
Secure Composition of Untrusted Code:Wrappers and Causality TypesPeter SewellComputer LaboratoryUniversity of CambridgePeter.Sewell@cl.cam.ac.uk Jan VitekDepartment of Computer SciencesPurdue Universityjv@cs.purdue.eduAbstractWe consider the problem of assembling concurrentsoftware systems from untrusted or partially trustedo�-the-shelf components, using wrapper programs toencapsulate components and enforce security policies.In previous work we introduced the box-� process cal-culus with constrained interaction to express wrap-pers and discussed the rigorous formulation of theirsecurity properties. This paper addresses the veri-�cation of wrapper information 
ow properties. Wepresent a novel causal type system that statically cap-tures the allowed 
ows between wrapped possibly-badly-typed components; we use it to prove that anexample unidirectional-
ow wrapper enforces a causal
ow property.1 IntroductionA typical desktop software environment nowadayscontains components { whole programs, plug-ins, orsmaller code fragments { obtained from di�erent un-trusted or partially-trusted sources; they interact in in-tricate ways. Components may be faulty or malicious,or designed with a weaker security policy that the userrequires { what is legitimate marketing data to a ven-dor may be considered sensitive by a user. It is di�cultfor a user to gain assurance that the composed systemis secure, particularly because many o�-the-shelf com-ponents are only available as object code. Furthermorecurrent operating systems fail to provide support forthe kind of �ne-grained policies that could control theexecution of such components [GWTB96, FBF99].Recent practical work advocates interposing secu-rity code at the operating system boundary to observeand modify the data passing through [WBDF97, Jon99,GRPA97, GWTB96, FBF99]. Interposition techniquese�ectively encapsulate untrusted components in wrap-per programs that have full control over the interac-

tions between encapsulated components and the OSand over the interactions among components. The codeof a wrapper can, for instance, perform access controlchecks, audit, attempt to detect intruders, and evenmonitor covert channels. In [FBF99] Fraser, Badgerand Feldman presented a system that splits the task ofwriting a wrapper into two parts. The wrapper's bodyis written in a variant of C called the Wrapper De�ni-tion Language. The dynamic aspects of creating wrap-pers and instantiating concurrently executing compo-nents are speci�ed in the Wrapper Life Cycle frame-work. While quite expressive, their approach does notprovide guarantees that the wrappers actually enforcethe desired security policies. The powerful wrapperlanguage, the fact that all wrappers execute in kernelmode, and the fact that components are concurrentcombine to make it di�cult to understand preciselywhat properties a wrapper enforces.Our work is exploring secure composition usingwrappers, focussing on the rigorous statement andproof of their security properties. To this end, we haveabstracted the essential characteristics of the problemin a process calculus { powerful enough to express thecode of non-trivial wrappers and to express the concur-rent composition of components, but small enough tobe amenable to formal proof. In this paper we studyinformation 
ow properties of wrappers. To expressclear statements of such properties we equip our calcu-lus with an annotated operational semantics, regardinga wrapper and each wrapped component as a di�erentprincipal and colouring processes with the sets of prin-cipals that have causally a�ected them. This allowsa direct statement of the property that one compo-nent cannot causally a�ect another. Verifying such acausal 
ow property directly can be laborious, requir-ing a characterisation of the state space of a wrap-per containing arbitrary components. We therefore in-troduce a type system that statically captures causal
ows. Since components are often provided as object1



code, which is impractical for the user to typecheck, ourtype system must admit programs with badly-typedsubcomponents.Expressing wrappers requires a language for com-posing concurrently-executing components, includingprimitives for encapsulating components and control-ling their interactions. We use the box-� calculus of[SV99a], recapitulated in Sections 2 and 3. Box-� isa minimal extension of the �-calculus with encapsu-lation; it is su�ciently expressive for components andwrappers while retaining the simplicity and tractablesemantics needed for proving properties. Moreover Pict[PT99] demonstrates how to build a real programminglanguage above a �-calculus core, a similar approachcould be used for box-�.Our main example, in Section 4, is a unidirectional-
ow wrapper that encapsulates two components, allow-ing messages to be sent only in one direction betweenthem and both components to interact with the envi-ronment. The following box-� program is a simpli�edversion of this example.(� a; b)� a[P ] j ! cax:cbx j b[Q ] �Processes P and Q are arbitrary, possibly malicious,components. They are encapsulated in named boxes,with private names a and b, and placed in parallel witha forwarder process on channel c from box a to box b.The term cbx is an output to channel c in box b ofvalue x. The term cax:cbx pre�xes this with an in-put on channel c from box a; here the �rst x is a for-mal parameter that binds the second. The ! operatorindicates a replicated input, so the forwarder persistsafter use. The boxes restrict communication of the en-capsulated processes and ensure that P and Q cannotinteract with each other directly; the private names en-sure that they cannot interact with their environmentin any other way. This simpli�ed forwarder sends onlyunordered asynchronous messages; our main exampleprovides FIFO communication (this is related to theNRL pump [KML96], as discussed in Section 4).Intuitively the system enforces an information 
owpolicy that prevents Q from leaking secrets to P .When one attempts to make such properties precise,however, there are many choices. A body of model-theoretic work on non-interference uses delicate exten-sional properties of the trace sets of systems. In ourprogramming language setting a more intensional ap-proach allows what we believe to be clearer statements.We start with a labelled transition semantics that spec-i�es the input/output behaviour of programs and ex-tend it to represent and propagate causal dependenciesexplicitly. In terms of this, one can state the desiredproperty as `no visible action of P is causally depen-

dent on any action of Q'. The causal semantics andproperty are de�ned in Section 5.The causal type system, given in Section 6, allowsus to prove information 
ow properties of box-� pro-grams. For the example above, to statically allow the
ow from a to b but disallow the converse we can asso-ciate the components with principals p and q, then takea to be a box name whose contents may be a�ected byp, written a :boxfpg, b to be a box name whose con-tents may be a�ected by p or q, written b :boxfp;qg,and c to be a channel, carrying values of a top type>, which can be a�ected only by p, so c : chanfpg>.The fragment is then typable, whereas the converse for-warder cbx:cax is not. The type system also deals withtracking causes through computation within a wrap-per, including communication of channel names, andwith interaction between a wrapper and badly-typedcomponents. All boxes are assumed to contain untypedprocesses; wrapper code is statically typed; run-timetype checking is required only when receiving from acomponent.Further discussion of related work is given in Sec-tion 7; Section 8 concludes with future work. Proofscan be found in the technical report [SV99c].2 A Boxed � CalculusThe language { known as the box-� calculus { thatwe use for studying encapsulation properties must al-low interacting components to be composed. The com-ponents will typically be executing concurrently, in-troducing nondeterminism. It is therefore natural tobase the language on a process calculus. The box-� calculus lies in a large design space of distributedcalculi that build on the �-calculus of Milner, Parrowand Walker [MPW92], including among others the re-lated calculi [AFG98, CG98, FGL+96, RH98, Sew98,SWP99, VC98]. A brief overview of the design spacecan be found in [Sew99]; here we highlight the maindesign choices for box-�.The calculus is based on asynchronous message pass-ing, with components interacting only by the exchangeof unordered asynchronous messages. Box-� has anasynchronous �-calculus as a subcalculus { we buildon a large body of work studying such calculi, notably[HT91, Bou92]. They are known to be very expressive,supporting many programming idioms including func-tions and objects, and are Turing-complete; a box-�process may therefore perform arbitrary internal com-putation. The choice of asynchronous communicationis important as it allows two components to interactwithout creating causal connections in both directionsbetween them.2



Box-� requires facilities for constraining communi-cation { in standard �-calculi, if one process can send amessage to another then the only way to prevent infor-mation 
owing in the reverse direction is to impose atype system on components, which (as observed above)is not appropriate here. We therefore add a boxingprimitive { boxes may be nested, giving hierarchicalprotection domains; communication across box bound-aries is strictly limited. Underlying the calculus designis the principle that each box should be able to controlall interactions of its children, both with the outsideworld and with each other. Boxes can be viewed asprotection domains, akin to operating system-enforcedaddress spaces. Direct communication is therefore al-lowed only between a box and its parent, or within theprocess running in a particular box. All other commu-nication, in particular that between two sibling boxes,must be mediated by code running in the parent. Thiscode can enforce an arbitrary security policy, even sup-porting dynamically-changing policies and interfaces(in contrast to static restriction or blocking operators[BHR84, VD98]).Turning to the values that may be communicated,it is convenient to allow arbitrary tuples of names (orother tuples). Note that we do not allow communi-cation of process terms. Moreover, no primitives formovement of boxes are provided, in contrast to mostwork cited above. The calculus is therefore entirely�rst order, which is important for the tractable theoryof behaviour (the labelled transition semantics) thatwe require to state and prove security properties. Thecalculus is also untyped { we wish to consider the wrap-ping of ill-understood, probably buggy and possiblymalicious programs.
2.1 SyntaxThe syntax of the calculus is as follows:Names We take an in�nite set N of names, rangedover by a; b; c etc. (except i; j; k; o; p; u; v). Both boxesand communication channels are named; names alsoplay the role of variables, as in the �-calculus.Values and Patterns Processes will interact by com-municating values which are deconstructed by pattern-matching by the receiver. Values u; v can be namesor tuples, with patterns p correspondingly tuple-structured.u; v ::= x namehv1 :: vki tuple (k � 0)

p ::= wildcardx name pattern(p1 :: pk) tuple pattern(k � 0, no repeated names)Processes The main syntactic category is that of pro-cesses, ranged over by P;Q. We introduce the primi-tives in three groups.Boxes A box n[P ] has a name n, it can contain anarbitrary process P . Box names are not necessarilyunique { the process n[0] j n[0] consists of two distinctboxes named n, both containing an empty process, inparallel.P ::= n[P ] box named n containing PP j P 0 P and P 0 in parallel0 the nil processCommunication The standard asynchronous �-calculuscommunication primitives are xv, indicating an outputof value v on the channel named x, and xp:P , a processthat will receive a value output on channel x, binding itto p in P . Here we re�ne these with a tag indicating thedirection of the communication in the box hierarchy.An input tag � can be either ?, for input within a box,", for input from the parent box, or a name n, forinput from a sub-box named n. An output tag o can beany of these, similarly. For technical reasons we mustalso allow an output tag to be ", indicating an outputreceived from the parent that has not yet interactedwith an input, or n, indicating an output received fromchild n that has not yet interacted. The communicationprimitives are thenP ::= : : :xov output v on channel x to ox�p:P input on channel x from �!x�p:P replicated inputThe replicated input !x�p:P behaves essentially as in-�nitely many copies of x�p:P in parallel. This givescomputational power, allowing e.g. recursion to beencoded simply, while keeping the theory simple. Inx�p:P and !x�p:P the names occurring in the patternp bind in P . Empty patterns and tuples will often beelided.New name creation Both box and channel names canbe created fresh, with the standard �-calculus (� x)Poperator. This declares any free instances of x withinP to be instances of a globally fresh name.P ::= : : :(� x)P new name creation3



In (� x)P the x binds in P . We work up to alphaconversion of bound names throughout, writing the freename function, de�ned in the obvious way for values,tags and processes, as fn( ).
2.2 SemanticsThis subsection de�nes the operational semantics ofBox-�. The reader unfamiliar with process calculi maywish to skim to the start of Section 3 on a �rst reading.2.2.1 Reduction SemanticsThe simplest semantic de�nition of the calculus isa reduction semantics, a one-step reduction relationP ! P 0 indicating that P can perform one step ofinternal computation to become P 0. We �rst de�nethe complement � of a tag � in the obvious way, with? = ? and � = �. We de�ne a partial function f = g,taking a pattern and a value and giving, where it isde�ned, a partial function from names to values.fv= g = fgfv=xg = fx 7! vgfhv1 :: vk0 i=(p1 :: pk)g = fv1=p1g [ : : : [ fvk=pkg if k = k0unde�ned, otherwiseThe natural de�nition of the application of a substi-tution � (from names to values) to a process term P ,written �P , is also a partial operation, as the syntaxdoes not allow arbitrary values in all the places wherefree names can occur. We write fv=pgP for the resultof applying the substitution fv=pg to P . This may beunde�ned either because fv=pg is unde�ned, or becausefv=pg is a substitution but the application of that sub-stitution to P is unde�ned. For example, fhz zi=xgx?hiis not de�ned as hz zi?hi is not in the syntax. Note thatthe result fy=xgP of applying a name-for-name substi-tution is always de�ned. This de�nition of substitutionleads to a lightweight notion of runtime error1.The de�nition of reduction involves an auxiliarystructural congruence �, de�ned as the least congru-ence relation such that the axioms below hold. Thisallows the parts of a redex to be brought syntactically1A more conventional notion of runtime error would give er-rors only when a tuple is used as a name, e.g. for output. Thesubstitution-based notion is forced by our choice of syntax, whichdisallows values in various places where names may appear. Ingeneral it will report errors sooner than the conventional notion.

adjacent. P j Q � Q j P(P j Q) j R � P j (Q j R)(� x)(� y)P � (� y)(� x)P(� x)(P j Q) � P j (� x)Q x 62 fn(P )(� x)n[P ] � n[(� x)P ] x 6= nThe reduction relation is now the least relation overprocesses satisfying the axioms and rules below. The(Red Comm) and (Red Repl) axioms are subject to thecondition that fv=pgP is well-de�ned.n[x"v j Q]! xnv j n[Q] (Red Up)xnv j n[Q]! n[x"v j Q] (Red Down)x�v j x�p:P ! fv=pgP (Red Comm)x�v j !x�p:P ! !x�p:P j fv=pgP (Red Repl)P ! Q ) P j R! Q j R (Red Par)P ! Q ) (� x)P ! (� x)Q (Red Res)P ! Q ) n[P ]! n[Q] (Red Box)P � P 0 ! Q0 � Q ) P ! Q (Red Struct)The (Red Up) axiom allows an output to the parent ofa box to cross the enclosing box boundary. Similarly,the (Red Down) axiom allows an output to a child boxn to cross the boundary of n. The (Red Comm) axiomthen allows synchronisation between a complementaryoutput and input within the same box. The (Red Repl)axiom is similar, but preserves the replicated input inthe resulting state.Communications across box boundaries take two re-duction steps, as in the following upwards and down-wards communications.n[x"v] j xnp:P ! n[0] j xnv j xnp:P! n[0] j fv=pgPxnv j n[x"p:P ] ! n[x"v j x"p:P ]! n[fv=pgP ]This removes the need for 3-way synchronisations be-tween a box, an output and an input (as in [VC98]),simplifying both the semantics and the implementationmodel.2.2.2 Labelled TransitionsThe reduction semantics de�nes only the internal com-putation of processes. The statements of our securityproperties must involve the interactions of processeswith their environments, requiring more structure: alabelled transition relation characterising the potentialinputs and outputs of a process. We give a labelled se-mantics for box-� in an explicitly-indexed early style,4



de�ned inductively on process structure by a structuredoperational semantics. The labels are` ::= � internal actionxov output actionx
v input actionwhere 
 ranges over tags ?, n, " and n. The labelledtransitions can be divided into those involved in mov-ing messages across box boundaries and those involvedin communications between outputs and inputs. Themovement labels arexnv (sending to child n)xnv (box n receiving from its parent)x"v (sending to the parent)Say mv(o) is true if o is of the form n or ". The com-munication labels arex?v (local output)x?v (local input)xnv (output received from child n)xnv (input a message received from child n)x"v (output received from parent)x"v (input a message received from parent)Labels synchronise in the pairs x
v and x
v. The la-belled transition relation has the formA ` P �̀! Qwhere A is a �nite set of names and fn(P ) � A; itshould be read as `in a state where the names A maybe known to P and its environment, process P can do` to become Q'. The relation is de�ned as the small-est relation satisfying the rules in Figure 3 omittingall transition subscripts, occurrences of C : and occur-rences of C �. We write A; x for A [ fxg where x isassumed not to be in A, and A; p for the union of Aand the names occurring in the pattern p, where theseare assumed disjoint.The labelled semantics is explained further in[SV99a]. It is similar to a standard � semantics butmust also deal with boxes and with reductions such as((� x)xnz) j n[0] ! (� x)n[x"z]in which a new-bound name enters a box boundary.The two semantics coincide in the following sense.Theorem 1 If fn(P ) � A then A ` P ��! Q i� P !Q.This give con�dence that the labelled semantics carriesenough information. The proof is somewhat delicate;it is sketched in [SV99b] and given in detail in [SV99a].

3 A Filtering ExampleTo demonstrate the use of box-� we give the de�ni-tion of a wrapper that restricts the interface for userprograms. In most operating systems, programs in-stalled and run by a user enjoy the same access rightsas the user, so if the user is allowed to open a socket andsend data out on the network then so can any compo-nent. We idealize this scenario with the con�gurationbelow { an idealized single-user OS in which user Al-ice is executing a program P . Here the box around Pstands for the operating system enforced user protec-tion domain.alice[ P ] j!!!:::inalicex::: j OS write on Alice's in port! outalicex::: j OS read from Alice's out port!netalicex::: OS read from Alice's net portThe OS provides three channels in; out and net, to re-spectively allow the user's program to read from andwrite to the terminal and to send data out on a net-work connection. The program P is executing within abox and so interacts with the OS using the " tag { forexample P = in"x:out"hxxi receives a value from theterminal and then sends a pair of copies of the valueback to the terminal.To execute some untrusted code fragment Q, Alicemay run the code in parallel with her other applica-tions, perhaps as alice[P j Q]. But, this grants toomuch privilege to Q. In particular, if Q = ! in"x:net"xthen any terminal input may be redirected to the net.A wrapper is a box-� context which can provide �ne-grain control of the behaviour of Q. For example, the�ltering wrapper W1 of [SV99a] prevents Q from ac-cessing the network:W1( ) def= (� a) � a[ ] j ! in"x:inax j ! outax:out"x �The system becomes alice[P j W1(Q)]. The untrustedcode is placed in a box with a fresh name a, so a 62fn(Q). In parallel with the box are two forwarders forin and out messages. The �rst, ! in"x:inax, is a repli-cated input receiving values from the OS and sendingthem to a; the second is dual. Only these two processescan interact with a due to the scope of the restriction,so even when put in parallel with other code the wrap-per guarantees that Q will not be able to send on net.We show a small reduction sequence where P =0 and Q = in"x:net"x. Here B is the forwarders5



F( 1; 2) = (� a; b)� a[ 1] j b[ 2] j(� bu� ; full)�(� front ; back)�(create FIFO bu�er) bu� ?hfront backi j(connect froma to bu�er) ! froma(v r):(� r0)(front?hv r0i j r0?:ra) j(connect bu�er to tob) ! back?(v r):(� r0)(tobhv r0i j r0b:r?)� j(bu�er code) ! bu� ?(front back):front?(v r):(r? j (� back0)(bu� ?hfront back0ij full?hback0 back vi)) j! full?(back0 back v):(� r)(back?hv ri j r?:back0?(v0 r0):(r0?j full?hback0; back v0i))� j(I/O forwarders) ! in1"x:in1ax j ! out1ax:out1"x j! in2"x:in2bx j ! out2bx:out2bx�
Figure 1. FIFO Pipeline Wrapper F .! in"x:inax j ! outax:out"x.inalicey j alice[P j W1(Q)]� inalicey j alice[(� a)( a[Q] j B )]! alice[in"y j (� a)(a[Q] j B)]� alice[(� a)(in"y j a[Q] j B)]! alice[(� a)(inay j a[Q] j B)]! alice[(� a)(a[in"y j Q] j B)]! alice[(� a)(a[net"y] j B)]! alice[(� a)(netay j a[0] j B)]At the �nal step the output from Q is prevented fromleaving the alice box directly as B does not contain aforwarder for net. It is prevented from interaction withany P (although here P was empty) by the restrictionon a.4 The Unidirectional-
ow WrapperThere is a tension between the strength of com-munication primitive supported by a wrapper and thestrength of the security property it can guarantee. Theexamples of the introduction and [SV99a] provide onlyasynchronous unordered communication between com-ponents, which would be awkward to use in most realsystems. At the other extreme, synchronous commu-nication introduces causal 
ows in both directions (thecausal 
ow property we state in Section 5 would nothold in a synchronous calculus, so a more delicate prop-erty would be required { perhaps stating that there areonly data-less acks from one component to another).There are two intermediate points { one can provideasynchronous ordered communication, as we do below,or use some form of weak acknowledgments, as in theNRL pump [KML96]. The former still guarantees an

absence of information 
ow (albeit at the cost of main-taining an unbounded bu�er) while the latter limitsbandwidth of covert channels. In both cases, it is es-sential to be able to guarantee that the implementationof the communication primitives does actually have thedesired 
ow property, this is what we set to do here.In Figure 1 we give a wrapper F that takes two com-ponents and allows the �rst to communicate with thesecond by a �rst-in, �rst-out bu�er. The wrapper hasbeen written with care to avoid any information leakfrom the second component to the �rst. For simplic-ity both components have simple unordered input andoutput ports in i and out i to the environment; it wouldbe routine to make these FIFO also. The wrapper isillustrated in Figure 2.The interface to the wrapper is as follows. To write tothe bu�er a producer sends a value together with anacknowledgment channel to the wrapper (using a stan-dard asynchronous �-calculus idiom). The wrapper in-serts the value in a queue and acknowledges reception.For value v the producer may contain(� ack)(from"hv acki j ack":::);sending the value and a new acknowledgement chan-nel ack to the wrapper and, in parallel, waiting for areply before proceeding with its computation. On thereceiver side, we may have a process that waits for apair of a value and an ack channel:to"(z r):( r" j :::)The name of the receiving channel is to; channel r isused to send the acknowledgement back to the wrapper.Thus a con�guration where B stands for the body ofthe wrapper could be:(� a; b)� a[ (� ack)(from"hv acki j ack":0) ] jb[ to"(z r):r" ] j B �6



in1 out1 in2 out2
(r0)(r) to

a from FIFO bu�er b
Figure 2. The FIFO Pipeline Wrapper IllustratedThe implementation of the wrapper is somewhat tricky,as we have to be careful not to introduce covert chan-nels between the components. Within the wrapperthere is a replicated input on bu� that creates a newempty FIFO bu�er and a replicated input on full thatcreates a new bu�er cell containing a value. The keyis to ensure that the acknowledgment to the �rst com-ponent not be dependent on any action performed bythe second component. The glue process that con-nects the froma channel to the bu�er has a subpro-cess, r0?:ra, to send the ack to a. This small processitself expects an ack from the head of the bu�er say-ing that the message was inserted in the queue. Thebu�er code front?(v r):(r? : : : acks on r immediately, inparallel with placing the new message in a full bu�ercell at the head of the queue. The asynchrony here isessential.So far we have been vague about the statement ofthe properties that we expect wrappers to enforce. ForW1 it may be clear from examination of the code andthe semantics that the wrapper is satisfactory, but itis unclear exactly what properties are guaranteed. ForF the situation is worse { even this simple wrapper iscomplex enough that a rigorous statement and proofof its security properties is essential; the user shouldnot be required to examine the code of a wrapper inorder to understand the security that it provides. Wenow turn to the task of formalizing these propertiesand developing the tools needed to prove them.5 Colouring and Causal FlowThe intuitive property of F that we wish to expressis that the second wrapped component should not beable to a�ect the �rst. In [SV99a] we expressed the

intuitive property that one wrapped component doesnot causally a�ect another using a simple coloured re-duction semantics for box-�. Output processes wereannotated with sets of colours that record their causalhistories { essentially the sets of principals that havea�ected them in the past { and the reduction seman-tics propagated this causal history data. In this pa-per we introduce also a coloured labelled transition se-mantics, allowing more direct statements of securityproperties of wrappers that interact with their envi-ronment. The coloured calculus is a trade-o� { itcaptures less detailed causality information than thenon-interleaving models studied in concurrency the-ory [WN95, BS95, DP95] but is much simpler; it cap-tures enough information to express interesting secu-rity properties.In [SV99a] we also expressed a number of other de-sirable properties of wrappers { that they honestly for-ward messages between component and environment,and that theymediate all communication between com-ponents. The latter, related to intransitive noninter-ference [RG99], was expressed using the coloured se-mantics. Two further information 
ow properties wereexpressed using the uncoloured LTS: new name direc-tionality and permutation. They illustrate the widerange of precise properties which the intuitive state-ment might be thought to mean.
5.1 Colouring the Box-� CalculusWe take a set col of colours or principals (we usethe terms interchangeably) disjoint from N . Let k; p; qrange over elements of col and C;D;K range over sub-sets of col. We de�ne a coloured box-� calculus by7



A ` C :xov xov�!C 0 (Out) A ` x�p:P x�v�!C C �fv=pgP (c) (In)A ` P �̀!C P 0A ` P j Q �̀!C P 0 j Q (Par) A ` !x�p:P x�v�!C !x�p:P j C �fv=pgP (c) (Repl)A ` P x
v�!C P 0 A ` Q x
v�!C Q0A ` P j Q ��!; (� fn(x; v)�A)(P 0 j Q0) (Comm) A ` P x"v�!C P 0A ` n[P ] ��!; (� fn(x; v)�A)(C :xnv j n[P 0]) (Box-1)A ` n[P ] xnv�!C n[C :x"v j P ] (Box-2) A ` P ��!C P 0A ` n[P ] ��!C n[P 0] (Box-3)A; x ` P �̀!C P 0A ` (� x)P �̀!C (� x)P 0 (a) (Res-1) A; x ` P yov�!C P 0A ` (� x)P yov�!C P 0 (b) (Res-2)A ` P �̀!C P 0 P 0 � P 00A ` P �̀!C P 00 (Struct)(a) The (Res-1) rule is subject to x 62 fn(`). (b) The (Res-2) rule is subject to x 2 fn(v) � fn(y; o), if o is ?, " orn, and to x 2 fn(y; v) � fn(o) otherwise. (c) In the (In) and (Repl) axioms there is a side condition that fv=pgP iswell-de�ned. In all rules with conclusion of the form A ` P �̀!C Q there is an implicit side condition fn(P ) � A.Symmetric versions of (Par) and (Comm) are elided.
Figure 3. Coloured Box- � Labelled Transition Semantics
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annotating all outputs with sets of colours:P ::= C :xov �� x�p:P �� !x�p:P �� n[P ] �� 0 ��P j P 0 �� (� x)PIf P is a coloured term we write jP j for the term ofthe original syntax obtained by erasing all annotations.Conversely, for a term P of the original syntax C �Pdenotes the term with every particle coloured by C.For a coloured P we write C �P for the coloured termwhich is as P but with C unioned to every set of coloursoccurring in it. We sometimes confuse p and the setfpg. Let pn(P ) be the set of colours that occur in P .We write CD for the union C [ D.In the coloured output C :xov think of C as record-ing the causal history of the output particle { C is theset (possibly empty) of principals p 2 C that have af-fected the particle in the past. In an initial state alloutputs might typically be coloured by singleton setsgiving their actual principals, for example colouring thecode of wrapper F and two wrapped components withdi�erent colours w; p; q:(w �F) (p �P j q �Q)The coloured reduction semantics is obtained byreplacing the �rst four axioms of the uncoloured se-mantics by the rulesn[C :x"v j Q] �! C :xnv j n[Q] (C Red Up)C :xnv j n[Q] �! n[C :x"v j Q] (C Red Down)C :x�v j x�p:P �! C �(fv=pgP ) (C Red Comm)C :x�v j !x�p:P �! !x�p:P j C �(fv=pgP ) (C Red Repl)that propagate colour sets. The coloured calculus hasessentially the same reduction behaviour as the originalcalculus:Proposition 2 For any coloured P we have jP j ! Qi� 9P 0 : P �! P 0 ^ jP 0j = Q.The coloured labelled transitions have labels ` ex-actly as before. The coloured labelled transition rela-tion has the form A ` P �̀!C Qwhere A is a �nite set of names and fn(P ) � A; itshould be read as `in a state where the names A maybe known to P and its environment, process P can do`, coloured C, to become Q'. Again C records causalhistory, giving all the principals which have directlyor indirectly contributed to this action. The relationis de�ned as the smallest relation satisfying the rules

in Figure 3. It coincides with the previous LTS andwith the coloured reduction semantics in the followingsenses.Proposition 3 For any coloured P we have A `jP j �̀! Q i� 9C; P 0 : A ` P �̀!C P 0 ^ jP 0j = Q.Proposition 4 For coloured P and Q, if fn(P ) � Athen A ` P ��!; Q i� P ! Q.
5.2 The Causal Flow PropertyThe property can now be stated. Say an instan-tiation of some binary wrapper W is an uncolouredprocess W(P;Q) where P and Q are uncoloured pro-cesses not containing the new-bound names scoping theholes of W . Say W is a pure binary wrapper if for anyinstantiation and any transition sequenceA ` W(P;Q) `1�! : : : `k�! Rthe labels `j have the form � , ini"v, or outi"v, for i 2f1; 2g. It is easy to see that F is pure. Purity simplymeans that the wrapper has a �xed interface and thussimpli�es the statement of the causal 
ow property.De�nition 1 (Causal 
ow property) A pure bi-nary wrapper W has the causal 
ow property if forany instantiation W(P;Q) and any coloured traceA ` ; �W(P;Q) `1�!C1 : : : `k�!Ck ;such that all input transitions in1"v and in2"v in `1::`kare coloured with principal sets fpg and fqg respec-tively, we have `j = out1"v implies that q 62 Cj .This property forbids any causal 
ow from an input onin2 to an output on out1.Di�erent variants of the 
ow property, with di�erentcharacteristics, can be stated { for example, to alsoprevent information in the initial state of Q a�ectingoutputs on out1 we could consider coloured tracesA ` �; �W)(p �P; q �Q) `1�!C1 : : : `k�!CkThis second de�nition still allows the Q to communi-cate with P but only on the condition that P does notperform any further output dependent on the commu-nicated values. Forbidding Q a�ecting P at all (evenif there are no inputs or outputs of either component)can be done with a slightly more intricate coloured se-mantics. There is no clear cut `best' solution, yet theuse of causal semantics allows succinct statement of thealternatives and eases the comparison of these di�erentproperties.9



6 Causality TypesVerifying a causal 
ow property directly can be labo-rious, requiring a characterisation of the state space ofa wrapper containing arbitrary components. We there-fore introduce a type system that statically capturescausal 
ows; a wrapper can be shown to satisfy thecausal 
ow property simply by checking that it is well-typed. This section introduces the type system, givesits soundness theorems, and applies it to F .A simple type system for Box-� would have typesT ::= chan T �� box �� hT :: T ifor the types of channel names carrying T , box names,and tuples. We annotate the �rst two by sets K ofprincipals and add a type name, of arbitrary names,and >, of arbitrary values, giving the value typesT ::= chanKT �� boxK �� hT :: T i �� name �� >If x : chanKT then x is the name of a channel carry-ing T ; moreover, in an output process C : x?v on xthe typing rules will require C � K { intuitively, suchan output may have been causally a�ected only by theprincipals k 2 K. In an input x�p:P on x the continua-tion P must therefore be allowed to be a�ected by anyk 2 K, so any output within P must be on a channel oftype chanK0T with K � K0.We are concerned with the encapsulation of possiblybadly-typed components, so must allow a box a[P ] ina well-typed term to contain an untyped process P .The type system cannot be sensitive to the causal 
owswithin such a box; it can only enforce an upper boundon the set of principals that can a�ect any part of thecontents. If a :boxK then a is a box name; the contentsmay have been causally a�ected only by k 2 K.We take type environments � to be �nite partialfunctions from names to value types. The type sys-tem has two main judgments, � ` v :T for valuesand � ` P :procK for processes. The typing for pro-cesses records just enough information to determinewhen pre�xing a process with an input is legitimate{ if P :procK then P can be pre�xed by an input ona channel x : chanK0hi, to give x?:P , i� K0 � K. Note,however, that a P :procK may have been a�ected by(and so syntactically contain) k 62 K.To type interactions between well-typed wrappercode and a badly-typed boxed component some simplesubtyping is useful. We take the subtype order T � T 0as below, and write VfTi j i 2 1::k g for the greatest

lower bound of T1; ::; Tk, where this exists.>name hT1 :: TkiboxK chanKTThe complete type system is given in Figure 4; we nowexplain the key aspects by giving some admissible typ-ing rules.Basic Flow TypingConsider x : chanKhi; y : chanLhi and the reductionC :x? j x?:D :y? ! (C [ D) :y?During the reduction the output y? on y is causally af-fected by the output on x { the right-hand process term(C [ D) :y? records that the output on y has been (in-directly) a�ected by all the principals that had a�ectedthe output on x. For the left process to be well-typedwe must clearly require C � K and D � L; for the rightprocess to be well-typed we need also C � K, to guar-antee this the typing rules require K � L. The relevantadmissible rules are below.� ` x : chanKT� ` v :TC � K� ` C :x?v : procK � ` x : chanKT�; y :T ` P :procK00K � K00� ` x?y:P :procKNow consider also y : chanL0hi and the processC :x? j x?:�D :y? j D0 :y0?�Here both the output on y and that on y0 must bea�ectable by C, so the typing rule for parallel musttake the intersection of allowed-cause sets:� ` P :procK � ` Q :procK0� ` P j Q :procK\K0The examples above involve only communicationwithin a wrapper, with tag ?. Communication betweena wrapper and its parent, with tag ", has the same typ-ing rules, as the parent is presumed well-typed.Channel Passing Channel passing involves no addi-tional complication. Consider the type environment� = z : chanK00hi, x : chanKchanK00hi, and the reduc-tion C :x?z j x?y:D :y? ! (C [ D) :z?10



The left-hand process is typable using the rules aboveif C � K for the x output, D � K00 for the y output,and K � K00 for the input, using �; y : chanK00hi ` D :y? :procK00 . Together these imply (C [ D) � K00, so theright-hand process is well-typed.Interacting with a box (at >) As discussed above,the contents of a box may be badly-typed, yet a wrap-per must still be able to interact with them. The sim-plest case is that in which a wrapper sends and receivesvalues that it considers to be of type >; we considermore general communication in the next paragraph.The typing rule for boxes requires only that the princi-pals pn(P ) syntactically occurring within the contentsP of a box are contained in the permitted set and thatP 's free names are all declared in the type environment.� ` a :boxKpn(P ) � Kfn(P ) � dom(�)� ` a[P ] :procKConsider sending to and receiving from a box a :boxK.C :xav j a[P ] j zay:QFor the output to be well-typed we must insist onlythat C � K; for the input to be well-typed Q must beallowed to be a�ected by any principal that might havea�ected the contents P .� ` a :boxK� ` x :name� ` v :>C � K� ` C :xav : procK � ` a :boxK� ` x : chanK0>�; y :> ` P :procK00K � K0 � K00� ` xap:P :procK0Interacting with a box (at any transmissible S)More generally, a wrapper may receive from a box tu-ples containing names which are to be used for com-municating with the box as channel names, for examplexa(v r):�C :ra j : : : �receives a value v and name r from box a and uses r tosend an ack back into a. This necessarily involves somerun-time typechecking, as the box may send a tupleinstead of a name for r. There is a design choice here:how strong should this typechecking be? Requiringan implementation to maintain a run-time record ofthe types of all names would be costly, so we checkonly the structure of values received from boxes. Wesuppose the run-time representations of values allownames (bit-patterns of some �xed length) and tuples to

be distinguished, and the number of items in a tupleto be determined, but no more (so e.g. x : chanKTand y :boxL will both be represented as bit patterns ofthe same length). We introduce the supertype nameof chanKT and boxL, and allow a wrapper to receiveonly values of the transmissible typesS ::= > j name j hS :: SiTo send a value to a box by C :xav it is necessary onlyfor x to be of type name.The operational semantics expresses this run-timetypechecking by means of the condition that fv=pgPis well-de�ned in the reduction communication ruleand the labelled-transition input rules { for example,fhz zi=xgC :x? is not well-de�ned, as the syntax does notallow a tuple to occur in channel-name position of anoutput. We would like to ensure that run-time type-checking is only required when receiving values from abox, i.e. that for communication within a wrapper orbetween a wrapper and its parent such a substitutionis always well-de�ned. This is guaranteed by requiringa box input pre�x to immediately test all parts of a re-ceived value that are assumed of type name { in typingan input xap:P the type environment � derived fromthe pattern p must contain no tuples, and all x :namein � must be used within P as a channel or box. Forexample, if a :boxK and x : chanKhnamenamei thenxa(y z):�K :ya j K :za�is well-typed as the pattern (y z) completely decom-poses values of type hnamenamei and both y and zare used as channels in K : ya j K : za. On the otherhand xaw:x?wis not, as it may receive (for example) a triple from thebox, leading to a later run-time error within the wrap-per. The type system is conservative in also excludingxa(y z):�K :ya�. Say a type is atomic if it is of the formname, chanKT or boxK and 
at if it is of the form>, name, chanKT , or boxK. Say � is atomic or 
atif all types in ran(�) are. The atomic types are thosewhich can be dynamically extended using restriction.We consider dynamics (reductions and labelled transi-tions) only for processes with respect to atomic typingcontexts; the de�nitions ensure that an extruded namecan always be taken to be of an atomic type. The cal-culus has no basic data types, e.g. a type of integers,that are not dynamically extensible. This makes thetype system a little degenerate.11



Patterns: ` :T B ; ` x :T B x : T ` p1 :T1 B �1 :: ` pk :Tk B �k` (p1 :: pk) : hT1 :: Tki B �1; ::;�kValues: �; x :T ` x :T � ` v1 :T1 :: � ` vk :Tk� ` hv1 :: vki :hT1 :: Tki fn(v) � dom(�)� ` v :> T atomic�; x :T ` x :nameProcesses: o 2 f?; "; "g� ` x : chanKT� ` v :TC � K� ` C :xov : procK (Out-?; "; ") � 2 f?; "g� ` x : chanKT` p :T B ��;� ` P :procK� ` x�p:P :procK (In-?; ")
o 2 fa; ag� ` a :boxK� ` x :name� ` v :>C � K� ` C :xov : procK (Out-a; a)

� ` a :boxK0� ` x : chanKS` p :S B ��;� ` P :procKK0 � K� 
atP tests all names of type name in �p contains no wildcards� ` xap:P :procK (In-a)� ` P :procK� ` Q :procK0� ` P j Q :procK\K0 (Par) � ` n :boxKpn(P ) � Kfn(P ) � dom(�)� ` n[P ] :procK (Box)
� ` 0 :procK (Nil) �; x :T ` P :procKT atomic� ` (� x)P :procK (Res)� ` P :procK0K � K0� ` P :procK (Spec)The replicated input rules are similar to the input rules. The predicate `P tests all names of type name in �'is de�ned to be true i� for all y :name in �, y occurs free in channel or box position within P .

Figure 4. Coloured Box- � Typing
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The rest The typing rules for nil and restriction arestraightforward; there is also a specialisation rule al-lowing some permitted a�ectees of a process to be for-gotten.� ` 0 :procK �; x :T ` P :procKT atomic� ` (� x)P :procK � ` P :procK0K � K0� ` P :procK
6.1 SoundnessWe wish to infer properties of the coloured in-put/output behaviour of wrappers from the soundnessof the type system, and therefore need a subject reduc-tion result which refers not only to reductions (equiv-alently, � transitions) but also to input/output transi-tions. De�ne typed labelled transitions by� `K P �̀!C Q i� �� atomic ^� ` P :procK ^ dom(�) ` P �̀!C Q�The subject reduction theorem for ` an output xovshould state that x, o, v and Q have suitable types;the theorem for ` an input should state that if ` canbe typed then Q can. The result is complicated bythe fact that box-� is a calculus with new name gen-eration, so new names can be extruded and intruded.Type environments for these names are calculated asfollows. For a type environment �, with � atomic, anda value v extruded at type T de�ne the type environ-ment tc(�; v; T ) for new names in v as follows.tc(�; x; T ) = x :T if x 62 dom(�)and T atomictc(�; x;>) = x :name if x 62 dom(�)tc(�; x; T ) = ; if � ` x :Ttc(�; hv1 :: vki;>) = V1::n tc(�; vi;>)tc(�; hv1 :: vki; hT1 :: Tki) = V1::n tc(�; vi; Ti)tc(�; v; T ) unde�ned elsewhereHere Vi21::k �i is the type environment that maps eachx in some dom(�i) to VfT j 9i : x :T 2 �i g, where allof these are de�ned. Vi21::k �i is unde�ned otherwise.Note that in the > case the tc(�; vi;>) will necessarilyall be well-de�ned and will be consistent. To see theneed for V, consider � = c : chanKhboxK namei andP = (� x)c?hxxi. P has an extrusion transition withvalue hxxi; the type context tc(�; hxxi; hboxK namei)should be well-de�ned and equal to x :boxK.Further, the type system involves subtyping, sotc(�; v; T ) can only be used as a bound on the ex-truded/intruded type environments. Say � � �0 i�dom(�) = dom(�0) and 8x 2 dom(�) : �(x) � �0(x).

We can now state the subject reduction result. Foroutput tags f?; "g and " the name x is guaranteed tohave a channel type and v the type carried; for a anda they are only guaranteed to be a name and a valueof type >. f?; "g and a are communication tags, sox cannot be extruded, whereas " and a are movementtags, so x may be extruded. By convention we elide aconjunct that tc(:::) is de�ned wherever it is mentioned.Theorem 5 (Subject Reduction) If � `K P xov�!CQ thencase o 2 f?; "g: for some K0; T we have C � K0, � `x : chanK0T , and there exists � � tc(�; v; T ) suchthat �;� ` Q :procK.case o =": for some K0; T we have C � K0 and thereexists � � tc(�; hx vi; hchanK0T T i) such that�;� ` Q :procK.case o = a: for some K0 we have C � K0, � `a :boxK0 , and there exists a type environment� � tc(�; hx vi; hname; >i) such that �;� `Q :procK.case o = a: for some K0 we have C � K0, � `a :boxK0 , � ` x :name, and there exists � �tc(�; v;>) such that �;� ` Q :procK.If � `K P x
v�!C Q thencase 
 2 f?; "g: for some K0, T we have � `x : chanK0T . If moreover C � K0 and � �tc(�; v; T ) then �;� ` Q :procK.case 
 = a: for some K0 � K00, and S we have� ` a :boxK0 , � ` x : chanK00S, tc(�; v; S) well-de�ned, and ran(tc(�; v; S)) � fnameg. If more-over C � K00 and � � tc(�; v; S) then �;� `Q :procK.case 
 = a: for some K0 we have � ` a :boxK0 .If moreover C � K0 and we have � �tc(�; hx vi; hname>i) then �;� ` Q :procK.If � `K P ��!C Q then C = ; and � ` Q :procK.A run-time error for box-� is a process in which apotential communication fails because the associatedsubstitution is not de�ned. More precisely, P containsa run-time error if it contains subterms x
v and x
p:Pin parallel (and not under an input pre�x) and fv=pgP isnot de�ned. In a well-typed process run-time errors canonly occur within boxes (whose contents are untyped)or at communications from a box to the wrapper. In-ternal transitions of the wrapper and communicationsbetween the wrapper and its parent therefore do notrequire dynamic typechecking.13



Theorem 6 (Limited Runtime Errors)If � ` P :procK, P � (� x1 :: xn)�x
v j x
p:P 0 j Q�, �atomic, P 0 does not contain a box and 
 2 f?; "g thenfv=pgP is well-de�ned. Similarly for replicated input.
6.2 Typing the Unidirectional-flow WrapperFinally, we can show that instantiations of F arewell-typed and use the subject reduction theorem toconclude that F has the causal 
ow property.Theorem 7 (F typing) If� = in1 : chanfpg>; out1 : chanfpg>;in2 : chanfqg>; out2 : chanfp;qg>;from : chanfpgh>namei;to : chanfp;qgh> chanfp;qghii;�1and also fn(P;Q) � dom(�)� fa; bgthen � ` ; �F(P;Q) :procp.The proof of this involves type assumptions for thenew-bound names of F as follows.a:boxfpgb:boxfp;qgbu� :chanfpgh chanfpgh> chanfpghiichanfp;qgh> chanfp;qghiiifull :chanfp;qghchanfp;qgh> chanfp;qghiichanfp;qgh> chanfp;qghii>iA straightforward induction on trace lengths using theSubject Reduction theorem then proves the desiredcausal 
ow result:Theorem 8 Wrapper F has the causal 
ow property.7 DiscussionPolicy enforcement mechanisms: Wrappers im-pose security policies on components for which it is im-practical to analyze the internal structure, e.g. whereonly untyped object code is available.Several alternative approaches are possible, di�er-ing in the level of trust required, the 
exibility of thesecurity policy enforced, and their costs to componentproducers and users. Code signing and Java-style sand-boxing have low cost but cannot enforce 
exible poli-cies { signed components may behave in arbitrary wayswhereas sandboxed components should not be able tointeract with each other at all. Code signing requiresthe user to have total trust in the component produc-ers { not just in their intent, but also in their ability to

produce bug-free components. Sandboxing requires notrust, but the lack of any interaction is often too restric-tive. More delicate policies can be enforced by shippingcode together with data allowing the user to type-checkit in a security-sensitive type system [VSI96, HR98],or to check a proof of a security-relevant behaviouralproperty [NL98]. In the long term these seem likely tobe the best approaches, but they require componentproducers to invest e�ort and to conform to a com-mon standard for types or proofs { in the short termthis is prohibitive. Shifting the burden of proof to theuser, by performing type inference or static analysisof downloaded code, seems impractical given only theobject code, which may not have been written withsecurity in mind and so not conform to any reason-able type system. In contrast, wrappers have beenshown to have low-cost { none to the producer andonly a small run-time cost to the user [FBF99]. Theyallow more 
exible interaction than sandboxing, albeitcoarser-grain policies than proof-carrying componentsor security-type-checked components.Information 
ow properties: The causal 
ow prop-erty is related to the property, studied in many con-texts, that there is no information 
ow from a high to alow security level (though most work addresses compo-nents, which may have the property, rather than wrap-pers, which may enforce it on subcomponents). Theliterature contains a range of de�nitions that aim tocapture this intuition in some particular setting; theformalisations vary widely. A basic choice is whetherthe property is stated purely extensionally, in termsof a semantics that describes only the input/outputbehaviour of a system, or using a more intensionalsemantics. A line of work on Non-Interference, sum-marised in [McL94], takes an extensional approach,stating properties in terms of the traces of inputand output events of a system. Related de�nitions,adapted to a programming language setting, are usedin [VSI96, HR98]. In the presence of nondetermin-ism, however, non-interference becomes problematic {as discussed in [VS98], the property may only be mean-ingful given probabilistic scheduling, which has a highrun-time cost.We believe that the basic di�cultly is that the in-tuitive property is an intensional one { the notionof one component a�ecting another depends on someunderstanding of how components interact; a precisestatement requires a semantics that captures someaspects of internal execution, not just input/outputbehaviours. This might be denotational or opera-tional. Intensional denotational semantics have beenused in the proofs (and, in the last, statements) of14



non-interference properties in [HR98, ABHR99, SS99],which use a logical relations proof and PER-basedmodels. [VS98] and [SS99] go on to consider proba-bilistic properties.For wrappers, it is important that the end-userbe able to understand the security that they provideas clearly as possible. We therefore wish to use aslightweight a semantics as possible, as this must be un-derstood before any security property stated using it,and so adopt an annotated operational semantics (de-veloping a satisfactory denotational semantics of box-�, dealing with name creation, boxes, and untypedcomponents, would be a challenging research problemin its own right). In a sequential setting annotated op-erational semantics have been used by [ZGM99]; seealso [LR98]. The de�nition of the coloured seman-tics for box-� seems unproblematic, but in general onemight validate an annotated semantics by relating it toa lower-level execution model (as mentioned below).Neglecting boxing and wrappers for the moment,considering simply �-processes, we believe that inten-sional properties stated in terms of causal 
ow will gen-erally imply properties stated purely in terms of trace-sets. As a starting point, we show that our type systemimplies a non-interference property (similar to the per-mutation property of [SV99b], but for processes ratherthan wrappers) in a particular case. We prove that anoutput on a `low' channel can always be permuted be-fore an input on a `higher' channel (with respect to thelattice of sets of colours).Proposition 9 If L ( H and fh : chanHU;l : chanLV g ` P :proc; thenfh; lg ` P h?u�! l?v�! Q implies fh; lg ` P l?v�!h?u�! Q:Proof (Sketch) One can �rst show that ; �P hascoloured transitions with the input coloured H andthe output by some C. By subject reduction C � L.Analysing the form of P with Lemmas 21,20 from[SV99a], and using L ( H, shows that the output termin P is not pre�xed by the input, so the transitions canbe permuted. 2Information 
ow type systems: The type systemdi�ers from previous work [VSI96, VS98, P�97] pri-marily in handling badly typed components. Necessar-ily, it does not provide �ne-grain tracking of informa-tion 
ow through these components. It also handlesnondeterminism, new name creation and channel pass-ing. Precise comparisons with related type systems aredi�cult as the languages involved di�er widely. One

can, however, embed fragments of these languages intobox-� (noting that this only exploits the fully-typedpart of our calculus). For example, in the work of Smithand Volpano [SV98] an assignment to a low securityvariable can follow an assignment to a high variable{ the program h:=3;l:=1 is well-typed. The naturaltranslation of this program in box-� would beh?0 j l?0 j h?y:(h?3 j l?y:l?1)with an initial store assigning 0 to h and l. This wouldnot be well-typed in the system of this paper, takingh : chanfH;LgInt, l : chanfLgInt and a new base typeInt. Here the low assignment is causally dependenton the high, even though no high information can leak.On the other hand a box-� encoding of branches wouldnot forbid high variable guards.Causal 
ow is a robust and straightforward prop-erty; it can be enforced by a remarkably simple typesystem. But, as the example above shows, it is some-times overconstraining. We envisage that in a largesystem the bulk of the code will be typeable in a se-cure type system, a small portion will be in clearly-identi�ed unsafe modules that are subject only to con-ventional typechecking, and a small portion (any un-trusted code) will be encapsulated in wrappers. Auto-matic type inference would be required to relieve theburden of adding security annotations to all declara-tions.8 ConclusionThe issue of securely composing untrusted or par-tially trusted components has great practical relevance.In this paper we have studied techniques for formallyproving that software wrappers { the glue betweencomponents { actually enforce user-speci�ed informa-tion 
ow constraints. We have de�ned a coloured op-erational semantics for a concurrent wrapper language.By keeping track of all the principals that have a�ecteda process in the semantics it becomes easy to formu-late clear statements of information 
ow properties. Toprove that particular wrappers are secure, we de�neda causal type system and so only need show that thewrappers are well typed.Throughout the paper we focussed on wrapper prop-erties { the calculus, statement of security propertiesand type system are all designed speci�cally for wrap-pers { but we believe similar techniques are applicableto other situations in which interaction must be con-trolled but not completely excluded, for example inisolating a security-critical kernel of a single applica-tion, or in controlling interactions between packets in15



an active network. Allowing untyped code fragmentsin otherwise typed programs gives a way to loosen se-curity restrictions when necessary.In future work we intend to integrate the causal typesystem with a lower-level semantics for object code,such as the typed assembly language of [GM99]. Wealso intend to address the issue of type inference of se-curity levels and the statements of properties involvingdynamic changes in information 
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