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Abstract

The R programming language combines a number of fea-
tures considered hard to analyze and implement efficiently:
dynamic typing, reflection, lazy evaluation, vectorized prim-
itive types, first-class closures, and extensive use of native
code. Additionally, variable scopes are reified at runtime as
first-class environments. The combination of these features
renders most static program analysis techniques impractical,
and thus, compiler optimizations based on them ineffective.
We present our work on PIR, an intermediate representa-
tion with explicit support for first-class environments and
effectful lazy evaluation. We describe two dataflow analyses
on PIR: the first enables reasoning about variables and their
environments, and the second infers where arguments are
evaluated. Leveraging their results, we show how to elide
environment creation and inline functions.

CCS Concepts -+ Software and its engineering — Com-
pilers.
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1 Introduction

The R language [11] presents interesting challenges for im-
plementers. R is a dynamic imperative language with vector-
ized operations, copy-on-write of shared data, a call-by-need
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evaluation strategy, context-sensitive lookup rules, multiple
dispatch, and first-class closures. A rich reflective interface
and a permissive native interface allow programs to inspect
and modify most of R’s runtime structures. This paper fo-
cuses on the interplay of first-class, mutable environments
and lazy evaluation. In particular, we focus on their impact
on compiler optimizations.

One might see the presence of eval as the biggest obstacle
for static reasoning. With eval, text can be turned to code
and perform arbitrary effects. However, the expressive power
of eval can be constrained by careful language design. Julia,
for instance, has a reflective interface that does not ham-
per efficient compilation [1]. Even an unconstrained eval
is bound by what the language allows; for example, most
programming languages do not allow code to delete a vari-
able. Not so in R. Consider one of the most straightforward
expressions in any language, variable lookup:

f <= function(x) x

In most languages, it is compiled to a memory or register
access. From the point of view of a static analyzer, this ex-
pression usually leaves the program state intact. Not so in R.
Consider a function doubling its argument:

g <- function(x) x+x

In most languages, a compiler can assume it is equivalent
to 2xx and generate whichever code is most efficient. At the
very least, one could expect that both lookups of x resolve
to the same variable. Not so in R.

Difficulties come from two directions at once. R variables
are bound in environments, which are first-class values that
can be modified. In addition, arguments are evaluated lazily;
whenever an argument is accessed for the first time, it may
trigger a side-effecting computation — which could modify
any environment. Consequently, to optimize the body of a
function, a compiler must reason about effects of the func-
tions that it calls, as well as the effects from evaluating its
arguments. In the above example, *+* could walk up the call
stack and delete the binding for variable x. One could also
call g with an expression that deletes x and causes the second
lookup of x to fail. While unlikely, a compiler must be ready
for it. Considering these examples in combination with eval,
it is impossible to statically resolve the binding structure of
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R programs. Unsurprisingly, existing implementations resort
to dynamic techniques to optimize code [6, 14, 16, 19].

The contribution of this paper is the design of PIR, an in-
termediate representation (IR) for R programs with explicit
support for environments and lazy evaluation. PIR is a static
single assignment (SSA) [12] code format inspired by our
experience with the bytecode of the GNU R reference im-
plementation, earlier work on FastR [6], the sourir IR we
developed to model speculative optimizations [4], and an
earlier attempt to optimize R using LLVM. In our experience,
some of the most impactful optimizations are high-level ones
that require understanding how values are used across func-
tion boundaries. We found that the GNU R bytecode [17]
was too high level; it left too many of the operations implicit.
In contrast, we found LLVM’s IR [7] too low level for easily
expressing some of our target optimizations.

PIR is part of R, a new just-in-time compiler for the R
language. To motivate its need, we start with background
on R and on related efforts in section 2. We give an informal
overview of PIR in section 3. Then, section 4 details PIR and
presents two transformation passes. The first, scope resolu-
tion, statically resolves bindings, and the second, promise
inlining, removes lazy argument evaluation. Finally, section 5
illustrates how PIR helps R! reduce overheads. Our compiler
is not complete and we are not yet able to run at competitive
speed, so the results should be considered preliminary. R is
available at https://github.com/reactorlabs/rir.

2 Background

This section describes key properties of environments and
promises, and discusses work that deals with similar issues.

2.1 Environments in R

Inspired by Scheme and departing from its predecessor S, R
adopted a lexical scoping discipline [5]. Variables are looked
up in a list of environments. Consider this snippet:

g <- function(a) {
f <- function() x+y

if (a) x <= 2
fO

}

y <=1

The evaluation of x+y requires finding x in the enclosing
environment of the closure f, and y at the top level. It is
worth pointing out that, while R is lexically scoped, the scope
of a free variable cannot be resolved statically. For instance,
x will only be in scope in g if the argument a evaluates to
true.

R uses a single namespace for functions and variables. En-
vironments are used to hold symbols like +. While primarily

!Pronounced like a trilled “r”, the sound one makes upon realizing that
arguments can modify the environment of the function they are given to.
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used for variables, environments can also be created explic-
itly, e.g., to be used as hashmaps. Libraries are loaded by
the attach() function that adds an environment to the list
of environments. A number of operations allow interaction
with environments: environment() accesses the current envi-
ronment; 1s(...) lists bound variables; assign(...) adds or
modifies a binding; and rm(. . .) removes variables from an
environment. R has functions to walk the environment chain:
parent.frame() returns the environment associated with the
caller’s call frame and sys. frame(...) provides access to the
environment of any frame on the call stack. In R, frames
represent function invocations and they have references to
environments. Consider this code:

f <= function() get("x", envir=parent.frame())
g <- function() {x <- "secret"; f()}

Function f uses reflection to indirectly access g’s environ-
ment. This illustrates that any callee may access (and change)
the caller environment.

2.2 Laziness in R

Since its inception, R has adopted a call-by-need evaluation
strategy (also called lazy evaluation). Each expression passed
as argument to a function is wrapped in a promise, a thunk
that packages the expression, its environment, and a slot to
memoize the result of evaluating the expression. A promise is
only evaluated when its value is needed. Consider a function
that branches on its second argument:

f <- function(a, b) if(b) a

A call f(x<-TRUE, x) creates two promises, one for the assign-
ment x<-TRUE, and one to read x. One could expect this call
to return TRUE, but this is not so. The condition is evaluated
before variable x is defined, causing an error to be reported.
Combined with promises, the sys. frame function allows non-
local access to environments during promise evaluation:

f <- function() sys.frame(-1)
g <- function(x) x

g(f)

Here g receives promise f() as argument. When the promise
is forced, there will be three frames on the stack: frame 0 is
the global scope, frame 1 is g’s, and frame 2 is f’s frame.

2: g(f())

1:x

2: sys.frame(-1)

During promise evaluation, parent. frame refers to the frame
where the promise was created (frame 0 in this example,
as promise f() occurs at the top level). But, sys.frame(-1)
accesses a frame by index, ignoring lexical nesting, thus
extracting the environment of the forcing context, i.e., the
local environment of g at frame 1.
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We leave the reader with a rather amusing brain twister.
R has context-sensitive lookup rules for variables in call po-
sition. Variables that are not bound to functions are skipped:

f <- function(c) {c(1, 2) + c}
f(3)

The lookup of ¢ in ¢(1,2) skips the argument c, since it is
not a function. Instead, primitive c() is called to construct
a vector. The second read of c is not in call position, thus it
returns argument c, 3 in this case. The result is the vector
[4,5] as addition is vectorized. Now, consider the following
variation:

bad <- function() rm(list="c",
f(bad())

envir=sys.frame(-1))

This time evaluation ends with an error as we try to add
a vector and a function. Evaluation of c(1,2) succeeds and
returns a vector. But, during the lookup of ¢ for that call,
R first encounters the argument c. In order to check if c is
bound to a closure, it evaluates the promise, causing bad()
to delete the argument from the environment. On the second
use of c, the argument has been removed and a function
object, c, is returned.

2.3 Related Work

R has one reference implementation, GNU R, and several
alternative implementations. GNU R includes a bytecode
compiler with a small number of carefully tuned optimiza-
tions [17]. Unlike ours, GNU R’s bytecode implicitly assumes
the presence of an environment for every function applica-
tion. Variable lookup, in the worst case, requires inspecting
all bindings of each environment in scope. To mitigate the
lookup cost, GNU R caches bindings when safe. FastR’s first
version featured a type-specializing tree interpreter that out-
performed GNU R [6]. It split environments into a statically
known part (represented by arrays with constant-time ac-
cesses) and extensions that could grow and shrink at runtime.
Environments were marked dirty whenever a reflective oper-
ation modified them. The second version of FastR uses Truf-
fle for specialization and Graal for code generation [14, 20].
Graal’s intermediate representation is general purpose [3].
FastR speculatively specializes the code based on profile-
driven global assumptions. For instance, functions exhibiting
a runtime stable binding structure are compiled under that
assumption. The compiler elides environments and stores
variables on the stack. Code is added to detect violation of
assumptions and trigger deoptimization. Type specialization
was also used in the ORBIT project, an attempt at extending
GNU R with a type specializing bytecode interpreter [19].
On the other hand, the Riposte compiler tried to speed up
R by recording execution traces for vector operations [16].
Riposte performed liveness analysis on the recorded traces
to avoid unnecessary vector creations and parallelize code.
None of these alternatives provides any special treatment
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for environment bindings. Our work departs from all these
efforts in that we provide explicit support for environments
and promises in the compiler IR. This allows us to combine
static reasoning (when feasible) with speculative optimiza-
tions (when needed).

Other languages have some of the same features R has
but, usually, are more amenable to compilation. Julia resem-
bles R in that it is dynamically typed, reflective, and targets
scientific computing. But, as shown by Bezanson et al. [1],
it exhibits much better performance. This is due to a com-
bination of careful language design and an implementation
strategy that focuses on type specialization, inlining, and un-
boxing. Julia does not have lazy evaluation, it restricts eval
to execute at the top level, and limits reflection. Another ex-
ample is JavaScript. While it is also dynamic, the only way to
add variables to a scope is using eval, which can only do so
locally. Serrano [13] performs static reasoning on JavaScript
by relying on type specialization and occurrence typing [18],
as well as rapid atomic type analysis [8]. Whenever types
cannot be statically determined, the compiler assumes the
most likely structures ahead of time and relies on specula-
tive guards for soundness. Smalltalk also features first-class
contexts, although adding bindings at runtime is not sup-
ported. The Cog VM [10] maps context objects to the native
stack and materializes contexts on demand when they are
reflectively accessed.

3 An Intermediate Representation for R

We provide an example-driven explanation of PIR before the
formal introduction. For readers who prefer a bottom-up ex-
planation, we suggest starting with section 4. We distinguish
between source-level R variables, which we call variables,
and PIR local variables, called registers. Variables are stored
in environments while the implementation of registers is left
up to the compiler, and reflective access is not provided.

3.1 Scope Resolution to Lower Variables

We start with an example to illustrate how R variables are
modeled, and if possible lowered to registers. We use the
following simple function definition:

function() { answer <- 42; answer }

The function defines a local variable and returns its value. It
translates to the following PIR instructions:

ed = MkEnv ( : G)
%1 = LdConst [1] 42
StVar (answer, %1, €0)
%3 = LdVar (answer, €0)
%4 = Force (%3) €@

Return (%4)

First, MKEnv creates an empty environment nested in G, the
global environment. As all values are vectorized, 42 is loaded
as a vector of length 1. StVar updates environment e@ with
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a binding for variable answer. Then, LdVar loads variable
answer again. As the examples in section 2 have conveyed,
the compiler cannot assume much about the loaded value.
Because returns are strict in R, the compiler inserts a Force
instruction to evaluate promises. It refers to environment
€0 because a promise could reflectively access it. We record
this fact as a data dependency. In general, we use a notation
where actual arguments are inside parentheses and data
dependencies outside. When Force is passed a value, rather
than a promise, it does nothing.

After translation, the compiler runs a scope resolution pass
to lower variables to registers. This requires combining an
analysis and a transformation step. The analysis computes
the reaching stores at each program point. Its results are
then used to remove loads. In the previous example, the
analysis proves that the value referenced by variable answer
in instruction %3 originates from StVar (answer, %1, €0).
Thus, %3 can be substituted with %1. In case of multiple
dominating stores, we insert a Phi instruction to combine
them into a single register. Once this load is resolved, the
environment is not used anymore, except for a dead store.
Standard compiler optimizations, such as escape analysis
of the environment and dead store elimination, can now
transform this function into:

%1 = LdConst [1] 42

Return (%1)
This version has no loads, stores, or environment and does
not require speculation.

3.2 Promise Elision

Promises consume heap memory and hinder analysis, since
they might have side effects. Therefore, we statically elide
them when possible with the following three steps: first, in-
line the callee; next, identify where the promise is evaluated,;
and last, inline the body of the promise at that location. To
preserve observable behavior, inlining must ensure that side
effects happen in the correct order. Consider the following
code snippet:

f <- function(b) b
f(x)

This snippet translates to the following PIR instructions.
First we show the creation of closure f and its invocation
with one promise argument x:

%1 MkClosure (f, G)

%2 MkArg (pr0, G)

%3 call %1 (%2) G
pro

%4 Ldvar (x, G)

%5 Force (%4) G

Return (%5)

The closure is explicitly created by MkClosure. Similarly,
the promise %2 is created by MkArg from pre. Analogous
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to Force, Call has a data dependency on the environment
because the callee can potentially access it. The translation
of pre does not optimize the read of x as this would require
the equivalent to an interprocedural analysis.

Then, the function f translates to the following PIR:

f
%6 = LdArg (0)
e7 = Mkenv (b=%6 :G)
%8 = Force (%6) e7

Return (%8)

The translation of f illustrates the calling convention cho-
sen for PIR: it requires environments to be callee-created, i.e.,
callees initialize environments with arguments. Accordingly,
the LdArg in f loads an argument by position and MkEnv
binds it to variable b.

We now walk through promise inlining. First, the callee
must be inlined. Performing inlining at the source level in R
is not sound as this would mix variables defined in different
environments. However, this is not an issue in PIR; since
environments are modeled explicitly, the inlinee keeps its
local environment as MkEnv is also inlined. Therefore, after
inlining f, we get:

%2 = MkArg (pr0, G)

# inlinee

e7 = Mkenv (b=%2 :G)
%8 = Force (%2) e7

The next step is to elide the promise by inlining it where it
is evaluated. We identify the Force instruction which dom-
inates all other uses of a MkArg instruction. If such a dom-
inating Force exists, it follows that the promise must be
evaluated at that position. We inline pro to replace %8:

%2 = MkArg (pr0, G)
# inlinee
e6 = MkEnv (b=%2 :G)

# inlined promise
%4 = LdvVar (x, G)
%5 = Force (%4) G

We have succeeded in tracking a variable captured by a
promise through a call and evaluation of that promise. The
%2 and e6 instructions are dead code and can be removed,
leaving only the load and force of x.

4 PIR in Depth

This section describes PIR in detail. The IR is introduced
in subsection 4.1. Scope resolution, the analysis that tracks
R variables, is presented in subsection 4.2. Analysis preci-
sion is discussed in subsection 4.3. A technique to delay
the creation of environments is presented in subsection 4.4.
Lastly, promise inlining, which builds upon scope resolution,
is presented in subsection 4.5.
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4.1 Syntax and Semantics

Figure 1 shows the structure of programs. As in sourir [4], Function Fu=id: V" labeled list of versions
each function is versioned. The versions are compiled with Version Vi=A: C P" assumptions, body, and promises
different assumptions (A) and have different levels of opti- Promise Pu= i‘i: ¢ labeled piece of code
mization applied. Assumptions are predicates that may hold COd_e ¢:=B X list of baSI_C bloc.ks

. . Basic Block B :=L: st labeled, with a list of statements
only for some executions of a function, e.g., that arguments Label L= BB, basic block number n
are already evaluated. R takes care of calling versions for
which all assumptions are satisfied. A program is thus a set Figure 1. Programs
of functions, each with one or more versions with a func-

v o=

tion body and the promises it creates. Promise and function

: : : : v, environment
bodies are sets of basic blocks. Functions, promises, and ba- €

|
sic blocks are labeled by names. All labels (id) are unique. o promise
. . . | e closure
Promises and functions in Figure 1 should not be confused
| ¢ constant

with values that represent closures and promises; those are v,
. . . . . . e T

shown in Figure 2. A closure is a pair with a function and its |

environment, while a promise value is a triple with code, its

* . .
(x > v)" :ve variables + enclosing env.

Up "=

environment, and a result. An environment is a sequence of | <C,0e,_> unevaluated promise

bindings from variables to values. | <C,ve,v> evaluated promise
Figure 3 shows the remainder of the PIR grammar. PIR is (N

in SSA form: each statement (st) is constructed such that its | <Fve> closure

result is assigned to a unique register. While there is only

one kind of register in PIR, to help readability, our conven- Figure 2. Values

a promise and may or may not be evaluated. When searching
for a function, LdFun is used instead. The instruction eval-

tion is to use (en) for registers that hold environments (or instr =
environment literals) and (%n) for everything else. PIR has | Binop (a1, az) env binary op.
instructions for the following operations: performing arith- | BranchL jump
metic; branching; deoptimizing a function; applying a clo- | Branch(a, L1, L)  branch
sure; jumping to a basic block; loading arguments, constants, | Call ag (a*) env apply closure
functions, and variables; creating promises, environments, | Deopt (id, a*, env) deoptimiza'tion
and closures; forcing a promise; phi merges; returning values; | Force (a) env force promise
and storing variables. Most of the instructions are unsurpris- | LdArg (n) load argument
. : . | LdConst ¢ load constant
ing (and some have been elided for brevity). We focus our | LdFun (x, env) load function
explanation on MkEnv, MkArg, and Force. | Ldvar (x, env) load variable
MKEnv. This instruction takes initial variables and a parent : E::é;% Eéi’ _”;;2 : env) Z;Z::Z Err:;mlse
environment as arguments: | MkClosure (id, env) create closure
Phi ((L: v)* function
MKEnv ((x = a)* : env) : Retu(|(~n (a)) : ;ﬁeturn
| Stvar (x, a, env) store variable
The resulting environment contains the bindings (x = a)* st - statements
and is scoped inside env. By default functions start out with | (%n|en) = instr non-void instruction
an environment that contains all their declared arguments. | instr void instruction
Thus, a function defined at the top level with an argument a,env = argument
called a has the following body: | (%n|en) register
| it literal
%0 = LdArg (0) Binop ==
el = MkEnv (a=%@ :G) | Add
| ..
lit = literals
Variables can be added or updated with StVar and read with | G global env.
LdVar. The latter returns the value of the first binding for | O placeholder env.
the variable in the stack of environments. That value can be | _ no value
| true true
|

uates promises and skips over non-function bindings. One
optimization converts LdFun into LdVar when possible.
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MkArg. This instruction creates a promise from an expres-
sion in the source program and an environment:

MKArg (id, env)

The instruction is mainly used to create promises for function
arguments. A call such as f(a+b) translates to a load of a
function f, the creation of a promise with body p1 and a call:

%0 = LdFun (f, en)
%1 = MkArg (p1, en)
%2 = Call %0 (%1) en
pl
%0 = LdVar (a, en)
%1 = Ldvar (b, en)
%2 = Force (%0) en
%3 = Force (%1) en
%4 = Add (%2, %3) en

Return (%4)

The body of the promise contains two reads for a and b whose
results get forced, a binary addition, and a return. The code
is known statically, while the environment in which it is
evaluated is a runtime value.

Force. This instruction takes a promise as input, evaluates it
(recursively if needed), and returns its value:

Force (a) env

Note that env is a synthetic argument that is not needed for
evaluation but describes a data dependency. The promise
could access the current environment using reflective op-
erations. If a is not a promise then a is returned intact. If
a =< C, v, _ >, then C is evaluated in v,, and the result
is stored in the data structure and returned. Otherwise, if
a =<C,v,,v>, then v is returned.

Typed Instructions. PIR instructions are typed, which al-
lows more precise register types. The types include environ-
ments, vectors, scalars, closures, lists, etc. The type system
also distinguishes between values and both evaluated and un-
evaluated promises. We omit additional details as the types
are not relevant for the optimizations presented in this paper.

4.2 Scope Resolution

Scope resolution is an abstract interpretation over stores. The
transformation draws inspiration from the memZreg pass in
LLVM. R first compiles variables to environment loads and
stores and later lowers them to registers. The domain s of
the analysis consists of sequences of abstract environments.
Assume that we have environments e1, . . ., en and variables
X1 ...Xm. Then, an abstract state s is a n * m vector of sets of
locations. A location is either a program point [ or € if the
variable is undefined. We write s; ; to denote the abstract
value of variable x; in the environment accessed through
register ei. The value T denotes the set of all locations—it
represents the case where we do not know anything about
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a particular variable. The bottom value is represented by a
vector where each element is the empty set. The analysis is
defined by a transition function over statements and a merge
function over states.

Transition Function. The transition function takes three
arguments: a program point [, a statement st, and an abstract
state s. The result is a new abstract state s’. We discuss the
three interesting cases. Let st be the creation of a new envi-
ronment stored in register ei with some values for variables
X1y e vns x]

ei = MKEnv (x; = ay, .. : ek)

X = aj

Then, the resulting state s’ is initialized with location / for
variables xi, .. ., x; in the environment ei. Other variables
in that environment are set to € to denote that they are
undefined.

) peixe€xm...x
(Npg=1{e} p=ixgéx,....x
Sp.q otherwise

For the second interesting case let st be the store instruction
which defines or updates variable x; to a value held in register
%j for environment ek:

StVar (x;, %j, ek)

This operation simply overwrites the state for that variable
x; with the current location.

{1}

Sp.q

(Sl)p,q = b= 5 ).Cq -
otherwise

The last case we describe is when an instruction taints the

environment, i.e., any instruction that may perform reflec-

tive manipulation; this includes Call, Force, and LdFun. For

example, let st be a call instruction:

Call ay (ay, .., an) ek

To be safe, the defined parts of the abstract state are set to
T, i.e., we know nothing after this point.

T Sp,g 0

’
S =
(Dp.g 0 otherwise

We can improve precision by tracking parent relations be-
tween environments to avoid tainting them all. Also, the
analysis can be extended to be interprocedural across Call
or Force instructions. The state of a scope resolution in
progress can be queried to resolve the target of a Call or
Force instruction. Other mitigations to avoid tainting the
state, such as speculative stub environments or special treat-
ment for non-reflective promises, are discussed in subsec-
tion 4.3.

Merge. States are merged at control-flow joins. The merge
operation is pointwise set union.
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Transformation. Scope resolution computes the reachable
stores. Based on its results, some LdVar instructions can be
removed. Given a load instruction %i = LdVar (x;, ek) with
an abstract state s, there are three possible cases. First, when
sk,j = {1}, i.e, the only observable modification to x; is by the
instruction at I/, we can simply replace %i with the register
stored by the instruction at that location. The second case is
Sk,j = {l1, ..., I}, i.e, depending on the flow of control any
one of the n instructions could have caused the last store. We
use an SSA construction algorithm [2] to combine all stored
registers in a phi congruence class. We replace %i with the
Phi instruction produced by the SSA construction. Finally,
the third case occurs if sy ; = T or € € s j, i.e, the load
cannot be resolved and no optimization is applied.

Example. We conclude with an annotated example of a load
that has two flow-dependent dominating stores:

function () {
if (...) x <=1
else X <- 2
X

}

The translation starts by creating an empty environment.
After some branching condition either 1 or 2 is stored in x.
Finally, the value of x is loaded, forced, and returned.

BBy : el = MkEnv ( : Q)
%2 = ..
Branch (%2, BBi, BBy)
BB;: %4 = LdConst [1] 1
Stvar (x, %4, el)
Branch BBs
BB, : %7 = LdConst [1] 2
Stvar (x, %7, el)
Branch BBs
BBs: %10 = Ldvar (x, el)
%11 = Force (%10) el

Return (%11)

This function has one environment (e1) and one variable (x),
thus it is represented as vector of length one, starting empty
({})- The scope analysis derives an abstract state ({5, 8})
(where 5 and 8 are the locations of both stores). Therefore
we place a Phi instruction in BB3 to join those two writes.
We can replace the load %10 with this phi.

BBy : %1 = ...
Branch (%2, BBj, BBjy)
BBy: %4 = LdConst [1] 1
Branch BBs3
BB,: %7 = LdConst [1] 2
Branch BBs3
BB3: %10 = Phi (BBj:%4,BBy: %7)

Return (%10)
Since the load is statically resolved, dead store elimination is
able to remove both StVar instructions. Combined with an
escape analysis, the environment is also elided. The Force
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instruction is removed, since we know that the value is either
of the two constants and not a promise.

4.3 Improving Precision

The problem with the analysis presented so far is that, be-
cause of R’s semantics, any instruction that evaluates poten-
tially effectful code taints the abstract environment. There
are two kinds of non-local effects: callees may affect func-
tions upwards the call stack by accessing the caller’s envi-
ronment, and callers pass promises that may affect functions
downwards the call stack, when those functions force the
promises. To make scope resolution useful in practice, the
impact of these non-local effects should be somewhat miti-
gated. For instance, we rely on inlining to reduce the number
of Call and Force instructions. Below we explain a spe-
cial treatment for non-reflective promises and a speculative
optimization assuming calls do not change the environment.

Contextual Assumptions. We leverage the fact that PIR
functions can have multiple versions optimized under differ-
ent assumptions to treat some promises specially by making
contextual assumptions. For instance, if all arguments to a
call are values, it is safe to invoke a version of the function
that ignores the dangers of promise evaluation. Further spe-
cializations are possible for pure promises, or non-reflective
ones. This specialization trades performance for code size,
since functions must be compiled multiple times. R dynami-
cally picks the optimal version of a function to invoke.

Stub Environments. If an environment is locally resolved,
but could be tainted during a call using reflection, then we
speculatively elide that environment and replace it by a stub.
At runtime a stub environment has the same structure as a
normal environment shown in Figure 2, but a more compact
representation, since it does not need to support updates.
If the stub environment is modified then it is transparently
converted into a full environment. In PIR, stub environments
are created by a structurally identical variant of the MkEnv
instruction. After a call we check if the stub was materialized,
in which case we deoptimize the current function. Conse-
quently, analyses on PIR can assume stub environments to
not experience any non-local modifications.

4.4 Delaying Environments

R has a deoptimization mechanism that transfers control
back to the unoptimized version of a function. A deoptimiza-
tion point includes the following instructions:

BBo: el = MkEnv (foo = %i :e0)
%2 = ..
Branch (%2, BB2, BBj)
BB : Deopt (baselinePc, %1,...,%n, el)

An assumption (%2) is checked by the Branch instruction.
Any boolean instruction can be used as an assumption. In
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case it holds, we continue to BB;, otherwise the deoptimiza-
tion branch BB; is entered. The unconditional deoptimiza-
tion instruction, Deopt, contains all the metadata needed to
transfer control back to the baseline version of the function.
The arguments %1, . . ., %n are the values that the target code
expects on the operand stack. Finally, since the baseline ver-
sion in R requires the environment of a function to be always
present, the Deopt instruction requires it to be present.

To avoid creating an environment at runtime whenever
a compiled function performs any kind of speculative op-
timization, creation of environments should be delayed as
much as possible. Optimizations are allowed to move MKkEnv
instructions into branches and even over writes to that envi-
ronment. When that happens, the StVar is removed and the
value is added to the initialization list. When an environment
is used by multiple deoptimization points, then this is not
sufficient, since each deoptimization branch will require the
environment in a different state.

Partial escape analysis [15] intends to delay an allocation
to only those branches where the object escapes. Similarly,
in PIR we aim to materialize an up-to-date environment in
each deoptimization branch, allowing us to elide the envi-
ronment in the main path. This requires replaying stores
between the original environment creation and the Deopt
instruction. We use the output of scope analysis to determine
the state of the environment in the deoptimization branch.
A sufficient condition is that at the Deopt instruction none
of the variables in the abstract state s (see sec. 4.2) is T.

Assume there is an StVar (bar, %j, e1) instruction be-
tween MkEnv and Deopt in the previous example. We now
proceed to assemble a synthetic environment to replace e1
in the deoptimization branch. In this case the abstract envi-
ronment e according to scope resolution is such that foo
is defined by the MkEnv instruction and bar is defined by
the StVar instruction. In subsection 4.2 we presented our
technique to replace a LdVar instruction with a PIR register.
We now reuse the same technique to capture the current
values of foo and bar as registers and then include them in a
fresh MkEnv instruction:

BByp: el = MkEnv (foo = %i :e0)
Stvar (bar, %j, el)
%2 = ..
Branch (%2, BB;, BBp)
BB1: e3 = MkEnv (foo = %i, bar = %j :e0)

Deopt (baselinePc, %1,...,%n, e3)

Assuming we are able to materialize a copy of the environ-
ment in every deoptimization branch, it is then possible to
remove the original MkEnv. This transformation duplicates
variables for each deoptimization branch. They can later be
cleaned up using some form of redundancy elimination, such
as global value numbering.

Contrary to replacing LdVars, it is possible to materialize
environments even when the analysis results contain €. For
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those cases a runtime marker is used to indicate the absence
of a binding. MKkEnv will simply skip a particular binding if
its input value is equal to this marker value.

4.5 Promise Inlining

The analysis needed for promise inlining is a simple dataflow
analysis. The values of interest are promises created by
MkArg. The analysis uses a lattice for the state of a promise
that starts at bottom, L, and can either be forced at program
point [ or leaked (V), and tops at T. There is one such state
per promise-creating instruction, thus the abstract state is a
vector of length n where n is the number of MkArg instruc-
tions in the function. We present the abstract interpretation
by discussing the transition function that takes a statement
and an abstract state, and returns a new abstract state, and
the merge function that combines two states.

Transition Function. The abstract state is initialized to L*.
There are three interesting cases.

First, given an instruction Force (%i) ej at location I,
where %i is a MkArg instruction, we update the abstract state
of the promise %i as follows: if the state is L, then it is set to
[, indicating that this is the dominating Force. If the state is
v the result is T, otherwise it stays unchanged.

Second, given an instruction MKEnv (x; = ay, ..., X =a :
ep), for any input ay, . . ., g; that refers to a promise, the state
of that promise is set to leaked (V) if it is L, otherwise it
stays unchanged.

Third, given any instruction which could evaluate promises,
such as Call, Force, or LdFun, all escaped (V) promises are
updated to T.

Therefore, promises used first in a MkEnv and then in a
Force instructions will end up at T and not be inlined. If we
were to inline such a promise it would cause the result slots
of the promise in the environment to be out of sync with
the result of the inlined expression. It is possible to support
some of those edge cases with an instruction to update the
result slot of a promise.

Merge. When merging abstract states, identical states re-
main and disagreeing states become T. The latter can happen
for example in

function(a) {
if(...) a
a

}

where a is forced depends on a condition; it could be either
line 1 or 2. While it would be possible to track those cases
more accurately, we did not need it in practice yet.

Code Transformation. The promise inlining pass uses the
analysis to inject promises at their dominating force instruc-
tion. As a precondition, we need a MkArg and the correspond-
ing Force instruction to be in the same function. This only
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happens after inlining, since initially creation and evaluation
of promises is always separated by a call. The promise inliner
will inline the promise body at the location of the dominat-
ing force, update all uses with the result of the inlinee, and
remove both the MkArg and the Force.

If this promise originates from a LdArg instruction, then
the promise originates from an argument passed to the cur-
rent function. We do not know its code and therefore cannot
inline it. On the other hand we can still replace all uses of
the dominated Force instruction with the dominating Force
instruction.

Example. We now present an example that combines scope
resolution and promise inlining, shown in Figure 4. An inner
closure f is called with 2 as an argument. f captures the
binding of a from its parent environment. This translates
(after scope resolution) to the PIR code shown in Figure 5.
The parent environment O denotes the environment supplied
by MkClosure. Since f is an inner function, it needs to be
closed over the environment at its definition.

The first step necessary to get the promise creation and
evaluation into the same PIR function, is to inline the inner
function f. After this transformation we obtain the code
in Figure 6. The open environment O is replaced with e8.
And the argument LdArg (0) of the callee is replaced by the
MkArg (pr0, e8) instruction of the caller.

Now, we can identify the dominating Force instruction
at %3. Therefore, the promise inliner replaces the Force
instruction with the body of the promise, yielding the result
in Figure 7 (after another scope resolution pass).

Only after these steps finish can traditional compiler opti-
mizations, such as escape analysis on the environment, dead
code elimination, and constant folding, reduce the code to a
single LdConst instruction.

5 Results

In this section, we assess scope resolution and promise in-
lining as means to statically resolve bindings and reduce
the number of environments and promises needed by R pro-
grams. To do so, we present three experiments,each designed
to answer one of the following questions:

RQ1 What proportion of function definitions do not require
an environment after optimizations?

RQ2 What proportion of function invocations do not require
an environment after optimizations?

RQ3 What is the performance impact of scope resolution and
promise inlining on the rest of the optimizations?

Methodology. Measurements are gathered using R. Our first
and second experiments rely on instrumenting the compiler
to record information about code being compiled and also
dynamic counters of events happening at runtime. For the
last experiment, which looks at the impact of optimizations,
we selected programs whose performance was impacted

g <- function() {
a<-1

DLS ’19, October 20, 2019, Athens, Greece

f <- function(b) b+a

T(2)
}

Figure 4. An example with promises to be inlined.

%1 =

%9
%10
%11 =
%12 =

pro
%13 =

%1 =
e2
%3
%4
%5 =
%6 =

LdConst [1] 1
MKEnv (a =%7 :G)
MkClosure (f, e8)
MkArg (pr0, e8)
Call %9 (%10) e8
Force (%11) e8
Return (%12)

LdConst [1] 2
Return (%13)

LdArg (0)

MKEnv (b = %1
Force (%1) e2
Ldvar (a, e2)
Force (%4) e2
Add (%3, %5) e2
Return (%6)

: 0)

Figure 5. PIR translation of the function from Figure 4.

%1 =
e8 =
%10

# inlinee
e2 =
%3 =
%4 =
%5
%6
# inlinee
%12 =

LdConst [1] 1
MKEnv (a=%7 :G)
MkArg (pr0, e8)
begins

MKEnv (b = %10
Force (%10) e2
Ldvar (a, e2)
Force (%4) e2
Add (%3, %5) e2
ends

Force (%6) e8
Return (%12)

: e8)

Figure 6. After inlining function f in Figure 5.

%1
e8 =
%10

# inlinee
e2 =
# inlined
%13 =
# inlined
%6 =
# inlinee

LdConst [1] 1
MKEnv (a=%7 :GQ)
MkArg (pr0, e8)
begins

MKEnv (b = %10
promise begins
LdConst [1] 2
promise ends
Add (%13, %7) e2
ends

Return (%6)

: e8)

Figure 7. After inlining promise p r0 in Figure 6.
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Code usage is check_code_usage_in_packages, an analysis
function shipped with GNU R. Demos runs all demos from the
base packages. Tcltk, Stats, and Utils run all examples
included, respectively, in the tcltk, stats and utils
packages. Pidigits is from the language shootout benchmarks.
Mandelbrot is from the are-we-fast benchmarks [9].

Figure 8. Description of benchmarks for RQ1 and RQ2.

by R. To gather the measurements, we ran 5 invocations
with 15 iterations of each benchmark on an Intel i7-3520M
CPU, stepping 9, microcode version 0x21, a clock pinned
at 1.2 GHz, on a Fedora 28 running Linux 5.0.16-100, with
SpeedStep and lower C-States disabled. Our compiler has
not been written for speed or optimized, so we discard the
first 5 iterations to amortize compilation time.? We do not
provide results for real-world applications, as our system is
not ready to compete with mature R implementations.

5.1 Static Environment Reduction

For RQ1, we count the number of MkEnvs in compiled code.
We distinguish between stubs and standard environments.
Note that we ignore the environments created in deoptimiza-
tion branches to allow transferring from optimized code to
the baseline version. Figure 8 lists the programs analyzed.
Figure 9 lists the number of closures that are compiled (Clo-
sures), the percentage of closures which have environments
(Env), the percentage of closures that use stubs (Stub), and
the percentage of closures that have no MkEnv instruction
(No env). Stubs are inserted when our analysis determines
that an environment is only accessible through reflection.
Adding Stub and No Env, between 12% and 65% of environ-
ments are elided.

Program Closures Env Stub Noenv
Code usage 971 82% 1% 16%
Demos 381 81% 16% 3%
Teltk 18 83% 11% 5%
Stats 871 85% 13% 2%
Utils 471 88% 10% 2%
Pidigits 139 79% 4% 17%
Mandelbrot 14 36% 29% 36%

Figure 9. Ratio of statically elided environments

5.2 Dynamic Environment Reduction

To answer RQ2, we counted MkEnvs executed at runtime
with and without optimizations. Figure 10 lists the num-
ber of environments allocated in the non-optimized version
(Baseline), the percentage reduction in allocated environ-
ments (Reduction), and the percentage of the reduction that

2The experiments are published in runnable form at gitlab.com/rirvm/rir_
experiments/container_registry. All reported numbers are for revision:
dba88e9bc417325a29¢91acb088df7fe8109ca39¢427e03931114e€0715513bfafcd59a267812dcb1.
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is due to stubs (Stubbed). For instance, consider a program
where the baseline allocates 100 environments and the opti-
mized version only 50, with 10 stubs. This means we reduced
the number of environments by 50%, and 20% of that reduc-
tion is achieved by stubbing. The data suggest that, for our
benchmarks, 28% to 87% fewer environments were created.

Program Baseline Reduction Stubbed
Code usage 2445996 36% 2%
Demos 192772 28% 5%
Teltk 1271 43% 3%
Stats 3046614 28% 7%
Utils 2792534 33% 2%
Pidigits 9032031 31% 2%
Mandelbrot 8460641 87% 8%

Figure 10. Reduction in environments allocated

5.3 Effects on Optimizations

Finally, we address RQ3 by providing slowdowns between
R with and without optimizations. R performs traditional
optimizations, such as constant folding, dead code elimi-
nation, and global value numbering. We posit that those
optimization are helped by scope resolution and promise
inlining. To test this hypothesis, we measure the impact
of disabling those passes on running time. We run in four
configurations: (1) default, (2) without promise inlining, (3)
without scope resolution, and (4) with no optimizations.
Figure 11 shows slowdowns relative to configuration (1).
Disabling all optimizations slows down code by a range

version

$ no promise inlining
? 3 no scope resolution
15 E33 none
.
s [
§ 1.3
S =
s =

u_
T
.
o
o
—00—
]}_
-

- i

-
—

Mandelbrot
Storage
binarytrees
binarytrees_naive
fannkuchredux
fasta

fasta_2
fasta_naive
fastaredux
fastaredux_naive

Figure 11. Slowdown with promise inlining (orange), scope
resolution (purple), or all optimizations (white) turned off.
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from 2% to 32%. Much of this slowdown can be attributed
to the scope resolution pass, which when turned off, slows
down execution from -1% to 55%. Disabling promise inlin-
ing has a smaller effect, ranging from a 0% to a 35% slow-
down. Looking at the programs individually, we observe that
Mandelbrot is surprising in that turning off scope resolution
generates code that is slower than with no optimizations
at all. A reason is that in this configuration, we still create
stub environments and guards, while scope resolution would
be the main consumer of this speculation. Here they only
add overheads for the additional deoptimization points. Dis-
abling scope resolution contributes significantly to the slow-
down in Fastaredux_naive. Storage, fannkuch_redux, fasta,
fasta_2, fasta_naive all have the expected behavior. As for
binarytrees and binarytrees_naive, they show little slow-
down in any configuration.

6 Conclusion
«Working on the thing can drive you mad. That’s what

happened to this friend of mine. So he had a lobotomy.
Now he’s well again.» — Repo Man

Designing an intermediate representation for R has been
a surprisingly difficult endeavor. Our goal was to arrive at
a code format that captures the intricacies of the language
while enabling compiler optimizations. Our explicit goals
were to distinguish between arguments that need lazy eval-
uation and ones that do not, to distinguish between vari-
ables that are truly local and can be optimized and variables
that must be allocated in environments and may be exposed
through reflection, to allow for elision of environments when
they are known to not be needed. To achieve this, we de-
signed PIR, the intermediate representation of the R compiler.
It has explicit instructions for creating environments, creat-
ing promises, and evaluating promises. Explicit modeling of
constructs that are to be optimized away is a key design in-
gredient. For example, explicit environments allow functions
to be inlined without fully resolving all R variables upfront.

The challenge presented by R is that it requires solving
many problems at once. To get rid of laziness, one must
track the flow of arguments and understand where they
may be forced. To track arguments, one has to reason about
environments and how they are manipulated. To discover
if environments change, one has to analyze promises. This
paper lays out our current strategy for dealing with this
particular mix of dynamic features.

We illustrate the benefits of PIR with two optimizations,
scope resolution and promise inlining. Scope resolution stat-
ically resolves bindings to reduce the issue of tracking loads
and stores in environments. When successful, this pass low-
ers R variables to PIR registers. Explicit creation and eval-
uation of promises facilitates the inlining of promises. In
combination, these transformations produce code with fewer
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promises and first-class environments. Evaluation shows en-
couraging results: up to 65% of functions do not need an
R environment, resulting in up to 87% fewer environments
created at runtime.

While PIR was designed for R, the design principles gen-
eralize to other implementations of the language. Other lan-
guages which have either lazy evaluation or first-class en-
vironments could adopt similar ideas in their intermediate
representations.
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