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P92 P95 P97

single inh. multiple inh. single inh. multiple inh. single inh. multiple inh.

static dyn. static dyn. static dyn. static dyn. static dyn. static dyn.

LC 20.7 23.6 17.8 18.8 21.1

VTBL 6.0 N/A 6.0 N/A 8.0 N/A 8.0 N/A 13.0 N/A 13.0 N/A

SC 6.0 8.0 6.0 9.0 8.0 10.0 8.0 10.0 13.0 14.0 13.0 14.0

RD 8.0 12.0 10.0 12.0 8.0 10.0 9.0 12.0 13.0 15.0 13.0 15.0

CT 8.0 14.0 N/A 10.0 14.0 N/A 16.0 19.0 N/A

IC 9.8 11.9 7.1 8.1 7.8

PIC 8.8 10.5 6.3 7.2

Table A-3. Dispatch timings

single inheritance

static typing dynamic typing

C D Sum C D Sum

DTS 274 89 363 same as SI-ST 363

LC 1916 137 2053 same as SI-ST 2053

IC 477 137 614 same as SI-ST 614

PIC 477 231 708 same as SI-ST 708

VTBL 274 696 970 N/A

SC 274 1219 1493 341 1219 1560

RD 684 703 1387 817 703 1520

CT 548 107 655 782 107 889

Table A-4. Approximate space cost for dispatch in Smalltalk image, in Kbytes
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a The message selector is placed right after this call instruction. This doesn’t have any effect on speed, but does increase the code
size by one word.

b selector  offset is unlikely to fit in immediate field of instructions in large applications (see text).
c ibid.
d In all code sequences the adjusted receiver address is saved before a call (except in VTBL where it can be reconstructed because

every class/superclass combination has its own table with deltas). Actually, this store is only necessary if instance variables can
be accessed after the call. Thus, it may be optimized away by the compiler. We do not show the corresponding load, because it
is likely to be hidden in the code following the call (on a superscalar processor).

SC load [object + #tableOffset], table
stor adjusted, [stackptr + #deltaOff]
load [table + #colorOffset], method
load [table + #deltaOffset], delta
setlo #selector, selector
call method

comp selector, #methodSelector
add delta,object,adjusted
brne #messageNotUnderstood

IC
load [object + #classOffset], actualClass
setlo #class, predictedClass
stor adjusted, [stackptr + #deltaOff]
add object, #delta, adjusted
call #method a

comp   actualClass, predictedClass
bne   #inlineCacheMiss

RD load [object + #tableOffset], table
setlo #selector, selector
sethi #selector, selector b

add table, selector, table
load [table], method
stor adjusted, [stackptr + #deltaOff]
load [table + #deltaOffset], delta
call  method

sethi #methodSelector, thisSelector
setlo #methodSelector, thisSelector
comp selector, thisSelector
add delta,object,adjusted
brne #messageNotUnderstood

PIC load [object + #classOffset], actualClass
comp  actualclass, #predictedClass1
stor adjusted, [stackptr + #deltaOff]
add object, #delta1, adjusted
call #PIC_nnn c

bne   #2nd
jmp   #method1

2nd: add object, #delta2, adjusted
comp   actualclass, #predictedClass2
bne   #3rd
jmp   #method2

3rd: ...
last: jmp #PICmiss

LC load [object + #classOffset], class
setlo #cacheAddr, cache
sethi #cacheAddr, cache
setlo #selectorCode, selector
xor class, selector, index
and index, #mask, index
add cache, index, cache
load [cache], cacheClass
stor adjusted, [stackptr + #deltaOff]d

load [cache + 4], cacheSelector
load [cache + 8], cacheTarget
load [cache + 12], delta
comp class, cacheClass
bne #miss
comp selector, cacheSelector
bne #miss
add delta,object,adjusted

call cacheTarget

CT load [object + #classOffset], class
load [class + #tableOffset], table
load [class + #cidOffset], cid
load [table + #selector], method
call method

single-implementation (method prologue):
setlo #mask, mask
sethi #mask, mask
and mask, cid, cid
setlo #thisClass, thisClass
sethi #thisClass, thisClass
comp thisClass, cid
brne #messageNotUnderstood

overloaded:
setlo #mask1, mask1
sethi #mask1, mask1
and mask1, cid, temp
setlo #cid1, cid1
sethi #cid1, cid1
comp cid1, temp
brne #2nd
jmp #method1

2nd: setlo #mask2, mask2
sethi #mask2, mask2
and mask2, cid, temp
setlo #cid2, cid2
sethi #cid2, cid2
comp cid2, temp
brne #3nd
jmp #method2

3rd: ...
last: jmp #messageNotUnderstood

VTBL load [object + #tableOffset], table
load [table + #selectorOffset], method
load [table + #deltaOffset], delta
add object, delta, object

call method
(works only for statically-typed languages)

Table A-2. Instruction sequences
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Appendix A. Detailed data

a sethi always occurs after a setlo in our code. We use the same string to indicate the upper and lower part of #imm, to indi-
cate which instructions depend on the bit length of a particular value.

b Operands of arithmetic and logic instructions can be immediates, if the bit length permits.
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Table A-1. Abstract instruction set for Table A-2
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• Mechanisms employing indirect branches (i.e., all table-based techniques) will not perform well on current and

future hardware since indirect branches incur multi-cycle pipeline stalls. Inline caching variants pipeline very well

and do not incur such stalls. On deeply pipelined superscalar processors like the P97, inline caching techniques

may substantially outperform even the most efficient table-based techniques.

• Hybrid techniques combining inline caching with a table-based method may offer both excellent average dispatch

cost as well as a low worst-case dispatch cost.

• On superscalar processors, the additional cost of supporting dynamic typing or multiple inheritance is small (often

zero) because the few additional instructions usually fit into otherwise unused instruction issue slots.

• Instructions (in particular, per-call code) can contribute significantly to the overall space requirements of message

dispatch. In our example system, many techniques spend more memory on dispatch code sequences than on

dispatch data structures. Thus, minimizing dispatch table size may not always be the most effective way to

minimize the overall space cost, and may in some cases even increase the overall space cost.

Even though selecting the best dispatch mechanism for a particular system is still difficult since it involves many
factors, the data presented here should allow dispatch speed and space costs to be accurately estimated for a wide
range of systems. Therefore, we hope that this study will be helpful to system implementors who need to choose the
dispatch mechanism best suited to their needs.

Acknowledgments. The authors would like to thank Lars Bak, Kris De Volder, Brian T. Lewis, Ole-Lehrmann
Madsen, Patrick Steyaert, and Mario Wolczko for their comments on earlier versions of this draft.
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7. Related work

Rose [Ros88] analyzes dispatch performance for a number of table-based techniques, assuming a RISC architecture
and a scalar processor. The analysis included both dispatch and tag checking code sequences. The study considers
some architecture-related performance aspects such as the limited range of immediates in instructions. Other studies
have analyzed the performance of one or two dispatch sequences. For example, Ungar [Ung87] analyzes the
performance of IC, LC, and no caching on SOAR, a RISC-processor designed to run Smalltalk. Driesen [Dri93b]
analyzes algorithmic issues of a number of dispatch techniques for dynamically typed languages, but without taking
processor architecture into account. Hölzle et al [HCU91] compare IC and PIC for the Self system running on a scalar
SPARC processor. Milton and Schmidt [MS94] compare the performance of VTBL-like techniques for Sather. None
of these studies takes superscalar processors into account.

Calder et al. [CG94] discuss branch misprediction penalties for indirect function calls in C++. Their measurements of
several C++ programs indicate that inline caching might be effective for many C++ programs (although
measurements by Garrett et al. [G+94] are somewhat less optimistic). Calder et al. propose to improve performance
with “if-conversion,” an inline cache with a statically determined target. For each call site the address of the most
frequently called function is determined from execution profiles.

We have considered single dispatch only; multiple dispatch techniques are discussed in [KR90] and [AGS94].
However, singly-dispatched calls are so frequent even in systems offering multiple dispatch that implementations
usually special-case these calls. Ingalls [Ing86] shows how to implement multiple dispatch with a sequence of single
dispatch, but such implementations may not be optimal [AGS94].

Dispatch overhead can also be reduced by eliminating dispatches (rather than just making them fast). For example,
the Self-93 system eliminates 95% of all dispatches [Höl94] with compiler optimizations such as customization
[CUL89] and type feedback [HU94]. Similarly, concrete type inference [OPS92], [VHU92], [APS93], [PC94] can
determine the concrete receiver types of calls, possibly eliminating dynamic dispatch for many sends. The Apple
Object Pascal linker [App88] turned dynamically-dispatched calls into statically-bound calls if a method had exactly
one implementation; Calder et al. [CG94] report that about one-third of the indirect calls in C++ could be eliminated
in this way. In statically-typed languages, this optimization can always be applied; in a dynamically typed languages,
a subtype check is still necessary. Such a subtype check could be implemented similar to the fast subtype check in CT
(section 4.5). For all languages, however, the optimization is only simple to implement if no dynamic link libraries
are used.

8. Conclusions

We have evaluated the dispatch cost of a range of dispatch mechanisms, taking into account the performance
characteristics of modern pipelined superscalar microprocessors. On such processors, objectively evaluating
performance is difficult since the cost of each instruction depends on surrounding instructions and the cost of
branches depends on dynamic branch prediction. In particular, some instructions may be “free” because they can be
executed in parallel with other instructions, and unpredictable conditional branches as well as indirect branches are
expensive (and likely to become more expensive in the future). On superscalar architectures, counting instructions to
estimate performance is highly misleading. We have studied dispatch performance on three processor models
designed to represent the past (1992), present (1995), and future (1997) state of the art in processor implementation.

We have analyzed the run-time performance of dispatch mechanisms as a function of processor characteristics such
as branch latency and superscalar instruction issue, and as a function of system parameters such as the average degree
of polymorphism in application code. The resulting formulas allow dispatch performance to be computed for a wide
range of possible (future) processors and systems. In addition, we also present formulas for computing the space cost
of the various dispatch techniques. Our study has produced several results:

• The relative performance of dispatch mechanisms varies strongly with processor implementation. Whereas some

mechanisms become relatively more expensive (in terms of cycles per dispatch) on more aggressively superscalar

processors, others become less expensive. No single dispatch mechanism performs best on all three processor

models.
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system measured had 5087 selectors, and thus the selector number fits into an immediate. SC needs only one
instruction to load the selector code into a register (see Table A-2), but RD takes two instructions for the same action
because the selector offset needs two more bits (both zero) to address a word-aligned method. The same phenomenon
increases the method prologue overhead in both RD and CT.1 In RD, the reduction in data structure size relative to SC
is almost offset by a corresponding increase in code size. The data in Figure 16 are thus relative to the processor
architecture. For example, for an architecture with larger immediates (or for smaller applications), CT’s space
advantage over VTBL would double. Of course, the data also depends on application characteristics such as the
proportion of call sites versus number of classes, selectors, and methods.

Given these admonitions, IC and PIC apparently combine excellent average speed with low space overhead. The
bounded lookup time of SC and RD is paid for with twice as much memory; VTBL is about one third smaller than
those two. CT’s small data structure size is offset by its code cost.

VTBL, RD, and SC require significantly more data space than DTS because they duplicate information. Each class
stores all the messages itunderstands, instead of all the messages itdefines. For example, in the Smalltalk system a
class inherits 20 methods for each one it defines [Dri93b], so the number of entries stored in the class’s dispatch table
increases by a factor of 20.

Dynamic typing makes a relatively small difference in space cost. Dynamic techniques have no extra overhead
because each dispatch already contains a run-time check to test for the cache hit. Static techniques2 perform the run-
time type check in the method prologue, so the overhead grows linearly with the number of defined methods, which is
much smaller than the number of call sites.

6.2 Closed vs. open worlds

Programs can run in two kinds of environments. In a closed world, the entire system (i.e., the set of all classes and
methods) is known a priori. A typical example of a closed-world environment is a statically-linked program. In an
open world, however, the system is not completely known, and it may be continually evolving (new classes or
methods are introduced). Any programming environment allowing incremental change is an open-world
environment. A system using separate compilation assumes an open world at compile-time (since the exact set of
classes is unknown) but can assume a closed world at link time (unless dynamic linking is used, see below).

Since dynamic techniques cache information at run-time, they work well in both environments. Most static
techniques, however, do not work as well in an open world since they perform relatively expensive global analyses to
create their dispatch tables. For example, if the programmer introduces a new method name, VTBL must rearrange
the dispatch table of the affected class and all its subclasses (which usually involves recompiling all code in these
classes and their clients). SC, RD and CT even have to completely recompute their tables from scratch (except in rare
cases, e.g., if the new method fits into an empty slot in the dispatch table). For the Smalltalk system, this
recomputation can take hours for SC, minutes for RD, and seconds for CT. Except in the case of CT, pauses are
prohibitively long for an interactive programming environment.

By keeping newly created methods in a separate dispatch data structure that is checked last, the system can postpone
this reorganization [Dri93a]. This creates a small lookup lag for newly defined methods until the system is left alone
long enough to do a complete rebuild. While adapting static techniques to the needs of development systems is
feasible, it appears that dynamic techniques are simpler to implement in this case since they are inherently
incremental and dynamic.

Dynamic link libraries create a similar problem: static dispatch techniques depend not only on the interface of library
objects but also on their implementation (i.e., the exact set of methods, including private methods, that they define).
Thus, a newer implementation of a dynamic link library will be incompatible with already compiled programs even if
it does not change any external interface. To avoid such version dependence, static techniques can be parameterized;
for example, the selector number (or color) can be a variable instead of a constant. However, such parameterization
will slow down those dispatch techniques relative to the versions presented here.

1 Here the crucial quantity is the number of bits necessary to represent a cid (16 bits for the Smalltalk example). CT’s dynamic typing cost is also
inflated by this.
2 Excluding VTBL, which only works for statically typed languages.
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Figure 16 shows the space costs for single inheritance versions of the dispatch techniques, using the classes and
methods of the ParcPlace Visualworks 1.0 Smalltalk system as an example. Surprisingly, the code space overhead

dominates the overall space cost for six of the eight techniques. Most of that overhead consists of the per-call dispatch
code sequence. Much of the literature has been concentrated on the size of dispatch tables, treating call code overhead
as equivalent among different techniques ([Ung87] is a notable exception). As demonstrated by the above data,
minimizing dispatch tables may not reduce the overall space cost if it lengthens the calling sequence.1 Code size can
be reduced for most techniques by moving some instructions from the caller to the callee, but only at the expense of a
slower dispatch. (LC’s code size requirements could be dramatically reduced by doing the lookup out-of-line.)

The size of the immediate field in an instruction has a significant impact on the code cost of SC, RD, and CT. This
study assumes a 13-bit signed immediate field, limiting the range of immediates to -4096..4095.2 The Smalltalk

1 We chose not to include the call instruction in each dispatch sequence in the space cost since this instruction is required for direct function calls
as well. To include the call instructions, just add c to each entry in Table 8.

a Two instructions (sethi andsetlo) to pass the selector to the lookup routine that actually implements
the dispatch table search.

b Actually, there is a small overhead involved. Every class needs to store the representational offsets of
its ancestors. This is much cheaper than storing an offset for every method understood.

1 An increased code size can also have a negative effect on speed, by causing more instruction cache misses.
2 The size of immediates varies from architecture to architecture: for example, SPARC has 13 bits, Alpha 8 bits, and MIPS 16 bits.

single inheritance multiple inheritance

static typing dynamic typing static typing dynamic typing

C D C D C D C D

DTS 2ca 2m*ODTS same as SI-ST same as SI-STb same as MI-ST

LC 14c 3e+DDTS same as SI-ST 17c 4e+DDTS same as MI-ST

IC 3c+2m DLC same as SI-ST 5c+3m DLC same as MI-ST

PIC 3c+2m 3kfc+DLC same as SI-ST 5c+3m 4kfc+DLC same as MI-ST

VTBL 2c M N/A 4c 2M*PVTBL N/A

SC 2c M*OSC 3c+2m M*OSC 4c+m 2M*PSC 5c+3m 2M*PSC

RD 5c M*ORD 5c+4m M*ORD 7c+m 2M*PRD 7c+5m 2M*PRD

CT 4c M*OCT*(1+en) 4c+7m M*OCT*(1+en) N/A

Table 8. Formulas for approximate space cost in words. C is code size, D is data size

CT

RD

SC

VTBL

PIC

IC

LC

DTS

0 500 1,000 1,500 2,000 2,500

Kbytes

data and stubs

caller/prologue code

dynamic typing

Figure 16. Space overhead for the Smalltalk system
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6. Other considerations

Besides the actual speed of message sends, other considerations influence the choice between dispatch techniques.
This section discusses the memory costs of dispatch schemes, and how amenable the schemes are to incremental
change.

6.1 Memory cost

The space overhead of method dispatch falls into two categories: program code and dispatch data structures. Code
overhead consists of the instructions required at call sites and in method prologues; stub routines (PIC & CT) are
counted towards the data structure cost. The analysis below ignores per-instance memory costs (such as keeping a
type field in each instance), although such costs can possibly dominate all other costs (e.g., if more than one VTBL
pointer is needed for a class with a million instances). The space analysis uses the parameters shown in Table 3. Most
parameter values are taken from the ParcPlace Visualworks 1.0 Smalltalk system and thus model a fairly large
application. We were unable to obtain a complete, reasonably large application that uses multiple inheritance

extensively. Therefore we do not give example space data for multiple inheritance. However, Table 8 contains
formulas for computing the space cost.

Our analysis assumes that dispatch sequences are compiled in-line; the cost per call site is taken from the code
sequences in Table A-2 in the Appendix.1 Code for secondary techniques (like LC for IC) is not counted since it only
appears once and thus should be negligible. Table 8 shows the space cost computation for all techniques; D & C
means data and code cost. DLC, for instance, refers to the data structure cost of LC inthe same column.

a As shown in [AR92], the use of multiple inheritance introduces conflicts between selector colors that are hard to
deal with and that substantially increase the overhead. However, no real-life statistics are available.

b Tables are harder to fit together because multiple inheritance causes more irregular empty regions to appear.
c Every time a class inherits from more than one superclass, overridden method entries are stored together with the

appropriate delta’s. This overhead depends entirely on the way multiple inheritance is used and is not quantifiable
without appropriate code metrics.

Parameter Value Comments

m 8,540 total number of methods; from Smalltalk

c 35,042 total number of call sites; from Smalltalk

M 178,264 total number of valid (receiver class, selector) pairs; from Smalltalk

e 4096 entries in LC lookup cache

ODTS 133% overhead factor = #total entries / #non-empty entries (for DTS); from Smalltalk

OSC 175% single inheritance overhead factor for SC; lower bound, from Smalltalk

ORD 101% single inheritance overhead factor for RD; from [Dri94]

OCT 15% single inheritance compression rate for CT [VH94]

PSC no data multiple inheritance overhead factor for SCa

PRD no data multiple inheritance overhead factor for RDb

PVTBL no data multiple inheritance overhead factor for CTc

k 3.2 average number of cases in a PIC stub; from Self [Höl94]

f 7.2% polymorphic call sites, as a fraction of total; from Self [Höl94]

e 3.49 average number of functions in an overloaded entry (CT)

n 0.07% overloaded entries, as fraction of total (CT)

Table 7. Parameters used for space cost analysis
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cost of dispatch techniques. Unfortunately, the effect of co-scheduling application code with dispatch code depends
on the nature of the application code and thus is hard to determine. Furthermore, the average basic block length (and
thus the number of instructions readily available to be scheduled with the call) is quite small, usually between five
and six [HP90]. On superscalar processors (especially on P97) most dispatch sequences have plenty of “holes” to
accommodate that number of instructions. Thus, we assume that most techniques would benefit from co-scheduled
application code to roughly the same extent.

A branch target buffer (BTB) [HP90] would allow hardware to predict indirect calls by storing the target address of
the previous call, similar to inline caching. This study assumes that processors do not use BTBs; for current
processors, this assumption holds because BTBs are relatively expensive (since they have to store the full target
address, not just a few prediction bits) and because indirect calls are very infrequent in procedural programs.1

However, future processors like P97 might incorporate BTBs since they will have enough transistors available to
accommodate a reasonably-sized BTB. Interestingly, BTBs behave like inline caches—they work well for
monomorphic call sites but badly for highly polymorphic call sites. For example, the performance of VTBL on such a
processor would be similar to the VTBL+IC scheme discussed above. The impact of BTBs on dispatch performance
can be estimated by reducing the value of branch penalty B in the formulas of Tables 5 and 6, but the extent of the
reduction depends on the BTB miss ratio (i.e., inline cache miss ratio) of the application.

1 Procedure returns are the exception, but these can be handled more efficiently by a return address prediction buffer [Gw94].
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PIC outperforms VTBL independently of the processor’s branch penalty, and it outperforms IC with less than a 95%
hit ratio. The performance advantage can be significant: for P97’s branch miss penalty of 6 cycles, PIC is twice as fast
as VTBL. Again, this result is dependent on additional parameters that may vary from system to system. In particular,
PIC’s performance depends on the percentage of polymorphic call sites, the average number of receiver types tested
per dispatch, and the frequency and cost of “megamorphic” calls that have too many receiver types to be handled
efficiently by PICs. On the other hand, PIC needs only a single cycle per additional type test on P97, so that its
efficiency is relatively independent of these parameters. For example, on P97 PIC is still competitive with VTBL if
every send requires 5 type tests on average. As mentioned in Section 3.3, the average degree of polymorphism is
usually much smaller. Therefore, PIC appears to be an attractive choice on future processors like P97 that have a high
branch misprediction cost.

Nevertheless, the worst-case performance of PIC is higher than VTBL, and PIC doesn’t handle highly polymorphic
code well, so some system designers may prefer to use a method with lower worst-case dispatch cost. One way to
achieve low average-case dispatch cost with low worst-case cost is to combine IC with a static technique like VTBL,
SC, or RD. In such a system, IC would handle monomorphic call sites, and the static technique would handle
polymorphic sites. (Another variant would add PIC for moderately polymorphic call sites.) The combination’s
efficiency depends on the percentage of call sites that are handled well by IC. Obviously, call sites with only one
target fall in this category but so do call sites whose target changes very infrequently (so that the rare IC miss doesn’t
have a significant performance impact). The scheme’s dispatch cost is a linear combination of the two techniques’
cost. For example, Calder’s data [CG94] suggest that at least 66% of all virtual calls in C++ could be handled without
misses by IC, reducing dispatch cost on P97 from 13 cycles for a pure VTBL implementation to 13* 0.34 + 4 * 0.66
= 5.6 cycles for VTBL+IC. In reality, the performance gain might be even higher since calls from call sites incurring
very few misses could also be handled by IC. Even though this data is by no means conclusive, the potential gain in
dispatch performance suggests that implementors should include such hybrid dispatch schemes in their list of
dispatch mechanisms to evaluate.

5.5 Limitations

The above analysis leaves a number of issues unexplored. Three issues are particularly important: cache behavior,
application code surrounding the dispatch sequence, and hardware prediction of indirect branches.

We do not consider memory hierarchy effects (cache misses); all results assume that instruction and data references
will always hit the cache. If all dispatch techniques have similar locality of reference, this assumption should not
distort the results. However, without thorough benchmarking it remains unsubstantiated.

Application instructions surrounding the dispatch sequence (e.g., instructions for parameter passing) can be
scheduled to fit in the “holes” of the dispatch code, lowering the overall execution time, and thus effectively lowering
dispatch overhead. Therefore, measuring dispatch cost in isolation (as done in this study) may overestimate the true
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Since the performance variations between the four scenarios are so small and do not qualitatively change the
situation, we will only discuss the case using static typing and single inheritance in the remainder of the paper. The
data for the other variations can be obtained from Table A-3 in the Appendix. (Of course, dynamic typing and
multiple inheritance can affect other aspects of dispatch implementation; these will be discussed in Section 6).

5.4 Influence of processor implementation

According to Figure 13, the cost (in cycles) of many dispatch techniques drops when moving from a scalar processor
like P92 to a superscalar implementation like P95. Apparently, all techniques can take advantage of the instruction-
level parallelism present in P95. However, when moving to the more aggressively superscalar P97 processor, dispatch
costrises for many dispatch techniques instead of falling further as one would expect.1

Figure 14 shows that the culprit is the penalty for mispredicted branches. It rises from 3 cycles in P95 to 6 cycles in
P97 because the latter processor has a deeper pipeline in order to achieve a higher clock rate and thus better overall
performance [HP90]. Except for the inline caching variants (IC and PIC), all techniques have at least one
unpredictable branch even in the best case, and thus their cost increases with the cost of a branch misprediction. IC’s
cost increases only slowly because it has no unpredicted branch in the hit case, so that it suffers from the increased
branch miss penalty only in the case of a inline cache miss. PIC’s cost also increases slowly since monomorphic calls
are handled just as in IC, and even for polymorphic sends its branches remain relatively predictable.

Based on this data, it appears that IC and PIC are attractive dispatch techniques, especially since they handle
dynamically-typed languages as efficiently as statically-typed languages. However, one must be careful when
generalizing this data since the performance of IC and PIC depends on several parameters. In particular, the dispatch
cost of IC and PIC is variable—unlike most of the table-based techniques such as VTBL, the number of instructions
per dispatch is not constant. Instead, dispatch cost is a function of program behavior: different programs will see
different dispatch costs if their polymorphism characteristics (and thus their inline cache hit ratios) vary. The data
presented so far assume a hit ratio of 95% which is typical for Smalltalk programs [Ung87] but may not represent
other systems. For example, Calder et al. [CG94] report inline cache hit ratios for C++ programs that vary between
74% and 100%, with an average of 91%. Thus, the performance characteristics of IC and PIC deserve a closer
investigation.

Figure 15 compares VTBL with PIC and IC for several inline cache miss ratios. As expected, IC’s cost increases with
decreasing hit ratio. If the hit ratio is 90% or better, IC is competitive with static techniques such as VTBL as long as
the processor’s branch miss penalty is high (recall that P97’s branch miss penalty is 6 cycles). In other words, if a
91% hit ratio is typical of C++ programs, IC would outperform VTBL for C++ programs running on a P97 processor.

1 Even though the number of cycles per dispatch increases, dispatch time will decrease since P97 will operate at a higher clock frequency. Thus,
while the dispatch cost rises relative to the cost of other operations, its absolute performance still increases.
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(instruction 5).1 As a result, VTBL incurs no overhead for multiple inheritance: both versions of the code execute in
2L + 2 cycles (see Table 4).

P95 (middle part of Figure 12) can execute two instructions per cycle (but only one of them can be a memory
instruction, see Table 2 on page 15). Unfortunately, this capability doesn’t benefit VTBL much since its schedule is
dominated by load latencies and the branch latencyB. Since VTBL uses an indirect call, the processor does not know
its target address until after the branch executes (in cycle 2L). At that point, it starts fetching new instructions, but it
takes B cycles until the first new instruction reaches the EX (execute) stage of the pipeline [HP90], resulting in a total
execution time of 2L+B+1. Finally, P97 can execute up to 4 instructions per cycle, but again this capability is largely
unused, except that instructions 2 and 3 (two loads) can execute in parallel. However, the final cycle count is
unaffected by this change.

Figure 13a shows the execution time (in processor cycles) of all dispatch implementations on the three processor
models, assuming static typing and single inheritance. Not surprisingly, all techniques improve significantly upon
lookup caching (LC) since LC has to compute a hash function during dispatch. The performance of the other dispatch
mechanisms is fairly similar, especially on P95 which models current hardware. VTBL and SC are identical for all
processors; RD and VTBL are identical for all but the P92 processor. Among these techniques, no clear winner
emerges since their relative ranking depends on the processor implementation. For example, on P92 VTBL performs
best and IC worst, whereas on P97 IC is best and VTBL is worst. (Section 5.4 will examine processor influence in
detail.) For dynamic typing, the picture is qualitatively the same (Figure 13b).

5.3 Cost of multiple inheritance and dynamic typing

A closer look at Tables 4 to 6 and Figure 13 shows that supporting dynamic typing is surprisingly cheap for all
dispatch methods, especially on superscalar processors like P95 and P97. In several cases (LC, IC, PIC), dynamic
typing incurs no overhead at all. For the other techniques, the overhead is still low since the additional instructions
can be scheduled to fit in instruction issue slots that would otherwise go unused. Typical overheads are two cycles per
dispatch on P95 and one or two cycles on P97. On superscalar processors, dynamic typing does not appear to
significantly increase dispatch cost.

The cost of supporting multiple inheritance is even lower. On P97, no technique incurs additional overhead, and only
LC, RD, and IC incur a one-cycle overhead on P95. Thus, using multiple inheritance should not increase dispatch
cost on modern processors.2

1 Recall that P92 machines had a branch latency B = 1, which can be eliminated using explicit branch delay slots; see [HP90] for details. Since we
use a fixed branch penalty for P92, B does not appear as a parameter in Table 4.
2 However, recall that we have simplified the discussion of VTBL for C++ by ignoring virtual base classes. Using virtual base classes can
significantly increase dispatch cost in VTBL.

Figure 13. Performance of dispatch mechanisms (single inheritance)
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instruction 5 can execute atL + L or L + 2 (one cycle after the previous instruction), whichever is later. Since we
assumeL > 1, we retain 2L. The schedule for P92 also shows that instruction 3 (which is part of the multiple
inheritance implementation) isfree: even if it was eliminated, instruction 5 could still not execute before2L since it
has to wait for the result of instruction 2. Similarly, instruction 4 is free because it executes in the delay slot of the call

1 More precisely, the cycle in which the instruction enters the EX stage (this stage calculates the result in arithmetic operations or the effective
address in memory operations and branches). For details on pipeline organization, we refer the reader to [HP90].

single inheritance multiple inheritance

static typing dynamic typing static typing dynamic typing

LC hLC * (9+max(7,2L)) +(1-hLC) * missLC hLC * (9+max(10,2L)) +(1-hLC) * missLC

VTBL 2+2L N/A 2+2L N/A

SC 2+2L 4+2L 2+2L 5+2L

RD 3+L + max(L, 3) 7+L+max(3,L) 2+2L+max(3,L) 7+max(5,2L)

CT s*(2+3L)+(1-s) *(3+3L+7e) s*(8+3L)+(1-s)*(3+3L+7e) N/A N/A

IC hIC * (2+max(3,L)) + (1-hIC) * missIC hIC * (3+max(4,L)) + (1-hIC) * missIC

PIC m * (2+max(3,L)) + (1-m) * (2+L+2k) + M * missPIC m * (3+max(4,L)) + (1-m) * (3+L+2k)+ M * missPIC

Table 4. P92

single inheritance multiple inheritance

static typing dynamic typing static typing dynamic typing

LC hLC * (7+2L+B) +(1-hLC) * missLC hLC * (8+2L+B) + (1-hLC) * missLC

VTBL 1+2L+B N/A same as single inheritance N/A

SC 1+2L+B 3+2L+B same as single inheritance same as single inheritance

RD 1+2L+B 3+2L+B 2+2L+B 5+2L+B

CT s * (1+3L+B) +
(1-s) * (2+3L+B+e(4 +pB))

s * (5+3L+B) +
(1-s) * (2+3L+B+e(4 +pB))

N/A N/A

IC hIC * (1+L) + (1-hIC) * missIC hIC * (2+L) + (1-hIC) * missIC

PIC m * (1+L) + (1-m) * (2+L+k(1 +pB)) + M * missPIC m * (2+L) + (1-m) * (2+L+k(1 +pB)) + M * missPIC

Table 5. P95

single inheritance multiple inheritance

static typing dynamic typing static typing dynamic typing

LC hLC * (6+2L+B) +(1-hLC) * missLC

VTBL 1+2L+B N/A same as single inheritance N/A

SC 1+2L+B 2+2L+B same as single inheritance same as single inheritance

RD 1+2L+B 3+2L+B same as single inheritance same as single inheritance

CT s * (1+3L+B) +
(1-s) * (2+3L+B+e(3 +pB))

s * (4+3L+B) +
(1-s) * (2+3L+B+e(3 +pB))

N/A N/A

IC hIC * (1+L) + (1-hIC) * missIC

PIC m * (1+L) + (1-m) * (1+L+k(1 +pB)) + M * missPIC

Table 6. P97
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exhibit different parameter values. Thus, thenumbers below are specific to an example configuration, but the
formulas in Tables 4 to 6 are general.

5.2 Overview of dispatch costs

Tables 4 to 6 show dispatch costs as a function of processor parameters (L and B) and algorithmic parameters such as
miss ratios, etc. Table A-2 in the appendix lists the exact assembly instruction sequences used, and Table A-3
contains the raw dispatch times in cycles.

Figure 12 illustrates the cycle cost calculation for VTBL. Data dependencies are indicated with arrows, control
dependencies with dashed arrows. Instructions handling multiple inheritance are enclosed by dashed circles. The
figure shows the order in which instructions are issued into the processor pipeline.1 An instruction with a dependency
on a load instruction executing in cyclei cannot execute before cycle i + L (whereL is the load latency). For example,
in P92 instruction 2 cannot execute before cycleL because it depends on instruction 1 (Figure 12). Similarly,

a Cycles on P92; 20% less on P95 and 33% less on P97.

Parameter example
value Comments

hLC 98% lookup cache hit ratio ([CPL83] lists 93% for a very small cache size)

missLC 250a LC miss cost (find method in class dictionaries); conservative estimate based on data in
[Ung87]

hIC 95% inline caching hit ratio; from [Ung87] and [HCU91]

missIC 80a+L+LC IC miss cost; from [HCU91]

m 66% percentage of calls from monomorphic call sites (for PIC); from [HCU91] and [CG94]

k 3.54 dynamic number of type tests per PIC stub (from Self [Höl94])

p 10% average branch misprediction rate (conservative estimate, from [HP90])

M 1% percentage of calls from highly polymorphic call sites (>10 receiver types); conservative esti-
mate (measurements of Self showed a rate < 0.1% [Höl94])

missPIC 150a+L+LC PIC miss cost; based on missIC (extra overhead for updating the PIC)

s 99.93% percentage of single (non-overloaded) entries in CT[VH94]

e 2.25 number of tests per overloaded entry in CT

Table 3. Additional parameters influencing performance

1: load [object + #tableoffset], table
2: load [table + #selectoroffset], method
3: load [table + #deltaoffset], delta
4: add object, delta, object
5: call method
6: <first instruction of target>
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Then, we measured the cost of the dispatch sequences for three hypothetical processor implementations. P92
represents a scalar implementation as it was typical of processor designs in 1992. P95 is a superscalar implementation
that can execute up to two integer instructions concurrently, representative of current state-of-the art processor
designs. Finally, P97 is an estimate of a 1997 superscalar processor with four-instruction issue width and a deeper
pipeline. Table 2 lists the detailed processor characteristics relevant to the study.

In essence, these processors are abstractions of current commercial processors that have been reduced to their most
important performance features, namely

• Superscalar architecture. The processor can execute several instructions in parallel as long as they are

independent. Since access paths to the cache are expensive, all but P97 can execute at most one load or store per

cycle.

• Load latency. Because of pipelining, the result of a load started in cyclei is not available until cyclei + L  (i.e., the

processor will stall if the result is used before that time).

• Branch penalty. The processor predicts the outcome of a conditional branch; if the prediction is correct, the branch

incurs no additional cost. However, if the prediction is incorrect, the processor will stall forB cycles while fetching

and decoding the instructions following the branch Figure [HP90]. We assume that indirect calls or jumps cannot

be predicted and always incur the branch penalty.1

Virtually all processors announced since 1993 exhibit all three characteristics. We have omitted a fourth feature
commonly found in modern processors (out-of-order execution) because it did not affect the results. To determine the
number of cycles per dispatch, we hand-scheduled the dispatch instruction sequences for optimal performance on
each processor. In most cases, a single instruction sequence is optimal for all three processors.

The performance of some dispatch techniques depends on additional parameters (listed in Table 3). In order to
provide some concrete performance numbers in addition to the formulas, we chose typical values for these
parameters (most of them based on previously published performance studies). However, it should be emphasized
that these values merely represent one particular data point. Different systems, applications, or languages may well

2 Assuming a RISC architecture simplifies the discussion, but our results are not restricted to RISC architectures since pipelined CISC machines
have similar performance characteristics. For example, the Intel Pentium processor closely resembles P95.

a To simplify the analysis, we assumed L > 1; to the best of our knowledge, this assumption holds for all
RISC processors introduced since 1990.

b No penalty if the branch’s delay slot can be filled. (To improve readability, the instruction sequences in
Table A-2 on page 33 are written without delay slots.) On P95/97, delay slots cannot hide branch
latency due to multi-cycle branch penalties and superscalar instruction issue, and thus have no perfor-
mance benefit.

1 But see Section 5.5.

P92 P95 P97

max. integer instructions/ cycle 1 2 4

max. loads or stores / cycle 1 1 2

max. control transfers (branch, call) / cycle 1 1 1

load latency (L)a 2 2 2

branch prediction no yes

branch miss penalty (B) 1b 3 6

examples of equivalent commercial CPUs  [M92], [Cy90]  [M94], [Gw94] N/A

Table 2. Processor characteristics
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and are only overridden in the subclasses (e.g., a and b in Figure 101). Conflict selectors have multiple definitions in
unrelated portions of the class hierarchy (e.g., e in Figure 10 which is defined in the unrelated classes C and D). CT
uses two dispatch tables, a main table for standard selectors and a conflict table for conflict selectors.

Standard selectors can be numbered in a simple top-down traversal of the class hierarchy; two selectors can share a
number as long as they are defined in different branches of the hierarchy. Such sharing is impossible for conflict
selectors, and so the conflict table remains sparse (Figure 10). But the allocation of both tables can be further
optimized. First, tables with identical entries (such as the conflict tables forC andE) can be shared. Second, tables
meeting a certain similarity criterion—a parameter to the algorithm—can beoverloaded; divergent entries refer to a
code stub which selects the appropriate method based on the type (similar to PIC). In Figure 10 (a), the entry for
selectorsc andb of tables (A, C, E) is overloaded. The required level of similarity affects the compression rate
(stricter requirements decrease the compression rate) as well as dispatch speed (stricter requirements decrease the
number of overloaded entries and thus improve dispatch speed). Finally, dispatch tables are trimmed of empty entries
and allocated onto one large master array as shown in Figure 10 (b).

Each class needs at least three fields: class identifier (cid), main dispatch table, and conflict table. Because of
compression, all methods need a subtype test in the method prologue in dynamically-typed languages. For statically-
typed languages, only the code stubs of overloaded entries need such a test. Subtype tests are implemented with a
simple series of logical operations (a bit-wise AND and a comparison)[Vit94]. Figure 11 shows the code for a call
through a CT dispatch table.

5. Analysis

5.1 Parameters influencing performance

To evaluate the performance of the dispatch mechanisms, we implemented the dispatch instruction sequence of each
technique on a simple RISC-like architecture.2 Table A-2 in the appendix lists the resulting instruction sequences.

1  So, far this technique has been only applied to single inheritance; its extension to multiple inheritance is being considered.
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Figure 10. Construction on Compact Tables
(a) main dispatch table and conflict tables fore (b) main dispatch table withc andb aliased
(c) conflict tables for (A, B) and (C, E) shared, main dispatch tables for (A, C, E) overloaded
(d) dispatch table fitted on a single master array, main dispatch table for (A, C, E) trimmed
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Figure 11. CT dispatch code. The caller code calls a stub for overloaded entries (upper box). Single implemen-
tation entries only require a prologue (lower box) for dynamic typing.

class = object->class;
cid = class->cid;
entry = class->table[#selector];
entry.func(object,cid , arguments);

/* method prologue */
if (cid & #markA != #cidA)

error(“Message Not Understood”);

if (cid & #markA == #cidA)
goto #methodInA;

if (cid & #markB == #cidB)
goto #methodInB;

error(“Message Not Understood”);

MethodInA

MethodInB
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understood”) for the Smalltalk system [Dri93b]. As shown in the Figure 8, coloring allows the sharing of columns of
the selector table used in STI.

Compared to VTBL, SC has two potential advantages. First, since selector colors are global, only one dispatch table
is needed per class, even in the context of multiple inheritance. Secondly, and for the same reason, SC is applicable to
a dynamically typed environment since any particular selector will have the same table offset (i.e., color) throughout
the system and will thus invoke the correct method for any receiver. To guard against incorrect dispatches, the
prologue of the target method must verify the message selector, and thus the selector must be passed as an extra
argument. Otherwise, an erroneous send (which should result in a “message not understood” error) could invoke a
method with a different selector that shares the same color. For example, in Figure 8, messagec sent to aE object
would invokeb without that check.

4.4 Row displacement (RD)

Row displacement [Dri93a] is another way of compressing STI’s dispatch table. It slices the (two-dimensional) STI
table into rows and fits the rows into a one-dimensional array so that non-empty entries overlap only with empty ones
(Figure 9). Row offsets must be unique (because they are used as class identifiers), so no two rows start at the same
index in the master array. The algorithm’s goal is to minimize the size of the resulting master array by minimizing the
number of empty entries; this problem is similar to parse table minimization for table-driven parsers [DDH84].
[Dri93a] discusses a selector numbering scheme that leaves only 33% of the entries empty for the Smalltalk image. If
the table is sliced according to columns (instead of rows), the table can even be filled to 99.5% with an appropriate
class numbering scheme [Dri94].

Like SC, RD needs only a single table per class even with multiple inheritance, and the technique is applicable to
dynamically-typed languages. As in SC, a check is needed in the method prologue, this time to ensure that the method
actually is part of the dispatch table of the receiver’s class. Therefore, the selector number is passed as an argument to
the method.

4.5 Compact Selector-Indexed Dispatch Tables (CT)

The third table compaction method [VH94], unlike the two previous methods, generates selector-specific dispatch
code sequences. The technique separates selectors into two categories.Standard selectors have one main definition
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Figure 8. Selector coloring tables, method call code and method prologue (dynamic typing inbold )

entry = object->table[#color];
entry.func(object, entry.delta,#selector , arguments)

/* method prologue */
if (S != #Myselector)

error(“Message Not Understood”);
adjusted = delta + object;

Figure 9. Row displacement tables, method call code and method prologue

entry = object->table[#selector];
entry.func(object, entry.delta,

#selector , arguments);

/* method prologue */
if (S != #Myselector)

error(“Message Not Understood”);
adjusted = delta + object;
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4.2 Virtual function tables (VTBL)

Virtual function tables were first used in Simula [DM73] and today are the preferred C++ dispatch mechanism
[ES90]. Instead of assigning selector codes globally, VTBL assigns codes only within the scope of a class. In the
single-inheritance case, selectors are numbered consecutively, starting with the highest selector number used in the
superclass. In other words, if a class C understandsm different messages, the class’s message selectors are numbered
0..m-1. Each class receives its own dispatch table (of sizem), and all subclasses will use the same selector numbers
for methods inherited from the superclass. The dispatch process consists of loading the receiver’s dispatch table,
loading the function address by indexing into the table with the selector number, and jumping to that function.

With multiple inheritance, keeping the selector code correct is more difficult. For the inheritance structure on the left
side of Figure 7, functions c and e will both receive a selector number of 1 since they are the second function defined
in their respective class. D multiply inherits from both B and C, creating a conflict for the binding of selector number
1. In C++ [ES90], the conflict is resolved by using multiple virtual tables per class. An object of class D has two
dispatch tables, D and Dc (see Figure 7).1 Message sends will use dispatch table D if the receiver object is viewed as

a B or a D and table Dc if the receiver is viewed as a C. As explained in Section 1.4, the dispatch code will also adjust
the receiver address before calling a method defined in C.

VTBL depends on static typing: without knowing the set of messages sent to an object, the system cannot reuse
message numbers in unrelated classes (such as using 0 for the first method defined in a top-level class). Thus, with
dynamic typing, VTBL dispatch tables would degenerate to STI tables since any arbitrary message could
(erroneously) be sent to an object.

4.3 Selector coloring (SC)

Selector coloring [D+89][AR92] is a compromise between VTBL and STI. SC is similar to STI, but instead of using
the selector to index into the table, SC uses the selector’scolor. The color is a number that is unique within every
class where the selector is known, and two selectors can share a color if they never co-occur in a class. SC allows
more compaction than STI, where selectors never share colors, but less compaction than VTBL, where a selector
need not have a single global number (i.e., where the selectorm can have two different numbers in unrelated classes).

Optimally assigning colors to selectors is equivalent to the graph coloring problem2 which is NP-complete. However,
efficient approximation algorithms can often approach or even reach the minimal number of colors (which is equal to
the maximum number of messages understood by any particular class). The resulting global dispatch table is much
smaller than in STI but still relatively sparse. For example, 43% of the entries are empty (i.e., contain “message not

1 Due to limited space, we ignore virtual base classes in this discussion. They introduce an extra overhead of a memory reference and a subtraction
[ES90].
2 The selectors are the nodes of the graph, and two nodes are connected by an arc if the two selectors co-occur in any class.
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Figure 7. VTBL dispatch tables and method call code.

object += #tableOffset;
entry = object->table[#selector];
object += entry.delta;
entry.func(object,arguments);
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cache at a miss, the new receiver type is added to the cache by extending the stub routine. For example, after
encountering receiver classes A and B, a send of message m would look as in Figure 5.

A system using PICs treats monomorphic call sites like normal inline caching; only polymorphic call sites are
handled differently. Therefore, as long as the PIC’s dispatch sequence (a sequence ofif s) is faster than the system
lookup routine, PICs will be faster than inline caches. However, if a send is megamorphic (invokes many different
methods), it cannot be handled efficiently by PICs. Fortunately, such sends are the exception rather than the rule. The
median number of type tests per dispatched send for a suite of large Self applications is 1.7 [Höl94].

4. Static techniques

Static method lookup techniques precompute their data structures at compile time (or link time) in order to minimize
the work done at dispatch time. Typically, the dispatch code retrieves the address of the target function by indexing
into a table and performing an indirect jump to that address. Unlike lookup caching (LC), static methods usually don’t
need to compute a hash function since the table index can be computed at compile time. Also, dispatch time usually is
constant1, i.e., there are no “misses” as in inline caching.

4.1 Selector Table Indexing (STI)

The simplest way of implementing the lookup function is to store it in a two-dimensional table indexed by class and
selector codes. Both classes and selectors are represented by unique, consecutive class or selector codes; if a system
hasc classes ands selectors, classes are numbered 0..c-1 and selectors are numbered 0..s-1 (Figure 6). Unfortunately,
the resulting dispatch table is very large (O(c*s)) and very sparse, since most messages are defined for only a few
classes. For example, about 95% of the entries are empty in a table for the Smalltalk image [Dri93b]. With multiple
inheritance, every entry consists of a method code address and a delta (the adjustment to the receiver address). To
avoid cluttering the graphics, we do not show the latter in any figure. STI works equally well for static and dynamic

typing, and its dispatch sequence is fast. However, because of the enormous space cost, no real system uses selector
table indexing. All of the static techniques discussed below try to retain the idea of STI (indexing into a table of
function pointers) while reducing the space cost by omitting empty entries in the dispatch table.

1 Here, “constant” means “constant number of instructions,” not “constant time” (due to processor cache effects).

Figure 5. Polymorphic inline cache

adjusted = #delta;
picstub012(object ,adjusted);

calling method
stub routine

if (object->class == #A)
goto #A::m;

if (object->class == #B)
goto #B::m;

goto #system_lookup;

A::M

adjusted +=object;
/* method code */

B::M

adjusted +=object;
/* method code */

3B 1 2

0A

0C 4

5D 1 4 2

0E 7 48

a b c e fdA a

B acf C e

E bdD ag
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Figure 6. STI dispatch tables
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computation renders LC too slow compared to other techniques. However, LC is a popular fallback method for inline
caching.

3.2 Inline caches (IC)

Often, the type of the receiverat a given call site rarely varies; if a message is sent to an object of typeX at a
particular call site, it is likely that the next send will also go to an object of typeX. For example, several studies have
shown that the receiver type at a given call site remains constant 95% of the time in Smalltalk code [DS84], [Ung87],
[UP87]. This locality of type usage can be exploited by caching the looked-up method address at the call site.
Because the lookup result is cached “in line” at every call site (i.e., no separate lookup cache is accessed in the case of
a hit), the technique is calledinline caching [DS84], [UP87].

The previous lookup result is cached by changing the call instruction implementing the send, i.e., by modifying the
compiled program on the fly. Initially, the call instruction calls the system’s lookup routine. The first time this call is
executed, the lookup routine finds the target method. Before branching to the target, the lookup routine changes the
call instruction to point to the target method just found (Figure 4). Subsequent executions of the send directly call the
target method, completely avoiding any lookup. Of course, the type of the receiver could have changed, and so the
prologue of the called method must verify that the receiver’s type is correct and call the lookup code if the type test
fails.

Inline caches are very efficient in the case of a cache hit: in addition to the function call, the only dispatch overhead
that remains is the check of the receiver type in the prologue of the target. The above code sequence works for both
static and dynamic typing; in the MI case, an inline cache miss updates both the call instruction and the add
instruction adjusting the receiver address.

The dispatch cost of inline caching critically depends on the hit ratio. In the worst case (0% hit ratio) it degenerates to
the cost of the technique used by the system lookup routine (often, a global lookup cache), plus the extra overhead of
the instructions updating the inline cache. Fortunately, hit ratios are usually very good, on the order of 90-99% for
typical Smalltalk or Self code [Ung87], [HCU91]. Therefore, many current Smalltalk implementations incorporate
inline caches.

3.3 Polymorphic inline caching (PIC)

Inline caches are effective only if the receiver type (and thus the call target) remains relatively constant at a call site.
Although inline caching works very well for the majority of sends, it does not speed up a polymorphic call site1 with
several equally likely receiver types because the call target switches back and forth between different methods, thus
increasing the inline cache miss ratio. The performance impact of inline cache misses can become severe in highly
efficient systems. For example, measurements of the SELF-90 system showed that it spent up to 25% of its time
handling inline cache misses [HCU91].

Polymorphic inline caches (PICs) [HCU91] reduce the inline cache miss overhead by cachingseveral lookup results
for a given polymorphic call site using a dynamically-generated PIC routine. Instead of just switching the inline

1 We will use the term “polymorphic” for call sites where polymorphism isactuallyused. Consequently, we will use “monomorphic” for call sites
which experience only a single receiver type during a program run, even though they mightpotentially be polymorphic.

/* method code */

Figure 4. Inline cache

adjusted = #delta;
#method0123(object ,adjusted);

calling method
method body

method prologue

target method

if (object->class != #cached_class)
goto #system_lookup;

adjusted += object;
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precompute some information at compile or link time, but they dynamically update data structures at run-time, i.e.,
during program execution. Thus, dynamic techniques can exploit run-time information as well as static information.

Each description of a dispatch technique includes pseudo-code illustrating the run-time dispatch. Since our analysis
separates out the influence of dynamic typing and multiple inheritance/hardwired instance variable offsets, two
typographical conventions mark code used to support one of these functions.Italic code supports multiple
inheritance, andbold code  supports dynamic typing. Table A-2 in the appendix contains assembly code sequences.

3. Dynamic techniques

Dynamic techniques speed up message lookup by using various forms of caching at run-time. Therefore, they depend
on locality properties of object-oriented programs: caching will speed up programs if the cached information
(message send) is used often before it is evicted from the cache by another method. This section discusses two kinds
of caching: global caching (one large cache per system) and inline caching (one small cache per call site).

3.1 Global lookup caches (LC)

First-generation Smalltalk implementations relied on a global cache to speed up method lookup [GR83][Kra83]. The
class of a receiver, combined with the message selector, hashes into an index in a global cache. Each cache entry
consists of a class, a selector and a method address. If the current class and selector match the ones found in the entry,
the resident method is executed. Otherwise, a dispatch table search finds the correct method and the new class-
selector-method triple replaces the one found in the entry (direct-mapped cache). Any hash function can be used; to
obtain a lower bound on lookup time, we assume a simple exclusive OR of receiver class and selector:

To allow hard-coded instance variable access in a multiple inheritance context, the receiver is added to#delta 1.
Instance variable accesses in the callee uses this adjusted object pointer. Even though LC is considerably faster than
dispatch table search (DTS), it still has to compute a hash function for each dispatch. As we shall see, this

1 To distinguish constants from variables, we precede constants with a hash mark (#) in both C and assembly code.

Acronym Full Name Discussed
in section

st
at

ic
te

ch
ni

qu
es

DTS Dispatch Table Search (used for illustration only) 2

STI Selector Table Indexing (used for illustration only) 4.1

VTBL Virtual Function Tables 4.2

SC Selector Coloring 4.3

RD Row Displacement 4.4

CT Compact Tables 4.5

dy
na

m
ic

te
ch

ni
qu

es LC Lookup Caching 3.1

IC Inline Caching 3.2

PIC Polymorphic Inline Caching 3.3

Table 1. Overview of dispatch methods

entry = cache[(object->class ^ #selector) & #mask];
if (entry.class == object->class && entry.selector == #selector) {
adjusted = object + entry.delta;
entry.func(object, adjusted,arguments);}/* cache hit */

else
/* cache miss: use DTS to find method, and update cache entry e */;

Figure 3. Global lookup cache. Multiple inheritance addsitalicized code.
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the unadjusted address and the adjustment.) Strictly speaking, this extra code is not part of method lookup, but if
multiple inheritance is allowed,every method invocation is preceded by a receiver address adjustment, and thus we
chose to include the cost of this adjustment in our study.

1.5 Limitations

This study is limited to single (i.e., receiver-based) dispatch. Since multi-method dispatch techniques (e.g., [KR90]
and [AGS94]) are similar and include single dispatch as an important (very frequent) special case, we hope that the
results will nevertheless be useful for implementors or designers of multiple dispatch techniques. Also, we do not
consider dynamic inheritance (as used in Self [CU+91]), i.e., inheritance hierarchies that can change their structure at
run-time. Furthermore, we focus on dispatch performance and only briefly discuss other issues such as space
overhead and the closed– vs. open–world assumption (see Section 6). For space reasons, we consider only the main
variant of each technique.

A further simplification on the hardware side is that we do not consider every possible processor implementation
feature. However, as will be explained in section 5.1, the features we consider represent a very large fraction of past
and current processors. Further hardware-related limitations are discussed in Section 5.5.

1.6 Overview of the paper

The remainder of this paper is organized as follows. Sections 2 to 4 present the dispatch techniques evaluated. For
space reasons, each technique is discussed only briefly. Section 5 presents the results of our performance analysis,
and Section 6 discusses space costs and other issues.

2. Method lookup techniques

Message lookup is a function of the message name (selector) and the receiver class. If lookup speed was unimportant,
lookup could be performed by searching class-specific dispatch tables. When an object receives a message, the
object’s class is searched for the corresponding method, and if no method is found the lookup proceeds in the
superclass(es). Since it searches dispatch tables for methods, this technique is called Dispatch Table search (DTS).
The right-hand side of Figure 2 shows the dispatch tables of the class hierarchy on the left. Each entry in a dispatch
table contains the method name and its address. As in all other figures, capital letters (A, B, C) denote classes and
lowercase letters denote methods.

Since the memory requirements of DTS are minimal (i.e., proportional to the number of methods in the system), DTS
is often used as a backup strategy which is used when faster methods fail. If desired, DTS can employ hashing to
speed up the table search.

All of the techniques discussed in the remainder of this paper improve upon the speed of DTS by precomputing or
caching lookup results. The dispatch techniques studied here fall into two categories.Static techniques precompute
all data structures at compile or link time and do not change those data structures at run-time. Thus, static techniques
only use information that can be statically derived from the program’s source text.Dynamic techniques may

1 Alternatively, a system could duplicate code (e.g., as in Self [CUL89]) or access instance variables indirectly (as is done in Eiffel and Sather
[MS94]).
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Figure 2.  Class hierarchy with corresponding dispatch tables
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processor implementations also change the relative speed of dispatch mechanisms. Any performance comparison
using system specific measurements will therefore be relative to the particular processors, languages, applications,
and run-time systems used.

Instead of giving concrete measurements, we choose to characterize the performance of each dispatch mechanisms as
a function of several configuration parameters that are dependent on the hardware and software environment of the
system using the dispatch mechanism. To compare dispatch performance in a new system, an implementor therefore
merely needs to measure (or approximate) the values of these performance parameters in that system. By keeping our
performance analysis abstract, we hope that this study will be helpful to implementors of a wide range of systems,
languages, and applications, as well as for a range of hardware platforms.

Nevertheless, to help illustrate specific points of trends in the analysis, we also present absolute performance numbers
which were obtained by using typical values (taken from previous studies) for the parameters.

1.2 Processor architecture

Dispatch cost is intimately coupled with processor implementation. The same dispatch sequence may have different
cost on different processor implementations, even if all of them implement the same architecture (e.g., the SPARC
instruction set). In particular, processor pipelining and superscalar execution make it impossible to use the number of
instructions in a code sequence as an accurate performance indicator. This paper characterizes the run-time
performance of dispatch mechanisms on modern pipelined processors in a general way by determining the
performance impact of branch latency and superscalar instruction issue. In addition to providing specific numbers for
three example architectures, our analysis allows dispatch performance to be computed for a wide range of possible
(future) processors. With the rapid change in processor design, it is desirable to characterize performance in a way
that makes the dependence on certain processor characteristics explicit, so that performance on a new processor can
be estimated accurately as long as the processor’s characteristics are known.

1.3 Influence of dynamic typing

In dynamically-typed languages, a program may try to invoke an operation on some object for which the operation is
undefined (“message not understood” error). Therefore, each message dispatch usually needs to include some form of
run-time check to guarantee that such errors are properly caught and reported to the user. Most techniques that
support static typing can be extended to handle dynamic typing as well. Our study shows the additional dispatch cost
of dynamic typing for all dispatch mechanisms that can support it.

1.4 Single versus multiple inheritance

A system using multiple inheritance introduces an additional difficulty if compiled code uses hard-coded offsets
when accessing instance variables. For example, assume that classC inherits directly from classesA and B (Figure 1).
In order to reuse compiled code of class A, instances of C would have to start with the instance variables of A (i.e.,
A’s memory layout must be a prefix of C’s layout). But the compiled code in class B requires a conflicting memory
layout (B’s instance variables must come first), and so it seems that compiled code cannot be reused if it directly
accesses instance variables of an object.

Hard-coded offsets can be retained if the receiver object’s address is adjusted just before a B method is executed, so
that it points to the B subobject within C [Kro85], [ES90].1 The adjustment can be different for every class that has B
as a (co-)parent. (If dynamic typing is combined with multiple inheritance (MI) it is necessary to keep track of both

Figure 1. The memory layout of objects of classA, B, andC. Note that the offset of
instance variableb1 is not the same relative topb than relative topc.
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Message Dispatch on Modern Computer Architectures

Karel Driesen
Urs Hölzle
Jan Vitek1

Abstract. Object-oriented systems must implement message dispatch efficiently in order not to penalize the object-
oriented programming style. We characterize the performance of most previously published dispatch techniques for
both statically- and dynamically-typed languages with both single and multiple inheritance. Hardware organization (in
particular, branch latency and superscalar instruction issue) significantly impacts dispatch performance. For example,
inline caching may outperform C++-style “vtables” on deeply pipelined processors even though it executesmore
instructions per dispatch.

We also show that adding support for dynamic typing or multiple inheritance does not significantly impact dispatch
speed for most techniques, especially on superscalar machines. Also, instruction space overhead (calling sequences)
can exceed the space cost of data structures (dispatch tables), so that minimal table size may not imply minimal run-
time space usage.

Keywords: message dispatch, implementation, performance, computer architecture

1. Introduction

Message dispatch is a central feature of object-oriented languages. Given a receiver object and a selector (i.e.,
operation name), message dispatch finds the method implementing the operation for the particular receiver object.
Since message dispatch is performed at run-time, and is a very frequent operation in object-oriented programs, it must
be fast. Therefore, the efficient implementation of message dispatch has been the subject of much research.
Unfortunately, this research has often presented particular dispatch implementations in isolation, without comparing
them to other methods. This paper presents several dispatch techniques in a common framework and compares their
cost on modern computer architectures. The study includes most previously published dispatch techniques for both
statically- and dynamically-typed languages with both single and multiple inheritance.

Any comparative study of dispatch mechanisms must be a compromise between breadth and depth since it is
impossible to explore the entire design space in a single paper. While the present study considers several aspects of
dispatch mechanisms (such as speed and space efficiency), the main focus is on run-time dispatch performance. But
even when considering only run-time dispatch speed, a myriad of issues must be addressed. The remainder of this
introduction briefly discusses and justifies the issues we address as well as those we don’t.

1.1 Specific measurements vs. analytical models

Previous studies have evaluated the run-time performance of specific dispatch implementations relative to specific
systems, languages, and applications; some have not evaluated run-time performance at all. While specific empirical
measurements are useful and desirable, they are also limited in scope. Different languages or applications may have
different dispatch characteristics, and an implementor who is trying to choose between dispatch techniques may not
yet know how the new system relates to the system used for the specific measurements. As discussed below, different

1 Author’s addresses: Karel Driesen and Urs Hölzle, Department of Computer Science, University of California, Santa Barbara, CA 93106, USA;
{karel,urs}@cs.ucsb.edu. Jan Vitek, Object Systems Group, Centre Universitaire d’Informatique, Université de Geneve, 24 rue General Dufour,
CH-121 Geneve 4, Switzerland; jvitek@cui.unige.ch.

Technical Report TRCS 94-20, Department of Computer Science, University of California, Santa Barbara, November 1994. UCSB CS reports
are available via ftp from ftp.cs.ucsb.edu.


