
Concrete Types for TypeScript
Gregor Richards1, Francesco Zappa Nardelli2, and Jan Vitek3

1 University of Waterloo
2 Inria
3 Northeastern University

Abstract
TypeScript extends JavaScript with optional type annotations that are, by design, unsound and,
that the TypeScript compiler discards as it emits code. This design point preserves programming
idioms developers are familiar with, and allows them to leave their legacy code unchanged, while
offering a measure of static error checking in annotated parts of the program. We present an
alternative design for TypeScript that supports the same degree of dynamism but that also allows
types to be strengthened to provide correctness guarantees. We report on an implementation,
called StrongScript, that improves runtime performance of typed programs when run on a modified
version of the V8 JavaScript engine.

1998 ACM Subject Classification F.3.3 Type structure

Keywords and phrases Gradual typing, dynamic languages

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.999

1 Introduction

Perhaps surprisingly, a number of modern computer programming languages have been de-
signed with intentionally unsound type systems. Unsoundness arises for pragmatic reasons,
for instance, Java has a covariant array subtype rule designed to allow for a single polymor-
phic sort() implementation. More recently, industrial extensions to dynamic languages,
such as Hack, Dart and TypeScript, have featured optional type systems [5] geared to ac-
commodate dynamic programming idioms and preserve the behavior of legacy code. Type
annotations are second class citizens intended to provide machine-checked documentation,
and only slightly reduce the testing burden. Unsoundness, here, means that a variable an-
notated with some type T may, at runtime, hold a value of a type that is not a subtype
of T due to unchecked casts, covariant subtyping, and untyped code. Implementations deal
with this by ignoring annotations, emitting code where all types are erased, and reverting
to a fully dynamic implementation. For example, TypeScript translates classes to JavaScript
code without casts or checks. Unsurprisingly, the generated code neither enjoys performance
benefits nor strong safety guarantees.

A gradual type system [21, 18] presents a safer alternative, as values that cross between
typed and untyped parts of a program are tracked and a mechanism for assigning blame
eases the debugging effort by pinpointing the origin of any offending value. But the added
safety comes with a runtime overhead, a price tag that, for object-oriented programs, can be
steep. Also, gradual types affect the semantics of programs; adding type annotations that
are more restrictive than strictly necessary can cause runtime errors in otherwise correct
programs.

We argue that programmers should be given the means to express how much type check-
ing they want to take place in any particular part of their program. Depending on their

© G. Richards, F. Zappa Nardelli, J. Vitek;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 999–1023

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.999
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1000 Concrete Types for TypeScript

choice, they should either be able to rely on the fact that type annotations will not intro-
duce errors in well-tested and widely deployed dynamic code, or, if they select more stringent
checks, they should have guarantees of the absence of type errors and improved performance.

This paper illustrates this idea with the design of a new type system for the TypeScript
language. TypeScript is an extension to JavaScript from Microsoft that introduces classes,
structural subtyping, and type annotations on properties, arguments and return values.
Syntactically, our extension, which we call StrongScript, is minimal, it consists of a single
type constructor for concrete types (written !).1 Semantically the changes are more subtle.
Our type system allows developers to choose between writing untyped code (i.e., all variables
are of type any as in JavaScript), optionally typed code that does not affect the semantics of
dynamic programs (i.e., no new dynamic errors), and concretely typed code that provides
the traditional correctness guarantees but affects the semantics of dynamic code (i.e., types
are retained by the compiler and used to optimize the program, new dynamic errors may
show up). More specifically, the goals that guided design of StrongScript are:

All JavaScript programs must be valid StrongScript programs and common programming
idioms should be typeable.
Optional types guarantee that variables are used consistently with their declarations;
concrete types are sound up to down casts.
Type information should improve performance in the context of a highly-optimizing
virtual machine.
Support checked casts which are central to many object oriented idioms.

One of the more subtle departures between our proposal and TypeScript is a switch to
nominal subtyping for classes. The reasons for this change are pragmatic: generating efficient
property access code for structural subtyping is not a solved problem, whereas it is well
understood for nominal subtyping. Moreover, with nominal subtyping, we can reuse the
existing JavaScript subtype test. Interfaces retain their structural subtyping rules and are
erased at compile-time like in TypeScript. This yields a type system where any class name
C can be used as an optional type, written C, or as a concrete type, written !C. While the
former have a TypeScript-like semantics, variables typed with concrete types are guaranteed
to refer to an object of class C, a class that extends C, or null. We exploit concrete type
annotations and nominal subtyping to provide fast property access and efficient checked
casts. Unannotated variables default to type any, ensuring that JavaScript programs are
valid StrongScript programs.

The contribution of this paper are twofold:

Design and implementation. We implemented StrongScript as an extension to the Type-
Script compiler. All the TypeScript programs we have tried run without changes on our
implementation. To get a measure of performance benefits we extended Google’s V8 to
provide fast access to properties through concretely typed variables and floating point
math with no runtime checks. Preliminary results on a small number of benchmarks
show speed ups up to 22%. We also provide some evidence that the type system is not
overly restrictive, as it validates all the benchmarks from [16].
Formalization. We propose trace preservation as a key property for the evolution of
programs from untyped to typed. Informally adding a type annotation to a program is
trace-preserving if the program’s behavior is unaffected. We prove a trace preservation

1 Implementation available at http://plg.uwaterloo.ca/~dynjs/strongscript/.

http://plg.uwaterloo.ca/~dynjs/strongscript/

G. Richards, F. Zappa Nardelli, J. Vitek 1001

theorem for optional types: if expression e is untyped, and e′ only differs by the addition
of optional types, then e and e′ evaluate to the same value. We do this within a core
calculus, in the style of λJS [13], that captures the semantics of the two kinds of class
types. A safety theorem states that terms can only get stuck when evaluating a cast or
when accessing a property from a any or optionally typed variable. We also show that
our design support program evolution by proving a strengthening theorem: when a fully
optionally typed program is annotated with concrete types, the program will be trace
preserving.

The design of StrongScript is based on our previous work on Thorn where optional types
were called like types [2, 24]. As with the formalization of Bierman et al. [1], we restrict
our extensions to the features of TypeScript 0.9.1 [15], the last version before the addition of
generics. Our implementation is based on TypeScript 1.4, but newer features are unmodified
beyond assuring that they remain safe with respect to concrete types.

2 Motivating Example

We illustrate gradual typing, and give a brief preview of StrongScript, with an example
adapted from the raytrace benchmark of Section 7. The program includes a Camera, an
extract of which is in Figure 2-C1. The camera is a client of the library class, Vector,
shown in Figure 1-L1. For this example, assume the classes are developed and maintained
independently.

class Vector {
 constructor(public x ,
 public y ,
 public z) {}
 times(k) { return new Vector(k*this.x,k*this.y,k*this.z); }
 dot (v) { return this.x*v.x+this.y*v.y+this.z*v.z; }
 mag () { return Math.sqrt(this.x*this.x+this.y*this.y+this.z*this.z); }
}

class Vector {
 constructor(public x: !number,
 public y: !number,
 public z: !number) {}
 times(k: number): !Vector { return new Vector(k*this.x,k*this.y,k*this.z); }
 dot (v: Vector): !number { return this.x*v.x+this.y*v.y+this.z*v.z; }
 mag (): !number { return +Math.sqrt(this.x*this.x+this.y*this.y+this.z*this.z); }
}

L1 Untyped Vector library class

L2 Optionally typed Vector library class

L3 Partly concrete Vector library class

L4 Concrete Vector library classclass Vector {
 constructor(public x: !floatNumber,
 public y: !floatNumber,
 public z: !floatNumber) {}
 times(k: !number): !Vector { return new Vector(k*this.x,k*this.y,k*this.z); }
 dot (v: !Vector): !number { return this.x*v.x+this.y*v.y+this.z*v.z; }
 mag (): !number { return +Math.sqrt(this.x*this.x+this.y*this.y+this.z*this.z); }
}

class Vector {
 constructor(public x: number,
 public y: number,
 public z: number) {}
 times(k: number) { return new Vector(k*this.x,k*this.y,k*this.z); }
 dot (v: Vector) { return this.x*v.x+this.y*v.y+this.z*v.z; }
 mag () { return Math.sqrt(this.x*this.x+this.y*this.y+this.z*this.z); }
}

Figure 1 Gradual insertion of type annotations to a Vector class in StrongScript.

ECOOP’15

1002 Concrete Types for TypeScript

As is often the case in dynamic languages, the library and client start out untyped
(Figure 1-L1 and Figure 2-C1). This leaves the software open to modifications, something
that can be beneficial when frequent change is anticipated, but also means that all operations
are dynamic. Dynamic operations can fail and, if the virtual machine is unable to optimize
them, are more costly.

class Camera {
 public fwd ;
 constructor(public k , v) {
 this.fwd = v.times(k);
 }
}

class Camera {
 public fwd: !Vector;
 constructor(public k: !number, v: !Vector) {
 this.fwd = v.times(k);
 }
}

class Camera {
 public fwd: Vector;
 constructor(public k: number, v: Vector) {
 this.fwd = v.times(k);
 }
}

C3 Concrete client class

C2 Optionally typed client class

C1 Untyped client class

Figure 2 Gradual insertion of types in Camera.

To communicate intent and pro-
vide machine-checked documenta-
tion, the library designer may anno-
tate fields and arguments with op-
tional types (Figure 1-L2). Fields x,
y and z are expected to hold numeric
values and are annotated with the
generic number type. The argument
to dot() is expected to be another
Vector, this is also recorded with an
optional type.

Optional types impose no con-
straints on clients. Thus, an un-
typed camera (Figure 2-C1) can be
used with a typed vector. The bene-
fit of ascribing an optional type to a
variable is that within the variable’s
scope, the compiler can detect mis-
use. For example, k.x is erroneous
because k has optional type number
and numbers do not have an x property. Optional types can also be added to the camera
(Figure 2-C2) with similar benefits.

As optional types lack guarantees, developers may strengthen the invariants of their code
by adding concrete types (Figure 1-L3). When fields are typed as concrete numbers, written
x:!number, programmers (and the compiler) can rely on the fact that a variable like x will
only ever refer an instance of numeric type or null. Return types of methods can typically
be made concrete without affecting clients. Making arguments concrete, on the other hand,
may require some changes. The call to Math.sqrt() triggers a compilation error because
the standard library is optionally typed, as all of its methods are easily replaced in Java-
Script and thus can’t necessarily be trusted. We can either add a cast to !number, written
<!number>, or use the common JavaScript idiom of adding a unary plus operator to ensure
that the result is indeed a number.

The last typing step involves adding concrete types to arguments of the methods of the
Vector class (Figure 1-L4). Doing so introduces a compile error in the client (Figure 2-C2)
as argument k in the call v.time(k) is typed as an optional number whereas the method
definition expects !number. The client must ensure that the argument is concrete (Figure 2-
C3). One last point, to improve performance, StrongScript support hints like !floatNumber
that give information about the expected storage format.

One important features of our design is that untyped classes can always interact with
typed ones. The proper type checks are inserted by the implementation. Any combination
of library and client is valid. The only exception is that C2 will not compile with L4, this
because C2 is typed but its types do not agree with L4.

G. Richards, F. Zappa Nardelli, J. Vitek 1003

3 Background and Related Work

The divide between static and dynamic types has fascinated academics and practitioners for
years. Academics come determined to “cure the dynamic” as the absence of types is viewed
as a flaw. Practitioners, on the other hand, seek to supplement their testing practices with
machine-checked documentation and some ahead-of-time error checking. Dynamic languages
are appreciated by practitioners for their productivity, their smaller learning curve, and their
support of exploratory programming, as any grammatically correct dynamic program, even
a partial program or one with obvious errors, can be run. Decades of research were devoted
to attempts to add static types to dynamic languages. In the 1980’s, type inference and
soft typing were proposed for Smalltalk and Scheme [20, 3, 7]. Inference based approaches
turned out to be brittle as they required non-local analysis and were eventually abandoned.

Twenty years ago, while working at Animorphic on the virtual machine that would even-
tually become HotSpot, Bracha designed the first optional type system [6]. Subsequent work
fleshed out the design [4] and detailed the philosophy behind optional types [5]. An optional
type system is one that: (1) has no effect on the language’s runtime semantics, and (2)
does not mandate type annotations in the syntax. Strongtalk like Facebook’s Hack, Google’s
Dart, and Microsoft’s TypeScript was an industrial effort. In each case, a dynamic language
is equipped with a static type system that is flexible enough to support backwards compat-
ibility with untyped code. While optional types have benefits, they provide no guarantee of
absence of type errors nor information that could be relied upon by an optimizing compiler.

Another important line of research is due to Felleisen and his collaborators. After inves-
tigating soft typing approaches for Scheme, Findler and Felleisen turned their attention to
software contracts [9]. In [10], they proposed wrappers to enforce contracts for higher-order
functions; these wrappers, higher-order functions themselves, were in charge of validating
pre- and post-conditions and assigning blame in case of contract violations. Together with
Flatt, they turned higher-order contracts into semantics casts [11]. A semantics cast consists
of an argument (a value), a target type, and blame information. It evaluates to an object of
the target type that delegates all behavior to its argument, and produces meaningful error
messages in case the value fails to behave in a type appropriate manner. In 2006, Tobin-
Hochstadt and Felleisen proposed a type system for Typed Racket, a variant of Scheme that
used higher-order contracts to enforce types at module boundaries [21]. Typed Racket has
a robust implementation and is being used on large bodies of code [22]. The drawback of
this approach is that contracts impose a runtime overhead which can be substantial in some
programs.

In parallel with the development of Typed Racket, Siek and Taha defined gradual typing to
refer to languages where type annotations can be added incrementally to untyped code [18,
19]. Like in Typed Racket, wrappers are used to enforce types but instead of focusing on
module boundaries, any part of a program can be written in a mixture of typed and untyped
code. The type system uses two relations, a subtyping relation and a consistency relation
for assignment. Their work led to a flurry of research on issues such as bounding the space
requirements for wrappers and how to precisely account for blame. In an imperative language
their approach suffers from an obvious drawback: wrappers do not preserve object identity.
One can thus observe the same object through a wrapper and through a direct reference at
different types. Solutions are not appealing, either every property read must be checked or
fairly severe restrictions must be imposed on writes. In a Python implementation, called
Reticulated Python, both solutions cause slowdowns that are larger than 2x [23]. Another
drawback of gradual type systems is that they are not trace preserving. Consider:

ECOOP’15

1004 Concrete Types for TypeScript

class C:
b = 41

def id(x: Object {b: String }) return x
id(C()).b + 1

Without annotations the program evaluates to 42. When type annotations are taken into
account it stops at the read of b. A type violation is reported as the required type for
b is String while b holds an Int. Similar problems occur when developers put contracts
that unnecessarily strong without understanding the range of types that can flow through
a function.

The Thorn programming language was an attempt to combine optional types (called like
types) with concrete types [2]. The type system was formalized along with a proof that wrap-
pers can be compiled away [24]. Preliminary performance results suggested that concrete
types could yield performance improvements when compared to a naive implementation of
the language, but it was not demonstrated that the results hold for an optimizing compiler.
Our work on StrongScript started as a straightforward port of the ideas to a different context,
most of the differences are due to the details of TypeScript and JavaScript.

SafeTypeScript [16] is a recent effort from Microsoft to modify TypeScript by making it
safe: in a nutshell, all types are concrete, and type checks are inserted when dynamic values
are cast to concrete types. This technique yields a safe language which allows dynamic
types, but lacks optional types. Because type checks are always inserted, SafeTypeScript is
not trace-preserving and it lacks support for evolving programs from typed to untyped. On
the other hand, SafeTypeScript focused on ensuring safety within the browser which is not
a goal of our work.

Figure 3 compares the main approaches to adding types to dynamic languages. Type-
Script chose to preserve the semantics of untyped code at the cost of guarantees and potential
performance improvements. Typed Racket has an elegant type system that provides very
strong guarantees of correctness. But the semantics of untyped code may be disrupted by too
strong annotations and performance pathologies can cause serious slowdowns. Reticulated
Python holds the promise of reducing the performance costs of gradual typing but does not
deal with trace preservation. Lastly, StrongScript lacks some of the strong guarantees of
Typed Racket (in particular about blame), but provides the means for programmers to write
sound typed code and makes it easy for a compiler to generate code that is predictably
efficient.

TypeScript Typed Racket Reticulated Python StrongScript

x : C any W W any
x : !C – – – C

Trace preserving # # G#
Fast property access # # #

Figure 3 Optional and gradual type systems. This table’s first line indicates possible values of
variable declared of class C. This type is either any or W to denote the possibility of encountering
a wrapper. The second line shows the possible value of variable declared !C in StrongScript, they
are guaranteed to be unwrapped subtypes of that class. Trace preservation holds in TypeScript, in
StrongScript developers can choose to forgo this property in exchange for stronger guarantees. The
last line refers to the ability of a compiler to generate fast path code for property accesses.

G. Richards, F. Zappa Nardelli, J. Vitek 1005

4 TypeScript: Unsound by design

Bierman et al. captured the key aspects of the design of TypeScript in [1]. TypeScript is
a superset of JavaScript, with syntax for declaring classes, interfaces, and modules, and
for optionally annotating variables, expressions and functions with types. Types are fully
erased: errors not identified at compile-time will not be caught at runtime. The type
system is structural rather than nominal, which causes some complications for subtyping.
Type inference is performed to reduce the number of annotations. Some deliberate design
decisions are the source of type holes, these include: unchecked casts, <String>obj is
allowed if the type of obj is supertype of String, yet no check will be done at runtime;
indexing with computed strings, obj[a+b] cannot be type checked as the value of string
index is not known ahead of time; covariance of properties/arguments, this is similar to the
Java array subtyping rule except that TypeScript does not have runtime checks for stores.

We will look more closely at the parts of the design that are relevant to our work, starting
with subtyping. Consider the following well-typed program:

interface P { x: number ; }
interface T { y: number ; }
interface Pt extends P { y: number ; dist(p: Pt); }

Interfaces include properties and methods. Extend declarations amongst interfaces are not
required for other purposes than documenting intent, thus Pt is a subtype of both P and T.
Classes can be defined as usual, and the extends clause there has a semantic meaning as it
specifies inheritance of properties.

class Point {
constructor (public x:number , public y: number){}
dist(p: Point) { ... }

}
class CPoint extends Point {

constructor (public color:String , x:number , y: number){
super(x,y);

}
dist(p: CPoint) { ...p.color ... }

}

Both classes are subtypes of the interfaces declared above. Note that the dist method is
overridden covariantly at argument p and that CPoint.dist in fact does require p to be an
instance of CPoint.

var o:Pt = new Point (0 ,0);
var c: CPoint = new CPoint ("Red" ,1,1);
function pdist(x:Point , y:Point) { x.dist(y); }
pdist(c,o);

The first assignment implicitly casts Point to Pt which is allowed by structural subtyping.
The function pdist will invoke dist at static types Point, yet it is invoked with a CPoint
as first argument. The compiler allows the call, at runtime the access the p.color property
will return the undefined value. Any type can be converted implicitly to any, and any
method can be invoked on an any reference. More surprisingly, an any reference can be
passed to all argument positions and be converted implicitly to any other type.

var q:any = new CPoint ("Red" ,1,1);
var d = q.dist(o);
var b = o.dist(q);

ECOOP’15

1006 Concrete Types for TypeScript

This last example demonstrates a case of unchecked cast. Here o is declared of type Pt and
we cast it to its subtype CPoint. The access will fail at runtime as variable o refers to an
instance of Point which does not have color. The compiler does not emit a warning in any
of the cases above.

function getc(x: CPoint) { return x.color };
getc(<CPoint >o);

Bierman et al. showed that the type system can be formalized as the combination of a sound
calculus extended with unsound rules. For our purposes, the sound calculus is a system with
records, equi-recursive types and structural subtyping. The resulting assignment compati-
bility relation can be defined coinductively using well-studied techniques [12]. We underline
the critical choice of defining any as the supertype of all the types; since upcasts are well-
typed, values of arbitrary types can be assigned to a variable of type any without the need
of explicit casts. Type holes are introduced in three steps. First, a rule allows downcasts to
subtypes. The second step is more interesting, as it changes the subtyping relation by stat-
ing that all types are supertypes of any . This implies arbitrary values can flow into typed
variables without explicit casts. No syntactic construct identifies the boundaries between
the dynamic and typed world. Thirdly, covariant overloading of class/interface members
and methods is allowed.

Type inference is orthogonal to our proposal. As for generics, Bierman et al. describe
decidability of subtyping as “challenging” [1]; we do not consider them here, and our im-
plementation simply inserts runtime checks to assert their type safety. Lastly, we do not
discuss TypeScript’s liberal use of indexing. Our implementation supports it by explicitly
inserting type casts (see Section 5).

5 StrongScript: Sound when needed

StrongScript builds on and extends TypeScript. Syntactically, the only addition is a new type
constructor, written !. This yields three kinds of types:
Dynamic types, denoted by any, represent values manipulated with no static restrictions.

Any object can be referenced by an any variable, all operations are allowed and may fail
at runtime.

Optional types, denoted by class names C, enable local type checking. All manipulations of
optionally typed variables are verified statically against C’s interface. Optionally typed
variables can reference arbitrary values, and so runtime checks are required to verify that
those values conform to C’s interface.

Concrete types, denoted by !C, represent objects that are instance of the homonymous class
or its subclasses. Static type checking is performed on these, and no dynamic checks are
needed in the absence of downcasts.

Optional types have the same intent as TypeScript type annotations: they capture some
type errors and enable features such as IDE name completion without reducing flexibility of
dynamic programs. Concrete types behave exactly how programmers steeped in statically
typed languages would expect. They restrict the values that can be bound to a variable
and unlike other gradual type systems they do not support the notion of wrapped values or
blame. No runtime error can arise from using a concretely typed variable and the compiler
can rely on type information to emit efficient code with optimizations such as unboxing and
inlining.

G. Richards, F. Zappa Nardelli, J. Vitek 1007

To make good on the promise of concrete types, StrongScript has a sound type system.
This forces some changes to TypeScript’s overly permissive type rules and to the underlying
implementation. The runtime thus distinguishes between dynamic objects, created with the
JavaScript syntax { x:v .. }, and objects which are instances of a class, created with the
new C(v..) Java-like syntax. Casts are explicit and in many cases they require checks at
runtime. Covariant subtyping, such as the array subtype rule, is checked at runtime as well.
Moreover, class subtyping is nominal to ensure that the memory layout of parent classes
is a prefix of child classes and thus that code to access properties is fast. Compared to
TypeScript, subtyping is slightly simpler as we do not allow for any to be both the top and
bottom of the type lattice. By design, any JavaScript program is a well-type StrongScript
program, furthermore most TypeScript programs are also valid StrongScript programs – only
in the rare cases discussed in Sec. 5.2 are TypeScript programs rejected by our type system
(see also the evaluation in Sec. 7.2).

In what follows we introduce the main aspects of programming in our system. Code
snippets should be read in sequence.

5.1 Programming with Concrete Types
We aim to let developers incrementally add types to their code, hardening parts that they feel
need to be, while having the freedom to leave other parts dynamic. This is possible thanks to
the interplay between the dynamic code, the flexible semantics of optionally typed variables,
and the runtime guarantees of the concretely typed code. Consider the following program:

var p:any = { x=3; z=4 }
var f:any = func (p) {

if (p.x < 10) return 10 else return p. distance () }
f(p) // evaluates to 10

Without any loss of flexibility, programmers may choose to document their expectations
about the argument of functions and data structures, and then annotate p and the argument
of f with the optional type Point:

class Point {
constructor (public x, public y) {}
dist(p) { return ... }

}

var p:Point = <any > { x=3; z=4 } // Correct

var f:any = func (p:Point) {
if (p.x < 10) return 0 else
return p. distance (p) // Wrong

}

Arbitrary objects can still flow into optionally typed variables, preserving flexibility (and
ensuring trace-preservation), while the annotation of the argument of f enables local type
checking, catching type errors such as the call to distance. The programmer can also create
instances of class Point, which are concretely typed as !Point, and pass them to f:

var s:! Point = new Point (5 ,6);
f(s); // evaluates to 10

As function f has been type checked assuming that its argument is a Point, we know its
body will manipulate the argument as a Point. However, whenever an object which is an

ECOOP’15

1008 Concrete Types for TypeScript

instance of a class is passed to an optionally or dynamically typed context, it protects its
own abstractions at runtime. Consider a new class definition, where the x and y fields have
been strengthened as !number and as such can only refer to instances of class number:

class TypedPoint {
constructor (public x:! number , public y:! number){}
dist(p) { return ... :! number }

}

var t:! TypedPoint = new TypedPoint (1 ,2);
(<any >t).x = "o" // DYNAMIC ERROR: type mismatch

Some flexibility is lost by this class but the compiler can exploit the type information to
compute property offsets, remove runtime type checks and unbox values. Observe that
dynamic, optional and concrete types can be mixed seamlessly; above, for instance, we have
left the argument of the dist function dynamically typed, so that it is correct to invoke it
with an arbitrary object as in t.dist({x=1;y=2}).

Our strategy for program evolution is to first add optional types, catching and fixing
unexpected local type errors; the programmer can then identify the parts of the code that
obey a stricter type discipline, and replace optional types with concrete types. Optional
types act as a bridge to move values into the concrete world:

var fact = func(x:! number) { return ...:! number }
var u: TypedPoint = { dist = function (p) {...} }
var n:! number = fact(u.dist(p))

In the example, p has type any, and u points to a dynamic object with a method dist
typed any → any. However, u has been typed as TypedPoint; the runtime will ensure
that the method dist respects the TypedPoint.dist signature any → !number and will
dynamically check that the returned value is an instance of class number. As a consequence,
fact(u.dist(p)) is well-typed (the concretely typed function fact is guaranteed to receive
a value of type !number) and the programmer, by specifying just one optional type, can
invoke the concretely-typed function fact with a value that has been computed from the
dynamic world. The ability to have fine grained control over typing guarantees is one of the
main benefits of StrongScript.

5.2 From TypeScript to StrongScript Types
A significant departure of our work is that we adopt nominal subtyping for classes and retain
structural subtyping for interfaces and object literals. If a class C extends D, their concrete
types are subtypes, denoted !C <: !D. Furthermore each concrete type is a subtype of the
corresponding optional type, !C <: C, with an order on optional types that mirrors the one
on concrete types: !C <: !D implies C <: D. any is an isolate with no super or subtype.
Subtyping for interfaces follows [1] with the exception that an interface cannot extend a
class.

Casts play a central role in the type system. Statically casts are always allowed to and
from any, while casts to optional and concrete types are only permitted if one type is subtype
of the other. At runtime, all programmer-inserted casts are checked, and additional casts
are added by the implementation. Whenever a function with concretely typed arguments
is injected in a dynamic context, the runtime adds a wrapper that uses casts to check the
actual arguments. For instance, casting fact to any results in the following wrapper:

func(x) { <any >(fact(<!number >x)) }

G. Richards, F. Zappa Nardelli, J. Vitek 1009

To keep the syntax of the two languages in sync, several TypeScript dynamic features are
rewritten as implicit casts. In particular, at function arguments and the right hand side of
the assignment operator, casts to or from any and optional types are inserted automatically.
For instance, the expression on the left is transformed into the one on the right:

var p:Point = <any >{x=3, z=4} var p:Point = <Point ><any >{x=3, z=4}

If casts from any or optional types to concrete types are inserted, they are checked exactly
like explicit casts. In addition, to support TypeScript’s unsafe covariant subtyping, covariant
overloading is implemented by injecting casts. Finally, casts are inserted in function calls
to assure that if the function is called from an untyped context, its type annotations are
honored. For instance, the class CPoint below extends Point and requires a concrete type
for the argument of dist:

class CPoint extends Point {
constructor (public color:string , x:number , y: number){...}
dist(p:! CPoint) { ...p.color ... }

}

The overloading of dist is unsound, as CPoint is a subtype of Point. It is rewritten to
perform a cast, and thus a check, on its argument p:

class CPoint extends Point { ...
dist(pa){var p:! CPoint = <!CPoint >pa; ...p.color ...}

}

Departing from TypeScript, the type of this is not any, but the concrete type of the sur-
rounding class. This allows calls to methods of this to be statically type checked. But it
creates an incompatibility with TypeScript code which uses “method stripping”. It is possible
to remove a method from the context of its object, and by using the builtin function call,
to call the method with a different value for this. Consider, for instance, the following
example:

class Animal {
constructor (public nm: string) {}

}
class Loud extends Animal {

constructor (nm:string , public snd: string) { super(nm) }
speak () { alert(this.nm+" says "+this.snd) }

}

var a = new Animal ("Snake");
var l = new Loud("Chris", "yo");
var m = l.speak;
m.call(a);

The speak method will be called with this referring to an Animal. This is plainly incorrect,
but allowed, and will result in the string "Chris says undefined". In StrongScript, this
is concrete and the stripped method will include checks that cause the call to fail.

TypeScript’s generic and union types are supported, but are not meaningfully checkable,
and therefore may not be made concrete. Generics may reference concrete types and unions
may include concrete types, however. For instance, the type Array<!number> is supported,
but the type !Array<number> is not. Like other dynamic features, implicit casts are written
to assure type safety at runtime.

TypeScript’s enumeration types are treated as semantically identical to numbers.

ECOOP’15

1010 Concrete Types for TypeScript

5.3 Backwards compatibility
JavaScript allows a range of highly dynamic features. StrongScript does not prevent any of
these features from being used, but, since their type behavior is so unpredictable, it does not
attempt to provide informative types for them. For instance, as objects are maps of string
field names to values, it is possible to access members using computed strings. Thus x[y]
accesses a member of x named by the string value of y, coercing it to a string if necessary;
the type of the expression is always any. Assignment to x[y] may fail, if the member has
a concrete type and the assigned value is not a subtype. Similarly, eval takes any string
and executes it as code. StrongScript treats that code as JavaScript, not StrongScript. This
is not an issue in practice as eval’s uses are mostly mundane [17]. The type of eval(x) is
any.

Objects in JavaScript can be extended by adding new fields, and fields may be removed.
An object’s StrongScript type must be correct insofar as all fields and methods supported
by its declared type must be present, but fields and methods not present in its type are
unconstrained. As such, StrongScript protects its own fields from deletion or update to values
of incorrect types, but does not prevent addition or deletion of new fields and methods. It is
even possible to dynamically add new methods to classes, by updating an object prototype.
None of this affects the soundness of the type system, and access to one of these in a value
not typed any will result in a static type error.

5.4 Discussion
While one of previous our prototypes for StrongScript did implement blame tracking mode
similar to Typed Racket, we decided to remove the feature as it did incur serious performance
overheads. Wrappers require, amongst other things, specialized field access code. In Typed
Racket the overheads are tolerable because the granularity of typing is coarser; wrappers are
added when untyped values cross the boundary of a typed module. In our case, any method
call is potentially a boundary. Fixing these performance issues is ongoing research. Our
vision of blame tracking is as an optional command line switch like assertion checking to be
used during debugging.

The change to nominal subtyping is controversial but practical experience suggests that
structural subtyping is rather brittle.2 In large systems, developed by different teams, the
structural subtype relations are implicit and thus any small change in one part of the system
could break the structural subtyping expected by another part of the system. We believe that
having structural subtyping for optionally typed interface is an appropriate compromise. It
should also be noted that Strongtalk started structural and switched to nominal [4].

StrongScript departs from Thorn inasmuch Thorn performs an optimized check on method
invocation on optionally typed objects: rather than fully type checking the actual arguments
against the method interface, it relied on the fact that this check had already been performed
statically and simply compared the interface of the method invoked against the interface
declared in the like type annotation. Thorn’s type system is sound, but the simpler check

2 The TypeScript compiler (in types.ts) has the following comment: “Note: ’brands’ in our syntax
nodes serve to give us a small amount of nominal typing. Consider ’Expression’. Without the brand,
’Expression’ is actually no different (structurally) than ’Node’. Because of this you can pass any Node
to a function that takes an Expression without any error. By using the ’brands’ we ensure that the
type checker actually thinks you have something of the right type. Note: the brands are never actually
given values. At runtime they have zero cost.” This suggests that the known drawbacks of structural
subtyping do arise in practice.

G. Richards, F. Zappa Nardelli, J. Vitek 1011

introduces an asymmetry between optional and dynamic types at runtime which Thiemann
exploited to prove that Thorn is not trace-preserving (personal communication).

6 Formal properties

We formalize StrongScript as an extension of the core language λJS of [13]; in particular
we equip λJS with a nominal class-based type system à la Featherweight Java [14] and
optional types. This treatment departs from Bierman et al. [1] in that they focused on
typing interfaces and ignored classes, whereas we ignore interfaces and focus on classes.
Thus our calculus does not include rules for structural subtyping of interface types; these
rules would, assumedly, follow [1] but would add too much baggage to the formalization
that is not directly relevant to our proposal. We also do not model method overloading (as
discussed, StrongScript keeps covariant overloading sound by inserting appropriate casts)
and references; our design enforces the runtime abstractions even in presence of aliasing.

Syntax. Class names are ranged over by C,D, the associated optional types are denoted by
C and concrete types by !C, and the dynamic type is any. The function type t1 .. tn → t de-
notes explicitly typed functions while the type undefined is the type of the value undefined.
The syntax of the language makes it easy to disambiguates class names from optional type
annotations.

t ::= !C | C | any | t1 .. tn → t | undefined

A program consists of a collection of class definitions plus an expression to be evaluated. A
class definition classC extendsD{s1:t1 .. sk :tk ; md1 ..mdn} introduces a class named C with
superclass D. The class has fields f1..fk of types t1..tk and methods md1..mdn, where each
method is defined by its name m, its signature, and the expression e it evaluates, denoted
m(x1:t1 .. xk :tk){ return e:t}. Type annotations appearing in fields and method definitions
in a class definition cannot contain undefined or function types. Rather than baking base
types into the calculus, we assume that there is a class String and a conversion function
toString; string constants are ranged over by s. Expressions are inherited from λJS with
some modifications (we often denote lists l1..ln simply as l1..):

e ::= x | { s1:e1 .. | t } | e1〈t〉[e2] | e1〈t〉[e2] = e3 | delete e1[e2] | 〈t〉e
| new C (e1..) | let (x:t = e1) e2 | func(x1:t1..){return e : t} | e(e1..)

Functions and let bindings are explicitly typed, expressions can be cast to arbitrary types,
and the new C (e1..) expression creates a new instance of class C. More interestingly,
objects, denoted { s1:e1 .. | t }, in addition to the fields’ values, carry a type tag t: this is
any for usual dynamic JavaScript objects, while for objects created by instantiating a class
it is the name of the class. This tag enables preserving the class-based object abstraction at
runtime. Additionally, field access (and, in turn, method invocation) and field update are
annotated with the static type t of the callee e1: this is used to choose the correct dispatcher
or getter when executing method calls and field accesses, and to identify the cases where
the property name must be converted into a string. These annotations can be added via a
simple elaboration pass on the core language performed by the type checker.

Runtime abstractions. Two worlds coexist at runtime: fully dynamic objects, characterized
by the any type tag, and instances of classes, characterized by the corresponding class name

ECOOP’15

1012 Concrete Types for TypeScript

[SObject]

!C <: !Object

[SOptInj]

!C <: C

[SClass]
class C extends D {..}

!C <: !D

[SUndef]
t 6= !C

undefined <: t

[SOptCov]
!C <: !D
C <: D

[SFunc]
t <: t′ t′1 <: t1 ..
t1.. → t <: t′1.. → t′

[TSub]
Γ ` e : t1 t1 <: t2

Γ ` e : t2

[TVar]

Γ ` x : Γ (x)

[TUndefined]

Γ ` undefined : undefined

[TCast]
Γ ` e : t1
t1 = any ∨ t2 = any ∨ t1 <: t2 ∨ t2 <: t1

Γ ` 〈t2〉e : t2

[TFunc]
x1:t1.., Γ ` e : t
Γ ` func(x1:t1..){return e : t} : t1.. → t

[TObj]
t = t′ = any ∨ (t = C ∧ t′ = !C)
t = C⇒ Γ ` e1 : C[s1] ..

Γ ` { s1:e1 .. | t } : t′

[TNew]
fields(C) = s1:t1 ..

Γ ` e1 : t1 ..

Γ ` new C (e1..) : !C

[TLet]
Γ ` e1 : t
x:t, Γ ` e2 : t′

Γ ` let (x:t = e1) e2 : t′

[TGet]
t = !C ∨ C
Γ ` e : t
Γ ` e〈t〉[s] : C[s]

[TGetAny]
Γ ` e1 : any
Γ ` e2 : t
Γ ` e1〈any〉[e2] : any

[TApp]
Γ ` e : t1.. → t
Γ ` e1 : t1 ..

Γ ` e(e1..) : t

[TAppAny]
Γ ` e : any
Γ ` e1 : t1 ..

Γ ` e(e1..) : any

[TUpdate]
t = !C ∨ C
Γ ` e1 : t
not_function_type(C[s])
Γ ` e2 : C[s]
Γ ` e1〈t〉[s] = e2 : t′

[TUpdateAny]
Γ ` e1 : any
Γ ` e2 : t2
Γ ` e3 : t3

Γ ` e1〈any〉[e2] = e3 : any

[TDelete]
Γ ` e1 : any
Γ ` e2 : t
Γ ` delete e1[e2] : any

[TClass]
∀ i. ti 6= undefined ∧ ti 6= t′1.. → t′

∀ i. ` mdi

{s1..} ∩ fields(D) = ∅ ∧ {md1..} ∩methods(D) = ∅
` class C extends D { s1:t1..; md1.. }

[TMethod]
x1:t1.. ` e : t
` m(x1:t1..){return e : t}

Figure 4 The type system.

type tag. Dynamic objects can grow and shrink, with fields being added and removed at
runtime, and additionally values of arbitrary types can be stored in any field, exactly as in
JavaScript. The reduction rules confirm that on objects tagged any it is indeed possible to
create and delete fields, and accessing or updating a field always succeeds.

In our design, objects which are instances of classes benefit from static typing guarantees;
for instance, runtime type checking of arguments on method invocation is not needed as the
type of the arguments has already been checked statically. For this, we protect the class
abstraction: all fields and methods specified in the class interface must always be defined
and point to values of the expected type. To understand how this is done, it is instructive
to follow the life of a class-based object. The ENew rule implements the class pattern [8]

G. Richards, F. Zappa Nardelli, J. Vitek 1013

[EGetToString]
t = any ∨ C
tag(v) 6= String
{..}〈t〉[v] −→ {..}〈t〉[toString(v)]

[EUpdateToString]
t = any ∨ C
tag(v) 6= String
{..}〈t〉[v] = v′ −→ {..}〈t〉[toString(v)] = v′

[EDeleteToString]
tag(v2) 6= String

delete v1[v2] −→ delete v1[toString(v2)]

[ECtx]
e −→ e′

E [e] −→ E [e′]

[EGetNotFound]
s′ 6∈ {s..}
"__proto__" 6∈ {s..}
{ s:v .. | t }〈t′〉[s′] −→ undefined

[EGetProto]
s 6∈ {s..}
{ "__proto__":v, s:v .. | t }〈t′〉[s] −→ v〈t′〉[s]

[EGet]
s ∈ fields(C)
{s:v .. | t}〈!C〉[s] −→ v

[EGetOpt]
s ∈ fields(C)
{s:v .. | t}〈C〉[s] −→ 〈C[s]〉v

[EGetAny]

{s:v .. | t}〈any〉[s] −→ 〈any〉v

[EUpdate]
tag(v′) <: C[s] ∨ s 6∈ fields(C)
{s:v .. | C}〈t〉[s] = v′ −→ {s:v′ .. | C}

[EUpdateAny]

{s:v .. | any}〈any〉[s] = v′ −→ {s:v′ .. | any}

[ECreate]
s1 6∈ {s..}
{ s:v .. | t }〈t′〉[s1] = v′ −→ { s1:v′, s:v .. | t }

[EDelete]
t = any ∨ (t = C ∧ s 6∈ fields(C))
delete {s:v .. | t}[s] −→ {.. | t}

[EDeleteNotFound]
s 6∈ {s1..} ∨ (t = C ∧ s ∈ fields(C))

delete { s1:v1 .. | t }[s] −→ { s1:v1 .. | t }

[ECastObj]
(t′ = C ∧ t′ <: t) ∨ (t = any ∨ C)

〈t〉{.. | t′} −→ {.. | t′}

[ECastFun]
t′ = t′1.. → t′′ ∨ (t′ = any ∧ t′1 = any .. ∧ t′′ = any)
〈t′〉(func(x1:t1..){return e : t}) −→

func(x1:t′1..){return 〈t′′〉((func(x1:t1..){return e : t′})(〈t1〉x1)..) : t′′}

[ELet]

let (x:t = v) e −→ e{v/x }

[EApp]

(func(x1:t1..){return e : t})(v1..) −→ e{v1/x1.. }

[ENew]

new C (v1..) −→ { gfields C (v1..); gmethods C | C}

where, for classC extendsD{s1:t1 .. sk :tk ; md1 ..mdn}, we define:
gfields C (v1..vk v

′..) , s1:v1..sk :vk ; fields D (v′..)
gmth (m(x1:t1..){return e : t}) , "m" : func(x1:t1..){return e : t}
gmethods C , "__proto__" = { gmthmd1 ..mdn; gmethods D | Cproto }

Figure 5 The dynamic semantics.

ECOOP’15

1014 Concrete Types for TypeScript

commonly used to express inheritance in JavaScript. This creates an object with properly
initialized fields — the type of the initialization values was checked statically by the TNew
rule — and the methods stored in an object reachable via the "__proto__" field — the
conformance of the method bodies with their interfaces is checked when typechecking classes,
rules TClass and TMethod. For each method m defined in the interface, a corresponding
function is stored in the prototype. The following type rules for method invocation can thus
be derived from the rules for reading a field and applying a function:

t = !C ∨ C
Γ ` e : t
C[s] = t1 .. tn → t′
Γ ` e1 : t1 .. Γ ` en : tn

Γ ` e〈t〉[s](e1 .. en) : t′

Γ ` e : any
Γ ` e′ : t′
Γ ` e1 : t1 .. Γ ` en : tn

Γ ` e〈any〉[e′](e1 .. en) : any

The static view of the object controls the amount of type checking that must be performed
at runtime. For this, field lookup e〈t〉[e′] is tagged at runtime with the static type t of e,
as enforced by rules TGet and TGetAny. The absence of implicit subsumption to any
guarantees that the tag is correct.

Suppose that the class Num implements integers and defines a method + : !Num → !Num.
Let class C be:

classC{m(x:!Num){ return x + 1:!Num}}

Invoking m in a statically typed context directly passes the arguments to the method body:3

(newC())〈C〉["m"](1) ENew−−−−→ {"__proto__":{"m":v | !Cproto} | !C}〈!C〉["m"](1)
EGetProto−−−−−−−→ {"m":v | !Cproto}〈!C〉["m"](1) EGet−−−→ v(1)

where v = func (x:!Num){ return x + 1:!Num}. In a dynamic context, method invocation
initially typechecks the arguments against the parameter type annotations of the method:

(〈any〉newC())〈any〉["m"](1)
ENew−−−−→ (〈any〉{"__proto__":{"m":v | !Cproto} | !C})〈any〉["m"](1)
ECast−−−−→ {"__proto__":{"m":v | !Cproto} | !C}〈any〉["m"](1)
EGetProto−−−−−−−→ {"m":v | !Cproto}〈any〉["m"](1) EGetAny−−−−−−→ (〈any〉v)(1)
ECastFun−−−−−−→ 〈any〉(func (x:any){ return v(〈!Num〉x):!Num}(1))
EApp−−−→ 〈any〉(v(〈!Num〉1)) ECast−−−−→ 〈any〉(v(1))

The expression above dynamically checks that the method argument argument is a !Num
(last ECast reduction) via the cast introduced by the combination of EGetAny and
ECastFun rule. Observe that the choice of the rule EGetAny was guided by the tag
any of the field access. The return value is injected back into the dynamic world via a cast
to any, thus matching the corresponding static type rule. Contrast this with an invocation
at the optional type D for some class D that defines a method m with type !Num → t:

3 For simplicity we ignore the this argument. A preliminary λJS-like desugarer would rewrite the class
definition as class C{m(this:!C, x:Num){ return x +1:Num}} and the method invocation as let (o:!C =
new C()) o〈!C〉["m"](o, 1).

G. Richards, F. Zappa Nardelli, J. Vitek 1015

(〈D〉new C())〈any〉["m"](1) ENew−−−→ ECast−−−−→ EGetProto−−−−−−−→ {"m":v | !Cproto}〈D〉["m"](1)
EGetOpt−−−−−→ (〈!Num → t〉v)(1)
ECastFun−−−−−−→ 〈t〉(func (x:!Num){ return v(〈!Num〉x):!Num}(1)) ...−−−−→

In this case rule EGetOpt, selected via the D tag, inserts a cast to !Num → t that not only
typechecks the actual arguments (as the caller can still an arbitrary object), but also casts
the return value to the type t expected by the context.

Invariants of class-based objects are also enforced via the rule EDeleteNotFound,
that turns deleting a field appearing in the interface of a class-based object into a no-op
(which in static contexts is also forbidden by the TDelete rule), and rule EUpdate, that
ensures that a field appearing in a class interface can only be updated if the type of the new
value is compatible with the interface. For this, the auxiliary function tag(v) returns the
type tag of an object, and is undefined on functions.

A quick inspection of the type rules shows that optionally-typed expressions — that
is, expressions whose static type is C — are treated by the static semantics as objects of
type !C, thus performing local type checking. At runtime, the reduction semantics highlights
instead that optionally-typed objects are treated as dynamic objects except for return values.
This ensures the third key property of optional types, namely that whenever field access or
method invocation succeeds, the returned value is of the expected type and not any. We
have seen how this is realized on method invocation; similarly for field accesses, let C be
defined as classC{"f ":!Num} and compare the typing judgments {.. | t}〈any〉["f "] : any and
{.. | t}〈C〉["f "] : !Num. Field access on an object in a dynamic context invariably returns a
value of type any. Instead if the object is accessed as C, then the rule TGet states that
the type of the field access is !Num (which is then enforced at runtime by the cast inserted
around the return value by rule EGetOpt).

Formalization. Once the runtime invariants are understood, the static and dynamic se-
mantics is unsurprising. As usual, in the typing judgment for expressions, denoted Γ ` e : t,
the environment Γ records the types of the free variables accessed by e. Object is a dis-
tinguished class name and is also the root of the class hierarchy; for each class name C we
have a distinguished class name Cproto used to tag the prototype of class-based objects at
runtime. Function types are covariant on the return type, contravariant on the argument
types: since the formalization does not support method overriding, it is sound for the this
argument to be contravariant rather that invariant, which simplifies the presentation; the
implementation supports overriding and imposes invariance of the this argument. Optional
types are covariant and it is always safe to consider a variable of type !C as a variable of
type C. The type rule for an object simply extracts its type tag, which, as discussed, is
any for dynamic JavaScript objects,4 and a class name for objects generated as instances of
classes (possibly with the proto suffix). The notation C[s] returns the type of field s in class
definition C; it is undefined if s does not belong to the interface of C. Auxiliary functions
fields(C) and methods(C) return the set of all the fields and methods defined in class C
(and superclasses). The condition not_function_type(C[s]) ensures that method updates in

4 Since the calculus does not formalize interfaces, it types dynamic object literals as any rather than
with their implicit interface as done by TypeScript 1.4. The compiler described in Section 7 supports
implicit interfaces.

ECOOP’15

1016 Concrete Types for TypeScript

class-based objects are badly typed. Evaluation contexts are defined as follows:

E ::= • | let (x:t = E)e2 | E〈t〉[e] | v〈t〉[E] | E [e2] = e3 | v[E] = e3

| v1[v2] = E | E(e1 .. en) | v(v1 .. vn, E, e1 .. ek) | newC(v1 .. vn E e1 ek)
| {s1:v1 .. sn:vn s:E s1:e1 .. sk :ek | t} | delete E [e] | delete v[E] | 〈t〉E

As mentioned above, method invocation has higher priority than field access, and reduction
under contexts (rule ECtx) should try to reduce e〈t〉[e′](e1) to v〈t〉[v′](v1) whenever possible.

Metatheory. In StrongScript, values are functions, and objects whose fields contain values.
We say that an expression is stuck if it is not a value and no reduction rule applies; stuck
expressions capture the state of computation just before a runtime error. The Safety theorem
states that a well-typed expression can get stuck only on a downcast (as in Java) or on an
optional-typed or dynamic expression.

I Theorem 1 (Safety). Given a well-typed program Γ ` e : t, if e −→∗ e′ and e′ is stuck,
then either e′ = E [〈!C〉v′′] and Γ ` v′′ : t′′ with t′′ 6<: !C, or e′ = E [{.. | t}〈t′〉[v]] and
t′ = any or t′ = C, or e′ = E [〈t′ → t′′〉v′′] and Γ ` v′′ : any and v′′ is not a function, or
e′ = undefined.

This theorem relies on two lemmas, the Preservation lemma states that typings (but not
types) are preserved across reductions, and the Progress lemma identifies the cases above
as the states in which well-typed terms can be stuck. The Safety theorem has several
interesting consequences. First, a program in which all type annotations are concrete types
has no runtime errors (apart from those occurring on downcasts): the concretely typed
subset of StrongScript behaves as Featherweight Java (and, in turn, Java) and execution
can be optimized along the same lines. Second, optional-typed programs (that is, programs
with no occurrences of the any type and no downcasts to like types), benefit from the same
execution guarantee: static type checking is strong enough to prevent runtime errors on
entirely optional-typed programs.

The Trace Preservation theorem captures instead the idea that given a dynamic program,
it is possible to add optional type annotations without breaking its runtime behavior; more
precisely, if the type checker does not complain about the optional type annotations, then
the program will have the same behavior of the unannotated version. This theorem holds
trivially in TypeScript because of type erasure.

I Theorem 2 (Trace Preservation). Let e be an expression where all type annotations are
any and Γ ` e : any. Let v be a value such that e −→∗ v. Let e′ be e in which some type
annotations have been replaced by optional type annotations (e.g. C, for C a class with no
concrete types in its interface). If Γ ` e′ : t for some t, then e′ −→∗ v.

The Strengthening theorem states that if optional type annotations are used extensively, then
the type checking performed is analogous to the type checking that would be performed by
a strong type system à la Java. A consequence is that it is possible to transform a fully
optionally typed program into a concretely typed program with the same behavior just by
strengthening the type annotations. This property crucially relies on the fact that all source
of unsoundness in our system are identified with explicit cast to optional types (or to any).

I Theorem 3 (Strengthening). Let e be a well-typed cast-free expression where all type
annotations are of the form C or !C. Suppose that e reduces to the value v. Let e′ be the
expression obtained by rewriting all occurrences of optional types C into the corresponding
concrete types !C. The expression e′ is well-typed and reduces to the same value v.

G. Richards, F. Zappa Nardelli, J. Vitek 1017

6.1 Assignability
The type system we formalized is picky about compatibility of types at binding. For instance,
it rejects a program that passes a concretely typed object into a dynamic context as:

let (x:any = newVector(1, 2, 3)) x〈any〉["times"](4)

obtained by combining the concretely typed library of Figure 1-L4 with the untyped client of
Figure 2-C1. Yet this program is correct. Our implementation tries to be more user-friendly.
The StrongScript typechecker, part of the compiler described in the next section, inserts
implicit type-casts, allowing some code to be accepted statically which would otherwise be
rejected. We say that type t1 is assignable to type t2 if any of the following holds:

t1 is a subtype of t2;
t1 or t2 are any;
t1 is number and t2 is floatNumber (and concrete cases thereof);
t1 is number or !number and t2 is an enumeration type.

The last two cases are not relevant for the calculus but are supported by the implementation
described in Section 7. The typechecker verifies the assignability relation on assignments,
argument bindings, and return values (and, although not covered by the formalization, on
comparisons (==, <, >, ...) and switch statements). If assignability does not hold, then the
typechecker emits an error. Otherwise, in all the cases but the first, a cast to t2 is inserted.

The above example implies an assignability check between !Vector and any, which holds
because of the second case; a cast to any is inserted before the assignment:

let (x:any = 〈any〉newVector(1, 2, 3)) x〈any〉["times"](4)

the resulting code is then checked following to the rules of Figure 4 (it is well-typed) and
executed following Figure 5. Observe that assignability also enables interoperability between
typed libraries and untyped clients. In the case below:

let (x:!Vector = 〈any〉{..}) x〈!Vector〉["times"](4)

it is an implicit cast to !Vector which is inserted:

let (x:!Vector = 〈!Vector〉〈any〉{..}) x〈!Vector〉["times"](4)

It is notable that this is the only case of assignability that implies a runtime type check:
when t1 is any and t2 is a concrete type. Therefore assignability will not incur runtime
checks in the absence of any-typed values. Assignability is also checked on type-casts, to
emit warnings for “impossible” casts.

7 Evaluating StrongScript

Our implementation consists of two components: an extended version of the TypeScript 1.4
compiler and a JavaScript engine extended from Google’s V8 engine.56 The compiler out-
puts portable JavaScript, so the resulting code can run on any stock virtual machine, but

5 https://developers.google.com/v8/
6 The submitted version of this paper reported on a previous implementation in the Oracle Truffle
VM [25]. The speed ups were similar, but raw performance was significantly below V8. Preparing the
AEC artifact submission, we observed a memory leak that only manifested when running Truffle in a
VMWare image. This prompted us to port our implementation to V8.

ECOOP’15

1018 Concrete Types for TypeScript

no performance improvement should be expected in that case. The compiler is extended
with the following type related features: (a) support for concrete types and dynamic con-
tracts at explicit downcasts, (b) checked downcasts where TypeScript does so implicitly and
unsoundly (including covariant subtyping), and (c) function code suitable for both typed
and untyped invocation (including dynamic contracts at untyped invocation). The com-
piler optionally emits intrinsics that inform the runtime of monomorphic property accesses
and known primitive types: we extended the V8 runtime to understand and exploit these
intrinsics to perform check-free property access in concrete types and floating-point math
with no runtime checks. It should be noted that our extensions to the V8 runtime are not
exhaustive, they are meant to demonstrate the potential of type information. For instance,
we do not attempt to unbox integer values, only floating point numbers. A richer implemen-
tation could get even better performance by generating optimized code for all TypeScript
data types.

7.1 Implementation
Supporting concrete types simply requires adding the type constructor (!) and typing rules:
!C <: C and !C <: !D implies C <: D. Since we use nominal typing for classes, optional and
concrete types are compatible in both optional and concrete contexts; it is thus possible to
implement type checks, using JavaScript’s builtin instanceof mechanism. Nominal types
are retained at runtime. The compiler ensures that concrete types are always used soundly.
For this we include a small (200-line) library functions necessary to implement sound type
checking. These functions rely on ECMAScript 5 features to protect themselves from being
replaced or accidentally circumvented. To ensure soundness the compiler inserts dynamic
contracts wherever unsafe downcasts occur, whether explicit or implicit. This is accom-
plished by the $$check function, which asserts that a value is of a specified type. For
instance:

var untyped :any = new A();
var typed :!A = <!A> untyped ;

is compiled into:

var untyped = new A();
var typed = A. $$check (untyped);

The check function is simple and generic, and does not require a per-class checker. For
compatibility with TypeScript, several forms of unsafe, implicit casts are allowed in the
source program. Specifically, implicit unsafe casts are inserted when a value is of type
any and is in the context of a function argument or the right-hand-side of an assignment
expression. For instance, the following code:

var unsafe :!B = <any >new A();

implies this additional cast:

var unsafe :!B = <!B><any >new A();

which in turn generates the following JavaScript code:

var unsafe = B. $$check (new A());

The cast to !B fails at runtime if B is not a supertype of A. Were this code to be rewritten
with unsafe:B rather than !B, the inserted cast to B would imply no check, and the code

G. Richards, F. Zappa Nardelli, J. Vitek 1019

would succeed at runtime. If the cast to any were omitted, this example would be rejected
by the type checker.

Covariant overloading is implemented as unsafe downcasting, as described in Sec. 5.2.
We describe some aspects of our type system as automatically-generated downcasts where
TypeScript describes them as type compatibility. This is a matter of descriptive clarity
and does not affect compatibility. Most semantically valid TypeScript 0.9.1 programs, and
programs valid in TypeScript 1.0 and greater which use class types nominally and do not
use features introduced after our version was forked from TypeScript, are semantically valid
StrongScript with no syntactic changes. Because some literals have concrete types (e.g. 0
has type !number), it is in some cases necessary to add explicit type annotations where
implicit type annotations would choose inconsistent types (e.g. number in some cases and
!number in others).

Efficient and sound implementation of function code. Functions with type annotations
may be called from typed or untyped contexts. If they have only optional types or any,
this requires no checks. However, methods of classes do not fit that description, as the this
argument is always concretely typed. One option would be to check all concretely typed
arguments at runtime, but this would entail unnecessary dynamic checks when types of argu-
ments are known. Our implementation generates both an unchecked and a checked function.
The checked function simply verifies its arguments and then calls the unchecked function.
Calls are redirected appropriately by a compilation step. For instance, the following code:

class Animal {
constructor (name: String) {}
eat(x:! Animal) {

console .log(this.name+" eats "+x.name); }
}

var a:! Animal = new Animal ("Alice");
var b:any = a;
a.eat(new Animal ("Bob"));
b.eat(new Animal ("Bob"));

is translated by an intermediary stage to:

class Animal {
constructor (name: String) {}
$$unchecked$$eat (x:! Animal) {

console .log(this.name+" eats "+x.name); }
eat(x) {

(<! Animal >this). $$unchecked$$eat (<! Animal >x); }
}

var a:! Animal = new Animal ("Alice");
var b:any = a;
a. $$unchecked$$eat (new Animal ("Bob"));
b.eat(new Animal ("Bob"));

Code is generated to assure that the $$unchecked versions of functions are unenumerable
and irreplaceable. This prevents accidental damage, but is not safe against intentionally
malicious code.

ECOOP’15

1020 Concrete Types for TypeScript

Intrinsics. With concrete types, it is possible to lay out objects at compile time, and to
access fields and methods by their statically-known location in the object layout, obviating
the need for hash table lookups. JavaScript, however, provides no way to explicitly specify
the layout of objects. Therefore, to take advantage of known concrete objects, JavaScript
code generated by StrongScript may optionally include calls to several intrinsic operations
which specify types and access fields by explicit offset within objects. On supporting im-
plementations, these intrinsics are used to drive optimizations and eliminate guards. The
intrinsics are UnsafeAssumeMono, UnsafeAssumeFloat and ToFloat, which support direct
reading and writing to offsets within an object, check-free assertion of float values and
forced coercion of numbers to IEEE floating-point values, respectively. Objects built using
UnsafeAssumeMono to write fields may be accessed by UnsafeAssumeMono, which modifies
the behavior of the location cache: The location of the value is looked up by name in the
first access, but following accesses cache the same location and do not perform runtime
checks. Values created with ToFloat may be accessed with UnsafeAssumeFloat. This sim-
ply informs the JIT that the value will always be an IEEE floating-point value and does not
require runtime type checks. Because JavaScript does not distinguish between floating-point
numbers and integers, the type !floatNumber is supported, which is semantically identical
to a number but hints the runtime that it should be stored as an IEEE float. For instance,
the following StrongScript code:

class A { constructor (x:! floatNumber); }
var a:!A = new A(42);
alert(a.x * 3.14);

compiles into the following intrinsic-utilizing JavaScript code:

function A(x) { % _UnsafeAssumeMono (this.x = x); }
var a = new A(% _ToFloat (42));
alert (% _UnsafeAssumeFloat (% _UnsafeAssumeMono (a.x)));

7.2 Evaluating Performance
We measure the performance of our implementation to demonstrate that adding type infor-
mation to dynamic code can yield performance benefits. For this experiment, we modified a
small number of programs to give them concrete types and compared the result of running
those on the V8 optimizing virtual machine against an untyped baseline. V8 is a highly
optimizing, type-specializing compiler. Many of its optimizations are redundant with our
intrinsics and we expect the relative speedups to reflect this fact.

As a baseline we used the benchmark suite provided by SafeTypeScript [16], which is in
turn based on Octane7. We focused on programs which use classes, as our optimizations
and type system rely on their presence. The benchmarks are crypto, navier-stokes,
raytrace, richards and splay. These benchmarks were changed only by the addition of
concrete types.

For each benchmark, a type erased and a typed form were compiled, called the “Type-
Script” and “StrongScript” forms. Each benchmark times long-running iterative processes;
several thousand iterations are performed before timing begins to allow the JIT a warmup
period. We compare the runtime between the two forms on the same engine. i.e., the
only change is the inclusion of intrinsics and type protection. Each benchmark involves a

7 https://developers.google.com/octane/

G. Richards, F. Zappa Nardelli, J. Vitek 1021

particular benchmark function looped 1000 times. We ran each of these benchmarks 10
times, interleaving executions of each benchmark and each form to reduce timing effects.
We report the values in milliseconds each run. We report the arithmetic mean and standard
deviations of the results in each form, as well as the speedup or slowdown. Benchmarks
were run an 8-core 64-bit AMD FX(tm)-8320 with 16GB of RAM, running Ubuntu Linux.
Our modification of V8 is based on a snapshot dated April 6, 2015. The SafeTypeScript
benchmarks were compared against a snapshot of SafeTypeScript also dated April 6, 2015.

Results. Figure 6 shows that no benchmarks demonstrated slowdown outside of noise.
Three of the benchmarks had speed up large enough to be statistically significant. The
performance benefits come from type-specialization intrinsics and direct access to fields in
class instances. crypto uses primarily integer math, which does not presently benefit from
our intrinsics, but also uses classes and displays a small but statistically significant speedup.
navier-stokes8 and raytrace use extensive floating point math as well as classes, and
display benefits from both. Figure 6 also indicates the number of expressions, properties,
and method arguments that had type annotations attached, which ranges from 18 to 116,
and the standard deviations of both sets.

TypeScript StrongScript
Benchmark Annot. runtime std dev runtime std dev Speedup

crypto 76 19220 73 18089 45 6.25%
navier-stokes 116 15206 220 12609 204 20.59%

raytrace 73 48168 170 39380 144 22.32%
richards 35 38748 142 39082 142 -0.86%

splay 18 38273 302 37606 418 1.77%

Figure 6 Performance comparison on the V8 VM. Times are in milliseconds, lower is better.

Threats to validity. The number of programs available and their nature makes it difficult
to generalize from our results. At least they point to the potential for performance improve-
ments with concrete types. Also, it is worthy of note that conventional wisdom amongst
virtual machine designers is that type annotations are not needed to get performance for
JavaScript. Our result suggest that this may not be the case. Because our intrinsics are
unchecked JavaScript, it is possible to use them to circumvent security properties of the
engine. Although this problem would be resolved by implementing StrongScript directly
rather than through a translation layer, the performance characteristics of such a system
may vary somewhat from what is achieved with a JavaScript system. Similar changes would
be expected if StrongScript’s specialized functions (e.g. $$check and $$unchecked) were
made secure from malicious code. Our measured benchmark code has no unsafe downcasts,
and thus no runtime type checking. The overall benefit of our intrinsics depends on the
underlying engine, and specifically the precision of its speculation. Our intrinsics would be
expected to show narrower advantages over an engine with better object layout speculation;

8 navier-stokes displayed highly variable runtime in our initial configuration, with or without intrinsics,
with time taken by a component of the V8 runtime beyond our control. We eliminated the warmup
period for this benchmark to prevent this interference. Note that our intrinsics apply optimizations
only to hot code, so this change does not benefit our runtime.

ECOOP’15

1022 Concrete Types for TypeScript

however our intrinsics ensure predictable benefits, while layout speculation relies on complex
heuristics that might be invalidated with program evolution.

8 Conclusion

StrongScript is a natural evolution of TypeScript. Optional type annotations have proven to
be useful in practice despite their lack of runtime guarantees or performance benefits. With a
modicum effort from the programmer, StrongScript can provide stronger runtime guarantees
and predictable performance while allowing idiomatic JavaScript code and flexible program
evolution. The type systems of TypeScript and StrongScript are fundamentally different,
the former being intrinsically unsound for the stated goal of typing as many JavaScript
programs as possible, and the latter being sound to ensure stronger invariants when needed.
In practice, we have found that StrongScript type system does not limit expressiveness as
our compiler silently inserts all the needed casts to optional types or any needed to mimic
the unsound behaviors of TypeScript. The only incompatibilities between the two are due to
structural vs. nominal subtyping on optional class types. However all programs well-typed
in versions of TypeScript up to 0.9.1 – which relied on nominal subtyping – are well-typed
StrongScript programs, and the large benchmarks of [16] suggest that this is not a problem
in practice. Compared to SafeTypeScript, our design delivers the flexibility offered by the
optional types and the predictable performance given by intrinsics. In particular, in our
design, optional types are not only useful for program evolution but can also durably play
the role of interfaces between the dynamic and concretely typed parts of a program, avoiding
the need for extra casts to concrete types. The fact that we are able to achieve performance
gains on a highly optimizing virtual machine gives one more reason for developers to adopt
concrete types.

Acknowledgments. The authors are grateful to the following individuals and organizations:
Adam Domurad for the V8 implementation, the ECOOP PC for accepting our paper, the
ECOOP AEC for reviewing our artifact, Andreas Rossberg and Sam Tobin-Hochstadt for
insightful comments, Nikhil Swamy for writing the SafeTypeScript benchmarks upon which
our benchmarks are based, and the ANR (ANR-11-JS02-011), the NSF (SHF/1318227 and
CSR/1523426) and the ONR for their financial support.

References

1 Gavin Bierman, Martin Abadi, and Mads Torgersen. Understanding TypeScript. In
ECOOP, 2014. doi:10.1007/978-3-662-44202-9_11.

2 Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor Richards, Rok Str-
nisa, Jan Vitek, and Tobias Wrigstad. Thorn—robust, concurrent, extensible scripting on
the JVM. In OOPSLA, 2009. doi:10.1145/1639949.1640098.

3 Alan H. Borning and Daniel H. H. Ingalls. A type declaration and inference system for
Smalltalk. In POPL, 1982. doi:10.1145/582153.582168.

4 Gilad Bracha. The Strongtalk type system for Smalltalk. In OOPSLA Workshop on Ex-
tending the Smalltalk Language, 1996.

5 Gilad Bracha. Pluggable type systems. OOPSLA Workshop on Revival of Dynamic Lan-
guages, 2004.

6 Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a production
environment. In OOPSLA, 1993. doi:10.1145/165854.165893.

http://dx.doi.org/10.1007/978-3-662-44202-9_11
http://dx.doi.org/10.1145/1639949.1640098
http://dx.doi.org/10.1145/582153.582168
http://dx.doi.org/10.1145/165854.165893

G. Richards, F. Zappa Nardelli, J. Vitek 1023

7 Robert Cartwright and Mike Fagan. Soft Typing. In PLDI, 1991.
doi:10.1145/113446.113469.

8 Douglas Crockford. Classical inheritance in JavaScript. http://www.crockford.com/
javascript/inheritance.html.

9 Robert Bruce Findler and Matthias Felleisen. Contract soundness for object-oriented lan-
guages. In OOPSLA, 2001. doi:10.1145/504282.504283.

10 Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In
ICFP, 2002. doi:10.1145/581478.581484.

11 Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen. Semantic casts: Contracts
and structural subtyping in a nominal world. In ECOOP, 2004. doi:10.1007/978-3-540-
24851-4_17.

12 Vladimir Gapeyev, Michael Levin, and Benjamin Pierce. Recursive subtyping revealed.
Journal of Functional Programming, 12(6):511–548, 2002. doi:10.1017/S0956796802004318.

13 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of JavaScript. In
ECOOP, 2010. doi:10.1007/978-3-642-14107-2_7.

14 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a min-
imal core calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3), 2001.
doi:10.1145/503502.503505.

15 Microsoft. TypeScript – language specification version 0.9.1. Technical report, Microsoft,
August 2013.

16 Aseem Rastogi, Nikhil Swamy, Cedric Fournet, Gavin Bierman, and Panagiotis Vekris. Safe
and efficient gradual typing for TypeScript. In POPL, 2015. doi:10.1145/2676726.2676971.

17 Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The eval that men
do: A large-scale study of the use of eval in JavaScript applications. In ECOOP, 2011.
doi:10.1007/978-3-642-22655-7_4.

18 Jeremy Siek. Gradual typing for functional languages. In Scheme and Functional Program-
ming Workshop, 2006.

19 Jeremy Siek and Walid Taha. Gradual typing for objects. In ECOOP, 2007.
doi:10.1007/978-3-540-73589-2_2.

20 Norihisa Suzuki. Inferring types in Smalltalk. In POPL, 1981. doi:10.1145/567532.567553.
21 Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: from scripts to

programs. In DLS, 2006. doi:10.1145/1176617.1176755.
22 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed

Scheme. In POPL, 2008. doi:10.1145/1328438.1328486.
23 Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. Design and

evaluation of gradual typing for Python. In DLS, 2014. doi:10.1145/2661088.2661101.
24 Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan

Vitek. Integrating typed and untyped code in a scripting language. In POPL, 2010.
doi:10.1145/1706299.1706343.

25 Thomas Würthinger, Christian Wimmer, Andreas Wöss, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to rule
them all. In Onwards!, 2013. doi:10.1145/2509578.2509581.

ECOOP’15

http://dx.doi.org/10.1145/113446.113469
http://www.crockford.com/javascript/inheritance.html
http://www.crockford.com/javascript/inheritance.html
http://dx.doi.org/10.1145/504282.504283
http://dx.doi.org/10.1145/581478.581484
http://dx.doi.org/10.1007/978-3-540-24851-4_17
http://dx.doi.org/10.1007/978-3-540-24851-4_17
http://dx.doi.org/10.1017/S0956796802004318
http://dx.doi.org/10.1007/978-3-642-14107-2_7
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1145/2676726.2676971
http://dx.doi.org/10.1007/978-3-642-22655-7_4
http://dx.doi.org/10.1007/978-3-540-73589-2_2
http://dx.doi.org/10.1145/567532.567553
http://dx.doi.org/10.1145/1176617.1176755
http://dx.doi.org/10.1145/1328438.1328486
http://dx.doi.org/10.1145/2661088.2661101
http://dx.doi.org/10.1145/1706299.1706343
http://dx.doi.org/10.1145/2509578.2509581

	Introduction
	Motivating Example
	Background and Related Work
	TypeScript: Unsound by design
	StrongScript: Sound when needed
	Programming with Concrete Types
	From TypeScript to StrongScript Types
	Backwards compatibility
	Discussion

	Formal properties
	Assignability

	Evaluating StrongScript
	Implementation
	Evaluating Performance

	Conclusion

