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Abstract. A transaction defines a locus of computation that satisfies
important concurrency and failure properties; these so-called ACID prop-
erties provide strong serialization guarantees that allow us to reason
about concurrent and distributed programs in terms of higher-level units
of computation (e.g., transactions) rather than lower-level data struc-
tures (e.g., mutual-exclusion locks). This paper presents a framework
for specifying the semantics of a transaction facility integrated within
a host programming language. The TFJ calculus supports nested and
multi-threaded transactions. We give a semantics to TFJ that is param-
eterized by the definition of the transaction mechanism that permits the
study of different transaction models.

1 Introduction

The integration of transaction facilities into programming languages has been
driven by applications ranging from middleware infrastructure for enterprise ap-
plications to runtime support for optimistic concurrency. The concept of transac-
tions is well-known in database systems; the main challenge in associating trans-
actions with programming control structures comes from the mismatch between
the concurrency model of the programming language and the concurrency model
of the transaction facility. Existing technologies enforce little or no relationship
between these models, so that programmers can neither rely on transactions for
complete isolation among concurrent threads, nor use concurrent threading to
more conveniently program transaction logic.

As a first step towards addressing some of these concerns, we propose a semantic
framework in which different transaction mechanisms can be studied and com-
pared formally. Requirements for such a framework are that it be sufficiently
expressive to allow the specification of core transaction features, that it provide
a way to validate the correctness of the semantics, and that it support features
found in realistic programs. We are interested in the impact of design choices on
observable behavior (e.g., aborts, deadlocks, livelocks) and on implementation
performance (e.g., space and time overhead). Our long-term goal is to leverage
this framework to aid in the definition of program analyses and optimization
techniques for transactional languages.

This paper introduces TFJ, or Transactional Featherweight Java, an object cal-
culus with syntactic support for transactions. The operational semantics of TFJ



is given in terms of a stratified set of rewrite rules parameterized over the mean-
ing of the transaction constructs. This allows us to define a variety of transac-
tion semantics within the same core language. In this paper, we study nested
and multi-threaded transactions with two different concurrency control models
(two-phase locking and versioning). The primary contribution of this paper is
a formal characterization and proof of correctness of different transaction mod-
els when incorporated into the core language. While there has been significant
previous work on devising formal notation and specifications [16, 5] describing
transactional properties, we are not aware of other efforts that use operational
semantics to study the interplay of concurrency and serializability among differ-
ent transaction models.

2 The Transactional Featherweight Java Calculus

Transactional Featherweight Java (TFJ) is a new object calculus inspired by the
work of Igarashi et al. [14]. TFJ includes threads and the imperative constructs
needed to model transactions. In this paper, we focus on a simplified variant of
TFJ, that is dynamically typed and in which all classes directly inherit from the
distinguished Object class. We introduce the syntax and semantics of TFJ with
an example. Consider the classes given in Fig. 1. Class Updater encapsulates an
update to an object. Class Runner is designed to perform an action within a new
thread. Class Transactor performs two operations within a transaction. In this
example, class Updater has two fields, n and v, and an update() method which
assigns v to n’s val field. Runner has a run() method which starts a new thread

class Updater {
n, v;

init(n, v) { return (this.n := n; this.v := v; this); }
update() { return this.n.val:= this.v; } }

class Runner {
s;

init( s) { return (this.s := s; this); }
run() { return spawn this.s.run(); } }

class Transactor {
u, r;

init( r, u) { return (this.u := u; this.r := r; this); }
pick( , , v) { return v; }
run() { return (

onacid;

this.pick(this.u.update(), this.r.run(), this.u.n.val);

commit); } }

Fig. 1. An example TFJ program.



and invokes a method on its r field within that thread. Transactor has a pick()

method which is used to evaluate two expressions in a non-deterministic order;
non-determinism is achieved since the order in which arguments are evaluated
in a method call is unspecified. It also has a run() method which starts a new
transaction and invokes update on field u and run() on field r. The keyword
onacid marks the beginning of a transaction and commit ends the current
transaction (as determined by the last onacid). All objects have an init()

method which assigns values to their fields and returns this. Fig. 2 gives a TFJ
code fragment making use of the above class definitions. Variable n is bound
to a new object of some class Number (whose only feature of interest is that it
must have a val field; we further assume the existence of classes One, Two, and
Three that define specific numbers). Noop is an initialized Runner object with
an uninteresting run method. Objects l1 and l2 are transactors which will be
used to initiate nested transaction (l2 within l1). Two runner objects will be
used to create threads t1 and t2.

n := new Number();

s1 := new Transactor.init()( Noop, new Updater().init( n, new One()));

r1 := new Runner().init( s1);

s2 := new Transactor.init()( r1, new Updater().init( n, new Two()));

new Runner().init( s2).run();

n.val := new Three()

Fig. 2. A TFJ code fragement using definition of Fig. 1.

Evaluating the program of Fig. 2 will result in the creation of two threads (t1

and t2) and two new transactions (l1 and l2). Thread t1 executes solely within
transaction l1, while t2 starts executing in l1, before starting transaction l2. We
assume that there is a default top-level transaction, l0 and primordial thread
t0. Fig. 3 shows the structure of this computation. The threads in a parent
transaction can execute concurrently with threads in nested transactions. A
design choice in TFJ is that all threads must join (via a commit) for the entire
transaction to commit. Alternatives, such as interrupting threads that are not
at a commit point when another thread in the same transaction is ready to

t0

t1

t2

l2 l1 l0

Fig. 3. Threads and transactions in Fig. 2.



commit, or silently committing changes while the thread is running are either
programmer unfriendly or counter to the spirit of transactions.

The states in this program are defined completely by the instance of class Number
that is threaded through transactions and handed down to Updaters for modi-
fication. Each invocation of update() performs a read and a write of val. One
valid interleaving of the operations is, for example:

[n := One()]l1 → [n]l1 → [n := Two()]l2 → [n]l2 → [n := Three()]l0

This is correct because all of the changes performed by l1 occur before changes
(reads and writes) performed by transactions l2 and l0. An invalid interleaving
of these operations is:

[n := One()]l1 → [n := Two()]l2 → [n]l1 → [n]l2 → [n := Three()]l0

In this schedule serializability is broken because l1 reads the value of n.val that
was changed by l2. Thus from l1’s viewpoint the global state is n.val = Two().
Most concurrency control protocols will flag this as a conflict and abort l1. We
note that in this particular case the conflict is benign as l1 discards the value it
reads and thus the state of the system is not affected by it reading a stale value.

2.1 Syntax

The syntax of TFJ is given in Fig. 4. We take metavariables L to range over class
declarations, C, D to range over classes, M to range over methods, and f and x to
range over fields and parameters, respectively. We also use P for process terms,
e for expressions and v, u for memory references. We use over-bar to represent
a finite ordered sequence, for instance, f represents f1 f2 . . . fn. The term ll

denotes the extension of the sequence l with a single element l, and l . l
′

for
sequence concatenation. We write l � l

′

if l is a prefix of l
′

.

The calculus has a call-by-value semantics. The expression C(v) ↓v
′

i yields an
object identical to C(v) except in the ith field which is set to v′. The null

metavariable is used to represent an unbound reference. By default all objects
are null initialized (i.e., C(null)).

Since TFJ has by-value semantics for invocation, sequencing can be encoded as a
sequence of method invocations. For readability, we sometimes write “(e1;e2)”
in examples to indicate sequencing of expressions e1 and e2. The value of a
sequence is always the value of the last expression.

An expression e can be either a variable x, the this pseudo-variable, a reference
v, a field access e.f, a method invocation e.m(e), an object construction newC(),
a thread creation spawn e, an onacid command or a commit. The latter three
operations are unique to TFJ. The expression spawn e creates a new thread of
control to evaluate e. The evaluation of e takes place in the same environment as
the thread executing spawn e. A new transaction is started by executing onacid.



The dynamic context of onacid is delimited by commit. Effects performed within
the context of onacid are not visible outside the transaction until a commit

occurs. Transactions may be nested. When the commit of an inner transaction
occurs, its effects are propagated to its parent. Threads may be spawned within
the context of a transaction. The local state of the transaction is visible to
all threads that execute within it. Transactions may also execute concurrently.
For example, in spawn e, e may be an expression that includes onacid and
commit; the transaction created by onacid executes concurrently with the thread
executing the spawn operation. A process term P can be either the empty process
0, the parallel composition of processes P | P or a thread t running expression
e, denoted t[ e ].

Note that the language does not provide an explicit abort operation. Trans-
actions may abort implicitly because serialization invariants are violated. Our
semantics expresses implicit aborts both in the definition of commit and in the
treatment of read and write operations that would otherwise expose violations
of necessary serializability invariants. Implicit aborts are tantamount to stuck
states.

2.2 Reduction

The dynamic semantics of our language shown in Figs. 4 and 5 is given by a
two-level set of rewrite rules. The computational core of the language is defined
by a reduction relation of the from E e

α
−→ E ′ e′. Here E is an environment

containing bindings from references to objects (v 7→ C(v)), e is an expression
and the action label α determines which reduction was picked. Action labels
for the computational core are selected from the set {rd,wr, x t}, respectively
read, write, and extend. In addition to specifying the action on whose behalf a
particular reduction is taken, we also specify the action’s effects; for example,
we write wr vv′ to denote an action with label wr which has effect on locations
v and v′. A read action affects the location being read, a write action has an
effect on both the location being written and the location whose value it reads,
and an extend operation has an effect on the newly created location.

A second reduction relation
α

=⇒t defines operations over the entire program and
has the form Γ P

α
=⇒t Γ ′ P ′ where Γ is a program state comprising a sequence

of thread environments t, E where each t, E pair represents the association of a
thread to its environment. The action label α can be one of the computational
core labels or one of {sp, ac, co, k i} for, respectively, spawn, onacid, commit, or
kill.

The metavariable l ranges over transaction names; sequences of transaction
names are used to represent the nesting structure. The transaction label l iden-
tifies the transaction on whose behalf the reduction step was performed. As
usual,

α
=⇒t ∗ denotes the reflexive and transitive closure of the global reduction

relation. The congruence rules given in Figure 5 are straightforward.



Syntax:

P ::= 0 | P|P | t[ e ]

L ::= class C { f; M }

M ::= m(x) { return e; }

e ::= x | this | v | e.f | e.m(e) | e.f := e |
new C() | spawn e | onacid | commit | null

Lookup:

CT (C) = class C { f; M }

fields(C) = (f)

CT (C) = class C { f; M }

m(x) { return e; } ∈ M

mbody(m, C) = (x, e)

Local Computation:

E ′, C(u) = read(v, E) fields(C) = (f)

E v.fi
rd v
−→ E ′ ui

(R-Field)

E ′, C(v) = read(v, E) E ′′ = write(v 7→ C(v)↓v
′

i , E ′)

E v.fi := v′
wr vv′

−→ E ′′ v′
(R-Assign)

E ′, C(u) = read(v, E) mbody(m, C0) = (x, e)

E v.m(v)
rd v
−→ E ′ [v/x, v/this]e

(R-Invk)

v fresh E ′ = extend (v 7→ C(null), E)

E new C()
xt v
−→ E ′ v

(R-New)

Global Computation:

P = P ′′ | t[ e ] E e
α

−→ E ′ e′ P ′ = P ′′ | t[ e′ ]
Γ = t, E . Γ ′′ Γ ′ = reflect(t, E ′, Γ ′′) `(t, Γ ) = l

Γ P
α

=⇒t Γ ′ P ′

(G-Plain)

P = P ′′ | t[ e ] e ⇓spawn e′, e′′ P ′ = P ′′ | t[ e′ ] | t′[ e′′ ]
t′ fresh Γ ′ = spawn(t, t′, Γ ) `(t, Γ ) = l

Γ P
sp t′

=⇒t Γ ′ P ′

(G-Spawn)

P = P ′′ | t[ e ] e ⇓onacid e′ P ′ = P ′′ | t[ e′ ]
l fresh Γ ′ = start(l, t, Γ ) `(t, Γ ) = l

Γ P
ac

=⇒t Γ ′ P ′

(G-Trans)

P = P ′′ | t[ e ] e ⇓commit e′ P ′ = P ′′ | t[ e′ ] t = intranse(l, Γ )
Γ = t0 E . Γ ′′ Γ ′ = commit(t, E , Γ ) `(t′, Γ ) = l

Γ P
co

=⇒t′ Γ ′ P ′

(G-Comm)

P = P ′ | t[ v ] Γ = t, E . Γ ′ `(t, Γ ) = l

Γ P
ki

=⇒t Γ ′ P ′

(G-ThKill)

Fig. 4. TFJ Syntax and Semantics.



We work up to congruence of processes (P|P′ ≡ P′|P and P|0 ≡ P). Congruence
over expressions is defined in terms of evaluation contexts, E [ • ]. The relations
⇓spawn, ⇓onacid and ⇓commit are used to extract nested expressions out of a context.
The other definitions are similar to those used in the specification of FJ: fields
returns the list of all fields of a class including inherited ones; mbody returns the
body of the method in a given class.

Let E be an environment of the form l0:ρ0 . . .ln:ρn, then `(E) extracts the order
transaction label sequence, `(E) = l0 . . .ln if Γ = t, E . Γ ′ and `(t, (t, E . Γ )) =
`(E). The auxiliary function last(v, ρ) is defined to return a one element sequence
containing the last value referenced by v in the sequence of bindings ρ or the
empty sequence if there is no binding for v. It is defined inductively to return
〈 〉 if ρ = 〈 〉, C(v) if ρ = ρ′ . v 7→ C(v) and last(v, ρ′) if ρ = vρ′ . v′ 7→ C(v) and
v 6= v′. The function first(v, ρ) is similar but returns the first binding for v in
the sequence. Finally, findlast(v, E) finds the last binding for v in environment
E .

There are four computational core reduction rules shown in Fig. 4. (R-Field)
evaluates a field access expression, (R-Assign) evaluates an assignment expres-
sion, (R-Invk) evaluates a method invocation expression, and (R-New) evalu-
ates an object instantiation expression. Notice that TFJ has a by-value semantics
which requires that arguments be fully evaluated before performing method in-
vocation or field access. These rules are complemented by five global reduction
rules. (G-Plain) corresponds to a step of computation, (G-Spawn) corresponds
to a thread creation, (G-Trans) corresponds to the start of a new transaction,
(G-Comm) corresponds to the commit of a transaction, and (G-ThKill) is

Evaluation Contexts:

E[ • ] | E [ • ].f := e | e.f := E [ • ] |
E [ • ].m(e) | e.m(. . .E [ • ] . . .)

Congruence:

E e −→ E ′ e′

E E [ e ] −→ E ′ E [ e′ ]

e = E [ spawn e′′ ] e′ = E [ null ]

e ⇓spawn e′, e′′

e = E [ onacid ] e′ = E [ null ]

e ⇓onacid e′

e = E [ commit ] e′ = E [ null ]

e ⇓commit e′

Transaction membership:

nested (l, 〈 〉) = 〈 〉

Γ = t, E . Γ ′ nested(l, Γ ′) = t

lll′l
′
= `(t, (t, E))

nested(l, Γ ) = tt

Γ = t, E . Γ ′ nested (l, Γ ′) = t

l 6∈ `(t, (t, E)) ∨ ll = `(t, (t, E))

nested (l, Γ ) = t

intranse(l, 〈 〉) = 〈 〉

Γ = t, E . Γ ′ intranse(l, Γ ′) = t

l ∈ `(t, (t, E)) nested (l, Γ ) = 〈 〉

intranse(l, Γ ) = tt

Γ = t, E Γ ′ intranse(l, Γ ′) = t

l 6∈ `(t, (t, E))

intranse(l, Γ ) = t

Fig. 5. Auxiliary definitions



a reclamation rule for threads in normal form. Most of the rules are straight-
forward. G-Plain makes use of a reflect operation that must propagate the
action performed to other threads executing within this transaction; its specifi-
cation is dependent on the particular transaction semantics adopted. Notice that
(G-Comm) requires that, if some thread t running in transaction l is ready to
commit, all other threads executing in that transaction also be ready to commit.
The auxiliary predicate intranse(l, Γ ) given in Fig. 5 returns the set of threads
that currently have the transaction label l. Note that if there is any thread run-
ning in a nested transaction (e.g., has label ll′, for some l’), intranse(l, Γ ) will
return the empty sequence, since nested transactions must commit before their
parent transaction. The (G-ThKill) rule takes care of removing threads that
have terminated, to prevent blocking a transaction (terminated threads are not
ready to commit). Note also that Γ = t0, E . Γ ′′ is used to extract the envi-
ronment of one of the threads in t. Since all threads in t execute in the same
transaction all of their environments E are identical.

The dynamic semantics leaves open the specification of a number of operations.
In particular, the definitions of read, write, spawn, extend, reflect, start, and join
are left unspecified. A particular incarnation of a transaction semantics must
provide a specification for these operations.

3 Versioning Semantics

In Fig. 6 we define an instantiation of TFJ in which transactions implement
sequences of object versions. The versioning semantics extends the notion of
transaction environments to be an ordered sequence of pairs, each pair consisting
of a transaction label and an environment. The intuition is that every transaction
operates using a private log; these logs are treated as sequences of pairs, binding
a reference to its value. A log thus records effects that occur while executing
within the transaction. A given reference may have different binding values in
different logs. If E = l1:ρ1 . l2:ρ2 then a thread t executing with respect to this
transaction environment is evaluating expressions whose effects are recorded in
log ρ2 and which are part of the dynamic context of an onacid command with
label l2. If l2 successfully commits, bindings in ρ2 are merged with those in
ρ1. Once l2 commits, subsequent expressions evaluated by t occur within the
dynamic context of an onacid command with label l1; effects performed by
these expressions are recorded in environment ρ1.

Thus, a transaction environment in a versioning semantics defines a chain of
nested transactions: every l:ρ element in E is related to its predecessor in the
sequence defined by E under an obvious static nesting relationship. A locus of
computation can therefore uniquely be denoted by a thread t and the transaction
label sequence l in which t is executing.

When a new thread is created (cf. spawn), the global state is augmented to
include the new thread; evaluation of this thread occurs in a transaction en-
vironment inherited from its parent. In other words, a spawned thread begins



evaluation in the environment of its parent extant at the point where the thread
was created.

When a thread enters a new transaction (cf. start), a new transaction environ-
ment is added to its state. This environment is represented as a pair consisting
of a label denoting the transaction, and a log used to hold bindings for objects

E = E ′ . l:ρ findlast(v, E) = C(v)
E ′′ = E ′ . l:(ρ . v 7→ C(v))

read(v, E) = C(v), E ′′

E = E ′ . l:ρ findlast(v, E) = D(u)
E ′′ = E ′ . l:(ρ . v 7→ D(u) . v 7→ C(v))

write(v 7→ C(v), E) = E ′′

E = E ′ . l:ρ

E ′′ = E ′ . l:(ρ . x 7→ C(v))

extend(v 7→ C(v), E) = E ′′

Γ = t, E . Γ ′ Γ ′′ = t′, E . Γ

spawn(t, t′, Γ ) = Γ ′′

Γ = t, E . Γ ′ Γ ′′ = t, (E . l:〈 〉) . Γ

start(l, t, Γ ) = Γ ′′

reflect(t, E , 〈 〉) = 〈 〉

Γ = t′, E ′ . Γ ′ reflect(t, E , Γ ′) = Γ ′′

copy(E , E ′) = E ′′ Γ ′′′ = t′, E ′′ . Γ ′′

reflect(t, E , Γ ) = Γ ′′′

E = E ′ . l:ρ readset (ρ, 〈 〉) = ρ′ writeset(ρ, 〈 〉) = ρ′′check(ρ′, E ′)

E ′ = E ′′ . l′:ρ′′′ reflect(t, (E ′′ . l′:ρ′′′.ρ′′), Γ ) = Γ ′

commit(t, E , Γ ) = Γ ′

E = l:ρ . l′:ρ′ E ′ = l:ρ′′ . l′′:ρ′′′

copy(E ,E ′) = l:ρ . l′′:ρ′′′ check (〈 〉, E)

findlast(v, E) = C(v) check(ρ, E)

check (ρ . v 7→ C(v), E)

Mod sets:

readset (〈 〉, ) = 〈 〉

ρ = u 7→ C(u) . ρ′′ u 6∈ v readset(ρ′′, vu) = ρ′

readset (ρ,v) = u 7→ C(u′) . ρ′

ρ = u 7→ C(u) . ρ′′ u ∈ v readset(ρ′′, v) = ρ′

readset(ρ, v) = ρ′

writeset(〈 〉, ) = 〈 〉

ρ = v 7→ C(v) . ρ′′ writeset(ρ′′, ρ′) = ρ′′′

v 7→ C(v) 6= first(v, ρ′)

writeset(ρ, ρ′) = u 7→ D(u) . ρ′′′

Fig. 6. Versioning semantics



manipulated within the transaction. Initially, the newly created transaction is
bound to an empty log.

The essence of the versioning semantics is captured by the read, write, and
commit operations. If a read operation on reference v occurs within transaction
l, the last value for v in the log is returned via the auxiliary procedure findlast,
and the log associated with l is augmented to include this binding. Thus, the
first read operation for reference v within transaction l will bind a value for
v computed by examining the logs of l’s enclosing transactions, choosing the
binding value found in the one closest to l. Subsequent reads of v made within l

will find a binding value within l’s log. Thus, this semantics ensures an isolation
property on reads: once an object is read within transaction l, effects on that
object performed within other transactions are not visible until l attempts to
commit its changes.

The write operation is defined similarly. Note that write augments the log of
the current transaction with two bindings, one binding the reference to its value
prior to the assignment, and the other reflecting the effect of the assignment.
The former binding is needed to guarantee transactional consistency. Consider a
write to a reference v in transaction l which has not yet been read or written in
l. The effects of this write can be made visible when l attempts to commit only
if no other transaction has committed modifications to v in the interim between
the time where the write occurred, and l attempts to commit. If this invariant
were violated, the desired serialization semantics on transaction would fail to
hold. The extend operation inserts a new binding in the current transaction’s
log; since the reference being bound is fresh, there is no existing binding in the
parent transaction against which to check consistency upon commit.

The commit operation is responsible for committing a transaction. In our ver-
sioning semantics, a commit results in bindings for objects written within a
transaction’s log to be propagated to its parent. In order for a commit of trans-
action l to succeed, it must be the case that the binding value of every reference
read or written in l must be the same as its current value in l’s parent transac-
tion. Satisfaction of this condition implies the absence of a data race between l

and its parent or siblings. The reflect operation defined in commit makes visible
the effects of l in all threads executing in l’s parent transaction; when used in a
transaction-local action, it propagates the effects of the action to other threads
executing within this same transaction.

The versioning semantics defined here is akin to an optimistic concurrency pro-
tocol in which the validity of reads and writes of references performed within a
transaction l is determined by the absence of modifications to those references in
transactions which commit between the time the first read or write of the refer-
ence takes place in l and the time l commits. For example, consider transaction
l1 that commits v1, transaction l2 that commits v2 and transaction l that ac-
cesses both v1 and v2; a valid serialization of these transactions would commit
l1 prior to the first access of v1 in l2, and would commit l2 prior to the first



access of v2 in l. Provided l2 does not modify v1, no atomicity or consistency
invariants on these transactions would be violated.

4 Strict Two-phase locking

With slight alteration, the versioning semantics can be modified to support a
two-phase locking protocol. The semantics presented below is faithful to a two-
phase locking protocol in which locks are first acquired on objects before the
objects can be accessed, and released only when commit actions occur. The
modifications necessary are shown in Fig. 7. The primary change is in the defi-
nition of reflect. In the versioning semantics, and in the global reduction rules,
the reflect operator is used to propagate changes performed in one thread to
all other threads executing within the same transaction; it is also used in the
definition of commit to propagate updates to a parent transaction to all threads
that execute within it.

To support two-phase locking, we exploit this functionality to allow transac-
tion environments to reflect object ownership. We define a unique transaction
environment EL containing a unique log ρL; ρL(v) maps v to the transaction la-
bel sequence which identifies the transaction that currently has exclusive access
to v. If l = l1.l2 . . .ln is such a sequence, and a thread t executing within ln
attempts to read or write reference v, it must first acquire v’s lock. A lock is
acquired using setlock. A lock of an object can be acquired if (a) the transaction
in which the action occurs is a child of the current owner, or (b) the lock is cur-
rently owned by the child, and needs to be propagated to the parent. The first
condition arises for non-commit actions; in this case the transaction attempting
to acquire the lock (l) is the same as the transaction in which the setlock is
executed. The second condition arises on commit actions; in this case l is the
transaction of the parent to whom ownership of all locks owned by the child lt
must be transferred. Thus, locks are reset on a commit: when a commit occurs,
lock ownership is changed from l to l’s parent.

EL = l:ρL ρ = v 7→ C(u) . ρ′ findlast(v, EL) = Lock(l
′
)

(l
′
� l ∧ l = lt) ∨ (lt = l . l) E ′

L = setlock (ρ′, l, EL)

E ′

L = l:ρ′

L ρ′′

L = v 7→ Lock(l) . ρ′

L E ′′

L = l:ρ′′

L

setlock(ρ, l, lt, EL) = E ′′

L

Γ/tL,EL = t, Et . t′, E ′ . Γ ′ reflect(t, E , Γ ′) = Γ ′′

Γ ′′′ = t′, E ′′ . Γ ′′ E = E ′′′ . l:ρ readset(ρ, 〈 〉) = ρ′

setlock (ρ′, `(E), `(Et), EL) = E ′

L copy(E , E ′) = E ′′

reflect(t, E , Γ ) = Γ ′′′

Fig. 7. Lock-based commitment semantics



We distinguish between read and write operations and commit operations in
the definition of reflect and setlock by observing that, in the former case, the
transaction label sequence of the transaction performing the reflect is the same
as the label sequence of the transaction in which the locks are to be acquired (i.e.,
`(E) = `(Et)); in the latter case, the reflect operation is invoked by commit, and
thus E is the parent transaction of Et, the transaction being committed. Recall
that the definition of commit in Fig. 6 updates the transaction environment by
propagating changes performed by the committing transaction to its parent.

5 Soundness

Proving the soundness of a particular transactional facility requires relating it
to desired serialization characteristics that dictate a transaction’s ACID prop-
erties. For any abort-free program trace there must be a corresponding trace
in which the transactions executed serially, i.e. all concurrent transactions ex-
ecute atomically wrt one another. The key idea is that we should be able to
reorder any abort-free sequence of reduction steps into a sequence that yields
the same final state and in which reduction steps taken on behalf of different
parallel transactions are not interleaved. We proceed to formalize this intuitive
definition.

The height of an environment E = l0:ρ0 . . . ln:ρn, written |E|, is n. For a state
Γ , max (Γ ) returns a thread environment t, E such that E is the environment

with the largest height |E| in Γ . Given a transition P Γ
α

=⇒t P ′ Γ ′, we say that
the corresponding action, written A is (α, t, `(t, E)).

Definition 1 (Well-defined). Let Γ = (t, E) . Γ ′. We say that environment
Γ is well-defined if Γ ′ is also well-defined and for E = l1:ρ1 . . .ln:ρn, we have
first(ρj,v) = last(ρj−1, v) if 2 ≤ j ≤ n, and v ∈ Dom(ρj−1) ∩ Dom(ρj).

To define soundness properties, we introduce the notion of control and data
dependencies. A dependency defines a relation on actions which can be used to
impose structure of transition sequences. In other words, a well-defined transition
sequence will be one in which action dependencies are not violated, and thus
define safe serial orderings.

Definition 2 (Control Dependency). Define a preorder
c
; on actions such

that A1

c
; A2 (read A1 is control-dependent on A2) if the following holds:

1. A1 = (α, t, l) and A2 = (sp t, t′, l).

2. A1 = (co, t, l) and A2 = (α, t′, l
′

) where α ∈ {rd,wr, x t} and l
′

� l.

3. A1 = (α, t, l) and A2 = (ac, t′, l
′

) where l
′

� l.

Definition 3 (Data Dependency). Define a preorder
d
; on actions such that

A1

d
; A2 (read A1 is data-dependent on A2) the if A1 is either (rd v, t, l),



(wr vv′, t, l) or (wr v′v, t, l), and A2 is either (wr vv′′, t′, l
′

) or (x t v, t′, l
′

),
with l′ � l.

The key property for our soundness result is the permutation lemma which
describes the conditions under which two reduction steps can be permuted. Let
A and A′ be a pair of actions which are not related under a control or data

dependency. We write A
d
; A′ and A

c
; A′ to mean action A has, respectively,

no c-dependence or d-dependence on A′.

Definition 4 (Independence). Actions A and A′ are independent if A
c
; A′

and A
d
; A′.

Lemma 1 (Permute). Assume that Γ and Γ ′′ are well-defined, and let R be

the two-step sequence of reductions P Γ
α

=⇒t P0 Γ0

α′

=⇒t′ P ′ Γ ′. If A and A′ are

independent then there exists a two-step sequence R′ such that R′ is P Γ
α′

=⇒t′

P1 Γ1

α
=⇒t P ′ Γ ′.

Definition 5 (Program Trace). Let R be the sequence of reductions P0 Γ0

α0=⇒t0

. . . Pn Γn
αn=⇒tn

Pn+1 Γn+1. The trace of the reduction sequence R, written tr(R),
is (α0, t0, l0) . . . (αn, tn, l0) assuming that li = `(ti, Γi) for 0 ≤ i ≤ n.

A program trace is serial if for all pairs of reduction steps with the same trans-
action label (l), all reductions occurring between the two steps are taken on

behalf of that very transaction or nested transactions (l � l
′

).

Definition 6 (Serial Trace). A program trace, tr(R) = (α0, t0, l0) . . . (αn, tn, ln)
is serial iff ∀ i, j, k such that 0 ≤ i ≤ j ≤ k ≤ n and li = lk we have li � lj.

We can now formulate the soundness theorem which states that any sequence
of reductions which ends in a good state can be reordered so that its program
trace is serial.

Theorem 1 (Soundness). Let R be a sequence of reductions P0 Γ0

α0=⇒t0 . . .

Pn Γn
αn=⇒tn

Pn+1 Γn+1. If Γn+1 is well-defined, then there exists a sequence R′

such that R′ is P0 Γ0

α′

0=⇒t′
0

. . . P ′

n Γ ′

n

α′

n=⇒t′
n

Pn+1 Γn+1 and tr(R′) is serial.

6 Related Work

The association of transactions with programming control structures has prove-
nance in systems such as Argus [17, 15, 18], Camelot [10] Avalon/C++ [9] and



Venari/ML [13], and has also been studied for variants of Java, notably by Garth-
waite [11] and Daynes [6–8]. There is a large body of work that explores the
formal specification of various flavors of transactions [16, 5, 12]. However, these
efforts do not explore the semantics of transactions when integrated into a high-
level programming language. Most closely related to our goals is the work of
Black et. al. [1] and Choithia and Duggan [4]. Choithia and Duggan present
an extension of the pi-calculus that supports various abstractions for distributed
transactions and optimistic concurrency. Their work is related to other efforts [3,
2] that encode transaction-style semantics into the pi-calculus and its variants.
Our work is distinguished from these efforts in that it provides a simple opera-
tional characterization and proof of correctness of transactions that can be used
to explore different trade-offs when designing a transaction facility for incorpo-
ration into a language.

7 Conclusions

This paper presented a semantic framework for specifying nested and mulithreaded
transactions. The TFJ calculus is an object calculus which supports nested and
multi-threaded transactions and enjoys a semantics parameterized by the defi-
nition of the transaction facility. We have proven a general soundness theorem
that relates the semantics of TFJ to a serializability property, and have de-
fined two instantiations: a versioning-based optimistic model, and a pessimistic
two-phase locking protocol. In future work we plan to address typing issues as
well as static analysis techniques for optimized implementations of transactional
languages. Furthermore we plan to investigate higher-order transactions.
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