
Julia’s efficient algorithm for subtyping unions and1

covariant tuples2

Benjamin Chung3

Northeastern University4

Francesco Zappa Nardelli5

Inria6

Jan Vitek7

Northeastern University & Czech Technical University in Prague8

Abstract9

The Julia programming language supports multiple dispatch and provides a rich type annotation10

language to specify method applicability. When multiple methods are applicable for a given call,11

Julia relies on subtyping between method signatures to pick the correct method to invoke. Julia’s12

subtyping algorithm is surprisingly complex, and determining whether it is correct remains an open13

question. In this paper, we focus on one piece of this problem: the interaction between union14

types and covariant tuples. Previous work normalized unions inside tuples to disjunctive normal15

form. However, this strategy has two drawbacks: complex type signatures induce space explosion,16

and interference between normalization and other features of Julia’s type system. In this paper,17

we describe the algorithm that Julia uses to compute subtyping between tuples and unions—an18

algorithm that is immune to space explosion and plays well with other features of the language. We19

prove this algorithm correct and complete against a semantic-subtyping denotational model in Coq.20

2012 ACM Subject Classification Theory of computation → Type theory21

Keywords and phrases Type systems, Subtyping, Union types22

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.2323

1 Introduction24

Union types, originally introduced by Barbanera and Dezani-Ciancaglini [4], are being25

adopted in mainstream languages. In some cases, such as Julia [7] or TypeScript [2], they are26

exposed at the source level. In others, such as Hack [1], they are only used internally as part27

of type inference. As a result, subtyping algorithms between union types are of increasing28

practical import. The standard subtyping algorithm for this combination of features has, for29

some time, been exponential in both time and space. An alternative algorithm, linear in space30

but still exponential in time, has been tribal knowledge in the subtyping community [15]. In31

this paper, we describe and prove correct an implementation of that algorithm.32

We observed the algorithm in our prior work formalizing the Julia subtyping relation [17].33

There, we described Julia’s subtyping relation as it arose from its decision procedure but were34

unable to prove it correct. Indeed, we found bugs in the Julia implementation and identified35

unresolved correctness issues. Contemporary work addresses some correctness concerns [5]36

but leaves algorithmic correctness open.37

Julia’s subtyping algorithm [6] is used for method dispatch. While Julia is dynamically38

typed, method arguments can have type annotations. These annotations allow one method39

to be implemented by multiple functions. At run time, Julia searches for the most specific40

applicable function for a given invocation. Consider theese declarations of multiplication:41

42
*(x:: Number , r:: Range) = range(x*first(r) ,...)43

*(x:: Number , y:: Number) = *(promote (x,y)...)44

*(x::T, y::T) where T <: Union{Signed , Unsigned } = mul_int (x,y)4546

© Benjamin Chung, Francesco Zappa Nardelli, Jan Vitek;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2019.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Subtyping union types and covariant tuples

The first two methods implement, respectively, multiplicaton of range by a number and47

generic numeric multiplication. The third method invokes native multiplication when both48

arguments are either signed or unsigned integers (but not a mix of the two). Julia uses49

subtyping to decide which of the methods to call at any specific site. The call 1*(1:4)50

dispatches to the first, 1*1.1 the second, and 1*1 the third.51

Julia offers programmers a rich type language to express complex relationships in type52

signatures. The type language includes nominal primitive types, union types, existential53

types, covariant tuples, invariant parametric datatypes, and singletons. Intuitively, subtyping54

between types is based on semantics subtyping, the subtyping relation between types holds55

when the sets of values they denote are a subset of one another [7]. We write the set of values56

represented by a type t as JtK. Under semantic subtyping, the types t1 and t2 are subtypes57

iff Jt1K ⊆ Jt2K. From this, we derive a forall-exists intuition for subtyping: for every value58

denoted on the left-hand side, there must exist some value on the right-hand side to match59

it, thereby establishing the subset relation. This simple intuition is, however, complicated to60

check algorithmically.61

In this paper, we focus on the interaction of two features: covariant tuples and union62

types. These two kinds of type are important to Julia’s semantics. Julia does not record63

return types, so a function’s signature consists solely of the tuple of its argument types.64

These tuples are covariant, as a function with more specific arguments is preferred to a more65

generic one. Union types are widely used as shorthand to avoid writing multiple functions66

with the same body. As a consequence, Julia library developers write many functions with67

union typed arguments, functions whose relative specificity must be decided using subtyping.68

To prove the correctness of the subtyping algorithm, we first examine typical approaches69

in the presence of union types. Based on Vouillon [16], the following is a typical deductive70

system for subtyping union types:71

allexist
ft′ <: t t′′ <: t

Union{t′, t′′} <: t

existL
t <: t′

t <: Union{t′, t′′}

existR
t <: t′′

t <: Union{t′, t′′}

tuple
t1 <: t′

1 t2 <: t′
2

Tuple{t1, t2} <: Tuple{t′
1, t′

2}
72 While this rule system might seem to make intuitive sense, it does not match the semantic73

intuition for subtyping. For instance, consider the following judgment:74

Tuple{Union{t′, t′′}, t} <: Union{Tuple{t′, t}, Tuple{t′′, t}}75

76
Using semantic subtyping, the judgment should hold. The set of values denoted by a77

union JUnion{t1, t2}K is just the union of the set of values denoted by each of its members78

Jt1K ∪ Jt2K. A tuple Tuple{t1, t2}’s denotation is the set of tuples of the respective values79

{Tuple{v1, v2} | v1 ∈ Jt1K ∧ v2 ∈ Jt2K}. Therefore, the left-hand side denotes the values80

{Tuple{v′, v′′} | v′ ∈ Jt′K ∪ Jt′′K ∧ v′′ ∈ JtK}, while the right-hand side denotes JTuple{t′, t}K ∪81

JTuple{t′′, t}K or equivalently {Tuple{v′, v′′} | v′ ∈ Jt′K ∪ Jt′′K ∧ v′′ ∈ JtK}. These sets are the82

same, and therefore subtyping should hold in either direction between the left- and right-hand83

types. However, we cannot derive this relation from the above rules. According to them, we84

must pick either t′ or t′′ on the right-hand side using existL or existR, respectively, ending85

up with either Tuple{Union{t′, t′′}, t} <: Tuple{t′, t} or Tuple{Union{t′, t′′}, t} <: Tuple{t′′, t}.86

In either case, the judgment does not hold. How can this problem be solved?87

Most prior work addresses this problem by normalization[4, 14, 3], rewriting all types into88

their disjunctive normal form, as unions of union-free types, before building the derivation.89

Now all choices are made at the top level, avoiding the structural entanglements that cause90

difficulties. The correctness of this rewriting step comes from the semantic denotational91

model, and the resulting subtyping algorithm can be proved both correct and complete. Other92

proposals, such as Vouillon [16] and Dunfield [9], do not handle distributivity. Normalization93

B. Chung, F. Zappa Nardelli, J. Vitek 23:3

is used by Frisch et al.’s [10], by Pearce’s flow-typing algorithm [13], and by Muehlboeck94

and Tate in their general framework for union and intersection types [12]. Few alternatives95

have been proposed, with one example being Damm’s reduction of subtyping to regular tree96

expression inclusion [8].97

However, a normalization-based algorithm has two major drawbacks: it is not space98

efficient, and other features of Julia render it incorrect. The first drawback is caused because99

normalization can create exponentially large types. Real-world Julia code [17] has types like100

the following whose normal form has 32,768 constituent union-free types:101

Tuple{Tuple{Union{Int64, Bool}, Union{String, Bool}, Union{String, Bool},102

Union{String, Bool}, Union{Int64, Bool}, Union{String, Bool},103

Union{String, Bool}, Union{String, Bool}, Union{String, Bool},104

Union{String, Bool}, Union{String, Bool}, Union{String, Bool},105

Union{String, Bool}, Union{String, Bool}, Union{String, Bool}}, Int64}106

The second drawback arises because of type-invariant constructors. For example, Array{Int}107

is an array of integers, and is not a subtype of Array{Any}. In conjunction with type variables,108

this makes normalization ineffective. Consider Array{Union{t′, t′′}}, the set of arrays whose109

elements are either t′ or t′′. It wrong to rewrite it as Union{Array{t′}, Array{t′′}}, as this110

denotes the set of arrays whose elements are either all t′ or t′′. A weaker disjunctive normal111

form, only lifting union types inside each invariant constructor, is a partial solution. However,112

this reveals a deeper problem caused by existential types. Consider the judgment:113

Array{Union{Tuple{t}, Tuple{t′}}} <: ∃T . Array{Tuple{T }}114

115 It holds if the existential variable T is instantiated with Union{t, t′}. If types are in invariant-116

constructor weak normal form, an algorithm would strip off the array type constructors117

and proceed. However, since type constructors are invariant, the algorithm must test that118

both Union{Tuple{t}, Tuple{t}} <: Tuple{T } and Tuple{T } <: Union{Tuple{t}, Tuple{t′}} hold.119

The first of these can be concluded without issue, producing the constraint Union{t, t′} <: T .120

However, this constraint on T is retained for checking the reverse direction, which is where121

problems arise. When checks the reverse direction, the aglorithm has to prove that Tuple{T } <:122

Union{Tuple{t}, Tuple{t′}}, and in turn either T <: t or T <: t′. All of these are unprovable123

under the assumption that Union{t, t′} <: T . The key to deriving a successful judgment for124

this relation is to rewrite the right-to-left check into Tuple{T } <: Tuple{Union{t, t′}}, which125

is provable. This anti-normalization rewriting must be performed on sub-judgments of the126

derivation; to the best of our knowledge it is not part of any subtyping algorithm based on127

ahead-of-time disjunctive normalization.128

Julia’s subtyping algorithm avoids these problems, but it is difficult to determine how:129

the complete subtyping algorithm is implemented in close to two thousand lines of highly130

optimized C code. In this paper, we describe and prove correct only one part of that131

algorithm: the technique used to avoid space explosion while dealing with union types and132

covariant tuples. This is done by defining an iteration strategy over type terms, keeping a133

string of bits as its state. The space requirement of the algorithm is bounded by the number134

of unions in the type terms being checked.135

We use a minimal type language with union, tuples, and primitive types to avoid being136

drawn into the vast complexity of Julia’s type language. This tiny language is expressive137

enough to highlight the decision strategy and illustrate the structure of the algorithm.138

Empirical evidence from Julia’s implementation suggests that this technique extends to139

invariant constructors and existential types [17], among others. We expect that the algorithm140

we describe can be leveraged in other modern language designs.141

Our mechanized proof is available at: benchung.github.io/subtype-artifact.142

ECOOP

benchung.github.io/subtype-artifact

23:4 Subtyping union types and covariant tuples

2 A space-efficient subtyping algorithm143

Formally, our core type language consists of binary unions, binary tuples, and primitive types144

ranged over by p1 . . . pn, as shown below:145

146
type typ = Prim of int | Tuple of typ * typ | Union of typ * typ147148

We define subtyping for primitives as the identity, so pi <: pi.149

2.1 Normalization150

To explain the operation of the space-efficient algorithm, we first describe how normalization151

can be used as part of subtyping. Normalization rewrites types to move all internal unions152

to the top level. The resultant term consists of a union of union-free terms. Consider the153

following relation:154

Union{Tuple{p1, p2}, Tuple{p2, p3}} <: Tuple{Union{p2, p1}, Union{p3, p2}}.155

The term on the left is in normal form, but the right term needs to be rewritten as follows:156

Union{Tuple{p2, p3}, Union{Tuple{p2, p2}, Union{Tuple{p1, p3}, Tuple{p1, p2}}}}157

The top level unions can then be viewed as sets of union-free-types equivalent to each side,158

`1 = {Tuple{p1, p2}, Tuple{p2, p3}}159

and160

`2 = {Tuple{p2, p3}, Tuple{p2, p2}, Tuple{p1, p3}, Tuple{p1, p2}}.161

Determining whether `1 <: `2 is equivalent to checking that for each tuple component t1162

in `1, there should be an element t2 in `2 such that t1 <: t2. Checking this final relation is163

straightforward, as neither t1 nor t2 may contain unions. Intuitively, this mirrors the rules164

([allexist], [existL/R], [tuple]).165

A possible implementation of normalization-based subtyping can be written compactly,166

as shown in the code below. The subtype function takes two types and returns true if they167

are related by subtyping. It delegates its work to allexist to check that all normalized168

terms in its first argument have a supertype, and to exist to check that there is at least one169

supertype in the second argument. The norm function takes a type term and returns a list of170

union-free terms.171
172

let subtype (a:typ)(b:typ) = allexist (norm a) (norm b)173

174

let allexist (a:list typ)(b:list typ) =175

foldl (fun acc a' => acc && exist a' b) true a176

177

let exist(a:typ)(b:list typ) =178

foldl (fun acc b' => acc || a==b') false b179

180

let rec norm = function181

| Prim i -> [Prim i]182

| Tuple t t' ->183

map_pair Tuple (cartesian_product (norm t) (norm t'))184

| Union t t' -> (norm t) @ (norm t ')185186

However, as previously described, this expansion is space-inefficient. Julia’s algorithm is187

more complicated, but avoids having to pre-compute the set of normalized types as norm188

does.189

B. Chung, F. Zappa Nardelli, J. Vitek 23:5

2.2 Iteration with choice strings190

Given a type term such as the following,191

Tuple{Union{Union{p2, p3}, p1}, Union{p3, p2}}192

we want an algorithm that checks the following tuples,193

Tuple{p2, p3}, Tuple{p2, p2}, Tuple{p1, p3}, Tuple{p1, p2}, Tuple{p3, p3}, Tuple{p3, p2}194

195

without having to compute and store all of them ahead-of-time. This algorithm should be196

able to generate each tuple on-demand while still being guaranteed to explore every tuple of197

the original type’s normal form.198

To illustrate the process that the algorithm uses to generate each tuple, consider the199

type term being subtyped. An alternative representation for the term is a tree, where each200

occurrence of a union node is a choice point. The following tree thus has three choice points,201

each represented as a ? symbol:202

[,]

2

? ?
1 3 2?

3
203

At each choice point we can go either left or right; making such a decision at each point204

leads to visiting one particular tuple.205

[,]

2

L L
1 3 2L

3

= Tuple{p2, p3}

[,]

2

L R
1 3 2L

3

= Tuple{p2, p2}

[,]

2

L L
1 3 2R

3
= Tuple{p3, p3}

[,]

2

L R
1 3 2R

3
= Tuple{p3, p2}

[,]

2

R L
1 3 2?

3

= Tuple{p1, p3}

[,]

2

R R
1 3 2?

3

= Tuple{p1, p2}

206

Each tuple is uniquely determined by the original type term t and a choice string c. In the207

above example, the result of iteration through the normalized, union-free, type terms is208

defined by the strings LLL, LLR, LRL, LRR, RL, RR. The length of each string is bounded by209

the number of unions in a term.210

The iteration sequence in the above example is thus LLL → LLR → LRL → LRR → RL211

→ RR, where the underlined choice is next one to be toggled in that step. Stepping from212

a choice string c to the next string consists of splitting c in three, c′ L c′′, where c′ can be213

empty and c′′ is a possibly empty sequence of Rs. The next string is c′ R cpad, that is to say214

it retains the prefix c′, toggles the L to an R, and is padded by a sequence of Ls. The leftover215

tail c′′ is discarded. If there is no L in c, iteration terminates.216

One step of iteration is performed by calling the next function with a type term and a217

choice string (encoded as a list of choices); next either returns the next string in the sequence218

or None. Internally, it calls step to toggle the last L and shorten the string (constructing c′ R).219

Then it calls on pad to add the trailing sequence of Ls (constructing c′ R cpad).220

221
type choice = L | R222

223

let rec next(a:typ)(l: choice list) =224

match step l with225

| None -> None226

| Some(l') -> Some(fst (pad a l'))227228

ECOOP

23:6 Subtyping union types and covariant tuples

The step function delegates the job of flipping the last occurrence of L to toggle. For ease229

of programming, it reverses the string so that toggle can be a simple recursion without an230

accumulator. If the given string has no L, then toggle returns empty and step returns None.231

232
let step(l: choice list) =233

match rev (toggle (rev l)) with234

| [] -> None235

| hd:: tl -> Some(hd::tl)236

237

let rec toggle = function238

| [] -> []239

| L::tl -> R::tl240

| R::tl -> toggle tl241242

The pad function takes a type term and a choice string to be padded. It returns a pair, whose243

first element is the padded string and second element is the string left over from the current244

type. Each union encountered by pad in its traversal of the type consumes a character from245

the input string. Unions explored after the exhaustion of the original choice string are treated246

as if there was an L remaining in the choice string. The first component of the returned value247

is the original choice string extended with an L for every union encountered after exhaustion248

of the original.249

250
let rec pad t l =251

match t,l with252

| (Prim i,l) -> ([],l)253

| (Tuple(t,t'),l) ->254

let (h,tl) = pad t l in255

let (h',tl ') = pad t' tl in (h @ h',tl ')256

| (Union(t,_),L::r) ->257

let (h,tl) = pad t r in (L::h,tl)258

| (Union(_,t),R::r) ->259

let (h,tl) = pad t r in (R::h,tl)260

| (Union(t,_) ,[]) -> (L::(fst(pad t [])) ,[])261262

To obtain the initial choice string, the string composed solely of Ls, it suffices to call pad263

with the type term under consideration and an empty list. The first element of the returned264

tuple is the initial choice string. For convenience, we define the function initial for this.265

266
let initial (t:typ) = fst (pad t [])267268

2.3 Subtyping with iteration269

Julia’s subtyping algorithm visits union-free type terms using choice strings to iterate over270

types. The subtype function takes two type terms, a and b, and returns true if they are271

related by subtyping. It does so by iterating over all union-free type terms ta in a, and272

checking that for each of them, there exists a union-free type term tb in b such that ta <: tb.273

274
let subtype (a:typ)(b:typ) = allexist a b (initial a)275276

The allexist function takes two type terms, a and b, and a choice string f, and returns true277

if a is a subtype of b for the iteration sequence starting at f. This is achieved by recursively278

testing that for each union-free type term in a (induced by a and the current value of f),279

there exists a union-free super-type in b.280

B. Chung, F. Zappa Nardelli, J. Vitek 23:7

281
let rec allexist (a:typ)(b:typ)(f: choice list) =282

match exist a b f (initial b) with283

| true -> (match next a f with284

| Some ns -> allexist a b ns285

| None -> true)286

| false -> false287288

Similarly, the exist function takes two type terms, a and b, and choice strings, f and e. It289

returns true if there exists in b, a union-free super-type of the type specified by f in a. This290

is done by recursively iterating through e. The determination if two terms are related is291

delegated to the sub function.292

293
type res = NotSub | IsSub of choice list * choice list294

295

let rec exist(a:typ)(b:typ)(f: choice list)(e: choice list) =296

match sub a b f e with297

| IsSub(_,_) -> true298

| NotSub ->299

(match next b e with300

| Some ns -> exist a b f ns301

| None -> false)302303

Finally, the sub function takes two type terms and choice strings and returns a value of type304

res. A res can be either NotSub, indicating that the types are not subtypes, or IsSub(_,_)305

when they are subtypes. If the two types are primitives, then they are only subtypes if they306

are equal. If the types are tuples, they are subtypes if each of their respective elements307

are subtypes. Note that the return type of sub, when successful, holds the unused choice308

strings for both type arguments. When encountering a union, sub follows the choice strings309

to decide which branch to take. Consider, for instance, the case when the first type term is310

Union(t1,t2) and the second is type t. If the first element of the choice string is an L, then311

t1 and t are checked, otherwise sub checks t2 and t.312

313
let rec sub t1 t2 f e =314

match t1 ,t2 ,f,e with315

| (Prim i,Prim j,f,e) -> if i==j then IsSub(f,e) else NotSub316

| (Tuple(a1 ,a2), Tuple(b1 ,b2),f,e) ->317

(match sub a1 b1 f e with318

| IsSub(f', e') -> sub a2 b2 f' e'319

| NotSub -> NotSub)320

| (Union(a,_),b,L::f,e) -> sub a b f e321

| (Union(_,a),b,R::f,e) -> sub a b f e322

| (a,Union(b,_),f,L::e) -> sub a b f e323

| (a,Union(_,b),f,R::e) -> sub a b f e324325

2.4 Further optimization326

This implementation represents choice strings as linked lists, but this design requires allocation327

and reversals when stepping. However, the implementation can be made more efficient by328

using a mutable bit vector instead of a linked list. Additionally, the maximum length of the329

bit vector is bounded by the number of unions in the type, so it need only be allocated once.330

Julia’s implementation uses this efficient representation.331

ECOOP

23:8 Subtyping union types and covariant tuples

3 Correctness and completeness of subtyping332

To prove the correctness of Julia’s subtyping, we take the following general approach. We start333

by giving a denotational semantics for types from which we derive a definition of semantic334

subtyping. Then we easily prove that a normalization-based subtyping algorithm is correct335

and complete. This provides the general framework for which we prove two iterator-based336

algorithms correct. The first iterator-based algorithm explicitly includes the structure of the337

type in its state to guide iteration; the second is identical to that of the prior section.338

The order in which choice strings iterate through a type term is determined by both the339

choice string and the type term being iterated over. Rather than directly working with choice340

strings as iterators over types, we start with a simpler structure, namely that of iterators over341

the trees induced by type terms. We prove correct and complete a subtyping algorithm that342

uses these simpler iterators. Finally, we establish a correspondence between tree iterators343

and choice string iterators. This concludes our proof of correctness and completeness, and344

details can be found in the Coq mechanization.345

The denotational semantics we use for types is as follows:346

JpiK = {pi}347

JUnion{t1, t2}K = Jt1K ∪ Jt2K348

JTuple{t1, t2}K = {Tuple{t′
1, t′

2} | t′
1 ∈ Jt1K, t′

2 ∈ Jt′
2K}349

350

351 We define subtyping as follows: if JtK ⊆ Jt′K, then t <: t′. This leads to the definition of352

subtyping in our restricted language.353

I Definition 1. The subtyping relation t1 <: t2 holds iff ∀t′
1 ∈ Jt1K,∃ t′

2 ∈ Jt2K, t′
1 = t′

2.354

The use of equality for relating types is a simplification afforded by the structure of primitives.355

3.1 Subtyping with normalization356

The correctness and completeness of the normalization-based subtyping algorithm requires357

proving that the norm function returns all union-free type terms.358

I Lemma 2 (NF Equivalence). t′ ∈ JtK iff t′ ∈ norm t.359

Theorem 3 states that the subtype relation of Section ?? abides by Definition 1 because it360

uses norm to compute the set of union-free type terms for both argument types, and directly361

checks subtyping.362

I Theorem 3 (NF Subtyping). For all a and b, subtype a b iff a <: b.363

Therefore, normalization-based subtyping is correct against our definition.364

3.2 Subtyping with tree iterators365

Reasoning about iterators that use choice strings, as described in Section 2.2, is tricky as it366

requires simultaneously reasoning about the structure of the type term and the validity of the367

choice string that represents the iterator’s state. Instead, we propose to use an intermediate368

data structure, called a tree iterator, to guarantee consistency of iterator state with type369

structure.370

A tree iterator is a representation of the iteration state embedded in a type term. Thus a371

tree iterator yields a union-free tuple and can either step to a successor state or a final state.372

B. Chung, F. Zappa Nardelli, J. Vitek 23:9

Recalling the graphical notation of Section 2.2, we can represent the state of iteration as a373

combination of type term and a choice or, equivalently, as a tree iterator.374

Choice string: Tree iterator:

[,]

2

? ?
1 3 2?

3

, RL = Tuple{p1, p3}

[,]
R L
1 3

2

= Tuple{p1, p3}
375

This structure-dependent construction makes tree iterators less efficient than choice strings.376

A tree iterator must have a node for each structural element of the type being iterated over,377

and is thus less space efficient than the simple choices-only strings. However, it is easier to378

prove subtyping correct for tree iterators first.379

Tree iterators depend on the type term they iterate over. The possible states are IPrim380

at primitives, ITuple at tuples, and for unions either ILeft or IRight.381

382
Inductive iter: Typ -> Set :=383

| IPrim : forall i, iter (Prim i)384

| ITuple : forall t1 t2 , iter t1 -> iter t2 -> iter (Tuple t1 t2)385

| ILeft : forall t1 t2 , iter t1 -> iter (Union t1 t2)386

| IRight : forall t1 t2 , iter t2 -> iter (Union t1 t2).387388

The next function for tree iterators steps in depth-first, right-to-left order. There are four389

cases to consider:390

A primitive has no successor.391

A tuple steps its second child; if that has no successor step, then it steps its first child392

and resets the second child.393

An ILeft tries to step its child. If it has no successor, then the ILeft becomes an IRight394

with a newly initialized child corresponding to the right child of the union.395

An IRight also tries to step its child, but is final if its child has no successor.396

397
Fixpoint next(t:Typ)(i:iter t): option (iter t) := match i with398

| IPrim _ => None399

| ITuple t1 t2 i1 i2 =>400

match (next t2 i2) with401

| Some i' => Some(ITuple t1 t2 i1 i')402

| None =>403

match (next t1 i1) with404

| Some i' => Some(ITuple t1 t2 i' (start t2))405

| None => None406

end407

end408

| ILeft t1 t2 i1 =>409

match (next t1 i1) with410

| Some(i ') => Some(ILeft t1 t2 i ')411

| None => Some(IRight t1 t2 (start t2))412

end413

| IRight t1 t2 i2 =>414

match (next t2 i2) with415

| Some(i ') => Some(IRight t1 t2 i ')416

| None => None417

end418

end.419420

ECOOP

23:10 Subtyping union types and covariant tuples

An induction principle for tree iterators is needed to reason about all iterator states for a421

given type. First, we show that iterators eventually reach a final state. This is done with a422

function inum, which assigns natural numbers to each state. It simply counts the number of423

remaining steps in the iterator. To count the total number of union-free types denoted by a424

type, we use the tnum helper function.425

426
Fixpoint tnum(t:Typ):nat :=427

match t with428

| Prim i => 1429

| Tuple t1 t2 => tnum t1 * tnum t2430

| Union t1 t2 => tnum t1 + tnum t2431

end.432

433

Fixpoint inum(t:Typ)(ti:iter t):nat :=434

match ti with435

| IPrim i => 0436

| ITuple t1 t2 i1 i2 => inum t1 i1 * tnum t2 + inum t2 i2437

| IUnionL t1 t2 i1 => inum t1 i1 + tnum t2438

| IUnionR t1 t2 i2 => inum t2 i2439

end.440441

This function then lets us define the key theorem needed for the induction principle. At each442

step, the value of inum decreases by 1, and since it cannot be negative, the iterator must443

therefore reach a final state.444

I Lemma 4 (Monotonicity). If next t it = it′ then inum t it = 1 + inum t it′.445

It is now possible to define an induction principle over next. By monotonicity, next eventually446

reaches a final state. For any property of interest, if we prove that it holds for the final state447

and for the induction step, we can prove it holds for every state for that type.448

I Theorem 5 (Tree Iterator Induction). Let P be any property of tree iterators for some type449

t. Suppose P holds for the final state, and whenever P holds for a successor state it then it450

holds for its precursor it′ where next t it′ = it. Then P holds for every iterator state over t.451

Now, we can prove correctness of the subtyping algorithm with tree iterators. We implement452

subtyping with respect to choice strings in the Coq implementation in a two-stage process.453

First, we compute the union-free types induced by the iterators over their original types454

using here. Second, we decide subtyping between the two union-free types in ufsub. The455

function here walks the given iterator, producing a union-free type mirroring its state. To456

decide subtyping between the resulting union-free types, ufsub checks equality between Prim457

s and recurses on the elements of Tuples, while returning false for all other types. Since458

here will never produce a union type, the case of ufsub for them is irrelevant, and is false by459

default.460

Fixpoint here(t:Typ)(i:iter t):Typ :=
match i with
| IPrim i => Prim i
| ITuple t1 t2 p1 p2 =>

Tuple (here t1 p1) (here t2 p2)
| ILeft t1 t2 pl => (here t1 pl)
| IRight t1 t2 pr => (here t2 pr)
end.

Fixpoint ufsub(t1 t2:Typ) :=
match (t1 , t2) with
| (Prim p, Prim p') => p==p'
| (Tuple a a', Tuple b b') =>

ufsub a b && ufsub a' b'
| (_, _) => false
end.

461

B. Chung, F. Zappa Nardelli, J. Vitek 23:11

462
Definition sub (a b:Typ) (ai:iter a) (bi:iter b) :=463

ufsub (here a ai) (here b bi).464465

This version of sub differs from the algorithmic implementation to ensure that recursion is466

well founded. The previous version of sub was, in the case of unions, decreasing on alternating467

arguments when unions were found on either of the sides. In contrast, the proof’s version468

of sub applies the choice string to each side first using here, a strictly decreasing function469

that recurs structurally on the given type. This computes the union-free type induced by470

the iterator applied to the current type. The algorithm then checks subtyping between the471

resultant union-free types, which is entirely structural. These implementations are equivalent,472

as they both apply the given choice strings at the same places while computing subtyping;473

however, the proof version separates choice string application while the implementation474

intertwines it with the actual subtyping decision.475

Versions of exist and allexist that use tree iterators are given next. They are similar476

to the string iterator functions of Section 2.2. exist tests if the subtyping relation holds in477

the context of the current iterator states for both sides. If not, it recurs on the next state.478

Similarly, allexist uses its iterator for a in conjunction with exist to ensure that the current479

left-hand iterator state has a matching right-hand state. We prove termination of both using480

Lemma 4.481

482
Definition subtype (a b:Typ) = allexist a b (initial a)483

484

Program Fixpoint allexist (a b:typ)(ia:iter a) { measure (inum ia)} =485

exists a b ia (initial b) &&486

(match next a ia with487

| Some(ia ') => allexist a b ia '488

| None => true).489

490

Program Fixpoint exist(a b:typ)(ia:iter a)(ib:iter b)491

{ measure (inum ib)} =492

subtype a b ia ib ||493

(match next b ib with494

| Some(ib ') => exist a b ia ib '495

| None => false).496497

The denotation of a tree iterator state R(i) is the set of states that can be reached using498

next from i. Let a(i) indicate the union-free type produced from the type a at i, and |i|a is499

the set {a(i′) | i′ ∈ R(i)}, the union-free types that result from states in the type a reachable500

by i. This lets us prove that the set of types corresponding to states reachable from the501

initial state of an iterator is equal to the set of states denoted by the type itself.502

I Lemma 6 (Initial equivalence). |initial a|a = JaK.503

Next, Theorem 5 allows us to show that exists of a, b, with ia and ib tries to find an iterator504

state i′
b starting from ib such that b(i′

b) = a(ia). The desired property trivially holds when505

|ib|b = ∅, and if the iterator can step then either the current union-free type is satisfying or506

we defer to the induction hypothesis.507

I Theorem 7. exist a b ia ib holds iff ∃t ∈ |ib|b, a(ia) = t.508

We can then appeal to both Theorem 7 and Lemma 6 to show that exist a b ia (initial b)509

finds a satisfying union-free type on the right-hand side if it exists in JbK. Using this, we can510

ECOOP

23:12 Subtyping union types and covariant tuples

then use Theorem 5 in an analogous way to exist to show that allexist is correct up to the511

current iterator state.512

I Theorem 8. allexist a b ia holds iff ∀a′ ∈ |ia|a,∃b′ ∈ JbK, a′ = b′.513

Finally, we can appeal to Theorem 8 and Lemma 6 again to show correctness of the algorithm.514

I Theorem 9. subtype a b holds iff ∀a′ ∈ JaK,∃b′ ∈ JbK, a′ = b′.515

3.3 Subtyping with choice strings516

We prove the subtyping algorithm using choice strings correct and complete. We start by517

showing that iterators over choice strings simulate tree iterators. This lets us prove that518

the choice string based subtyping algorithm is correct by showing that the iterators at519

each step are equivalent. To relate tree iterators to choice string iterators, we use the itp520

function, which traverses a tree iterator state and linearizes it, producing a choice string521

using depth-first search.522

523
Fixpoint itp{t:Typ }(it:iter t): choice list :=524

match it with525

| IPrim _ => nil526

| ITuple t1 t2 it1 it2 => (itp t1 it1)++(itp t2 it2)527

| ILeft t1 _ it1 => Left ::(itp t1 it1)528

| IRight _ t2 it1 => Right ::(itp t2 it1)529

end.530531

Next, we define an induction principle over choice strings by way of linearized tree iterators.532

The next function in Section 2.2 works by finding the last L in the choice string, turning it533

into an R, and replacing the rest with Ls until the type is valid. If we use itp to translate534

both the initial and final states for a valid next step of a tree iterator, we see the same535

structure.536

I Lemma 10 (Linearized Iteration). For some type t and tree iterators it it′, if next t it = it′,537

there exists some prefix c′, an initial suffix c′′ made up of Rs, and a final suffix c′′′ consisting538

of Ls such that itp t it = c′ Left c′′ and itp t it′ = c′ Right c′′′.539

We can then prove that stepping a tree iterator state is equivalent to stepping the linearized540

versions of the state using the choice string next function.541

I Lemma 11 (Step Equivalence). If it and it′ are tree iterator states and next it = it′, then542

next(itp it) = (itp it′).543

The initial state of a tree iterator linearizes to the initial state of a choice string iterator.544

I Lemma 12 (Initial Equivalence). itp(initial t) = pad t [].545

The functions exist and allexist for choice string based iterators are identical to those546

for tree iterators (though using choice string iterators internally), and sub is as described in547

Section 2.2. The correctness proofs for the choice string subtype decision functions use the548

tree iterator induction principle (Theorem 5), and are thus in terms of tree iterators. By549

Lemma 11, however, each step that the tree iterator takes will be mirrored precisely by itp550

into choice strings. Similarly, the initial states are identical by Lemma 12. As a result, the551

sequence of states checked by each of the iterators is equivalent with itp.552

I Lemma 13. exist a b (itp ia) (itp ib) holds iff ∃t ∈ |ib|b, a(ia) = t.553

B. Chung, F. Zappa Nardelli, J. Vitek 23:13

With the correctness of exist following from the tree iterator definition, we can apply the554

same proof methodology to show that allexist is correct. In order to do so, we instantiate555

Lemma 13 with Lemma 6 and Lemma 12 to show that if exist a b (itp ia) (pad t []) then556

∃t ∈ JbK, a(ia) = t, allowing us to check each of the exists cases while establishing the557

forall-exists relationship.558

I Lemma 14. allexist a b (itp ia) holds iff ∀a′ ∈ |ia|a,∃b′ ∈ JbK, a′ = b′.559

We can then instantiate Lemma 14 with Lemma 12 and Lemma 6 to show that allexist for560

choice strings ensures that the forall-exists relation holds.561

I Theorem 15. allexist a b (pad t []) holds iff ∀a′ ∈ JaK,∃b′ ∈ JbK, a′ = b′.562

Finally, we can prove that subtyping is correct using the choice string algorithm.563

I Theorem 16. subtype a b holds iff ∀a′ ∈ JaK,∃b′ ∈ JbK, a′ = b′.564

Thus, we can correctly decide subtyping with distributive unions and tuples using the choice565

string based implementation of iterators.566

4 Complexity567

The worst-case time complexity of Julia’s subtyping algorithm and normalization-based568

approaches is determined by the number of terms that could exist in the normalized type. In569

the worst case, there are 2n union-free tuples in the fully normalized version of a type that570

has n unions. Each of those tuples must always be explored. As a result, both algorithms571

have worst-case O(2n) time complexity. The approaches differ, however, in space complexity.572

The normalization approach computes and stores each of the exponentially many alternatives,573

so it also has O(2n) space complexity. However, Julia need only store the choice made at574

each union, thereby offering O(n) space complexity.575

Julia’s algorithm improves best-case time performance. Normalization always experiences576

worst-case time and space behavior as it has to precompute the entire normalized type.577

Julia’s iteration-based algorithm can discover the relation between types early. In practice,578

many queries are of the form uft <: union(t1...tn), where uft is an already union-free tuple.579

As a result, all that Julia needs to do is find one matching tuple in t1...tn, which can be done580

sequentially without needing explicit enumeration.581

5 Future work582

We plan to handle additional features of Julia. Our next steps will be subtyping for primitive583

types, existential type variables, and invariant constructors. Adding subtyping to primitive584

types would be the simplest change. The challenge is how to retain completeness, as a585

primitive subtype heirarchy and semantic subtyping have undesirable interactions. For586

example, if the primitive subtype hierarchy contains only the relations p2 <: p1 and p3 <: p1,587

then is p1 a subtype of Union{p2, p3}? In a semantic subtyping system, they are, but this588

requires changes both to the denotational framework and the search space of the iterators.589

Existential type variables create substantial new complexities in the state of the algorithm.590

No longer is the state solely restricted to that of the iterators being attempted; now, the591

state includes variable bounds that are accumulated as the algorithm compares types to592

type variables. As a result, correctness becomes a much more complex contextually linked593

property to prove. Finally, invariant type constructors induce contravariant subtyping, which594

when combined with existential variables may create cycles within the subtyping relation.595

ECOOP

23:14 Subtyping union types and covariant tuples

6 Conclusion596

It is likely that subtyping with unions and tuples is always going to be exponential time,597

as subtyping of regular expression types have been proven to be EXPTIME-complete [11].598

However, it need not take exponential space to decide subtyping: we have described and599

proven correct a subtyping algorithm for covariant tuples and unions that uses iterators600

instead of normalization. This algorithm uses linear space and allows common patterns, such601

as testing if a tuple of primitives is a subtype of a tuple of unions, to be handled as a special602

case of the subtyping algorithm. Finally, based on Julia’s experience with the algorithm, we603

think that it can generalize to rich type languages; Julia supports bounded polymorphism604

and invariant constructors enabled in part by its use of this algorithm.605

Acknowledgments606

The authors thank Jiahao Chen for starting us down the path of understanding Julia, and607

Jeff Bezanson for coming up with Julia’s subtyping algorithm. We would also like to thank608

Ming-Ho Yee, Celeste Hollenbeck, and Julia Belyakova for their help in preparing this paper.609

This work received funding from the European Research Council under the European Union’s610

Horizon 2020 research and innovation programme (grant agreement 695412), the NSF (award611

1544542 and award 1518844), the ONR (grant 503353), and the Czech Ministry of Education,612

Youth and Sports (grant agreement CZ.02.1.01/0.0/0.0/15_003/0000421).613

References614

1 Hack. https://hacklang.org/. Accessed: 2019-01-11.615

2 Typescript language specification. URL: https://github.com/Microsoft/TypeScript/blob/616

master/doc/spec.md.617

3 Alexander Aiken and Brian R. Murphy. Implementing regular tree expressions. In Functional618

Programming Languages and Computer Architecture FPCA, 1991. doi:10.1007/3540543961_619

21.620

4 Franco Barbanera and Mariangiola Dezani-Ciancaglini. Intersection and union types. In621

Theoretical Aspects of Computer Software TACS, 1991. doi:10.1007/3-540-54415-1_69.622

5 Julia Belyakova. Decidable tag-based semantic subtyping for nominal types, tuples, and unions.623

In Proceedings of the 21st Workshop on Formal Techniques for Java-like Programs FTFJP,624

2019.625

6 Jeff Bezanson. Abstraction in technical computing. PhD thesis, Massachusetts Institute of626

Technology, 2015. URL: http://dspace.mit.edu/handle/1721.1/7582.627

7 Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A fresh approach628

to numerical computing. SIAM Review, 59(1), 2017. doi:10.1137/141000671.629

8 Flemming M. Damm. Subtyping with union types, intersection types and recursive types. In630

Theoretical Aspects of Computer Software TACS, 1994. doi:10.1007/3-540-57887-0_121.631

9 Joshua Dunfield. Elaborating intersection and union types. J. Funct. Program., 2014. doi:632

10.1017/S0956796813000270.633

10 Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping: Dealing634

set-theoretically with function, union, intersection, and negation types. J. ACM, 55(4), 2008.635

doi:10.1145/1391289.1391293.636

11 Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types for xml.637

ACM Trans. Program. Lang. Syst., 2005.638

12 Fabian Muehlboeck and Ross Tate. Empowering union and intersection types with integrated639

subtyping. Proc. ACM Program. Lang., 2(OOPSLA), 2018.640

https://hacklang.org/
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
http://dx.doi.org/10.1007/3540543961_21
http://dx.doi.org/10.1007/3540543961_21
http://dx.doi.org/10.1007/3540543961_21
http://dx.doi.org/10.1007/3-540-54415-1_69
http://dspace.mit.edu/handle/1721.1/7582
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1007/3-540-57887-0_121
http://dx.doi.org/10.1017/S0956796813000270
http://dx.doi.org/10.1017/S0956796813000270
http://dx.doi.org/10.1017/S0956796813000270
http://dx.doi.org/10.1145/1391289.1391293

B. Chung, F. Zappa Nardelli, J. Vitek 23:15

13 David J. Pearce. Sound and complete flow typing with unions, intersections and negations.641

In Verification, Model Checking, and Abstract Interpretation VMCAI, 2013. doi:10.1007/642

978-3-642-35873-9_21.643

14 Benjamin Pierce. Programming with intersection types, union types, and polymorphism.644

Technical Report CMU-CS-91-106, Carnegie Mellon University, 1991.645

15 Ross Tate. personal communication.646

16 Jerome Vouillon. Subtyping union types. In Computer Science Logic (CSL), 2004. URL: https:647

//www.cis.upenn.edu/~bcpierce/papers/uipq.ps, doi:10.1007/978-3-540-30124-0_32.648

17 Francesco Zappa Nardelli, Julia Belyakova, Artem Pelenitsyn, Benjamin Chung, Jeff Bezanson,649

and Jan Vitek. Julia subtyping: a rational reconstruction. Proc. ACM Program. Lang.,650

2(OOPSLA), 2018. doi:10.1145/3276483.651

ECOOP

http://dx.doi.org/10.1007/978-3-642-35873-9_21
http://dx.doi.org/10.1007/978-3-642-35873-9_21
http://dx.doi.org/10.1007/978-3-642-35873-9_21
https://www.cis.upenn.edu/~bcpierce/papers/uipq.ps
https://www.cis.upenn.edu/~bcpierce/papers/uipq.ps
https://www.cis.upenn.edu/~bcpierce/papers/uipq.ps
http://dx.doi.org/10.1007/978-3-540-30124-0_32
http://dx.doi.org/10.1145/3276483

	Introduction
	A space-efficient subtyping algorithm
	Normalization
	Iteration with choice strings
	Subtyping with iteration
	Further optimization

	Correctness and completeness of subtyping
	Subtyping with normalization
	Subtyping with tree iterators
	Subtyping with choice strings

	Complexity
	Future work
	Conclusion

