
Java Subtype Tests in Real-Time

Krzysztof Palacz Jan Vitek

S3 Lab, Department of Computer Sciences, Purdue University

Abstract. Dynamic subtype tests are frequent operations in Java pro-
grams. Naive implementations can be costly in space and running time.
The techniques that have been proposed to reduce these costs are ei-
ther restricted in their ability to cope with dynamic class loading or may
suffer from pathological performance degradation penalizing certain pro-
gramming styles. We present R&B, a subtype test algorithm designed
for time and space constrained environments such as Real-Time Java
which require predictable running times, low space overheads and dy-
namic class loading. Our algorithm is constant-time, requires an average
of 10.8 bytes per class of memory and has been shown to yield an average
2.5% speedup on a production virtual machine. The Real-Time Specifi-
cation for Java requires dynamic scoped memory access checks on every
reference assignment. We extend R&B to perform memory access checks
in constant-time.

1 Introduction

Dynamic subtype tests are a staple of modern object-oriented programming
languages. In Java subtype tests are executed in a variety of contexts, such
as checked casts, array updates, exception handling and instanceof queries.
The language runtime system is responsible for maintaining data structures to
encode the subtype relation and efficiently answering queries. Subtype tests can
be performed in linear time by traversing the type hierarchy. Unfortunately
such implementations lead to unpredictable performance. This problem remains
in many state-of-the-art implementations which have a constant-time fast path
and a slow path which falls back on a form of hierarchy traversal.

The lack of predictability is particularly bothersome in real-time settings
because giving the time bound of a simple instruction such as an array store
requires making non-trivial assumptions about the concrete types of objects and
knowledge of the implementation technique used by the VM. In this paper, our
goal is to engineer a subtype test algorithm for memory-constrained real-time
systems which satisfies the following requirements:

– Queries must run in constant time.
– Space overhead must not significantly increase system footprint.
– Preemption latency must be small and bounded.

In general-purpose virtual machines, such as Hotspot or Jikes, unpredictable per-
formance is also a nuisance because it impacts programming style. For instance,

2 K. Palacz and J. Vitek

in many application subtype tests may be slower for interface than classes (usu-
ally if the number of implemented interfaces is larger than some VM-specific
constant). This situation reinforces folklore about the cost of using interfaces
and suggests that they should be avoided for performance critical activities.

The issue of implementation of subtype tests for object oriented languages has
been addressed by many authors from both theoretical and applied communities
[6, 15, 1, 7, 5, 11, 14, 18, 19, 2, 20, 17]. A number of non-incremental techniques for
compact and constant time subtype tests have been proposed [7, 14, 17, 20]. Pro-
duction virtual machines that implement fast incremental algorithms [2, 6] can,
in special cases, exhibit suboptimal performance.

In this paper we investigate simple techniques based on well-known algo-
rithms and strive to find a compromise between these three requirements. We
reduce the amount of work needed upon class loading so that in most cases
there is no recomputation; we guarantee fast and constant time subtype tests1

and require very little space per class.
We also report on a proof-of-concept implementation of our algorithm, called

R&B, in which we integrated R&B in a production virtual machine, the Sun
Microsystems Research VM (or EVM). And we show that for that particular
implementation we reduced space consumption and improved running times by
an average of 2.5%. We had to change only about 100 lines in the original code
of the VM and optimizing just-in-time compiler.

In this paper, we also discuss two extensions to R&B, one extension is a
combined encoding which unifies the treatment of classes and interfaces, and the
other extension is an algorithm for checking memory accesses. Memory access
checks are mandated by the Real-Time Specification for Java (RSTJ) [4] on each
reference assignment. We observe that these checks are a special case of subtype
tests and that it is thus relatively straightforward to apply R&B to this problem.
The technique described here has a slow path of two loads and two compares
which is faster than previous work [3, 12, 8]. Moreover, we only need one word
of storage per memory area.

2 Subtype tests in Java

We start by presenting the subtype test algorithm used in EVM. Subtype tests
are mandated by the Java language specification for most checked cast expres-
sions, type comparisons, array stores, and exception handler determination. In
all of these cases, one of the following two primitive functions is evaluated:

instanceof(o, T) returns true if o.class <: T
checkcast(o, T) throws exception if not o.class <: T

We write A <: B to mean that type A is a subtype of B. The first function checks
that an object is an instance of a given type and the second, that it is assignable
1 Recomputation can create short pauses, but these are infrequent enough that we

argue that they will not impact overall throughput. Furthermore R&B is thread safe
allowing the runtime to be preempted at any time by a real-time thread.

Subtype Tests in Real-Time 3

to that type. These functions treat null values differently. On a null, an instance
test returns false, while a cast succeeds. Java also defines a subtyping relation
for arrays based on equality of their dimensions and subtyping of element types.

In the remainder of this paper we abstract those differences and focus on the
core functionality of subtype testing as implemented by the subtypeof procedure
of Fig. 1. EVM’s type test algorithm treats class and interface queries differently.
For classes, the hierarchy is traversed until the requested class is located or
the root is reached. For interfaces, a per-type array of implemented interfaces
is scanned. The basic scheme is optimized in two straightforward ways. The
subtype test logic is guarded by an equality test so as to catch cases when both
argument types are the same. To exploit type locality of tests a per-type cache is
added. This cache always holds the last type that tested positively as a subtype
of the given type. EVM’s optimizing compiler inlines the code of subtypeof
(but not implements or extends). The equality test in is inlined because it is
cheap. The branch on the kind of the type pr (either a class or an interface) may
be resolved if pr is loaded. The algorithm is simple and performs well, though
in pathological cases the performance of tests may vary greatly.

type info {
type info parent;

type info[] interfaces;

type info cache; }

subtypeof(type info cl, type info pr) {
if (cl == pr || cl.cache == pr) return true;

if (isInterface(pr)) return implements(cl, pr);

else return extends(cl, pr); }

implements(type info cl, type info pr) {
for(int i = 0; i < pr.intefaces.length; i++)

if (cl == pr.interfaces[i])

{ cl.cache = pr; return true; }
return false; }

extends(type info cl, type info pr) {
for (type info pcl = cl.parent; pcl != null; pcl = pcl.parent)

if (pcl == pr)

{ cl.cache = pr; return true; }
return false; }

Fig. 1. EVM Subtype test: hierarchy traversal, one-entry cache and equality test.

4 K. Palacz and J. Vitek

3 Runtime behavior of subtype tests

A suite of twelve Java programs was used to characterize the runtime behavior
of subtype tests in practice. The data was obtained by running these programs
on an instrumented version of EVM. This benchmark suite is part of larger
collection available from www.ovmj.org.

Runtime program size. While the average size of programs in the benchmark
suite (inclusive of the JDK libraries) is close to ten thousand classes and in-
terfaces, in practice a much smaller number is used – and, thus, loaded. This
difference is significant because designing an algorithm based solely on static
characteristics would be overly pessimistic. As can be seen, Table 1 includes
counts of classes and interfaces that are loaded by the VM during the test runs,
respectively in columns #class and #itf. The relatively small numbers of loaded
types suggests that in a typical situation the size of data structures may not be
a bottleneck. Table 1 also illustrates the average number of implemented inter-
faces (avgit) and the depth of the inheritance hierarchy defined as the number
of classes between a type and the hierarchy root (ichain). While averages are
low, it should be noted that in one benchmark there were as many as twelve
implemented interfaces. The inheritance chain length suggest that the average
iteration count of hierarchy traversal is less than two. We believe that the archi-
tecture of the benchmark programs accounts for some of the variations among
programs. For instance CO has few interfaces because its implementors chose to
minimize their number to avoid the (supposed) higher cost of interface dispatch.
By contrast, EH has a clean design with a rich type hierarchy, a large number of
interfaces and deep inheritance chains. Finally, it should be noted that this data
is not a predictor of subtype test performance as we will see later.

Name Description #class #itf avgit ichain

EH enhydra Html2Java 313 113 2.6 2.7
CA cap Javac stress test 264 21 0.9 1.6
GJ gj Java compiler 328 27 0.7 1.6
KA kawa Scheme interpreter 511 19 0.6 2.2
BL bloat Bytecode optimizer 362 28 0.5 1.8
JE jess Expert shell 410 33 1.0 1.5
JA javasrc Html generator 232 22 0.6 1.7
XM XML XML tool 327 78 0.7 1.6
TO toba Java-to-c compiler 220 16 0.4 1.6
RH rhino Javascript interp. 305 21 0.6 1.7
SO soot Optimization fmk 641 102 1.2 2.2
CO confined Confinement check 467 29 0.3 1.6

Table 1. Benchmark suite. The number of classes dynamically loaded during the
benchmark run is #class, the number of interfaces is #itf. avgit is the average number
of implemented interfaces, and i-chain is the average inheritance chain height.

Subtype Tests in Real-Time 5

Hierarchy shape. The shape of a class hierarchy can be further characterized
by the number of runtime leaf classes it contains. A runtime leaf class is one
for which no subclass was dynamically loaded during the benchmark run. Fig. 2
shows that, on average, over 80% of loaded classes are leaves. Runtime leaf classes
may, of course, have subclasses that simply were not loaded in a given run.

0 100 200 300 400 500 600 700 800

EH

CA

GJ

KA

BL

JE

JA

XM

TO

RH

SO

CO

Leaf classes
Non leaf classes
Interfaces

Fig. 2. Breakdown of dynamically loaded classes and interfaces. Leaf classes do not
have subclasses.

Test frequencies. The benchmark programs performed an average of 320K tests
per second as measured by instrumenting the optimizing JIT compiler and the
interpreter and running on a SunBlade 100. Fig 3 breaks down subtype tests
between instanceof and checkcast. As can be expected, casts occur more fre-
quently in programs that manipulate generic data structures, such as the Generic
Java compiler (GJ). At the other extreme, the bytecode analysis framework used
in CO uses its own template macro expansion mechanism to generate container
types thus avoiding casts. We have observed that the number of casts will be
much higher if the optimizing compiler is turned off. This is accounted for by
common programming idioms that are easily optimized by the JIT, e.g. the use
of instanceof to guard a cast. Overall, the variability in test frequencies is most

0 250 500 750 1000 1250 1500

EH

CA

GJ

KA

BL

JE

JA

XM

TO

RH

SO

CO

KTests/Second

instanceof

checkcast

Fig. 3. Subtype tests per second.

6 K. Palacz and J. Vitek

likely due to programming style; for instance, in CO the inner loop is a visitor
pattern over a complex instruction hierarchy and each iteration requires several
tests. The data also shows that almost 90% of the tests are extends tests.

Test sites. The EVM JIT compiler emits an average of four hundred subtype
test sequences per program. Fig. 4 shows that all but three of the benchmarks
have less than 500 test sites. This is surprisingly low and suggests that code
size increase due to inlining is likely to be negligible. No correlation between
the number of sites and dynamic occurrences of tests could be established. Be-
cause the number of sites is so small, compiler implementors may even choose to
keep track of test sites during program execution. As more information becomes
available, the original code can be patched to remove the extra interface check.

0 200 400 600 800 1000 1200

XM

BL

CA

CO

EN

GJ

JA

JE

JP

KA

RH

SO

RO

c

Fig. 4. Subtype tests sequences emitted by the JIT.

Success rate. A test is considered successful if it returns true (instanceof) or
does not throw an exception (checkcast). Fig. 5 shows that 90% of tests are suc-

0 20 40 60 80 100

EH

CA

GJ

KA

BL

JE

JA

XM

TO

RH

SO

CO

% success

Fig. 5. Ratio of successful subtype tests. An instanceof test is successful if it returns
true and checkcast if it does not throw an exception.

Subtype Tests in Real-Time 7

cessful. Clearly any implementation should optimize for success, but considering
the frequency of tests the costs of the slow path can not be ignored.

Cache effectiveness. EVM uses a two element cache composed of an array cache
and an object cache. The array cache is used to record the last successful cast
performed on an array store, the object cache is used for all other tests. The
average hit rate is 84.5%, but as can be seen in Fig. 6 these results can be highly
variable. Hit rates can be as low as 50.3% (EH) or as high as 99.9% (JE). While
these numbers confirm the usefulness of caches they also demonstrate that it is
not a panacea.

0 20 40 60 80 100

EH

CA

GJ

KA

BL

JE

JA

XM

TO

RH

SO

CO

% cache

Obj-cache hit

Arr-cache hit

Obj-cache miss

Arr-cache miss

Fig. 6. Effectiveness of a two element cache. The first two bars denote, respectively,
hits in the object cache and the array cache. The last two bars indicate misses in the
object and array cache. Values are normalized wrt. successful subtype tests.

Miss costs. The cost of a cache miss depends on the number of comparisons re-
quired by the implements() and extends() functions. Average iteration counts,
with caches turned off, appear in Table 2. The first counts the levels of inher-
itance traversed, the second the number of interfaces tested. The numbers are
surprisingly high for some benchmarks, e.g., EH in which an average of 7.6 inter-
faces are tested per cache miss. The implication is that pathological cases with
important performance perturbations are quite likely to occur.

EH CP GJ BL JE XM TB RH CO JA

extends 1.03 1.67 1.40 3.21 1.05 1.99 0.95 1.00 1.39 2.54
implements 7.64 0.66 0.00 0.64 1.98 1.00 1.98 1.75 0.64 1.00

Table 2. Iterations of the hierarchy traversal algorithm.

8 K. Palacz and J. Vitek

Selftests. A selftest is a test of the form subtypeof(A, A). On average 59%
of the subtype tests evaluated in the benchmark suite are selftests. Fig. 7 also
shows that the large majority of these selftests are performed on leaf classes.

0 20 40 60 80 100

EH

CA

GJ

KA

BL

JE

JA

XM

TO

RH

SO

CO

selftests

scalar

arraystore

Fig. 7. Frequency of selftests. The first bar denotes the ratio of tests subtype(A,A)

where A is a leaf. The second bar is the ratio of selftests for non-leaf classes.

Conclusions. Several conclusions should be drawn from this data. First, the run-
time type hierarchy is more important then the compile time hierarchy. While
many benchmark programs consist of many classes, the portion actually used
is small. It would appear that at runtime it is common to encounter a shallow
hierarchy with few interfaces. Selftests and caches are important for good per-
formance, however they are not sufficient. Finally, there are surprisingly few test
sites suggesting that code bloat is unlikely to be an issue.

4 The R&B algorithm

The algorithm presented in this paper, called R&B for ranges and buckets, has
the following characteristics. Subtype tests are run in constant time. Caches can
be added to the basic algorithm to yield different configurations, their tradeoffs
are studied in Section 7. Space requirements are small. Each class and interface
has a single word reserved for extends tests and, on average, 2.8 bytes for imple-
ments tests. The algorithm is incremental in nature. Type information may be
recomputed eagerly (at each class load) or lazily (only when needed), depending
on the requirements of the application.

To meet the responsiveness requirements of real-time systems it is essential
that the algorithm be interruptible at any time, in particular, during updates
to the type information because these can take several milliseconds. In R&B,
updates are thread safe. The data structures are always in a consistent state
and can be used at any time to answer subtype queries. The presentation of is
structured as follows. Section 5 describes the range numbering scheme used for
checking the inheritance relation (extends). Section 6 describes the bucketing
technique used for multiple subtyping (implements).

Subtype Tests in Real-Time 9

5 Range-based extends tests

A well-known technique for representing a single inheritance relation is based
on assigning a range to each type such that ranges of children are subranges
of their parents’ ranges and ranges of siblings are disjoint. The technique was
first described by Schubert et al. [15] and independently rediscovered by the
implementors of Modula-3.

Subtype tests are, essentially, range inclusion checks which can be computed
in constant time and constant space. Assuming that each class is described by
two variables called low and high, a test whether type A is a subtype of B
becomes:

B <: A ⇔ A.low < B.low ∧ B.high < A.high (1)

The range assignment is performed by a preorder walk on the inheritance tree.
A consecutive number is given to each type’s low bound the first time the type is
encountered. The high bound is chosen so as to be larger than the maximum of
the type’s low bound and all of it’s children’s high bounds. A sample assignment
is shown in Fig. 8.

Several questions need to be addressed for range-based queries to be practical.

1. How many bits are required to represent ranges?
2. How can the impact of class loading be minimized?
3. How can thread safety be ensured?

The first question is important for long running systems because these may load
many more classes than the applications in the benchmark suite. It would be ad-
vantageous to pack the ranges in a single word. With a naive encoding this would

A

B C

D E F

A(0,11)

B(1,4) C(5,10)

D(2,3) E(6,7) F(8,9)

Fig. 8. A valid range assignment for an inheritance hierarchy. The class A is the root,
all of its subclasses have subranges. Siblings such as B and C have disjoint ranges.

10 K. Palacz and J. Vitek

restrict VM to 32,768 classes. Note also, that the encoding of Section 9 requires
packed ranges. Class loading is frequent and implies recomputing the range as-
signment each time a new class is added. The cost of computing the assignment
should be minimized. Finally, in a real-time setting, a real-time thread may be
released while the range assignment is in the middle of being recomputed. The
algorithm should be designed so as to ensure that it can be preempted without
invalidating the type information.

5.1 Refining the encoding

We now consider how to refine the encoding to address the three questions
mentioned above. For a subtype query such as o instanceof T, we call type T
the provider and the type of the object o the client. Thus we refer to the left
hand-side of a test client <: provider, as the client position, and the right-hand
side the provider position.

Observe that both high bounds are not needed. Thus equation (1) can be
written:

B <: A ⇔ A.low < B.low ∧ B.low < A.high (2)

The low bound is the only information required from the client. Furthermore,
A.low < B.low can be safely weakened to A.low ≤ B.low without invalidating the
result. The invariants that must be maintained in cases where B is a subclass of
A are, thus, A.low ≤ B.low < A.high.

The key insight to limit the growth of ranges and reduce the cost of recom-
puting the assignment is that the high bounds can be computed on demand. As

type info {
ushort high;

ushort low;

type info parent; }

extends(type info cl, type info pr) {
if (cl == pr ||

pr.low <= cl.low && cl.low < pr.high) return true;

if (invalid(pr))

{ promote(pr); return extends(cl, pr);}
return false; }

invalid(type info t) { return t.high == 0; }

Fig. 9. Extend test.

Subtype Tests in Real-Time 11

long as the low bound has been initialized, the type can be used in the client
position of subtype queries. The refined extends test function will thus perform
a subrange check and, only if the test fails, will the validity of the provider be
verified. If it is not valid, i.e. the high bound is zero, the high bound is com-
puted — we say the type is promoted — and the test is attempted one more
time. Fig. 9 gives pseudocode for extends tests. The type info data structure
contains two 16 bit values, high and low. An equality check is added because it
will obviate the need to promote leaf types2. Tests of the form extends(A, A)
will be shortcircuited by the equality check.

5.2 Range assignment

Every time a new class3 is added to the system, the class is inserted in the
hierarchy using the insert() procedure shown in Fig. 10. Thus every type starts
out with an invalid range, but in a state that allows it to be used in the client
position. The algorithm only recomputes the range assignment on calls to the
promote() routine. In our benchmarks, promote() is called on average eleven
times per program (one promotion for every 40 loaded classes, or one promotion
per 13 million tests). The cost of promotion is linear in the number of types as
will be shown next. Promotions can also be triggered eagerly upon class loading,
in which case the extends procedure of Fig. 9 need not check for validity.

insert(type info t) {
t.high = 0;

t.low = (t.parent == null) ? 1 : t.parent.low; }

Fig. 10. Adding a class to the hierarchy.

Consider the hierarchy of Fig. 11.a which is the result of several calls to insert().
All classes have the same invalid range [1, 0]. The first subtype test, extends(
F, C) forces a relabeling. Fig. 11.b shows that C is promoted which triggers the
promotion of its parent A. The query extends(F, C) can now evaluate to true
as 2 ≤ 2 ∧ 2 < 3. The second test, extends(H, C), will succeed without pro-
motion. Note that children of C still have an invalid range since it has not been
necessary to distinguish them so far. Fig. 11.c, shows the result of evaluating
extends(F, E). Since E is invalid it has to be promoted. extends(F, E) fails
as 3 ≤ 4 ∧ 4 < 4 is false. Next, we evaluate extends(H, H) which is trivially
2 The only case when leaf types have to be promoted is when testing extends(A, B)

and B is a leaf. Of course, tests of this kind always fail, so there is, in fact, no need
to promote a leaf.

3 Interfaces are subclasses of Object but they do not need to be promoted because
they can never be in the provider position.

12 K. Palacz and J. Vitek

A

B C

D E F

G H

insert(A)

insert(B)

insert(C)

insert(D)

insert(E)

insert(F)

insert(G)

insert(H)

⇒
A(1,0)

B(1,0) C(1,0)

D(1,0) E(1,0), F(1,0)

G(1,0) H(1,0)

(a)

extends(F,C)

extends(H,C)
⇒

A(1,3)

B(1,0) C(2,3)

D(1,0) E(2,0), F(2,0)

G(1,0) H(2,0)

(b)

extends(F,E)

extends(H,H)
⇒

A(1,5)

B(1,0) C(2,5)

D(1,0) E(3,4), F(2,0)

G(1,0) H(3,0)

(c)

extends(G,D) ⇒
A(1,7)

B(2,4) C(4,7)

D(3,4) E(5,6), F(4,0)

G(3,0) H(5,0)

(d)

Fig. 11. Allocating bounds for a small hierarchy.

Subtype Tests in Real-Time 13

true. Finally extends(G, D) is evaluated in Fig. 11.d. After this step no more
promotions will be required.

The pseudocode of our implementation is given in figures 12 and 13. The basic
data structure representing types, type info, was inherited from the EVM. It
includes a reference to the parent of the class or interface, siblings and first child.
Whenever promote() is invoked, the algorithm starts by flattening the hierarchy
in an array of entry records (flatten()). Leaf classes are stored once, non-leaves
are stored twice, once before all of their subclasses and once after. Ranges are
allocated by increasing a counter for all non-leaf entries. This algorithm is doing
slightly more than is strictly necessary because we recompute the assignment for
the entire tree each time.

int MINRANGE = 1, MAXRANGE = 0xffff;

char FIRST=’f’, LAST=’l’, IGNORE=’i’;

type info root;

entry[] array;

int array pos;

entry {
char type;

type info class;

ushort position; }

type info {
ushort high;

ushort low;

boolean isInterface;

type info super, nextSibling, firstChild; }

Fig. 12. Data structures, constants and global variables.

5.3 Thread safety and Real-time

We now argue that the algorithm of Fig. 13 is thread safe. The promote()
procedure maintains the following invariants. If A is the type information before
a promotion and A′ is the same after a promotion we have:

A.low ≤ A′.low ∧ (
A.high = 0 ∨ A.high ≤ A′.high

)
(3)

Furthermore, for any pair of type A and B we have:

A.low ≤ B.low ⇒ A′.low ≤ B′.low (4)

14 K. Palacz and J. Vitek

synchronized promote() {
array = new entry[SizeOfHiearchy*2];

array pos = 0;

if (root.isValid()) root.setRange(MINRANGE, MAXRANGE);

root.flatten();

allocateRange();

updateClasses();

array = null; }

flatten() {
if (firstChild == null) add(IGNORE);

else
{ add(FIRST); firstChild.flatten(); add(LAST); }

if (nextSibling != null) nextSibling.flatten(); }

add(char c) {
entry e = new entry();

e.type = c;

e.class = this;

e.position = 0;

array[array pos++] = e; }

allocateRange() {
int position = 0;

for (int pos = 0; pos < arr pos; pos++) {
if (array[pos].type != IGNORE) {

char prev = array[pos - 1].type;

char this = array[pos].type;

if (!(prev == LAST && this == LAST)

&& !(prev == FIRST && this == LAST)) position++;

}
array[pos].position = position;

} }

updateClasses() {
for (int pos = array pos - 1; pos >= 0; pos--) {

entry e = array[pos];

if (e.type == LAST || e.type == IGNORE)

if (e.class.low != e.position)

e.class.low = e.position;

else if (e.class.high != e.position)

e.class.high = e.position;

} }

Fig. 13. Computing the range assignment.

Subtype Tests in Real-Time 15

These invariants follow from the fact that ranges are assigned in the order classes
occur in the siblings list. The order of siblings is not modified during insertion
because types are always added at the end of the sibling list of their parent and
no other operation modifies this order.

To ensure that the data structures are consistent at every step of the update
we schedule write to the type info according to a preorder right-to-left tree
traversal. High bounds are always written before low bounds and before any
bounds of children. Consider the updates between Fig. 11.a and Fig. 11.b. Types
A, C, F, E, H have to be updated. The following order ensures that they are
valid at every step:

1. A.high = 3,
2. C.high = 3,
3. F.low = 2,
4. H.low = 2,
5. E.low = 2,
6. A.low = 1.

The state immediately after (4) may cause one to wonder about validity of the
approach since we have E(1,0) and H(2,0). However the state is still valid,
since both types are still recognized as subtypes of A(1,3). And any attempt to
evaluate extends(H, E) will block until the promote() procedure returns.

In a real-time Java VM, a real-time thread should never have to block. This
can be achieved by configuring R&B to perform eager range assignment. Every
time a new class is loaded the entire hierarchy will be recomputed. This imposes
an added cost to class loading, but this cost is acceptable because real-time
threads are not expected to trigger class loading (unless a way is found to bound
the costs of class loading).

6 Bucket-based implements tests

Our algorithm for subtype tests in a multiple inheritance type hierarchy (re-
quired for implements tests) is a variant of the packed encoding algorithm [17],
extended to handle dynamic hierarchy extensions. Implements tests have the
form:

o <: I

where the client o is an instance of some class C and the provider I is an interface
type. In this approach, every interface is represented by two numbers that we call
a bucket (bucket) and an interface identifier (iid). The algorithm will maintain
the following invariants for any two distinct interfaces I and J,

I <: C ∧ J <: C ⇒ I.bucket �= J.bucket (5)
I <: J ⇒ I.bucket �= J.bucket (6)

I.bucket �= J.bucket ∨ I.iid �= J.iid. (7)

16 K. Palacz and J. Vitek

type info {
byte[] display; }

interface info {
byte iid;

byte bucket; }
implements(type info cl, interface info pr) {

return cl.display[pr.bucket] == pr.iid; }

Fig. 14. Implements test.

Our goal is to find heuristics that minimize the number of buckets. For each
class the runtime system maintains a display, i.e., an array of iids indexed
by bucket. If a class does not implement any interfaces from a given bucket
the display element for that bucket contains an iid of 0. The subtype test is
performed by comparing the provider interface’s iid against the value stored in
the class’ display at bucket and hence require one array access and a compare,
as illustrated in Fig. 14.

This test returns the correct answer provided that any two interfaces with a
common subtype are never assigned to the same bucket. Our algorithm satisfies
this requirement while striving to keep the number of buckets low since the total
space taken up by the displays is proportional to the number of interfaces in the
system times the number of buckets. The number of interfaces in a given bucket
is typically small (obviously bounded by the total number of interfaces in the
system, cf. Table 1), hence one byte can be used to encode the interface iid. In
case of overflow a new bucket will be allocated.

Dynamic class loading can violate the invariant that interfaces with common
subtypes belong to distinct buckets because a newly loaded class may implement
two interfaces which did not have, up to this point, a common subtype. In this
case it is necessary to recompute the assignment of interfaces to buckets. This
may be done by the algorithm given in [17], however, we present a simpler
approach that gives satisfactory results in practice.

When a class C is loaded, we first determine if the invariant has been violated.
To achieve this, we check if any of the existing buckets contains more than one
interface implemented by C. If this is not the case, then the invariant is not
violated and no recomputation is needed. Otherwise the following procedure is
performed for each bucket b that contains k interfaces implemented by C: k − 1
new buckets are created, one superinterface of C is left in b and the remaining
k − 1 interfaces are assigned to one of the new buckets. New buckets receive
the next available bucket number. Subsequently the remaining interfaces from
b are assigned to the new buckets so that both b and the new buckets contain
approximately the same number of interfaces.

When an interface is moved from bucket b1 to bucket b2 its iid remains
unchanged and the iid is added to b1’s exclustion list. If an interface is later

Subtype Tests in Real-Time 17

assigned to b1, it will never receive an iid that appears on b1’s exclusion list.
Once all buckets are processed we iterate over all the loaded classes and reallo-
cate their displays. Existing entries in the displays remain unchanged and new
entries are added to account for the new buckets. This means that in a given
class’s display an iid identifying the same interface may appear more than once,
first at the index corresponding to its original bucket and, then, at the indices
corresponding to the buckets it has been subsequently moved to.

When an interface is loaded, we have to choose which bucket to assign it to.
When no buckets have been created yet or all buckets are full (i.e., all numbers
within the iid range are used or appear on the bucket’s exclusion list) we have
to add a new bucket. Otherwise we choose the bucket with the fewest interfaces
among m most recently created buckets and add the interface to it. Here m is a
small integer constant, five in our implementation. This heuristic is based on the
observation that the most often implemented interfaces such as Cloneable and
Serializable are loaded early during VM initialization and, hence, have low
bucket numbers. A class implementing an interface defined in the application
code is likely to also implement one of the system interfaces, hence putting these
two interfaces in the same bucket would likely require the bucket to be divided.
On the other hand, two interfaces loaded from application code are less likely
to be implemented by the same class, and can, therefore, be put in the same
bucket. The iid of the interface is chosen to be the next number from the iid
range that is not assigned yet to any interface in the bucket and does not appear
on the bucket’s exclusion list.

We now argue that the implements tests algorithm is also thread-safe. This
follows from the following facts:

– provider’s iid never changes,
– provider’s bucket number is changed before displays are reallocated,
– existing entries in displays never change.

The test given in Fig. 14 can use either old values of client.display and
provider.bucket or their new values, denoted client.display’ and provider-
.bucket’. We have the following cases.

– client.display and provider.bucket: client and provider must have been
loaded prior to the test and the answer is correct;

– client.display’ and provider.bucket’: correct by construction;
– client.display’ and provider.bucket: the client display contains the

same entry both for the old and the new bucket number, thus the test returns
the correct answer;

– client.display and provider.bucket’: this case will never occur if all
displays are updated before the provider.bucket fields are written and
memory barrier is issued between these two steps.

Therefore, in all cases the test returns the same answer. In many virtual machines
threads are only stopped at GC safe points. In such systems thread safety is
atomic if we assume that safe points are not inserted in the middle of subtype
test sequence.

18 K. Palacz and J. Vitek

7 Experimental results

We implemented our algorithm in the Sun Labs Virtual Machine for Research
(EVM). EVM uses a one-element general-purpose cache and a one-element array
store cache. The subtype test algorithm used by EVM is the one described
in Section 2. The just-in-time compiler emits inline code to check the cache
and a call to the out-of-line test routine. We made several modifications to the
baseline EVM build. To evaluate the benefits of caching we removed the inlined
cache checks emitted by the SPARC JIT for instanceof and checkcast tests
as well as array stores (the SunNoCache configuration). We experimented with
two configurations of our algorithm. In the UsJIT configuration we preserved the
original cache checks emitted by the JIT but replaced the rest of the test code
with an inline type equality test followed by out-of-line calls to our extends()
and implements() routines. In the UsINL configuration we removed the original
caches and changed the JIT to emit the fast path of our extends test. We used
lazy range assignment in both configurations. We performed our experiments on
a Sun Blade 100 workstation with a 500 MHz SPARC-IIe processor and 384 MB
RAM.

The speedup results are summarized in Fig. 15. These were obtained because
the average over five runs and are displayed as percentage speedups over the
baseline EVM configuration (higher is faster). The results show that UsJIT is
better on average than the baseline, with speedups up to 4.3% and on average
of 2.5%. Inlining of the subtype test does not appear to pay off and performs

EH

RH

TO

SO
KA

JE

JA

GJ
CO

CP

XM

BL

-4

-3

-2

-1

0

1

2

3

4

5

XM BL CP CO EH GJ JA JE KA RH SO TO AVG

SunNoCache
UsInline
UsJit

average

Fig. 15. Performance of the proposed subtype test techniques as percentage speedup
over the baseline. The baseline is the unmodified EVM system. SunNoCache is the
EVM with cache turned off. UsInline is a variant of our algorithm with inlining of
the subtype test sequence and no caches. UsJit is the variant with caches. The last
category shows average speed ups. UsJit exhibits a 2.5% average improvement (as
compared to the base line).

Subtype Tests in Real-Time 19

slightly worse than the baseline. This clearly indicates that caches are important
for performance.

The number of range promotions and bucket recomputations for each pro-
gram are shown in Fig. 16. They show clearly that recomputation is infrequent.
The individual costs of recomputation are given in Fig. 17. The recomputation
times are small and mostly linear in the number of classes in the system.

0 5 10 15 20 25 30 35

XM

BL

CA

CO

EN

GJ

JA

JE

JP

KA

RH

SO

RO

bucket recomputations

range promotion

Fig. 16. Number of recomputations of implements and extends metadata. Class load-
ing creates invalid ranges which may result in recomputations, for buckets recompu-
tation is triggered if a new class introduces a conflict in bucket assignments.

0

100

200

300

400

500

600

0 200 400 600 800
loaded classess

m
ic

ro
se

cs

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600 700 800
loaded classes

m
ic

ro
se

cs

Fig. 17. Range and bucket recompute times as a function of the number of classes
and interface loaded in the system at recompute time.

We have also computed the space required to store the metadata as well the
code size emitted by the JIT. Fig. 18 gives the breakdown of costs. While we
can not guarantee constant space for the type information data, we note that
the average size required is 10.8 bytes per class of which eight bytes are fixed
overhead. The increase in code size is modest. Our representation is smaller than
EVM’s which requires three words per class and does not share type displays.

20 K. Palacz and J. Vitek

0 10 20 30 40

EH

CA

GJ

KA

BL

JE

JA

XM

TO

RH

SO

CO

Memory in KB

Code

Data

Fig. 18. Memory of requirements of our algorithm in KB. The first bar denotes the
space required for the inlined test sequences, the second bar denotes subtype meta-
data. The average memory cost per class is 10.8 bytes for data structures.

8 Combined encoding

We now outline an alternative approach to our algorithm which we call combined
encoding. It unifies the treatment of extends and implements checks. While not
as space efficient, its implementation is somewhat simpler. Each loaded class
and interface is placed in a bucket and receives an iid within the bucket. First,
MAX INLINE buckets are reserved for classes only. MAX INLINE is a small constant,
such as eight. If class C has an inheritance chain of length d < MAX INLINE then
C will be put in bucket d. If d >= MAX INLINE the class is treated as if it were an
interface. Interfaces are assigned a bucket according to the algorithm described
in Section 6. Classes in the first MAX INLINE buckets never change their bucket
assignment. Hence, for these classes, the packed encoding technique reduces to
Cohen’s algorithm.

type info {
short inl parents[MAX INLINE];

byte[] other parents;

short iid;

short bucket; }

subtypeof(type info cl, type info pr) {
buckets = (pr.bucket < MAX INLINE) ?

cl.inl parents : cl.other parents;

return buckets[pr.bucket] === pr.iid; }

Fig. 19. Combined encoding test sequence.

Subtype Tests in Real-Time 21

Fig. 19 illustrates our combined encoding. The key idea is that inl parents
field is a display inlined in the type info structure. It may be padded with
zero entries if necessary. Note that we use short integers as bucket in the first
MAX INLINE buckets because these buckets are likely to grow large. When the
provider is known at compile time to be a non-leaf class from one of the inlined
buckets, its bucket number and iids are guaranteed not to change and the
subtype test can be executed in three instructions (load client’s display element,
compare and branch).

The code can be implemented as either a runtime routine or inlined. Dynamic
subtype testing using truncated and padded Cohen displays has been explored
in [2, 6]. However, these algorithms did not guarantee constant-time tests.

9 Real-time Java Scoped Memory Access Checks

The Real-Time Specification for Java (RTSJ) [4], introduces the concept of
scoped memory to Java. Scoped memory is similar in principle to the familiar
notion of stack-based allocation that is present in languages like C, and C++
and to the region construct of ML [16]. The semantics of scoped areas are defined
in [4]. The salient features are described below. After a scoped memory area is
entered by a thread all subsequent allocations come from that scoped memory
area. When a thread exits a scope, and there are no more active threads within
the area, the entire memory area can be reclaimed along with all objects al-
located within it. Scoped areas can be nested. The scoped memory hierarchy
forms a tree as each scope can have multiple subscopes. Because a scoped mem-
ory area could be reclaimed at any time, a memory area with a longer lifetime is
not permitted to hold a reference to an object allocated in a memory area with
a shorter lifetime. The RTSJ further defines two distinguished memory areas,
called HeapMemory and ImmortalMemory which, conceptually, act as a root to

b

a

imm

heap

Fig. 20. Valid reference patterns. Double arrows indicate parent relations between
scopes, e.g. a is a parent of scope b. Single arrows represent allowed reference patterns,
e.g, a reference to a can be stored in a field of an object allocated in b.

22 K. Palacz and J. Vitek

the scope tree and are, thus, considered longer lived than all scoped memory
areas. Fig. 20 gives all valid reference patterns for a scope tree composed of two
scoped memory areas.

RTSJ implementations such as jRate and jTime enforce the RTSJ reference
semantics by means of scope checks. These scope checks are performed each time
a reference is stored in memory. Much like subtype tests, predictability in space
and time is essential.

A range-based encoding can be used straightforwardly to implement dynamic
scope checks. Consider the following assignment:

x.f = y;

The assignment is only allowed if the region in which y is allocated is longer
lived than the region of x, we write this x.region <: y.region. Assuming every
object has an added region field holding a reference to some scoped memory
area, the code of the write barrier is given in Fig. 21.

rx = x.region;

ry = y.region;

if (extends(rx, ry))

x = y;

else
fail();

Fig. 21. Scoped memory access check.

We now outline a variant of the algorithm of Section 5 adapted for imple-
menting access checks that ensure constant time and space performance and
with a test sequence short enough to inline.

Range computation. Ranges are computed eagerly when a scoped memory area
is entered. When an area that contains no threads is first entered from a scoped
area S, that area becomes the parent of the newly entered region. The same
area can be entered from different parent scopes at different times, however,
there can never be two parents at the same time. While eager computation
may seem costly, we recall that the cost is linear in the number of memory
areas and in practice we have not encountered application scenarios that would
require more than a handful of them. Thus, computing the assignment is unlikely
to be prohibitive or a major part of the bookkeeping associated with region
management. To reduce the need for recomputing ranges, each memory area
caches the range it was last assigned, a new range will be computed only if it
is entered from a different parent. The following changes to the algorithm are
needed:

Subtype Tests in Real-Time 23

1. Heap and immortal memory are always assigned the maximum range to
allow them to reference each other and scoped memory areas to reference
both of them.

2. Sparse ranges are used to limit the need for recomputing ranges.
3. Bounds of inactive scoped memory areas are cleared when recomputing the

range assignment.
4. When an inactive memory area is entered, an extends check is performed

against the cached range, if the extends check is successful, ranges need not
be reassigned.

The last point will drastically reduce the need to recompute the range assign-
ment because the most common RTSJ coding idiom is to use a scoped area to
repeatedly perform the same computation in a periodic task. The representation
of ranges is discussed next.

Scope checks. Eager range computation obviates the need to check for promo-
tions as any newly allocated object will reside in a region with a valid range.
The scope check sequence is thus made much simpler. We shorten the sequence
further by packing both bounds in the same word and performing the range
check in a single compare. Fig. 22 shows the code of the compact test. The check
assumes that an equality test is always performed first. Furthermore, memory ar-
eas have two range fields one called prange constructed as (low<<16)|high|MSK
and the other called crange constructed as (low<<16)|high. Furthermore, the
insert() procedure of Section 5 is modified so that children are always allocated
a low range value of parent.low + 1. This ensures that if client <: provider
then the client’s low bound is larger than it’s provider.

Previous works on implementing access checks have relied on hierarchy traver-
sal [3, 12] and Cohen’s encoding [8]. Hierarchy traversal is clearly unacceptable
because its performance is a function of the depth of a scoped memory area in
the scope tree. Corsaro and Cytron’s [8] approach has a slow path that requires
three loads and three compares (this is assumes the addition of an equality test).
The check outlined here is faster and more compact.

region info {
unsigned prange;

unsigned crange; }

MSK = 0x80008000;

RES = 0x00008000;

extends(region info r, region info s) {
return (r == s) ? true :

(provider.prange - client.crange) & MSK == RES; }

Fig. 22. Compact scope access check.

24 K. Palacz and J. Vitek

10 Related Work

Constant time (CT) techniques. The simplest constant time algorithm treats the
subtype relation as a large sparse N2 binary matrix where N is the number of
types as discussed in [17]. For large programs matrices can grow to the megabyte
range. Furthermore there is no clear strategy for incremental update. Despite
these disadvantages, the simplicity of the binary matrix approach has motivated
its use in practice [13, 9]. Attempts to reduce the space requirements of binary
matrices while retaining the constant time access can be viewed as techniques
for compressing the matrix.

CT for single subtyping. One particularly effective idea due to Cohen [7] is
a variation of Dijkstra’s “displays” [10]. Each type is identified by a unique
type identifier, tid, which is simply a number. The runtime type information
data structure also records the complete path of each type to the root as a se-
quence of type identifiers. The key trick is to build, for each type x, an array
of card(ancestors(x)) type identifiers so that for each ancestor y, the tid of y
is stored at an offset equal to level(y) in the array. With this encoding, type
inclusion tests reduce to a bound-checked array access and a comparison opera-
tion. The bound check is necessary if array sizes are not uniform. This approach
is being used for extends checks in the Jikes RVM as described in [2] and in
Wirth’s Oberon.

CT for multiple subtyping. The hierarchical encoding proposed by Krall, Hor-
spool and Vitek [14] is another constant time technique which represents each
type with a set of integers chosen so that

x <: y ⇔ γ(y) ⊆ γ(x)

where γ(x) maps type x to its set representation. Thus, the set of a subtype has
to be a superset of the set representing its parent. This slightly counterintuitive
relation allows a natural representation as bit vectors. In the bit vector repre-
sentation the test function becomes γ(x)∧ γ(y) = γ(y), thus a type is a subtype
of another if the bit pattern of the parent occurs in the child. The problem
of finding optimal bit vector encodings for partial ordered sets is NP-hard [11]
and there are some classes of partial ordered sets where an optimal encoding is
as large as the number of types with only one supertype. The graph coloring
algorithm of [14] is both fast and generates compact sets for most hierarchies
(less than 32 bits). Unfortunately, there is no obvious way to support incremen-
tal recomputation. Another technique for compacting subtype hierarchies is the
packed encoding of Vitek, Horspool and Krall [17]. In the binary matrix encod-
ing, there is a one-to-one mapping from types to matrix indices. Each type has
a column and a row of the matrix. In the packed encoding, columns for unre-
lated types are merged. This reuse of columns is similar in spirit to the reuse of
genes in hierarchical encoding and to the levels of Cohen’s algorithm. Subtype
tests with packed encoding run as fast as with Cohen’s algorithm, space usage

Subtype Tests in Real-Time 25

is somewhat higher because there are some empty entries in the arrays holding
type ids. This technique is the basis of our treatment of interfaces. Zibin and Gil
have published several recent papers improving these techniques [20].

Incremental techniques. Currently the most efficient subtype test algorithms
used in production virtual machines are the ones by Click and Rose [6] and the
Jikes RVM team [2]. Both are variants of Cohen displays with a slow path that
may require scanning a linear list of types. The techniques are slightly more space
consuming than our approach since they inline some of the metadata in the class
data structure. Zibin and Gil have presented several incremental algorithms that
provide alternatives to the bucketing technique used here [21]. Since the space
overhead of the data for implements test is very low in our benchmarks, we have
not evaluated their techniques.

11 Conclusion

In this paper, we have presented R&B, a subtype test algorithm that can perform
subtype tests in constant time and which has fairly modest space requirements.
R&B supports incremental modifications to the type hierarchy and is thread
safe. This algorithm has all the properties required for addition to a real-time
virtual machine. We have evaluated R&B on a production VM and shown that
it is possible to get predictable performance and at the same time improve both
time and space (though this was not our goal). On average our benchmarks ran
2.5% faster and required less memory than the baseline virtual machine. Last
but not least, this was achieved without adding unnecessary complexity to the
virtual machine (about 100 lines of original code were modified).

Acknowledgments This work is supported by grants from DARPA, and NSF
(CCR–9734265). The authors thank Dave Detlefs for his help with EVM and
EVM team for producing an excellent system. Some of the programs from our
benchmark come from the Ashes suite, we thank the McGill Sable research
group for making these available. Finally, we thank David Holmes, Urs Hölzle,
Alex Garthwaite, Doug Lea, Bill Pugh, Michael Hind and Scott Baxter for their
comments.

References

1. Hassan Aı̈t-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient imple-
mentation of lattice operations. ACM Transactions on Programming Languages
and Systems, 11(1):115–146, 1989.

2. B. Alpern, A.Cocchi, and D. Grove. Dynamic type checking in Jalapeno. In Java
Virutal Machine Research and Technology Symposium, April 2001.

3. William S. Beebee, Jr. and Martin Rinard. An implementation of scoped memory
for real-time Java. Emsoft - LNCS, 2211, 2001.

26 K. Palacz and J. Vitek

4. Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve Furr, and
Mark Turnbull. The Real-Time Specification for Java. Java Series. Addison-Wesley,
June 2000.

5. Yves Caseau. Efficient handling of multiple inheritance hierarchies. In Proc.
Conference on Object Oriented Programming Systems, Languages & Applications,
OOPSLA’93, Published as SIGPLAN Notices 28(10), pages 271–287. ACM Press,
September 1993.

6. Cliff Click and John Rose. Fast subtype checking in the HotSpot VM. In Java
Grande 02, November 2002.

7. Norman H. Cohen. Type-extension type tests can be performed in constant time.
ACM Transactions on Programming Languages and Systems, 13(4):626–629, 1991.

8. Angelo Corsaro and Ron K. Cytron. Efficient memory-reference checks for real-time
java. In Proceedings of Languages, Compilers, and Tools for Embedded Systems
(LCTES’03), 2003.

9. J. Dean, G. DeFouw, D. Grove, V. Litvinov, and C. Chambers. Vortex: An op-
timizing compiler for object-oriented languages. In Proc. Conference on Object
Oriented Programming Systems, Languages & Applications, OOPSLA’96. ACM
Press, October 1996.

10. E. W. Dijkstra. Recursive programming. Numer. Programming, (2):312–318, 1960.
11. Michel Habib and Lhouari Nourine. Tree structure for distributive lattices and its

applications. Theoretical Computer Science, 165:391–405, 1996.
12. Teresa Higuera-Toledano and Valerie Issarny. Analyzing the performance of mem-

ory management in rtsj. In Proceedings of the Fifth International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’02), 2002.

13. Andreas Krall and Reinhard Grafl. CACAO – a 64 bit JavaVM just-in-time com-
piler. In Geoffrey C. Fox and Wei Li, editors, PPoPP’97 Workshop on Java for
Science and Engineering Computation, Las Vegas, June 1997. ACM.

14. Andreas Krall, Jan Vitek, and R. Nigel Horspool. Near optimal hierarchical en-
coding of types. In Proc. European Conference on Object-Oriented Programming,
ECOOP’97, Lecture Notes in Computer Science. Springer-Verlag, June 1997.

15. M. A. Schubert, L.K. Papalaskaris, and J. Taugher. Determining type, part,
colour, and time relationships. Computer, 16 (special issue on Knowledge
Representation):53–60, October 1983.

16. Mad Tofte and Jean-Pierre Talpin. Region based memory management. Informa-
tion & Computation, 132(2):109–176, February 1997.

17. Jan Vitek, Andreas Krall, and R. Nigel Horspool. Efficient type inclusion tests.
In Conference on Object-Oriented Programming Systems, Languages and Applica-
tions, OOPSLA’97, October 1997.

18. Niklaus Wirth. Type extensions. ACM Transactions on Programming Languages
and Systems, 10(2):204–214, 1988.

19. Niklaus Wirth. Reply to “type-extension type tests can be performed in constant
time”. ACM Transactions on Programming Languages and Systems, 13(4):630,
1991.

20. Yoav Zibin and Joseph Gil. Efficient subtyping tests with PQ-Encoding. In Con-
ference on Object-Oriented Programming Systems, Languages and Applications,
OOPSLA’01, October 2001.

21. Yoav Zibin and Joseph Yossi Gil. Fast algorithm for creating space efficient dis-
patching tables with application to multi-dispatching. In Proceedings of the 17th
ACM conference on Object-oriented programming, systems, languages, and appli-
cations (OOPSLA-02), volume 37, 11 of ACM SIGPLAN Notices, pages 142–160.
ACM Press, November 4–8 2002.

