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Abstract. Real-time systems are notoriously difficult to design and implement,
and, as many real-time problems are safety-critical, their solutions must be re-
liable as well as efficient and correct. While higher-level programming mod-
els (such as the Real-Time Specification for Java) permit real-time program-
mers to use language features that most programmers take for granted (objects,
type checking, dynamic dispatch, and memory safety) the compromises required
for real-time execution, especially concerning memory allocation, can create as
many problems as they solve. This paper presents Scoped Types and Aspects for
Real-Time Systems (STARS) a novel programming model for real-time systems.
Scoped Types give programmers a clear model of their programs’ memory use,
and, being statically checkable, prevent the run-time memory errors that bedevil
models such as RTSJ. Our Aspects build on Scoped Types guarantees so that
Real-Time concerns can be completely separated from applications’ base code.
Adopting the integrated Scoped Types and Aspects approach can significantly
improve both the quality and performance of a real-time Java systems, resulting
in simpler systems that are reliable, efficient, and correct.

1 Introduction

The Real-Time Specification for Java (RTSJ) introduces abstractions for managing re-
sources, such as non-garbage collected regions of memory [4]. For instance, in the
RTSJ, a series ofscoped memoryclasses let programmers manage memory explicitly:
creating nested memory regions, allocating objects into those regions, and destroying
regions when they are no longer needed. In a hard real-time system, programmers must
use these classes, so that their programs can bypass Java’s garbage collector and its
associated predictability and performance penalties. But these abstractions are far from
abstract. The RTSJ forces programmers to face more low-level details about the be-
haviour of their system than ever before — such as how scoped memory objects cor-
respond to allocated regions, which objects are allocated in those regions, how those
the regions are ordered — and then rewards any mistakes by throwing dynamic errors
at runtime. The difficulty of managing the inherent complexity associated with real-
time concerns ultimately compromises the development, maintenance and evolution of
safety critical code bases and increases the likelihood of fatal errors at runtime.

This paper introduces Scoped Types and Aspects for Real-Time Systems (STARS),
a novel approach for programming real-time systems that shields developers from many
accidental complexities that have proven to be problematic in practice. Scoped Types
use a program’s package hierarchy to represent the structure of its memory use, mak-
ing clear where objects are allocated and thus where they are accessible. Real-Time
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Fig. 1. Overview of STARS. Application logic is written according to the Scoped Types disci-
pline. TheJAVA COPverifier uses scoped types rules (and possibly some user-defined application-
specific constraints) to validate the program. Then, an aspect weaver combines the application
logic with the real-time behaviour. The result is a real-time Java program that can be executed
on any STARS-compliant virtual machine.

Aspects then weave in allocation policies and implementation-dependent code — sep-
arating real-time concerns further from the base program. Finally, Scoped Types’ cor-
rectness guarantees, combined with the Aspect-oriented implementation, removes the
need for memory checks or garbage collection at runtime, increasing the resulting sys-
tem’s performace and reliability. Overall, STARS is a methodology that guides real-
time development and provides much needed tool support for the verification and the
modularization of real-time programs.

Fig. 1 illustrates the STARS methodology. Programmers start by writing application
logic in Java with no calls to the RTSJ APIs. The code is then verified against a set of
consistency rules — STARS provides a set of rules dealing with memory management;
users may extend these rules with application-specific restrictions. If the program type
checks, the aspects implementing the intended real-time semantics of the program can
be woven into the code. The end result is a Real-time Java program which can be run in
any real-time JVM which supports the STARS API.

The paper thus makes the following contributions:

1. Scoped Types.We use a lightweight pluggable type system to model hierarchical
memory regions. Scoped Types is based on familiar Java concepts like packages,
classes, and objects, can be explained with a few informal rules, and requires no
changes to Java syntax.

2. Static Verification via the JAVA COP pluggable types checker [1]. We have en-
coded Scoped Types into a set of JAVA COP rules used to validate source code. We
also show how to extend the built-in rules with application-specific constraints.

3. Aspect-based real-time development.We show how an aspect-oriented approach
can decouple real-time concerns from the main application logic.

4. Implementation in a real-time JVM. We demonstrate viability of STARS with an
implementation in the Ovm framework [2]. Only minor changes (18 lines of code
in all) were needed to support STARS.

5. Empirical evaluation. We conducted a case study to show the impact STARS has
on both code quality and performance in a 20 KLoc hard real-time application.



Refactoring RTSJ code to a STARS program proved easy and the resulting program
enjoyed a 28% performance improvement over the RTSJ equivalent.

Compared with our previous work, STARS presents two major advances. First,
Scoped Types enforce a per-owner relation [10, 18] via techniques based on Confined
Types [9, 22]. The type system described here refines the system described in [21] which
includes a proof of correctness, but no implementation. In fact, the refactoring discussed
in that paper does not type check under the current type system. Secondly, the idea of
using aspects to localize real-time behaviour is also new.

The paper proceeds as follows. After a survey of background and previous work,
Section 2 presents an overview of the STARS programming model while Section 3
overviews the current STARS prototype implementations. Section 4 follows with a case
study using STARS in the implementation of a real-time collision detection system.
Finally we conclude with discussion and future work.

1.1 Background: The Challenges of Real-Time Memory Management

The Real-time Specification for Java (RTSJ) provides real-time extensions to Java that
have shown to be effective in the construction of large-scale systems [2, 17, 20]. Two
key benefits of the RTSJ are first, that it allows programmers to write real-time pro-
grams in a type-safe language, thus reducing opportunities for catastrophic failures;
and second, that it allows hard-, soft- and non-real-time tasks to interoperate in the
same execution environment. To achieve this second benefit, the RTSJ adopts a mixed-
mode memory model in which garbage collection is used for non-real time activities,
while manually allocated regions are used for real-time tasks. Though convenient, the
interaction of these two memory management disciplines causes significant complexity,
and consequently is often the culprit behind many runtime memory errors.

The problem, in the case of real-time tasks, is that storage for an allocation request
(i.e.new) must be serviced differently from standard Java allocation. In order to handle
real-time requests, the RTSJ extends the Java memory management model to include
dynamically checked regions known asscoped memory areas(or also memory scopes),
represented by subclasses ofScopedMemory . A scoped memory area is an allocation
context which provides a pool of memory for threads executing in it. Individual objects
allocated in a scoped memory area cannot be deallocated, instead, an entire scoped
memory area is torn down as soon as all threads exit that scope. The RTSJ defines
two distinguished scopes forimmortalandheapmemory, respectively for objects with
unbounded lifetimes and objects that must be garbage collected. Two new kinds of
threads are also introduced:real-timethreads which may access scoped memory areas;
andno heap real-timethreads, which in addition are protected from garbage collection
pauses, but which suffer dynamic errors if they attempt to access heap allocated objects.

Scoped memory areas provide methodsenter(Runnable) andexecuteIn-
Area(Runnable) that permit application code to execute within a scope, allocating
and accessing objects within that scope. Using nested calls, a thread may enter or ex-
ecute runnables in multiple scopes, dynamically building up the scope hierarchy. The
differences between these two methods are quite subtle [4]: basically,enter must
be used to associate a scope with a thread, whereasexecuteInArea (temporarily)
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Fig. 2.Memory Management in the Real-time Specification for Java.

changes a thread’s active scope to a scope it has previouslyenter ed. Misuse of these
methods is punished by dynamic errors, e.g. aScopedCycleException is thrown
when a user tries toenter a ScopedMemory that is already accessible. Reference
counting onenter s ensures that all the objects allocated in a scope are finalized and
reclaimed when the last thread leaves that scope.

Real-time developers must take these memory scopes and threading models into
account during the design of a real-time system. Scoped memory areas can be nested to
form a dynamic, tree-shaped hierarchy, where child memory areas have strictly shorter
lifetimes than their parents. Because the hierarchy is established dynamically, memory
areas can move around within the hierarchy as the program runs. Dynamically enforced
safety rules check that a memory scope with a longer lifetime does not hold a reference
to an object allocated in a memory scope with a shorter lifetime. This means that heap
memory and immortal memory cannot hold references to objects allocated in scoped
memory, nor can a scoped memory area hold a reference to an object allocated in an
inner (more deeply nested) scope. Once again, errors are only detected at runtime and
are rewarded with dynamic errors or exceptions.

Given that safety and reliability are two goals of most real-time systems, the fact that
these safety rules are checkeddynamicallyseems, in retrospect, to be an odd choice. The
only guarantee that RTSJ gives to a programmer is that their programs will fail in a con-
trolled manner: if a dynamic assignment into a dynamically changing scope hierarchy
trips a dynamic check, the program will crash with anIllegalAssignmentError .

1.2 Related Work: Programming with Scoped Memory

Beebee and Rinard provided one of the early implementations of the RTSJ memory
management extensions [3]. They found it “close to impossible” to develop error-free
real-time Java programs without some help from debugging tools or static analysis. The
difficulty of programming with RTSJ motivated Kwon, Wellings and King to propose
Ravenscar-Java [16], which mandates a simplified computational model. Their goal
was to decrease the likelihood of catastrophic errors in mission critical systems. Further
work along these lines transparently associates scoped memory areas with methods,



avoiding the need for explicit manipulation of memory areas [15]. Limitations of this
approach include the fact that memory areas cannot be multi-threaded.

In contrast, systems like Islands [13], Ownership Types [10], and their successors
restrict the scope of references to enable modular reasoning. The idea of using own-
ership types for the safety of region-based memory was first proposed by Boyapati et
al. [5], and required changes to the Java syntax and explicit type annotations. Research
in type-safe memory memory management, message-based communication, process
scheduling and the file system interface management for Cyclone, a dialect of C, has
shown that it is possible to prevent dangling pointers even in low-level codes [11]. The
RTSJ is more challenging than Cyclone as scopes can be accessed concurrently and are
first-class values.

Scoped types are one of the latest developments in the general area of type systems
for controlled sharing of references [21]. This paper builds on Scoped Types and pro-
poses a practical programming model targeting the separation of policy and mechanism
within real-time applications. The key insight of Scoped Types is the necessity to make
the nested scope structure of the program explicit: basically, every time the program-
mer writes an allocation expression of the formnew Object() , the object’s type
shows where the object fits into the scope structure of the program. It is not essential
to know which particular scope it will be allocated in, but rather the object’s hierarchi-
cal relationship to other objects. This ensures that when an assignment expression, e.g.
obj.f=new F() , is encountered, Scoped Types can statically (albeit conservatively)
ensure that the assignment will not breach the program’s scope structure.

2 The STARS Programming Model

STARS guides the design and implementation of real-time systems with a simple, ex-
plicit programming model. As the STARS name suggests, this is made up of two parts,
Scoped Types, and Aspects. First, Scoped Types ensure that the relative memory loca-
tion of any object is obvious in the program text. We use nested packages to define a
staticscope hierarchy in the program’s code; a pluggable type checker ensures programs
respect this hierarchy; at runtime, the dynamic scope structure simply instantiates this
static hiearchy. Second, we use Aspect-Oriented Programming to decouple the real-time
parts of STARS programs from their application logic. Aspects are used as declarative
specifications of the real-time policies of the applications (the size of scoped memory
areas or scheduling parameters of real time threads), but also to link Scoped Types to
their implementations within a real-time VM.

The main points of the STARS programming model are illustrated in Fig. 3. The
main abstraction is thescoped package. A scoped package is the static manifestation
of an RTSJ scoped memory area. Classes defined within a scoped package are either
gatesor scoped classes. Every instance of a gate class has its own unique scoped mem-
ory area, and every instance of a scoped class will be allocated in the memory area
belonging to a gate object in the same package. Because gate classes can have multi-
ple instances, each scoped package can correspond to multiple scoped memory areas
at runtime (one for each gate instance), just as a Java class can correspond to multiple
instances. Then, the dynamic structure of the nested memory areas is modelled by the
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static structure of the nested scoped packages, in just the same way that the dynamic
structure of a program’s objects is modelled by the static structure of the program’s
class diagram.

Scoped types are allowed to refer to types defined in an ancestor package, just as
in RTSJ, objects allocated in a scope are allowed to refer to an ancestor scope: the
converse is forbidden. The root of the hierarchy is the packageimm, corresponding to
RTSJ’s immortal memory. There will be as many scoped memory areas nested inside
the immortal memory area as there are instances of the gate classes defined inimm’s
immediate subpackages.

STARS does impact the structure of Real-time Java programs. By giving an addi-
tional meaning to thepackage construct, wede factoextend the language. This form
of overloading of language constructs has the same rationale as the definition of the
RTSJ itself — namely to extend a language without changing its syntax, compiler, or
intermediate format. In practice, STARS changes the way packages are used: rather
than grouping classes on the basis of some logical criteria, we group them by lifetime
and function. In our experience, this decomposition is natural as RTSJ programmers
must think in terms of scopes and locations in their design. Thus it is not surprising
to see that classes that end up allocated in the same scope are closely coupled, and so
grouping them in the same package is not unrealistic. We argue that this package struc-
ture is a small price to pay for STARS’ static guarantees, and for the clarity it brings to
programs’ real-time, memory dependent code.

2.1 Scoped Types: Static Constraints

The following Scoped Types rules ensure static correctness of STARS programs. In this
rules, we assume that a scoped package contains exactly onegate classand zero or
more scoped classes or interfaces (thescoped types). By convention, the gate is named
with the package’s name with the first letter capitalized. The descendant relation on
packages is a partial order on packages defined by package nesting. The distinguished



packageimm is the root of the scope hierarchy. In the following we useS andG to
denote respectively scoped and gate types, we useC to refer to any class. We usep to
refer to the fully qualified name of a package. We refer to types not defined in a scoped
package asheap types.

Rule 1 (Scoped Types).

1. The packageimm is a scoped package. Any package nested within a scoped package
is scoped.

2. Any type not defined in a scoped package is a heap type.
3. The type of a gate classp.G defined within a scoped packagep is a gate type.
4. The type of any non-gate interface or classp.S defined within a scoped package

p is a scoped type. The type of an array with elements of scoped type is a scoped
type.

Rule 2 (Visibility).

1. An expression of scoped typep.S is visible in any type defined inp or any of its
subpackages.

2. An expression of gate typep.G is visible in any type defined in the immediate
super-package ofp. An exception to this rule is the local variablethis which can
be used within a gate class.

3. The type of the top-level gateimm.G is visible in heap types.
4. An expression of heap type is only visible in other heap types.

The visibility rule encodes the essence of the RTSJ access rules. An object can be ref-
erenced from its defining memory area (denoted statically by a package), or from a
memory area with shorter lifetime (a nested package). Gate classes are treated differ-
ently, as they are handles used from a parent scope to access a memory area. They must
only be accessible to the code defined in the parent scope. The reason other types in
the same scope package cannot refer to a gate is that we must avoid confusion between
gates of the same type; a parent can instantiate many gates of the same type and the
contents of these gates must be kept separate. Even though a gate’s type is not visible in
its own class, a single exception is made so that a gate object can refer to itself through
thethis pointer (because we know which gate “this ” is).

Rule 3 (Widening). An expression of a scoped typep.S can be widened only to an-
other scoped type inp. An expression of a gate typep.G cannot be widened to any
other types.

Rule 3 is traditional in confined type systems where types are used to enforce structural
properties on the object graph. Preventing types from being be cast to arbitrary super-
types (in particularObject ) makes it possible to verify Rule 2 statically.

Rule 4 (Method Inheritance). An invocation of some methodmon an expression of
scoped typep.S wherep is a scoped package is valid ifmis defined in a classp.S’
in the same package. An invocation of a methodmon an expression of gate typep.G is
valid only ifmis defined inp.G .



Rule 4 prevents a more subtle form of reference leak: within an inherited method, the
receiver (i.e.this ) is implicitly cast to the method’s defining class — this could lead
to a leak if one were to invoke a method inherited from a heap class.

Rule 5 (Constructor Invocation). The constructor of a scoped classp.S can only be
invoked by methods defined inp.

Rule 5 prevents a subpackage from invokingnew on a class that is allocated in a dif-
ferent area than the currently executing object. This rule is not strictly necessary, as
an implementation could potentially reflect upon the static type of the object to dy-
namically obtain the proper scope. In our prototype, we use factory methods to create
objects.

Rule 6 (Static Reference Fields).A typep.S defined in a scoped packagep is not
allow to declare static reference fields.

A static variable would be accessible by different instances of the same class allocated
in different scopes.

2.2 Correctness

The fact that a package can only have one parent package trivially ensures that the RTSJ
single parent rule will hold. Moreover, a scope-allocated objecto may only reference
objects allocated in the scope ofo, or scopes with a longer lifetime, preventing any RTSJ
IllegalAssignmentError . For example, suppose that the assignmento.f=o’
is in the scopes , whereo ando’ have typesp.C andp’.C’ respectively. Ifp.C is a
scoped type, then the rules above ensure thato ando’ can only be allocated ins or its
outer scopes. By Rules 2 and 3, the type of the fieldf is defined inp’ , which is visible
to p.C . Thus, the packagep’ is the same as or a super-package ofp and consequently
o’ must be allocated in the scope ofo or its outer scope. The same is true ifp.C is
a gate type, in which caseo either representss or a direct descendant ofs . A formal
soundness argument can be found in the extended version of this paper.

3 The STARS Prototype Implementation

The STARS prototype has two software components — a checker, which takes plain
Java code that is supposed to conform to the Scoped Types discipline, and verifies that
it does in fact follow the discipline, and an series of AspectJ aspects that weaves in the
necessary low-level API calls to run on a real-time virtual machine.

3.1 Checking the Scoped Types Discipline

We must ensure that only programs that follow the scoped types discipline are accepted
by the system: this is why we begin by passing our programs through a checker that en-
forces the discipline. Rather than implement a checker from scratch, we have employed



the JAVA COP “pluggable types” checker [1]. Pluggable types [6] are a relatively re-
cent idea, developed as extensions of soft type systems [8] or as a generalization of the
ideas behind the Strongtalk type system [7]. The key idea is that pluggable types layer
a new static type system over an existing (statically or dynamically typed) language,
allowing programmers to have greater guarantees about their programs’ behaviour, but
without the expense of implementing entirely new type systems or programming lan-
guages. JAVA COP is a pluggable type checker for Java programs — using JAVA COP,
pluggable type systems are designed by a series of syntax-directed rules that are layered
on top of the standard Java syntax and type system and then checked when the program
is compiled. STARS is a pluggable type system, and so it is relatively straightforward to
check with JAVA COP. The design and implementation of JAVA COP is described in [1].

The JAVA COP specification of the Scoped Type discipline is approximately 300
lines of code. Essentially, we provide two kinds of facts to JAVA COP to describe Scoped
Types. First we define which classes must be considered scoped or gate types; and then
we to restrict the code of those classes according to the Scoped Type rules.

Defining Scoped Types is relatively easy. Any class declared within theimm pack-
age or any subpackage is either a scoped type or a gate. Declaring a scoped type in the
JAVA COP rule language is straightforward: a class or interface is scoped if it is in a
scoped package and is not a gate. A gate is a class declared within a scoped package
and with a name that case-insensitively matches that of the package. Array types are
handled separately: an array is scoped if its element types are scoped.

1 declare gateNamed(ClassSymbol s){
2 require (s.packge.name.equalsIgnoreCase(s.name));
3 }
4 declare scoped(Type t){
5 require (!t.isArray);
6 require (!gateNamed(t.getSymbol));
7 require (scopedPackage(t.getSymbol.packge));
8 }
9 declare scoped(Type t){

10 require (t.isArray && scoped(t.elemtype));
11 }
12 declare gate(Type t){
13 require (!t.isArray);
14 require (gateNamed(t.getSymbol));
15 require (scopedPackage(t.getSymbol.packge));
16 }

The rule that enforces visibility constraints is only slightly more complex. The fol-
lowing rule matches on a class definition (line 1) and ensure that all types of all syntax
tree nodes found within that definition (line 2) meet the constraints of Scoped Types. A
number of types and syntactic contexts, such as Strings and inheritance declarations, are
deemed “safe” (safeNodes on line 3, definition omitted) and can be used in any con-
text. Lines 4-5 ensure that top level gates are only visible in the heap. Lines 7-8 ensure
that a gate is only visible in its parent package. Lines 10-11 ensure that the visibility of
a scoped type is limited to its defining package and subpackages. Lines 13-16 apply ifc



is defined within a scoped package and ensure that types used within a scoped package
are visible.

1 rule scopedTypesVisibilityDefn1(ClassDef c){
2 forall (Tree t : c){
3 where (t.type != null && !safeNode(t)){
4 where (topLevelGate(t.type)){
5 require (!scopedPackage(c.sym.packge)):
6 warning (t,"Top level gate visible only in heap"); }
7 where (innerGate(t.type)){
8 require (t.type.getSymbol.packge.owner == c.sym.packge):
9 warning (t,"gate visible only in immediate superpackage"); }

10 where (scoped(t.type)){
11 require (t.type.getSymbol.packge.isTransOwner(c.sym.packge)):
12 warning (t,"type visible only in same or subpackage"); }
13 where (scoped(c.sym.type)){
14 require (scopedPackage(t.type.getSymbol.packge) ||
15 specialPackage(t.type.getSymbol.packge) ||
16 visibleInScopedOverride(t)):
17 warning (t,"Type not visible in scoped package."); }
18 }
19 }
20 }

We restrict widening of scoped types with the following rule. It states that if we are
trying to widen a scoped type, then the target must be declared in the same scoped pack-
age, and if the type is a gate widening disallowed altogether. ThesafeWidening-
Location predicate is an escape hatch that allows annotations that override the default
rules.

1 rule scopedTypesCastingDef2(a <: b @ pos){
2 where (!safeWideningLocation(pos)){
3 where (scoped(a)){
4 require (a.getSymbol.packge == b.getSymbol.packge) :
5 warning (pos,"Illegal scoped type widening."); }
6 where (gate(a)){
7 require (b.isSameType(a)) :
8 warning (pos,"May not widen gate."); }
9 }

10 }

JAVA COP allows users to extend the Scoped Types specification with additional
restrictions. It is thus possible to use JAVA COP to restrict the set of allowed programs
further. The prototype implementation has one restriction, though, it does not support
AspectJ syntax. JAVA COP is thus not able to validate the implementation of aspects.
As long as aspects remain simple and declarative, this will not be an issue. But in the
longer term we would like to see integration of a pluggable type checker with an Aspect
language.



3.2 Aspects for Memory Management & Real-time

Though the design of memory management in a real-time system may be clear, typ-
ically, its implementation will be unclear, because it is inherently tangled through-
out the code. For this reason we chose an aspect-oriented approach for modulariz-
ing scope management. This part of STARS is implemented using a (subset of) the
Aspect-Oriented Programming features provided by AspectJ [14]. For performance,
predictability and safety reasons we stay away from dynamic or esoteric features such
ascflowand features that require instance-based aspect instantiation such asperthisand
pertarget.

After the program has been statically verified, aspects are composed with the plain
Java base-level application. The aspects weave necessary elements of the RTSJ API
into the system. This translation (and the aspects) depend critically upon the program
following the Scoped Type discipline: if the rules are broken, the resulting program
will no longer obey the RTSJ scoped memory discipline, and then either fail at runtime
with just the kind of an exception we aim to prevent; or worse, if running on a virtual
machine that omits runtime checks, fail in some unchecked manner.

1 package scope;
2

3 public class STARS {
4 static public boolean waitForNextPeriod() { ... }
5 public @WidenScoped void runInThread(Runnable r) {}
6 }
7

8 public class Gate extends STARS {
9 private MemoryArea mem;

10 }
11

12 privileged abstract aspect ScopedAspect {
13 abstract pointcut InScope();
14 pointcut NewGate(Gate g) : execution (Gate+. new(..))
15 && target(g)
16 && InScope();
17 pointcut GateCall(Gate g) :
18 execution ( public void Gate+.*(..))
19 && this(g);
20 pointcut RunInThread(Runnable r, STARS g) :
21 execution (void STARS+.runInThread(..))
22 && target(g)
23 && args(r);
24 ...
25 }

Fig. 4. STARS Interface. Thescope package contains two classes,STARSand Gate , and
an abstract aspectScopedAspect . Every gate class inherits fromGate and has access to
two methodswaitForNextPeriod() and runInThread() . Every STARS aspect extends
ScopedAspect , must define pointcutInScope and has access to a number of predefined
pointcuts.



STARS programs are written against a simple API, shown in Fig. 4. The use of the
API is intentionally simple. Gate classes must extendscope.Gate , which gives ac-
cess to only two methods:waitForNextPeriod() , which is used to block a thread
until its next release event, andrunInThread() , which is used to start a new real-
time thread. The single argument ofrunInThread is an instance of class that im-
plements theRunnable interface. The semantics of the method is that the argument’s
run method will be executed in a new thread. The characteristics of the thread are left
unbound in the Java code.

STARS aspects must deal with two concerns: the specifics of the memory area as-
sociated with each gate and the binding between invocations ofrunInThread() and
real-time threads. Specifying memory area parameters is done by declaring abefore
advice to the initialization of a newly allocated gate. The privileged nature of the as-
pect allows the assignment to theGate.mem private field. TheScopedMemory class
is abstract, the advice must specify one of its subclassesLTMemory andVTMemory
which provide linear time and variable time allocation of objects in scoped memory
areas respectively. It must also declare a size for the area.

1 before (Gate g): NewGate(g) && execution (MyGate. new(..)){
2 g.mem = new VTMemory( sz );
3 }

The above example shows an advice for classMyGate . The memory area asso-
ciated has sizesz and is of typeVTMemory. The code can get more involved when
SizeEstimator s are used to determine the proper size of the area.

It is noteworthy that thememfield is not accessible from the application logic as it
is declared private. This means that memory areas are only visible from aspects. (As
an aside, strict application of the scoped type discipline would preclude use of those
classes in any case.)

3.3 Instrumentation and Virtual Machine Support

The implementation of STARS relies on a small number of changes to a real-time Java
virtual machine. In our case, we needed only add 18 lines to the Ovm framework [2]
and 105 of lines of AspectJ to provide the needed functionality.

The added functionality consists of the addition of three new methods to the abstract
classMemoryArea . These methods expose different parts of the implementation of
theMemoryArea.enter() . TheSTARSenter() method increments the reference
count associated to the area, changes allocation context and returns an opaque reference
to the VM’s representation of the allocation context before the change.STARSexit()
leaves a memory area, possible reclaiming its contents and restores the previous allo-
cation context passed in as argument.STARSrethrow() is used to leave a memory
area with an exception. Three methods of the classLibraryImports which medi-
ates between the user domain and the VM’s executive were made public. They are:
setCurrentArea() to change the allocation context,getCurrentArea() to
obtain the allocation context for the current thread, andareaOf() to obtain the area
in which an object was allocated. All of these methods operate on opaque references.



1 Opaque MemoryArea.STARSenter();
2 void MemoryArea.STARSrethrow(Opaque,Throwable);
3 void MemoryAreaSTARSexit(Opaque area);
4

5 static Opaque LibraryImports.setCurrentArea(Opaque area);
6 static Opaque LibraryImports.getCurrentArea();
7 static Opaque LibraryImports.areaOf(Object ref);

We show two key advices from theScopedAspect introduced in Figure 4. The
first advice executes before the instance initializer of any scoped class or array (lines
1-4). This advice obtains the area ofo – which is the object performing the allocation
– and sets the allocation context to that area. The reasoning is that if we are executing a
new then the target class must be visible. We thus ensure that it is co-located.

1 before (Object o): AllocInScope(o) {
2 return LibraryImports
3 .setCurrentArea(LibraryImports.areaOf(o));
4 }

We use the second advice to modify the behaviour of any call to a gate (recall that these
can only originate from the immediate parent package). Thisaround advice uses the
memory region field of the gate to change allocation context. When the method returns
we restore the previous area.

1 void around (Gate g) : GateCall(g) {
2 Opaque x = g.mem.STARSenter();
3 try {
4 try {
5 proceed(g);
6 } catch (Throwable e) { g.mem.STARSrethrow(x, e); }
7 } finally { g.mem.STARSexit(x); }
8 }

3.4 Extensions and Restrictions

We have found that, for practical reasons, a small numbers of adjustments needed to be
made to the core of the scoped type system.

Intrinsics. Some important features of the standard Java libraries are presented as static
methods on JDK classes. Invoking static methods from a scoped package, and espe-
cially ones that are not defined in the current package, is illegal. This is too restrictive
and we relaxed the JAVA COP specification to allow calls to static methods in the fol-
lowing classesSystem , Double , Float , Integer , Long , Math , andNumber.
Moreover, we have chosen to permit the use ofjava.lang.String in scoped pack-
ages. Whether this is wise is debatable – for debugging purposes it is certainly useful
to be able to construct messages, but it opens up an opportunity for runtime memory
errors. It is conceivable that the JAVA COP rules will be tightened in the future to better
track the use of scope allocated strings.



Exceptions. All subclasses ofThrowable are allowed in a scoped package. This is
safe within the confines of standard use of exceptions. If an exception is allocated and
thrown within a scoped package, it is either caught by a handler within that package or
escape out of the memory area. In which case it will be caught by the around advice
at the gate boundary andSTARSrethrow will allocate a RTSJThrowBoundary-
Error object in the parent scope and rethrow the newly allocated error. One drawback
of this rule is that a memory error could occur if a programmer managed to return/assign
a scope-allocated error object to a parent area. Luckily there is a simple solution that
catches most reasonable use-cases. We define a JAVA COP rule that allows exceptions
to be created only if they are within athrow statement.

1 declare treeVisInScoped(Tree t){
2 require (NewClass n, Throw th;
3 n <- env.tree && th<-env.next.tree){
4 require (th.expr == n);
5 require (t == n.clazz);
6 }
7 }

Annotations. We found that in rare cases it may be necessary to let users override
the scoped type system — typically where (library) code is clearly correct, but where
it fails the conservative Scoped Types checker. For this we provide two Java 5 anno-
tations that are recognised by the JAVA COP rules.@WidenScoped permits to de-
clare that an expression which performs an otherwise illegal widening is deemed safe.
@MakeVisible takes a type and makes it visible within a class or method.

Reflection. In the current implementation we assume that reflection is not used to
manipulate scoped types. But a better solution would be to have reflection enforce the
STARS semantics. This can be achieved by making the implementation of reflection
scope-aware. Of course, whether reflection should be used in a hard real-time system,
considering its impact on compiler analysis and optimization is open for discussion.

Native methods. Native methods are an issue for safety. This is nothing new, even
normal Java virtual machines depend on the correctness of the implementation of native
methods for type safety. We take the approach that native methods are disallowed unless
explicitly permitted in a JAVA COP specification.

Finalizers. While the STARS prototype allows finalizers, we advocate that they should
not be used in scoped packages. This because there is a well-known pathological case
where aNoHeapRealtimeThread can end up blocking for the garbage collector
due to the interplay of finalization and access to scope byRealtimeThread s. This
constraint is not part of the basic set of JAVA COP rules. Instead we add it as a user-
defined extension to the rule set. This is done by the following rule:



1 rule nofinalizers(MethodDef m){
2 where (m.name.equals("finalize") && m.params.length == 0){
3 require (ClassSymbol c; c <- m.sym.owner) {
4 require (!scopedPackage(c.packge)):
5 warning (m,"Scoped class may not define a finalizer");
6 }
7 }
8 }

4 Case Study: A Real-time Collision Detector

We conducted a case study to demonstrate the relative benefits of STARS. The software
system used in this experiment is modeling a real-timecollision detector(or CD). The
collision detector algorithm is about 25K Loc and was originally written with the Real-
time Specification for Java. As a proof-of-concept for our proposal, we refactored the
CD to abide by the scoped type discipline and to use aspects.

The architecture of the STARS version of the CD is given in Fig. 5. The application
has three threads, a plain Java thread running in the heap to generate simulated work-
loads, a 5Hz thread whose job is to communicate results of the algorithm to an output
device and finally a 10HzNoHeapRealtimeThread which periodically acquires
a data frame with positions of aircrafts from simulated sensors. The system must de-
tect collision before they happen. The numbers of planes, airports, and nature of flight
restrictions are variables to the system.

imm

imm.runner

imm.runner.detector

heap

 Simulation
(Java Thread)Printer

Thread
(5Hz)

Dector
Thread
(10Hz)

StateTable

StateTable2

Imm
Frame

Vector3d HashMap

Vector3d

Runner

Detector

Fig. 5. Collision Detector. The CD uses two scoped memory areas. Two threads run in the heap:
the first simulates a workload, the second communicate with an output device. The memory hier-
archy consists ofimm (immortal memory) for the simulated workload,imm.runner for persis-
tent data, andimm.runner.detector for frame specific data.



The refactoring was done in three stages. First, we designed a scope structure for
the program based on theScopedMemory areas used in the CD. Second, we moved
classes amongst packages so that the STARS-CD package structure matched the scope
structure. Third, we removed or replaced explicit RTSJ memory management idioms
with equivalent constructs of our model.

Fig. 6 compares the package structure of the two versions. In the original CD
the packagesatc and command were responsible of computing trajectories based
on a user-defined specification. They were not affected by the refactoring. Package
detector contained all of the RTSJ code as well the program’smain() . Finally
util contained a number of general purpose utility classes. We split the code in the
detector package in four groups. The packageheap contains code that runs in the
heap–this is the main and the data reporting thread. The packageimm contains classes
that will be allocated in immortal memory and thus never reclaimed. Below immor-
tal memory there is one scope that contains the persistent state of the application, we
defined a packageimm.runner for this. The main computation is done in the last
package,imm.runner.detector . This is the largest real-time package which con-
tains classes that are allocated and reclaimed for each period.

The entire code of the real-time aspect for the CD is given in Fig. 7. This aspect
simply declares the memory area types for theimm.runner and imm.runner.-
detector gates. Then it gives an around advice that specifies that the thread used by
the CD algorithm is aNoHeapRealtimeThread and gives appropriate scheduling
and priority parameters.

The overall size of the Scoped CD has increased because we had to duplicate some
of the utility collection classes. This duplication is due to our static constraints. A num-
ber of collection classes were used in theimm.runner package to represent persistent
state, and in theimm.runner.detector package to compute collisions. While we
could have avoided the duplication by fairly simple changes to the algorithm and the use
of problem specific collections, our goal was to look at the ‘worst-case’ scenario, so we
tried to make as few changes to the original CD as possible. The methodology used to
duplicate collection classes is straightforward: we define a scoped replacement for the
Object class and replace all occurrences ofObject in the libraries with the scoped

CD packages classes Scoped CD packages classes
per package per package

atc 989 atc 989
command 21198 command 21198
util 927 util 927
detector 1041

heap 105
imm 120
imm.runner 162
imm.runner.detector 1587
collections 8322

Fig. 6.Package structure of the CD (left) and the STARS CD (right).



1 privileged aspect CDAspect extends ScopedAspect{
2

3 before (Gate g): NewGate(g) && execution (Runner. new(..)){
4 g.mem = new LTMemory(Constants.SIZE*2,Constants.SIZE*2);
5 }
6

7 before (Gate g): NewGate(g) && execution (Detector. new(..)){
8 g.mem = new LTMemory(Constants.SIZE);
9 }

10

11 void around (STARS g, Runnable r): RunInThread(r, g){
12 Thread t = new NoHeapRealtimeThread(
13 new PriorityParameters(Constants.PRIORITY),
14 new PeriodicParameters(null,
15 new RelativeTime(Constants.PERIOD, 0),
16 null, null, null),
17 null, ((Gate) g).mem, null, r);
18 t.start();
19 }
20 }

Fig. 7. Real-time Aspect for the CD. The aspect specifies the characteristics of memory areas as
well as that of the real-time thread used by the application. The CD logic does not refer to any of
the RTSJ APIs.

variant. There were some other minor changes, but these were also fairly straightfor-
ward.

4.1 Patterns and Idioms

RTSJ programmers have adopted or developed a number of programming idioms to
manipulate scopes. After changing the structure of the original CD, we need to convert
these idioms into corresponding idioms that abide by our rules. In almost every case,
the resulting code was simpler and more general, because it could directly manipulate
standard Java objects rather than having to create and manage special RTSJ scope meta-
objects explicitly.

Scoped Run Loop.At the core of the CD is an instance of the ScopedRunLoop pattern
identified in [19]. TheRunner class creates aDetector and periodically executes
the detector’srun() method within a scope. Fig. 8 shows both the RTSJ version and
the STARS version. In the RTSJ version, the runner is aNoHeapRealtimeThread
which has in itsrun() method code to create a new scoped memory (lines 11-12)
and a run loop which repeatedly enters the scope passing a detector as argument (lines
17-18).

In the STARS version,Runner andDetector are gates to nested packages. Thus
the call torun() on line 16 will enter the memory area associated with the detec-
tor. Objects allocated while executing the method are allocated in this area. When the



method returns these objects will be reclaimed. Fig. 9 illustrates how aRunner is
started. In the RTSJ version a scoped memory area is explicitly created (lines 2-3) and
the real-time arguments are provided (lines 6-11). In the STARS version most of this
is implicit due to the fact that a runner is a gate and the use of therunInThread()
method which is advised to create a new thread. What should be noted here is that
STARS clearly separates the real-time support from the non-real-time code. In fact we
can define an alternative aspect which allows the program to run in a standard JVM.

1 public class Runner extends
2 NoHeapRealtimeThread {
3

4 public Runner(
5 PriorityParameters r,
6 PeriodicParameters p,
7 MemoryArea m) {
8 super(r, p, m);
9 }

10 public void run() {
11 final LTMemory cdmem =
12 new LTMemory(CDSIZE,CDIZE);
13 StateTable st =
14 new StateTable();
15 Detector cd =
16 new Detector(st, SIZE);
17 while (waitForNextPeriod())
18 cdmem.enter(cd);
19 }
20 }

1 public class Runner
2 extends Gate {
3

4

5

6

7

8

9

10 public void run() {
11 StateTable st =
12 new StateTable();
13 Detector cd =
14 new Detector(st, SIZE);
15 while (waitForNextPeriod())
16 cd.run();
17 }
18 }
19

20

Fig. 8. Scoped Run Loop Example. The Runner class: RTSJ version (on the left) and Scoped
version (on the right).

1 public void run() {
2 LTMemory memory =
3 new LTMemory(MSZ, MSZ);
4 NoHeapRealtimeThread rt =
5 new Runner( new PriorityParameters(P),
6 new PeriodicParameters(null,
7 new RelativeTime(PER,0),
8 new RelativeTime(5,0),
9 new RelativeTime(50,0),

10 null,null),
11 memory);
12 rt.start();
13 }

1 public void run() {
2 Runner rt =
3 new Runner();
4 runInThread(rt);
5 }
6

7

8

9

10

11

12

13

Fig. 9. Starting up. Theimm.Imm.run() method: RTSJ version (left-hand side) and Scoped
version (right-hand side).



Multiscoped Object. A multiscoped object is an object which is used in several al-
location contexts as defined in [19]. In the RTSJ CD theStateTable class keeps
persistent state and is allocated in the area that is not reclaimed on each period. This
table has one entry per plane holding the plane’s call sign and its last known position.
There is also a methodcreateMotions() invoked from the transient scope. The
class appears in Fig. 10.

This code is particularly tricky because the state table object is allocated in the
persistent area and the methodcreateMotions() is executed in the transient area
(when called by theDetector ). The object referred to bypos (line 8) is transient and
one must be careful not to store it in the parent scope. When a new plane is detected,
old is null (line 11) and a new position vector must be added to the state table. The
complication is that at that point the allocation context is that of the transient area, but
the HashMap was allocated in the persistent scope (line 2). So we must temporarily

1 class StateTable {
2 HashMap prev = new HashMap();
3 Putter putter = new Putter();
4

5 List createMotions(Frame f) {
6 List ret = new LinkedList();
7 for (...) {
8 Vector3d pos = new Vector3d();
9 Aircraft craft = iter.next(newpos);

10 ...
11 Vector3d old = (Vector3d) prev.get(craft);
12 if (old == null) {
13 putter.c = craft;
14 putter.v = pos;
15 MemoryArea current =
16 MemoryArea.getMemoryArea(this);
17 mem.executeInArea(putter);
18 }
19 }
20 return ret;
21 }
22

23 class Putter implements Runnable {
24 Aircraft c;
25 Vector3d v;
26 public void run() {
27 prev.put(c, new Vector3d(v));
28 }
29 }
30 }

Fig. 10.RTSJ StateTable. This is an example of a RTSJ multiscoped object – an instance of class
allocated in one scope but with some of its methods executing in a child scope. Inspection of the
code does not reveal in which scopecreateMotions() will be run. It is thus incumbent on
the programmer to make sure that the method will behave correctly in any context.



change allocation context. This is done by defining an inner class whose sole purpose
is to create a new vector and add it to the hash map (lines 23-39). The context switch
is performed in lines 15-17 by first obtaining the area in which the StateTable was
allocated, and finally executing thePutter in that area (line 17). This code is a good
example of the intricacy (insanity?) of RTSJ programming.

The scoped solution given in Fig. 11 makes things more explicit. TheStateTable
class is split in two. One class,imm.runner.StateTable , for persistent state
and a second class,imm.runner.detector.StateTable2 that has the update
method. This split makes the allocation context explicit. AStateTable2 has a ref-
erence to the persistent state table. ThecreateMotions() method is split in two
parts, one that runs in the transient area (lines 23-30) and the other that performs the
update to the persistent data (lines 8-14).

Since our type system does not permit references to subpackages the arguments to
StateTable.put() are primitive. The most displeasing aspect of the refactoring is

1 package imm.runner;
2 public class Vector3d { ... }
3

4 public class StateTable {
5 HashMap prev = new HashMap();
6

7 void put(Aircraft craft, float x, float y, float z) {
8 Vector3d old = prev.get(craft);
9 if (old==null)

10 prev.put(craft, new Vector3d(x, y, z));
11 else
12 old.set(x, y, z);
13 }
14 }
15

16 package imm.runner.detector;
17 class Vector3d { ... }
18

19 class StateTable2 {
20 StateTable table;
21

22 List createMotions(Frame f) {
23 List ret = new LinkedList();
24 for (...) {
25 Vector3d pos = new Vector3d();
26 ...
27 table.put(craft, pos.x, pos.y, pos.z);
28 }
29 return ret;
30 }
31 }

Fig. 11.STARS StateTable. With scoped types the table is split in two. This makes the allocation
context for data and methods explicit.



that we had to duplicate theVector3d class - there are now two identical versions - in
eachimm.runner and imm.runner.detector . We are considering extensions
to the type system to remedy this situation.

4.2 Performance Evaluation

We now compare the performance of three versions of the CD: with the RTSJ, with
STARS, and with a real-time garbage collector. The latter was obtained by ignoring the
STARS annotations, with all objects allocated in the heap. The benchmarks were run on
an AMD Athlon(TM) XP1900+ running at 1.6GHz, with 1GB of memory. The operat-
ing system is Real-time Linux with a kernel release number of 2.4.7- timesys-3.1.214.
We rely on AspectJ 1.5 as our weaver. We use the Ovm virtual machine framework [2]
with ahead-of-time compilation (“engine=j2c, build=run”). The GCC 4.0.1 compiler is
used for native code generation. The STARS VM was built with dynamic read and write
barriers turned off. The application consists of three threads, 10Hz, 5Hz, and plain Java.
Priority preemptive scheduling is performed by the RTSJVM.

Fig. 12 shows the difference in running time between the three versions of the CD.
Some of the variation is due to the workloads – collisions require more computational
resources.

The results suggest that STARS outperforms both RTSJ and Real-time GC. On av-
erage, STARS is about 28% faster per frame than RTSJ and RTGC. This means that the
overhead of before advice attached to every allocation is negligible. This is only a single
data point, we feel that more aggressive barrier elimination could reduce the overhead
of RTSJ programs and that the performance of our RTGC is likely not yet optimal.
Nevertheless, the data presented here suggested that there is a potentially significant
performance benefit in adopting STARS.

5 Discussion and Future Work

The combination of Scoped Types with Aspects is a promising means of structuring
policy with its corresponding mechanism. When a real-time program is in this form,
we can get the benefit of high level abstractions along with increased flexibility of their
key mechanisms as aspects. The approach further allows for flexible combinations of
lightweight static verification. The prototype implementation of STARS shows that the
benefits of our approach can be obtained using mostly off-the-shelf technologies, in
particular, existing aspect-oriented languages and static verifiers, with minimal changes
to a real-time Java virtual machine. There is also potential for significant performance
improvements. In our benchmark we have seen that a STARS program may run 28%
faster than the corresponding RTSJ program.

This work has illustrated how aspects can extract and localize real-time concerns. In
our case study the entire real-time specific portion of the application could be extracted
as a simple declarative aspect. But the STARS interface is intentionally spartan and
covers only part of the Real-time Specification for Java API. We hope that our approach
can be extended to address a much larger set of real-time applications.



check

5

10

15

20

25

30

35

40

0 50 100 150 200 250

(a) RTSJ
with scope checks

median 17
avg 15.4
max 21

nocheck

5

10

15

20

25

30

35

40

0 50 100 150 200 250

(b) STARS
no scope checks

median 12
avg 11.2
max 15

rtgc

5

10

15

20

25

30

35

40

0 50 100 150 200 250

(a) Real-time GC
with scope checks

median 16
avg 15.4
max 42

Fig. 12. Performance Evaluation. Comparing the performance of the collision detection imple-
mented with (a) RTSJ, (b) STARS and (c) Java with a real-time garbage collector. We measure the
time needed to process one frame of input by a 10Hz high-priority thread. The x-axis shows input
frames and the y-axis processing time in milliseconds. The RTGC spikes at 43ms when the GC
kicks in. No deadlines are missed. The average per frame processing time of STARS is 28% less
than that of RTSJ and RTGC. Variations in processing time are due to the nature of the algorithm.



One of the advantages of STARS is its truly lightweight type system. So lightweight,
in fact, that one only needs make a judicious choice of package names to denote nesting
of memory regions. The attraction is that no changes are needed in the language and
tool chain, and that the rules are simple to explain. We do not attempt to sweep the costs
of adopting STARS under the rug. As we have seen in the case study, there are cases
where we had to change interfaces from objects to primitive types, thus forfeiting some
of the software engineering benefits of Java. We were forced to duplicate the code of
some common libraries in order to abide by the rules of scoped types. While there are
clear software engineering drawbacks to code duplication, the actual refactoring effort
in importing those classes was small. With adequate tool support the entire refactoring
effort took less than a day. The hard part involved discovering and disentangling the
scope structure of the programs that we were trying to refactor.

The benefits in terms of correctness can not be overemphasized. Every single prac-
titioner we have met has remarked on the difficulty of programming with RTSJ-style
scoped memory. In our own work we have encountered numerous faults due to incor-
rect scope usage. As a reaction against this complexity many RTSJ users are asking for
real-time garbage collection. But RTGC is not suited for all applications. In the context
of safety critical systems a number of institutions are investigating restricted real-time
’profiles’ in which the flexibility of scoped memory is drastically curtailed [12]. But
even in those proposals, there are no static correctness guarantees. Considering the cost
of failure, the effort of adopting a static discipline such as the one proposed here is well
justified.

We see several areas for future work. One direction is to increase the expressiveness
of the STARS API to support different kinds of real-time systems and experiment with
more applications to further validate the approach. Another issue to be addressed is to
extend JAVA COP to support AspectJ syntax. In the current system, we are not checking
aspects for memory errors. This is acceptable as long as aspects remain simple and
declarative, but real-time aspects may become more complex as we extend STARS,
and their static verification will become a more pressing concern. Finally we want to
investigate extensions to the type system to reduce, or eliminate, the need for code
duplication.
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