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ABSTRACT
Real-time embedded systems come in all shapes and sizes
with vastly different capabilities. They often operate under
stringent resource constraints, ranging from space and time
to power. Programming them is usually done in low-level
system’s programming languages close to the hardware. The
resulting software is costly and not particularly portable.
The Java programming language has been successful in pro-
viding a virtualized, high-level, development environment
for desktop and server applications. Programming in Java
leads to memory-safe code that can be ported straightfor-
wardly across architecture and operating system. This pa-
per surveys the state of the art in Java virtualization for
real-time and embedded systems. Technological advances in
virtual machines as well as new real-time extensions to the
language have brought Java closer to being widely usable for
a wide range of embedded problems.

1. INTRODUCTION
Real-time embedded systems must operate in the presence

of strong resource constraints with widely different hard-
ware, operating system, and programming style. Yet there
are important commonalities. Performance and predictabil-
ity of the software are usually paramount. Software is writ-
ten to be verifiable with simple control flow and little mem-
ory allocation. The programming languages of choice are
subsets of C or Ada, for the control they afford over the un-
derlying resources. Unfortunately, low-level languages often
entail software faults and lack of portability of the result-
ing code. Both of which are becoming issues as the size
of real-time code bases increases. Factors such as produc-
tivity, reusability, and availability of trained personnel have
spurred interest in Java as an alternative. Scaling a high-
level language and its runtime libraries down to resource-
constrained embedded settings is difficult, especially when
hard real-time guarantees must be met. Virtual machines
are usually tuned and engineered for maximal throughput.
Implementation techniques include fast paths for the com-
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mon case, and expensive slow-paths for less frequent cases
(e.g. inline caches on interface dispatch and type tests).
Support for real-time requires an implementation that tar-
gets predictability over throughput.

The benefits of Java over low-level systems programming
languages can be summarized by the following (partial) list:

• Object-oriented Programming: Java relies on object-
oriented principles to foster software reuse. Concepts
like classes, interfaces and late binding facilitate the
design of reconfigurable systems.

• Concurrency: Java has builtin concurrency primi-
tives for mutual exclusion and threading, as well as
thread-safe libraries and a memory model that con-
strains the optimization compilers can perform. These
are features lacking from languages such as C where
concurrency is an afterthought and compilers are likely
to generate unsafe code.

• Memory Safety: The language provides a high-level
memory API. Strong type safety is enforced by the
compiler. Array bounds and type casts are checked
at run-time, and explicit frees are not allowed. This
ensures that an invalid memory access will be trapped
and lead to a proper runtime exception.

• Dynamic memory management: Java mandates
that unused memory be reclaimed by a garbage collec-
tion algorithm. This simplifies development of concur-
rent code as the protocols for freeing memory in the
presence of multiple threads are tricky.

• Dynamic code loading: Java support the loading of
class files at runtime, thus permitting programmers to
extend or patch deployed applications.

• Rich libraries: The Java development environment
comes with an extensive set of well-tested and doc-
umented libraries ranging from graphic interfaces to
natural language processing.

One last non-technical advantage of Java is the large num-
ber of trained programmers. For a long time these “advan-
tages” were considered as liabilities in the embedded and
real-time community. Object-oriented programming and mem-
ory safety were sources of run-time overheads. Concurrency
was not as relevant when all the embedded devices were uni-
processors. Dynamic memory management and dynamic
loading were source of timing unpredictability. The libraries
were too large and did not meet the requirement of resource



constrained devices. Lastly, there was no support for writing
code that had to meet strict timing constraints.

The tide has begun to turn. A number of trends are con-
spiring to make Java virtual machines the platform of choice
for real-time embedded development: Embedded hardware
is becoming more powerful; Multi-core usage is trending up-
wards; The functionality implemented in software is growing
along with the size of the code bases; Security and safety re-
quirements are increasingly a concern. This paper provides
a short survey of the state of the art in real-time embed-
ded development in Java focusing on key advances that are
expending the applicability of the technology and using the
author’s experience on several real-time Java virtual ma-
chine to illustrate the promises of Java in this field.

2. VIRTUALIZING REAL-TIME
The key to virtualization is to devise an API that hides

the underlying infrastructure without significant loss of ex-
pressiveness or performance. Real-time systems are partic-
ularly dependent on the timing facilities provided the hard-
ware, the operating systems for synchronization, timers and
scheduling, among other. These are the things that need
to be virtualized. There are two efforts under way to vir-
tualize the hardware and the operating system. The first
is the Real-time Specification for Java (RTSJ) [6] and more
recently the Safety Critical Java Specification (SCJ) [12].
While both provide an API for real-time programming on
the Java virtual machine, the SCJ is more forceful about
ensuring predictability and verifiability.

The Real-Time Specification for Java (RTSJ) had the goal
to “provide an Application Programming Interface that will
enable the creation, verification, analysis, execution, and
management of Java threads whose correctness conditions
include timeliness constraints” [6] through a combination of
additional class libraries, strengthened constraints on the be-
havior of the JVM, and additional semantics for some lan-
guage features, but without requiring special source code
compilation tools. The RTSJ covers five main areas related
to real-time programming.

• Scheduling: Priority based scheduling guarantees that
the highest-priority schedulable object is always the
one that is running. The scheduler must also support
the periodic release of real-time threads, and the spo-
radic release of asynchronous event handlers that can
be attached to asynchronous event objects that them-
selves are triggered by actual events in the execution
environment.

• Admission control and cost enforcement: Schedulable
objects can be assigned parameter objects that char-
acterize their temporal requirements in terms of start
times, deadlines, periods, and cost. This information
can be used to prevent the admission of a schedulable
object if the resulting system would not be feasible.

• Synchronization: Priority inversion through the use
of Java’s synchronization mechanism are controlled by
using the priority inheritance protocol, or optionally,
the priority ceiling emulation protocol.

• Memory Management: Time-critical threads must not
be subject to delays caused by garbage collection. To
facilitate this, a no-heap real-time thread is prohibited

from touching heap allocated objects, and so can pre-
empt garbage collection at any time. Instead of using
heap memory, these threads can use special, limited-
lifetime memory areas known as scoped memory areas.

• Asynchronous Transfer of Control: It is sometimes de-
sirable to terminate a computation at an arbitrary
point. The RTSJ allows for the asynchronous inter-
ruption of methods [7]. This facilitates early termina-
tion while preserving the safety of code that does not
expect such interruptions.

The complexity of safety critical software varies between
application; the SCJ specification gives three virtualized
APIs called compliance levels. The first, Level 0, provides
a simple, frame-based cyclic executive model which is single
threaded with a single mission. Level 1 extends this model
with multi-threading via aperiodic event handlers, multiple
missions, and a fixed-priority preemptive scheduler. Level 2
lifts restrictions on threads and supports nested missions.

SCJ programs are organized as missions, which are in-
dependent computational units with respect to lifetime and
resources needed. Each mission is composed of a bounded
number of schedulable objects. Missions are launched accord-
ing to a pre-defined order. Figure 1 shows the three phases
of a mission: initialization, execution, and cleanup. After a
mission terminates, the next mission is released if there is
one.

setup teardowninitialization execution cleanup

next mission

current mission

Figure 1: Mission Life Cycle.

Schedulable objects contains both computation logic and
some scheduling constraints, such as release time, deadline,
priority, and so on. In the SCJ, schedulable objects have a
dedicated thread and are restricted to periodic event han-
dlers (PEH), aperiodic event handlers (AEH), and managed
threads (MT) to simplify feasibility analysis.

At Level 0, the cyclic executive model defines a mission as
a set of computations, each of which is executed periodically
in a precise, clock-driven timeline, and processed repetitively
throughout the mission. The only schedulable objects per-
mitted at Level 0 are Periodic Event Handlers. All PEHs
execute under control of a single underlying thread, so the
implementation can safely ignore synchronization in the ap-
plication. In this scenario, an operation which blocks will
block the entire application.

Figure 2 illustrates some of the core classes of the SCJ.
At The primordial thread starts in immortal memory and
creates a mission sequencer after executing the setup proce-
dure. The mission sequencer holds references to all of the
missions and repeatedly selects the next mission to launch.
Upon launching a mission, the mission memory is allocated
with the desired size. A mission manager is then created,
in mission memory, to control the mission’s schedulable ob-
jects. The three phases of the mission are all executed in
mission memory. All schedulable objects are created in the
initialization phase of the mission; they are then started
upon entering execution phase. A mission runs forever un-
less a termination request is sent explicitly by one of its
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Figure 2: SCJ Mission classes.

schedulable objects. If a termination request is sent, the
mission enters the cleanup phase. The cleanup phase in-
cludes storing or reporting the outcomes of a mission, as
well as releasing all acquired resources. Once the mission
is completed, all mission-specific objects are deallocated as
the mission memory is reclaimed.

The scope-based memory model introduced by RTSJ is
retained in the SCJ specification. The main differences with
the RTSJ are that the heap has been completely abandoned
and that scoped memory has been further restricted to make
certification easier. There are three types of memory areas:
immortal memory, mission memory, and private memory.
Immortal memory spans the lifetime of the virtual machine;
therefore, only objects that should survive the entire pro-
gram execution should be allocated there. The lifetime of
the latter two memory areas is bounded. Each mission has
a mission memory which is shared by the mission’s schedu-
lable objects and used to allocate data that must persist
throughout the mission. Each schedulable has its own pri-
vate memory area for the data that is needed for only a
single activation of the schedulable. The enterPrivateMem-

ory(s, logic) method creates a nested private memory of
size s, enters it, and execute the logic within it.

A scope stack is a logical data structure that represent the
scoped memory areas that a given schedulable object has
entered. Figure 3 illustrates this with the stacks of schedu-
lable objects — two periodic event handlers. The stacks
grow logically from immortal memory up to private memo-
ries. Unlike the RTSJ where cactus stacks are allowed, the
SCJ specification restricts navigation to linear sequences of
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Figure 3: Memory structure of a SCJ program.

scopes. This is achieved by removing the RTSJ’s enter()

method and replacing it with the more restricted enterPri-

vateMemory() which which only creates a subscope if there
isn’t one active already.

For memory safety, every write to a field holding an object
reference must be checked to prevent dangling references.
An optional set of annotations can be used to prove that
at compile-time that all stores are safe. When these anno-
tations are used, an implementation is permitted to omit
scope checks.

3. CONCRETE IMPLEMENTATIONS
Implementations of Java for embedded devices come in

three rough (and sometimes overlapping) classes:

• Interpreters: Typically deal with Java bytecode di-
rectly, interpreter are slow, but reasonably memory
efficient and supports dynamic class loading.

• Just-in-time compilers: JITs generate code on the
fly and vary in performance depending on the level of
optimization applied to the bytecode. They are typi-
cally more resource hungry and can introduce pauses
in the execution of the system.

• Ahead-of-time compilers: AOTs can generate highly
optimized code by compilation to either C or directly
to native code. They usually do not support dynamic
class loading (which allowed in SCJ).

RT JVMs must choose a memory management policy:

• RTGC: Some JVM choose to allow standard Java se-
mantics and rely on a real-time garbage collector to
bound the pauses due to memory management.

• Scopes + GC: The RTSJ mandates scoped memory
(which is not GCed) as well as a heap that is collected
by a (possibly RT) GC.

• Scopes: The SCJ does not support automatic mem-
ory management, all allocation is in scope memory re-
gions.

Four commercial JVMs support the RTSJ. These are Web-
Sphere Real-time [2], Java RTS [5], PERC [19], and Ja-
maica [21]. PERC is noteworthy in that it supports fea-
tures similar to those offered by the RTSJ but uses its own
APIs. All of these systems support real-time garbage collec-
tion, though the algorithms are markedly different ranging
from time-based to work-based with varying degrees of sup-
port for concurrency. In addition, Oracle’s WebLogic Real-
Time and Azul Systems’ virtual machine [9] both offer low-
pause-time garbage collectors that approach real-time per-
formance. The execution strategies of these systems range
from ahead-of-time compilation to just-in-time compilation.
PERC and Jamaica are the only other products currently
targeting resource constrained embedded devices.

Ovm [1] is a Java-in-Java metacircular virtual machine
that provides hard real-time guarantees. It generates C
code. It was used in the first Unmanned Aerial Vehicle flight
using avionics software written in Java [1] and the first open-
source real-time garbage collector with high throughput and
good mutator utilization [16]. Ovm lacks functionality es-
sential for embedded hard real-time systems. Many appli-
cations run on minimal hardware with a small real-time OS



kernel and performance close to C. Ovm’s performance and
footprint prevented us from experimenting with a wide range
of embedded devices. Furthermore, Ovm suffered from an
overly complex design and we could not envision how the
system could ever be certified. JRate was a contemporary
of Ovm that was integrated into the GCC compiler [10].

Real-time garbage collection has been investigated for many
years in the context of Java. Nielsen [15], Baker’s [4] and
Henriksson’s [11] early works inspired a number of practical
algorithms including the ones used in all commercial VMs.
The IBM Metronome collector uses periodic scheduling [3] to
ensure predictable pause times. Jamaica uses a work-based
techniques with fragmented objects [20] to get around the
need for a moving collector to fight fragmentation. Java
RTS [8] uses a non-moving variant of Henriksson with a
scheduler that leverage the slack in real-time systems to col-
lect garbage when no real-time task is active. For overviews
of the main alternatives readers are referred to [14, 17].

4. REAL-TIME JAVA IN ACTION
Most of the SCJ functionality can be implemented in the

library with a clear interface to the underlying virtual ma-
chine to ease the task of porting it across VMs. For the
virtual machine, we have modified Ovm [1]. The runtime
support for our VM is lightweight. It contains two compo-
nents: the memory manager and an OS abstraction layer for
thread management. The runtime currently runs on POSIX-
like platforms such as Linux, NetBSD, and on top of the
RTEMS classic API.

We compare Java to hand-written C code in performance
and predictability. To this end, we set up a representative
workload on a realistic platform. For our workload, we se-
lected the CDx [13] benchmark. The benchmark consists of
a periodic task that takes air traffic radar frames as input
and predicts potential collisions. The benchmark itself mea-
sures the time between releases of the periodic task, as well
as the time taken to compute potential collisions. For our
evaluation, we used a pre-simulated formula to generate the
radar frames to achieve a consistent workload across execu-
tions. The C implementation [18] matches closely the Java
version, with one source file per Java class. Our experiments
were run on a GR-XC3S-1500 LEON development board.
The board’s Xilinx Spartan3-1500 field programmable gate
array was flashed with a LEON3 configuration, without a
floating-point unit, running at 40MHz, with an 8MB flash
PROM and 64MB of PC133 SDRAM split into two 32MB
banks. The version of RTEMS is 4.9.3. Our second plat-
form is an Intel Pentium 4 3.80GHz single core machine
with 3GB of RAM, running Ubuntu Linux 9.04 with the
2.6.28-15-generic 32-bit SMP kernel.

SCJ vs. C on LEON3. In our first experiment, we
compared C with SCJ on the LEON3 platform. The pe-
riodic task runs every 120 milliseconds with 6 airplanes and
10,000 iterations. Figure 4 gives the runtime performance.
No deadlines were missed in any executions. On average,
the execution time of one iteration in C is around 53 mil-
liseconds, while for Java it is around 69 milliseconds. The
median execution times for C are only 28% smaller than the
median for Java. For real-time developers, the key metric
of performance is the worst case. C is 34% faster than SCJ
in the worst-case. Figure 7 shows a more detailed view of
a subset of the iterations. There is a strong correlation of

execution times between C and Java. In this benchmark,
Java is as predictable as C.

SCJ vs. C on x86. On the x86 we configured the bench-
mark to run with a more intensive workload, using 60 planes
with a 60 millisecond period for 10,000 iterations. The in-
creased number of planes brings more detected collisions,
which consequently poses higher demands on data struc-
tures, arithmetics, and memory allocation. The histogram
in Figure 6 shows the frequency of execution times for SCJ
and C. The data demonstrates that on average Java is by
12% faster than C. Looking at the worst-case performance
times, Java has a 4% overhead over C. We can observe again
that the results are highly correlated. In fact, for the most
of the time, Java performance times stay below those of C It
is unclear why Java would be faster than C. We believe that
Ovm facilitates inlining by generating a single C file and re-
moving most of the polymorphism around methods calls, but
this should have the same effect on both platform. The x86
workload performs more allocation and C uses malloc/free
which is more expensive than the bump-pointer allocation
used for scoped memory in SCJ.

Program Example. Figure 8 shows two key classes of the
benchmark: Level0Safelet and CollisionDetectorHandler.
The Level0Safelet class extends the CyclicExecutive class
and represents an instance of a Level 0 mission. It defines
the specific actions that will be executed during the initial-
ization (the setUp() method) and the cleanup of the mis-
sion (the cleanUp() method). First, the SCJ infrastructure
asks for required mission space by calling missionMemory-

Size() method and creates a corresponding mission area.
Furthermore, the initialize() method is executed to in-
stantiate all the periodic event handlers that will be periodi-
cally executed during the mission. Therefore, the infrastruc-
ture instantiates the CollisionDetectorHandler class and
creates a corresponding private memory - the size of the pri-
vate memory is given in the constructor of the handler. Fi-
nally, the getSchedule() represents a Level 0 scheduler and
defines the frequency of the handler execution. The Col-

lisionDetectorHandler class represents a PeriodicEven-

tHandler dedicated to the mission and defines the code
that will be executed each time the handler is scheduled to
run. The handler is executed by the infrastructure code call-
ing the handleEvent() method. Inside the handleEvent()

method we delegate the functionality to the runDetectorIn-
Scope() method that first receives a data frame holding the
current positions of the aircraft. Finally, note that both the
classes contain the SCJ annotations specifying their level
and runtime allocation context, these annotations are used
during the static analysis to prove allocation safety of the
application.

5. CONCLUSION
This paper has present a succinct overview of the state of

the art in real-time programming on the Java platform. We
have illustrated the ease of developing real-time application
and the low overheads of modern implementations of the
languages.
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Figure 4: Histograms of execution times on LEON3. The observed worst-case for C is 34% faster Java.
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Figure 5: A detailed runtime comparison of for 200 iterations on LEON3.
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Figure 6: Histograms of execution times on X86. The observed worst case for C is 4% faster than Java.
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@SCJAllowed(value=LEVEL_0, members=true)
@Scope("immortal")
public class Level0Safelet extends CyclicExecutive {
  public Level0Safelet() { super(null); }

  public void setUp() {
    new ImmortalEntry().initialize();
    new Simulator().generate();
  }

  @RunsIn("cdx.Level0Safelet")
  protected void initialize() {
    new CollisionDetectorHandler();
  }

  public void tearDown() { dumpResults(); }

  public CyclicSchedule getSchedule(
                          PeriodicEventHandler[] handlers) {
    CyclicSchedule.Frame[] frames = new CyclicSchedule.Frame[1];
    frames[0] = new CyclicSchedule.Frame(
                  new RelativeTime(PERIOD, 0), handlers);
    return new CyclicSchedule(frames);
  }

  public long missionMemorySize() { return DETECTOR_SIZE; }
}

@SCJAllowed(value=LEVEL_0, members=true)
@Scope("cdx.Level0Safelet")
@RunsIn("cdx.CollisionDetectorHandler")
public class CollisionDetectorHandler 
                   extends PeriodicEventHandler {
  
  private final TransientScopeEntry cd = new
    TransientScopeEntry(new StateTable(), VOXEL_SIZE);
  public boolean stop;

  public CollisionDetectorHandler() {
    super(null, null, null, TRANSIENT_SIZE);
  }

  public void handleEvent() {
    if (stop) 
      Mission.getCurrentMission().requestSequenceTermination();
    else 
      runDetectorInScope(cd);
  }

  public void runDetectorInScope(TransientScopeEntry cd) {
    RawFrame f = ImmortalEntry.frameBuffer.getFrame();
    cd.setFrame(f);
    cd.processFrame();
    ImmortalEntry.frames++;
      stop = (ImmortalEntry.frames == MAX_FRAMES);    
  }
}

Figure 8: Code example showing Level0Safelet and CollisionDetectorHandler classes.
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