range of workloads and concurrency patterns.
Companion locking strategies serve as a baseline for STM
performance comparisons. STMBench7 strives for simplic-
ity. Users may choose a workload, number of threads, bench-
mark length, as well as the possibility of structure modifica-
tion and the nature of traversals of shared data structures.
We illustrate the use of STMBench7 with an evaluation of
a well-known software transactional memory implementa-
tion.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.2.8 [Software Engineering]: Metrics—perfor-
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1. INTRODUCTION

Multi-threading is well on its way to becoming the norm
in the future with the foreseen general migration to mod-
ern multi-processor systems. Whereas forking large num-
bers of threads is appealing for performance, controlling
their concurrent interactions is tricky. The most common
method for thread synchronization—using lock-based struc-
tures, like monitors—poses both efficiency and engineering
problems. Coarse-grained locking is blamed for its limited
scalability, whereas fine-grained locking is considered error
prone.

Transactional memory [9], implemented either in software
or in hardware, is an alternative to explicit locking® which
has garnered considerable attention of late. The idea is that
manipulation of shared data structures is performed within
the scope of in-memory transactions. These can either com-
mit, in which case the results of their computations become
instantly visible to other threads, or abort, in which case
all changes to shared state are lost. An aborted transaction
may either be transparently restarted by the run-time, or the
control may be handed by to the application. Deadlock and
priority inversion are avoided because non-committed trans-
actions can be aborted at any time. Furthermore, some im-
plementations (e.g., obstruction-free ones [8, 10]) are fault-
tolerant in a sense that a faulty transaction that crashes (or
a transaction that is preempted for a long time or explic-
itly killed in the middle of its execution) cannot cause an
inconsistent state or block other transactions forever.

A Software Transaction Memory (STM) [13] implemen-
tation guarantees atomicity and isolation of transactions
through software mechanisms. These are used for undoing
changes made by aborted transactions and for resolving con-
flicts between transactions that compete for the same shared
objects. STM systems are of particular interest because they
do not require any change to the underlying hardware—they
can be implemented either as part of the high-level lan-
guage compiler, the virtual execution environment, or even
as an external library. Many STM implementations (e.g.,
ASTM [10], DSTM2 [7] (Java), SXM [6] (C#), RSTM [11,
2] (C++)) have been proposed. So far, there has been very
little in the way of empiric evaluation of the tradeoffs in the
different systems. This for two reasons: Firstly, direct com-
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1We use here the term explicit locking to contrast it with im-
plicit locking that might underly some transactional memory
implementations.



that provide realistic workloads for STMs. The upshot is
that all experimental evaluation to date have either relied
on “toy” benchmarks based on simple data structures (e.g.,
lists, red-black trees), or benchmarks with limited concur-
rency (like SPEC JVM98 or Java Grande) which were not
designed for transactional memory. In most of the exist-
ing evaluations, a clear, uncontroversial baseline is generally
missing—a comparison with fine-grained and coarse-grained
locking—and so it is difficult to estimate the real cost of us-
ing an STM (which is usually not negligible).

The motivation of this work is to come up with a compre-
hensive benchmark suite for STM implementations. More
specifically, our goal is to produce a set of workloads that:

1. corresponds to realistic, complex, object-oriented ap-
plications which benefit from multi-threading;

2. do not depend on any particular STM or programming
language;

3. are easy to use and provide results of which can be
readily interpreted.

This paper presents STMBench?7, a first step towards achiev-
ing these objectives. Instead of starting from scratch, we
considered extending a rich data structure with a long his-
tory of use for benchmarking purposes: the OO7 bench-
mark [4]. OO7 has been originally designed to compare var-
ious object-oriented database systems. It is not specific to
any particular application, but, as shown by the authors,
represents a wide variety of commercial applications includ-
ing CAD, CAM or CASE systems. Like OO7, STMBench7
operates over a rich object-graph with millions of objects
and many interconnections between them. There are over
forty operations with various scope and complexity. This al-
lows for simulating many different real-world scenarios and
makes concurrency a non-trivial issue.

The set of operations we designed and implemented for
STMBench? is, however, significantly more involved than in
OQ7. Basically, OO7 was used to evaluate the performance
of isolated transactions, whereas STMBench?7 is aimed to
consider various concurrency patterns and workloads. Fur-
thermore, unlike in OO7, the data structure of STMBench7
is highly dynamic, which better matches the requirements
of applications that allocate and deallocate memory at high
rates. STMBench?7 is multi-threaded and we needed to de-
fine precisely how updates to different objects performed
by a single operation have to become visible to concurrent
threads. STMBench?7 also provides locking mechanisms that
can serve as a comparison baseline for STM implementa-
tions. In its default configuration, STMBench7 comes with
a coarse-grained locking strategy and a finer-grained one in
order to highlight the performance and scalability tradeoffs
of different strategies. In the long run we expect to provide
more refined lock-based implementations.

The current implementation of STMBench?7 is over 5000
lines of code and is available at [3]. Our version is writ-
ten in Java, a ML port is complete and we expect to pro-
vide versions of the benchmark for C# and C+4. STM-
Bench7 uses standard classes from the java.util package.
We used the new features of Java 5.0, such as generics and
enumerations to improve the quality and readability of code.
The locking strategies use the read-write locks from the
java.util.concurrent package.

We illustrate the use of STMBench7 with an evaluation of
a variant of ASTM, and we indirectly highlight the difficulty
in outperforming locking strategies. Our straightforward im-
plementation of STMBench7 using ASTM performs 2—4 or-
ders of magnitude worse than the lock-based versions. That
is because of long traversals and large objects that would
need more adaptive mechanisms than the ones ASTM uses.
One way to overcome this problem would be to refactor the
implementation of the data structures so that small objects
are grouped and larger ones are split into smaller objects.
But doing so would require significant effort and weaken the
main selling point of the STM technology—namely, that it
makes implementing scalable concurrent data structure easy.

Our results may be surprising for some preliminary per-
formance evaluations have shown situations where ASTM
outperforms, e.g., DSTM that, in turn, scales better than
coarse-grained locking strategies [10, 8]. We argue that
there is actually no contradiction here. When selecting
STMBench7 workloads that resemble the ones of synthetic
benchmarks used so far, the ASTM-based implementation
is nearly as fast as the lock-based ones, outperforming the
coarse-grained locking strategy for read-dominated work-
load. The performance problems of ASTM are, we believe,
common to many STMs that use invisible reads and object-
level logging of changes made by transactions. Fortunately,
some solutions to overcome these issues have already been
proposed [5, 11, 12, 14].

The rest of the paper is organized as follows. We first
give an overview of STMBench7. Then, we focus on its
operations and concurrency aspects. We also show some ex-
perimental results that highlight the differences between the
two locking strategies built in STMBench7. Then, we dis-
cuss the issues related to using the benchmark with various
STMs and porting it to other programming languages. Fi-
nally, we illustrate the use of our benchmark by evaluating a
variant of the ASTM framework. We conclude by presenting
future directions and possible enhancements of STMBench?7.

2. OVERVIEW

As we pointed out, STMBench?7 is based on the data struc-
ture underlying OO7. We had to provide, however, a new
collection of operations to match the demands of concurrent
applications. Basically, the implementation of STMBench?7
has about 5000 lines of code of which only 2500 corresponds
to the OO7 specification. In this section, we recall the OO7
benchmark and then give an overview of STMBench?7, before
describing its details in the next sections.

2.1 The OO7 Benchmark

The OOT benchmark [4] has been originally designed to
compare various object-oriented database systems. A pre-
cise description of OO7 can be found in its specification and
the accompanying source code [1]. Here we only give a gen-
eral overview of OO7 that is necessary to understand the
specifics of STMBench?.

The data structure underlying OO7 is depicted in Fig-
ure 1. It consists of several modules, each containing a tree
of assemblies. The internal nodes of the tree are called com-
plex assemblies and the leaves—base assemblies. Each base
assembly contains several composite parts. A composite part
has a document assigned to it and links to a graph of atomic
parts which are connected via connection objects. Each el-
ement of the data structure contains links to its parents.



As a consequence, a traversal is possible both top-down and
bottom-up. The many-to-many connections between base
assemblies and composite parts are implemented with two
bags each: one containing all composite parts belonging to
a given assembly, and one containing all base assemblies a
given composite part belongs to. Each document and each
graph of atomic parts is associated with one composite part.
On the contrary, composite parts form a design library that
is shared between all base assemblies.

OO07 includes three kinds of operations: traversals, queries
and structure modifications. Traversals go through the data
structure top-down, starting from the root assembly, or
bottom-up, starting from a random atomic part. Most of
them access (read or update) a large subset of all shared ob-
jects. Queries generally search for a subset of objects using
an index or a set. Structure modification operations cre-
ate or delete a base assembly and the descendant composite
parts together with their documentation objects and their
graphs of atomic parts. In general, only atomic parts and
documentation objects can be updated, while all others are
read-only.

2.2 From OQO7 to STMBench7

OOT was designed to measure the latency of isolated oper-
ations issued to an object-oriented database system. Specific
aspects of OO7 were oriented towards multi-client systems,
but the benchmark was rather intended for use in low-load
scenarios, where interaction between concurrent operations
is not taken into account.

Our main goal in designing STMBench7 was to measure
the performance (throughput and latency) of a set of oper-
ations that are interleaved by a scheduler or run in parallel,
and that compete for access to shared objects. Thus, we are
interested in the behavior of both the overall system and
each individual operation, under high load and high con-
tention. The data structure and operations of OO7 were
a good starting point, but they were clearly insufficient for
our purpose. Firstly, in many concurrent applications one
can often find a large number of very short operations the
performance of which is crucial. The traversals and queries
forming the OO7 suite are mostly long and access a large
number of shared objects. Secondly, the choice of the op-
erations in OO7 makes most of the shared data structure
effectively read-only. This is not very important when there
is no concurrency. However, having a large number of read-
only objects makes the synchronization problem unrealisti-
cally easy. Clearly, for read-dominated workloads, updates
of object attributes are rare, but still the synchronization
strategy, be it locking or STM-based, has to account for
these rare changes that usually may appear in every part of
a data structure.

While extending OO7, we wanted to retain the realism
of its operations. However, we needed to enlarge the set
of operations so that many interesting data access patterns,
which often appear in concurrent programs, are tested and
the related problems of synchronizing concurrent objects are
faced. We give a precise description of STMBench7 opera-
tions in Section 3. We left the original data structure of
OOQO7 almost untouched. We only removed few parts that
only make sense in a database context. In particular, we
removed some indexes and sets (we left the indexes listed
in Table 1.) as well as indirect links between atomic parts
and documents that were introduced for the sole purpose
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Figure 1: Overview of the basic OO7/STMBench7
data structure: module objects contain a tree of
assemblies. Internal nodes of the tree are called
complex assemblies and leaves are base assemblies.
A base assembly contains several composite parts.
A composite part has a document and links to a
graph of atomic parts connected via connection ob-
jects. Each element contains links to its parents al-
lowing bottom-up as well as top-down traversals.

of evaluating join operations (which are quite meaningless
outside the database context).

We also confined the data structure of STMBench7 to a
single module. This is because multiple modules would limit
the concurrency of operations and would require a much
higher load to discover all the efficiency problems resulting
from contention. However, we chose the “medium” size of
OQT as the base for our benchmark, which gives quite a large
data structure. Namely, initially there are six levels of com-
plex assemblies, having three children assemblies each, 500
composite parts altogether, each corresponding to a graph
of 200 atomic parts and at least three times as many connec-
tions between them. However, the structure is dynamic and
so the number of elements can vary during an execution.



l [ Key Value

Atomic part ID Atomic part
Atomic part build date | Atomic part
Composite part ID Composite part
Document title Document

Base assembly ID Base assembly
Complex assembly ID Complex assembly

O U | W N =

Table 1: The list of indexes used in STMBench7

STMBench7, unlike OO7, is inherently multi-threaded.
Therefore, additional care had to be taken so that the spec-
ification of operations is unambiguous even in presence of
concurrency and contention. For example, we needed to de-
fine precisely, how updates to different objects performed
by a single operation have to become visible to concurrent
threads. STMBench7 also provides two locking strategies
with different granularity and complexity. We describe them
precisely, together with the multi-threading issues, in Sec-
tion 4.

2.3 Application Domain

Just like OO7, STMBench7 comes close to how general
CAD, CAM and CASE programs work. Basically, the data
structure of STMBench7 could directly store information
about a complex design, model or a system built from soft-
ware components. Moreover, the supported operations rep-
resent different ways according to which the structure could
be searched or modified. The fact that STMBench?7 is multi-
threaded makes it suggestive of rather complex applications
that need to perform time-consuming engineering or scien-
tific computations, possibly allowing a user to adjust param-
eters and modify data concurrently, and can thus benefit
from multi-core architectures.

STMBench7 can also imitate multi-user server applica-
tions, especially the ones that operate on highly-structured
and categorised data. Examples would be on-line services
that do not rely on disk storage, e.g., game servers, on-line
caches or data analysers.

It is important, however, to notice that although the pa-
rameters of STMBench7 allow for emulating a wide variety
of workloads, the benchmark is, clearly, not representative
of all possible applications. Firstly, STMBench7 does not
use any kind of blocking producer-consumer patterns. Sec-
ondly, the data structure of the benchmark is highly-regular.
Finally, the concurrency between threads is non-negligible
and can often result in high contention. Therefore, applica-
tions that are embarrassingly parallel, that use the master-
workers pattern or that operate on non-structured data are
outside of the application domain of our benchmark.

2.4 Using STMBench7

The command-line interface of STMBench7 involves
the following parameters: the length of the benchmark,
the number of threads, the type of the workload (read-
dominated, read-write or write-dominated) and two param-
eters that can independently disable long traversals and
structure modification operations. The benchmark, by de-
fault, outputs the count and maximum latency numbers for
each operation type and for each category of operations, as
well as the total throughput. The benchmark also computes
the error of the sample of randomly chosen operations, as

compared to the ratios derived from the benchmark param-
eters. The benchmark can also optionally produce latency
histograms for each operation.

STMBench7 does not output a single number as a bench-
mark result. This would lead to simplistic comparisons: for
some applications it is crucial to optimize the latency of long
operations whereas others focus more on the throughput of
short queries. Besides, interpreting a single result, computed
from many others with a convoluted formula, would say very
little on where optimizations should actually be performed.

3. OPERATIONS, WORKLOADS AND
CONCURRENCY PATTERNS

STMBench7 contains 45 operations on the shared data
structure. This is a large number and leaving a user full
control over how often each of them is executed would be
unacceptable. Therefore, we divided the operations into sev-
eral categories. The benchmark assigns ratios to these cat-
egories automatically, based on the abstract description of
a target application provided by a user. Then, STMBench?7
operations are executed by a number of threads, in propor-
tions that depend on the computed ratios (operations from
the same category have equal ratios).

There are four main categories of STMBench7 operations:

1. Long traversals—go through all assemblies and/or all
atomic parts. Some of them update documents or
atomic parts. They all originate from OO7 (traver-
sals T1-T6 and queries Q6, QT).

2. Short traversals—traverse the structure via a ran-
domly chosen path, starting from a module, a doc-
ument or an atomic part. Some of them use indexes.
One short traversal behaves differently: it iterates over
all base assemblies and checks some of their descendant
composite parts. Short traversals are denoted by ST1-
ST10. Some of them originate in OO7 (T7, Q4 and Q5
in OO7) and some perform updates on atomic parts or
documents.

3. Short operations—chose some object (or a few objects)
in the structure (randomly or with some search crite-
ria, mostly using an index) and perform an operation
on the object(s) or its local neighborhood. They are
denoted by OP1-OP15. Five of them originate from
007 (Q1-Q3 and T8, T9 in OO7).

4. Structure modification operations—create or delete el-
ements of the structure or links between elements (ran-
domly). The operations are constrained though, so
that the structure is never degenerated in a significant
way. For example, the root complex assembly is always
connected to all base assemblies. Also the maximum
size of the structure is confined. Structure modifica-
tion operations are denoted by SM1-SMS8. They have
no exact equivalents in OO7. A simple example of
a structure modification operation is depicted in Fig-
ure 2.

We also split the STMBench7 operations into two other cat-
egories, spanning all traversals and short operations: read-
only operations and update ones.

A wuser describes a target application by providing the
following information:
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Figure 2: A structure modification operation that
removes a complex assembly with its descendants

Workload type
Category Read-dom. | Read-write | Write-dom.
Read-only ops 90 60 10
Update ops 10 40 90
Long Traversals 5
Short traversals 40
Short operations 45
Structure mods 10
Table 2: Default ratios for operation categories
(in %)

e Workload type: which can be read-dominated, read-
write or write-dominated.

e Types of allowed operations: i.e., whether long traver-
sals and/or structure modification operations are en-
abled.

e Number of concurrent threads.

The default ratios for different operation categories are pre-
sented in Table 2. These are combined and adjusted, based
on the benchmark parameters.

The operations of STMBench?7 represent all the important
ways the shared data structure can be accessed. There is one
significant exception, though. Namely, as already mentioned
in the previous section, we do not exploit concurrency pat-
terns in which a thread must wait for results of operations
performed by other threads. Thus, STMBench7 is not meant
to evaluate the performance of producer-consumer-like sce-
narios. STMBench7 approaches the problem in a different
way: it allows an operation that cannot proceed without
being blocked to fail. We use this mechanism extensively,
because operations lack input data and thus have to make
choices randomly. For example, some operations chose an
object in the structure by picking a random ID and search-

ing an appropriate index. If the ID does not correspond to
any existing object, the operations fail. Clearly, we could
make them check first which IDs are available, so that they
can never fail, but this would be more costly than a sim-
ple index search, which, in turn, would skew the benchmark
results.

4. MULTI-THREADING AND LOCKING

STMBench7 runs a user-specified number of concurrent
threads, all performing operations on the shared data struc-
ture. The threads are uniform in a sense that each picks its
next operation randomly from the whole pool of 45 STM-
Bench7 operations. Each thread registers locally its perfor-
mance measurements. These are combined at the end of the
benchmark.

There is an important question about the behavior of
STMBench7 operations executed concurrently. More pre-
cisely, one has to decide whether an operation should be
executed (logically) atomically or whether the updates it
makes to the shared data structures can become gradually
visible to all threads. The problem is difficult, because the
operations of OQO7, or the ones we added for STMBench?7,
are not tightly bound to any specific application so there is
no clear semantics behind them. For real programs atomic-
ity is not always a must—it can be weakened sometimes for
efficiency reasons, when the application can take additional
measures to prevent dangerous inconsistencies in the global
state. We, however, have to be conservative. We thus as-
sume that every operation is atomic, i.e., that the changes
it makes to the shared data structure have to become vis-
ible instantaneously to others. It does make locking more
difficult, but it also makes the lock-based version of STM-
Bench7 have the same semantics as an STM-based one in
which every operation is a single transaction.

The core code of STMBench7 does not contain any con-
currency control mechanisms. This makes it possible to di-
rectly use STMBench7 with an arbitrary STM framework,
without the need to remove locks and convert critical sec-
tions. Nevertheless, we do provide two locking strategies
that can serve as a baseline for STM performance results,
but these are provided separately and can be automatically
merged with the core STMBench7 code at compile time.

The two locking strategies of STMBench7 differ in their
granularity and complexity. The first, which we call “coarse-
grained”, uses a single read-write lock to protect the whole
data structure. Clearly, it induces minimal locking overhead
on operations, but limits scalability in a significant way, ex-
cept for read-dominated workloads. The second strategy
could be described as a pragmatic approach. It is not fully
fine-grained, but its complexity (from a programmer’s per-
spective) is similar to that of an STM-based solution. It
represents what, we believe, an average software engineer
would try in the first place. We call it “medium-grained”.
This locking strategy, in short, (1) protects each level of
the data structure with a single read-write lock, and (2)
makes all the structure modification operations performed
in isolation (see Figure 5). More precisely, there is a sin-
gle read-write lock for: (1) each level in the assembly tree,
(2) all composite parts, (3) all atomic parts, (4) all docu-
ments, and (5) the manual. An additional read-write lock
isolates structure modification operations (it is acquired in
write mode by structure modification operations and in read
mode by all other ones). Indexes, sets and bags do not have
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to be synchronized separately in this case.

A fine-grained locking could be implemented for STM-
Bench?7. It would probably make no sense to protect each
atomic part with a single lock, but locking each assembly
and composite part separately could result in better scalabil-
ity. However, the diversity of STMBench7 operations makes
the problem of fine-grained locking very difficult. That is be-
cause the data structure can be accessed in many ways and
traversed in many directions. Thus, there is a need for each
operation to build a list of objects it wants to access, sort
the list and then acquire locks in the right order to avoid
deadlocks. This, clearly, adds additional overhead which,
together with the significant engineering cost, would be dif-
ficult to justify with an increase in scalability.

To illustrate the difference between the two strategies, we
present here some preliminary experimental results. These
were obtained on two machines: a 2-cpu Xeon and an 8-
cpu Sun V40z. The maximum latency of long traversals T'1
(read-only, for read-dominated workload) and T2b (updates
all atomic parts, for write-dominated workload), in execu-
tions with all operations enabled, is plotted in Figure 3. The
throughput results for three possible workload types, with
long traversals disabled, are presented in Figure 4. Note
that measuring total throughput when long traversals are
allowed, as well as latency for short operations, makes little
sense. That is why STMBench7 measures and outputs a
variety of parameters.

Clearly, the medium-grained locking approach has a



Workload type
Read-dominated Read-write Write-dominated
Threads | Lock [ ASTM [ Lock | ASTM | Lock [ ASTM
1 2396 1.1 1361 1.60 813 6.6
2 2982 1.6 1396 1.5 814 8.9
4 2976 2.1 1430 2.3 779 2.1
8 2876 0.7 1343 0.7 788 7.6

Table 3: Comparison of total throughput (operations per second) for coarse-grained locking and ASTM, with

long traversals disabled
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Figure 5: Medium-grained locking

slightly larger overhead than the coarse-grained one, but it
exploits the power of the multi-processor architecture bet-
ter when there are at least two concurrent threads. The
scalability of medium-grained locking is hampered for write-
dominated workloads, though. This is because most of the
update operations and short traversals, and all structure
modification operations, acquire the same locks in write
mode, which means that only few can be executed in paral-
lel. However, most of them may, at least partially, overlap
with read-only operations. A finer-grained locking strategy
could help here, but, as we already mentioned, implement-
ing it efficiently would be much more complex than using an
STM.

The throughput results are not surprising. However, the
latency ones need some explanation, for the latency of long
traversals T1 and T2b is, on average, higher for medium-

grained locking than for coarse-grained one. We believe this
is due to the fact that long traversals have to acquire 9 locks
in the former case, and only a single lock in the latter case.
Thus, with medium-grained locking a thread executing T1
or T2b has to wait more often in lock queues.

5. STMINTERFACE

STMBench?7 is designed such that it should be easy to use
with any STM implementation. In the worst case one has
to provide an implementation of the objects that constitute
the data structure and the backend, together with corre-
sponding factories. These objects, however, would provide
only very simple functionality and are completely separated
from the implementation of benchmark operations, threads,
setup procedures, etc. These typically compose more than
80% of the code. The only difficulty here might be to pro-
vide an efficient implementation of the index data structure
that is part of the backend, for the default one uses TreeMap
included in the standard Java library. One may also have to
provide explicit transaction handling to class BenchThread
that invokes benchmark operations (but does not implement
them).

However, when modern STM frameworks are used, es-
pecially the ones that provide compiler extensions, one
could make use of the benchmark annotations. Basically,
each object that can be read and updated by a transac-
tion is marked @Atomic, each object that is never modi-
fied after the setup phase is marked @Immutable and each
method that is supposed to be executed as a transaction
is marked @Transactional. Additionally, we use annota-
tions @ReadOnly and @Update to denote methods that, re-
spectively, are read-only or perform some updates on atomic
objects. Therefore, making STMBench7 work with an STM
may be as simple as creating an aspect that will surround
appropriate methods with atomic blocks (or other trans-
actional constructs), or change the benchmark annotations
with STM-specific ones.

In any case, one can couple STMBench7 with any STM
without going into the details of how the benchmark works,
or how its operations are implemented. We tried to separate
the generic, STM-independent part of the STMBench?7 code
as much as possible.

Ideally, however, the benchmark should use a kind of a
generic STM interface. Then, it would be possible to just
“plug” various STM implementations, without using aspects
or reimplementing some parts of the benchmark. At this
point, however, it is difficult to say how such an inter-
face should look like, given the variety of approaches pro-
posed so far. It could be also difficult then to make use of
compile-time optimizations that might be provided by some
STMs, or other STM-specific features that could improve



the benchmark results.

STMBench?7 is written in Java 5, but it should not be
difficult to port it to other programming languages, or pre-
vious versions of Java. The transition to object-oriented
languages that provide automatic memory management, like
C+#, should be straightforward, for we do not rely on any
Java-specific features. Enumerations, annotations and re-
flection are used in STMBench7 only for convenience and
can be easily replaced with more common constructs. As-
pects are used only for implementing locking mechanisms.
The benchmark can be compiled without the aspects, and
the locking code can be merged manually with the core code,
provided that there is an implementation of read-write locks
for a given programming language.

Porting the benchmark to other object-oriented languages
might require adding code for explicit memory management.
For languages that do not support objects, more effort is
necessary. It is worth noting, however, that in many cases
the benchmark might be unsuitable for a given programming
language not because of porting problems, but because of
its application domain, which is rather oriented towards the
object-oriented paradigm.

6. ILLUSTRATION: ASTM

To test our benchmark, we have implemented a version
of STMBench7 synchronized using a variant of ASTM—an
STM framework available as a Java library. The tests were
performed on two machines: a 2-cpu Xeon and an 8-cpu
Sun V40z, using JDK 1.6 (beta) and the Polka contention
manager included in ASTM.

Our STM-based implementation is a straightforward, and
so not necessarily optimal, approach to the problem. We
tried to look from the perspective of an average programmer
who has chosen STM because it is advertised as being almost
as easy to use as coarse-grained locking. Thus, we made
each non-immutable object in the data structure atomic?
and converted each operation to a single, flat transaction.
Of course, the performance results we provide could be used
for further improvements of the STM implementation.

Our simple ASTM-based implementation performs very
poorly when long traversals are enabled—a single execution
of traversal T1, for example, could last as much as half an
hour (with a single thread, on the 2-cpu machine; as com-
pared to about 1.5 s for locking). With long traversals dis-
abled, we got the throughput results presented in Table 3.

The cause of the poor performance of the ASTM-based
STMBench7 are two kinds of operations: the ones that ac-
quire a large number of objects in read mode and the ones
that perform updates on very large objects (like the man-
ual). The reason for that are two elements of the ASTM
design: inwvisible reads and logging granularity, i.e., object-
level granularity of logging changes made by running trans-
actions. More precisely, when a transaction acquires an ob-
ject in a read-only mode, it adds the object to its private
list. The list is not visible to other transactions. Therefore,
an object acquired for reading can be subsequently acquired
for writing by another transaction. This means that, in a
general approach, which is also used in ASTM, a transaction
has to validate its private list every time the transaction ac-
quires an object for reading. Thus, the cost of validation

2 Atomic objects are shared objects access to which is con-
trolled by an STM.

for every transaction is O(k?), where k is the number of ob-
jects the transaction acquired for reading. This explains the
problem with long traversals, some of which, in our ASTM-
based implementation of STMBench7, have to acquire more
than 100 thousands of objects.

ASTM performs logging of changes made by transac-
tions by copying the objects that were acquired for writ-
ing. Therefore, even if only a single attribute of an object is
changed, a copy of the whole object has to be made. This
clearly poses a problem, because the manual and each index
are represented by single objects. As our ASTM-based im-
plementation does not split large objects into smaller parts,
the performance of operations that updates these objects is
significantly limited.

A solution would be to group small objects and split the
large ones. For example, one could make composite parts
contain, logically, all their atomic parts. Then, only com-
posite parts would be transactional and thus the cost of
read-only traversals would be significantly lowered. How-
ever, composite parts would then become big objects, up-
dates to which would be quite costly. One can also split
the manual into a number of chunks, each being a separate
transactional object. The indexes could be implemented
manually, using, for example, B-trees, with each node syn-
chronized separately—this would make them highly scalable
data structures. Nevertheless, one can easily see that if such
amount of changes is necessary to use STM in an optimal
way, the software engineering advantages of STMs become
less visible. In this sense, STMBench?7 requires a tough job
from STMs and as such it becomes even more interesting.

To check that our suspicions are correct, we disabled all
operations that acquire too many objects in read mode or
modify either the large index of atomic parts or the man-
ual. The resulting data structure, with remaining set of
supported operations, resembles applications that are based
on short queries over partially static, tree-based data struc-
ture. This come close to the synthetic benchmarks that have
been used for evaluating STMs so far (e.g., [8, 10, 5]).

We repeated all the experiments with the so-modified
STMBench7. The results, presented in Figure 6, confirm
that ASTM performs very well in some, specific scenar-
ios. Namely, for read-dominated workload ASTM-based
synchronization is as scalable as medium-grained locking
(see the plot for the 8-cpu machine) and outperforms coarse-
grained locking if enough processors and threads are avail-
able. This should not be surprising. The ASTM-based im-
plementation, however, seems to behave in a quite instable
way when the ratio of update operations is larger. Unfor-
tunately, we do not understand the cause of this behavior
yet.

7. SUMMARY AND FUTURE WORK

This paper presents a first step towards a benchmark for
evaluating software transactional memory implementations.
STMBench7 has the following desirable properties: Its data
structures and workloads aim at being realistic, and cor-
respond to an important class of applications (e.g., CAD,
CAM or CASE software). We chose to use of dynamically
allocated data thus exercising the aspects of STMs related to
memory allocation. In fact, STMBench7 can be viewed as a
“stress test” for software transactional memory implementa-
tions as it includes test cases that are known to be challeng-
ing such as long traversals and complex object structures.
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Figure 6: Comparison of ASTM-based synchronization with coarse- and medium-grained locking strategies
included in the STMBench?7 suite with all long operations disabled. Left: 2-cpu Xeon, right: 8-cpu Sun V40z.



The two lock-based synchronization mechanisms included
in the code can be used to set a baseline for evaluation of
different STMs.

The workloads have been designed so as to keep the set of
input parameters small and intuitive, which make the bench-
mark easy to use. The output is very detailed, allowing for
in-depth analysis of performance bottlenecks. STMBench7
is open source (BSD-style license) and can be downloaded
from the authors’ web site[3].

Clearly, STMBench?7 is only a first step and more experi-
ments will help evolve our benchmark. The main directions
in which it could be extended it in the future are the follow-
ing:

e We would like to add an option that would reduce
the non-determinism of the benchmark. Namely, we
search for an efficient way to replace randomization,
which we use in many places, with a technique that
would reduce the number of failed operations and make
the results more predictable and easier to interpret.
The problem is non-trivial because of the inherent in-
determinism of thread scheduling, and because the
technique must not result in an artificial bottleneck
outside the core data structure.

e We consider adding a fine-grained, highly-optimized
locking strategy that would help define the “ultimate”
baseline test of STMs.

e [t would be desirable that the benchmark has a way
to validate its data structure at the end of each run.
Given the complexity of the structure, it might be very
difficult or limited in scope.

e We aim at providing implementations for STMBench7
for as many STMs as it is possible. In the end, the
goal is to compare software transactional memory im-
plementations and choose strategies that perform best
in the applications our benchmark represents. This
may, clearly, result in a more universal interface of
STMBench?.

e Finally, it is important that more experimental data
are obtained. Only further experiments, using various
STMs and platforms, will allow for refining the design
of the benchmark and understanding its limitations.
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