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Abstract. This paper presents a transactional framework for low-latency,
high-performance, concurrent event processing in Java. At the heart of
our framework lies Reflexes, a restricted programming model for highly
responsive systems. A Reflex task is an event processor that can run at a
higher priority and preempt any other Java thread, including the garbage
collector. It runs in an obstruction-free manner with time-oblivious code.
We extend Reflexes with a publish/subscribe communication system, it-
self based on an optimistic transactional event processing scheme, that
provides efficient coordination between time-critical, low-latency tasks.We
report on the comparison with a commercial JVM, and show that it is
possible for tasks to achieve 50 µs response times with way less than 1%
of the executions failing to meet their deadlines.

1 Introduction

Performing real-time processing in a managed language environment, such as
Java, is very appealing but introduces two significant implementation challenges:
memory management and inter-task communication.

Typically, garbage collectors used in commercial Java virtual machines are
designed to maximize the performance of applications at the expense of pre-
dictability. Consequently, with these garbage collectors it is non-deterministic
when and for how long they will run. As a consequence garbage collection in-
troduces execution interference that can easily reach hundreds of milliseconds,
preventing the timeliness requirements of the real-time systems from being satis-
fied. High performance real-time Java virtual machines have somewhat reduced
this challenge through advances in real-time garbage collection algorithms, re-
ducing the latency to approximately 1 ms. However, some applications have
latency/throughput real-time requirements that cannot be met by current real-
time garbage collection technology. For these applications, having scheduling
latency requirements below a millisecond, any interference from the virtual ma-
chine is likely to result in deadline misses.

Another source of interference that can easily cause deadline misses, relates
to communication between the time-critical real-time tasks, including any inter-
action they might have with the rest of the application. Typically, time-critical
tasks only account for a fraction of the code of an entire application, the rest



being either soft- or non-real-time code. For instance, the US Navy’s DD-1000
Zumwalt class destroyer is rumored to have million lines of code in its shipboard
computing system, of which only small parts have real-time constraints. Typical
programming practices for sharing data would involve synchronizing access to
the data. In a real-time system, this might lead to unbounded blocking of the
real-time thread, so-called priority inversion, causing serious deadlines infringe-
ments.

One of the key design decisions of the Real-time Specification for Java (RTSJ)
[9] was to address these problems with a programming model that restricts
expressiveness to avoid unwanted interactions with the virtual machine and the
garbage collector in particular. The RTSJ introduced the NoHeapRealtimeThread
for this purpose, and also proposed solutions to cope with priority inversion. As
we discuss in the related work, however, experience implementing [5, 13, 21, 2]
and using [8, 20, 7, 22, 24] the RTSJ revealed a number of serious deficiencies.
More recently, alternatives to NoHeapRealtimeThread have been proposed, such
as Eventrons [26] and Exotasks [3] from IBM Research as well as Reflexes [27]
and StreamFlex [28].

This work builds on our experience with Reflexes [27], a simple, statically
type-safe programming model that makes it easy write and integrate simple pe-
riodic tasks observing real-time timing constraints in the sub-millisecond range,
into larger time-oblivious Java applications. Reflex tasks are written in a sub-
set of Java with special features for (1) safe region-based memory management
preventing interference from the garbage collector, (2) obstruction-free atomic
regions avoiding any priority inversion problems when communicating with time-
oblivious code, and (3) real-time preemptive scheduling allowing the Reflex task
to preempt any lower-priority Java thread, including the garbage collector. Fi-
nally, Reflexes rely on a set of safety checks, based on our previous work for
Real-time Java [1, 32], to ensure safety of memory operations. These checks are
enforced statically by an extension of the standard Java compiler. The Reflex
safe regions provide better latency than a real-time collector.

In StreamFlex [28], we extended Reflexes to support low-latency stream pro-
cessing by introducing graphs of tasks that communicate through non-blocking
transactional communication channels, allowing tasks to communicate in a zero-
copy fashion. While these transactional channels are effective for communication,
they fall short when it comes to coordination between time-critical tasks. In par-
ticular, coordinating transactions in a multi-core environment turns out to be
challenging when striving for low-latency.

Publish/subscribe systems are a special case of event-based programming
where a number of computational components are allowed to register, or sub-
scribe, to events published by other components in the system [15]. This pro-
gramming model has been applied in different context; in distributed systems,
publish/subscribe is a convenient way to decouple producers from consumers,
and to provide a simple resource discovery protocol via a registration mecha-
nism. On a single node, publish/subscribe offers a convenient way to program
dynamic systems where new rules can be added/removed dynamically and events



processed in parallel. Example of applications can be found in the financial sec-
tor where events are the movement of stocks and computational elements imple-
ment trading rules. Some examples of event-based systems are Gryphon, JEDI
and JavaSpaces [16, 29, 14].

This paper presents an extension of the original Reflex programming model
with a publish/subscribe substrate that allows for coordination and communi-
cation between highly time-critical, low-latency Reflex tasks by registering for,
and publishing, user-defined events. This publish/subscribe system is itself built
on top of a transactional tuple space implementation that abides by the se-
mantics described in [17] and uses the data structures described in [30]. While
the original Reflex implementation used a limited form of software transactional
memory based on [18] for the obstruction-free interaction with ordinary Java
threads, in the extension presented in this paper, all the computation performed
by a Reflex task is transactional. Thus, access to the shared space containing
events and subscriptions is transactional, as are the actions performed during
event processing.

Furthermore, the paper reports on a number of encouraging performance
results by comparing equivalent executions with a commercial JVM, and docu-
ments on the ability for tasks to achieve 50 µs response times with way less than
1% of the executions failing to meet their deadlines.

This paper focuses on the extended programming model and its perfor-
mance characteristics. We explicitly do not address issues of distribution, fault-
tolerance, event correlation and event lifetimes. While these are important from
a usability point of view, we leave their investigation to future work.

2 Programming with Events and Reflexes

Reflexes are small time-critical tasks that are intended to execute free from
interference from their environment. The task is an object of a user-defined
subclass of ReflexTask with its own private memory area and that is executed
by a real-time thread. The main responsibility of a Reflex task is to implement
execute(), a method that will be invoked whenever the Reflex task’s trigger
condition evaluates to true. In this paper we extend the notion of time-triggered
tasks from Reflexes [27] with registration-triggered Reflex tasks. A purely time-
triggered Reflex task is one whose execute() method is executed according to
a period specified at task instantiation. A registration-triggered Reflex task is
released by the scheduler when an event that matches one of the Reflex task’s
registered templates is inserted in the shared space (by another Reflex task).

Fig. 1 illustrates a Reflex application consisting of a time-oblivious part and
three time-critical tasks. A single transactional event space is shared by the
three Reflex tasks (R1, R2, R3). The tasks can register for events, take events
and write events to the shared space. Standard, time-oblivious Java code can
run in the same virtual machine but has restricted ability to interact with Reflex
tasks, see [27] for details.
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Fig. 1. Transactional Event Processing with Reflexes. Three Reflex tasks (R1,
R2, R3) are concurrently using a shared event space. Reflex tasks can register for
events, in which case they get to execute as soon as an event matching their registered
template is put in the space (R1). Reflex task can take events from the space (R2)
or put new events into it (R3). Reflex tasks execute in private memory areas and are
unreachable to the public heap garbage collector. They are composed of two parts, a
stable heap that is not reclaimed, and transient storage that is reclaimed after each
invocation of the task.

In order to minimize latency, the Reflex programming model sports a bimodal
distribution of object lifetimes for tasks. An object allocated within a Reflex
task can be either stable, in which case the lifetime of the object is equal to that
of the task, or it can be transient in which case the object only lives for the
duration of the invocation of the task’s execute method after which the virtual
machine will reclaim it in constant time before the next invocation of the task.
Specifying whether an object is stable or transient is done at the class level.
By default, data allocated by a Reflex thread is transient, while only objects of
classes implementing the Stable marker interface will persist between invocations.
Stable objects must be managed carefully by the programmer, as the size of
the stable heap is fixed and the area is not garbage collected. The distinction
between stable and transient objects is enforced statically by a set of static safety
checks [27]. It is noteworthy that code running in transient does not require
special annotations, and we can thus reuse many classes from the standard Java
libraries.

Example. Fig. 2 presents a simple Reflex task. The class StockBuyer is declared
to extend the abstract class ReflexTask. As such it has to implement the method
execute(), which runs every time the task is scheduled. The state of the Reflex
task consists of two fields, maxPrice, a double, and handle, a reference to a Handle.
Being instance fields of the Reflex task, these fields persist across invocations of
the task, they are the roots for its stable data. Primitive types are stable by
default, and object are stable only if their defining class implement the Stable



class StockBuyer extends ReflexTask {
double maxPrice;
Handle handle;

public void initialize() {
handle = subscribe(new Event("sell", null));

}

public void execute() {
for (Event offer : handle) {

if (isExpired(offer.get("expiry")) return;
double price = asDouble(offer.get("price"));
if (price ∗ 2 <= maxPrice)

write(new Event("type", "buy")
.add("price", price));

else
if (price > maxPrice) maxPrice = price;

}
}

}

Fig. 2. Stock Trading with Reflexes.

marker interface (as is the case for Handle). The role of a Handle is to represent
a subscription that has been registered with the event space. In this case, handle
will be notified if an event with the key sell is inserted in the space.

The execute() method is invoked after an event matching the subscription
has been inserted in the space. By the time the Reflex task starts to execute,
more matching events may have become available, or someone else may have
been quicker than the Reflex task and no matching event may be present in the
space any longer. Thus, execute() will iterate over the events that match the
query and, if the price is right, it will write buy the events back to the space.

The transactional infrastructure must keep track of two kinds of events: the
operations on the shared event space, and the mutations of the stable state of
the Reflex task. Each iteration of the loop in execute() performs (1) a test to see
if more data is available, then (2) it does a destructive read, and (3) in some
cases a write into the space. The transactional infrastructure will record all of
these operations, and manage conflict detection and rollback. On the side of the
Reflex task, the only meaningful operation is the possible update to the field
maxPrice, which will be recorded in case a rollback is necessary.

It is useful to consider the potential sources of aborts. The Reflex program-
ming model is such that tasks ’own’ all the data in both stable and transient
state. Thus, all of the objects that make up a Reflex task are guaranteed to be
accessed only by a single thread. This means that there can be no conflict on
task data. Conflicts (and aborts) can come about in only two ways: concurrent



operations on the shared event space, and explicit calls to abort() from a Reflex
task itself.

3 Transactional Reflex API and Semantics

We present here the semantics of the shared event space (Sec. 3.1), and then ex-
plain how the shared space integrates with transactional Reflex tasks (Sec. 3.2).

3.1 Shared Event Space

An event space is a multiset of events that are shared between Reflex tasks.
An event is a function from keys – represented as interned String objects – to
values – Java objects such as boxed primitives, arrays, and certain user-defined
data structures. The basic operations on a shared space are limited to three
basic, non-blocking, operations: take(), write(), and test(), which respectively,
remove and insert a deep-copied version of the provided event, and check for the
availability of an event in the shared space. The arguments to all those methods
are events; in the case of take() and test(), the argument is used as a template
for finding matching events in the space.

The semantics of matching is the following: a template matches an event if
it contains the same or fewer keys, and for each key it contains a value that is
either the same of the event or null, null being a wildcard. Fig. 3 depicts a few
examples on matching between templates and events.

Template Event

[’stock’:’APPL’, ’value’:3] matches [’stock’:’APPL’, ’value’:3]
[’stock’:null, ’value’:3] matches [’stock’:’APPL’, ’value’:3]

[’stock’:’APPL’] matches [’stock’:’APPL’, ’value’:3]
[’stock’:’APPL’, ’value’:3] !match [’stock’:’APPL’]

Fig. 3. Matching between templates and events.

Transactional semantics of the shared space follow from [17]. Informally, a se-
quence of operations performed within a transaction is conflict-free if the same
sequence would succeed at the time of commit.

3.2 Transactional Reflexes

An excerpt of the extended Reflex API supporting transactional event processing
is given in Fig. 4. To implement a Reflex task, the programmer must provide
a subclass of ReflexTask class. The operations available include two versions of
the shared space operations, e.g. write() and writeNow(). The latter bypasses
the transactional layer and updates the space directly. This is a form of open



public abstract class ReflexTask implements Stable {
public ReexTask(int transientSize, int stableSize) {...}
public abstract void execute();
public void initialize() {};

final void write(Event ev) {...};
final void writeNow(Event ev) {...};
final Event take(Event template) {...};
final Event takeNow(Event template) {...};
final boolean test(Event template) {...};
final boolean testNow(Event template) {...};
final Handle subscribe(Event template) {...};
final void unsubscribe(Handle hndl) {...};
final void abort() {...};

}

public final class Handle implements Stable {
Event next();
Event nextNow();
boolean hasNext();
boolean hasNextNow();

}

public class Event {
Event();
Event add(String key, Object value);
Object get(String key);

}

Fig. 4. An excerpt of the extended Reflex API.

nesting [19], and is needed in combination with user-initiated abort() to post an
event describing the reasons of the abort or containing partial results.

The semantics of abort() is to discard all changes to the shared space, termi-
nate the current invocation of the execute() method, discard all data allocated
in the transient area and finally rollback all changes in the stable heap.

In order to be notified of the insertion of an event matching some template, a
Reflex task must subscribe() to that event. When it does, it receives an instance
of Handle which is always allocated in stable heap of the task (and thus can be
retained between invocation of execute()). Each handle refers to one subscription
in the shared event space. A Reflex task may have multiple handles listening on
different kinds of events. When an event is inserted in the space all Reflex tasks
with matching subscription will be notified. Handles support an iterator interface
to query and read matching events.

Reflex tasks can be active or passive. An active Reflex has an associated real-
time thread with a priority and a period. The semantics of an active Reflex is



that every period, the implementation checks if one of the handles has witnessed
insertion of a matching event. If so, the Reflex’s execute() method is invoked. A
Reflex with a period of 0 does not sleep between invocations of execute(). If an
active Reflex has no subscriptions, the execute() method is invoked every period.
A passive Reflex is run without timeliness guarantees by threads taken from a
thread pool.

3.3 Legacy Reflex Communication Schemes

Besides allowing Reflex tasks to communicate and coordinate through the shared
event space, as described so far, the original Reflex model also allows for tasks
to communicate through static variables and for ordinary Java threads to com-
municate with Reflex tasks.

Communication with ordinary Java threads has to be managed carefully
to avoid introducing execution interferences that could cause the Reflex task
to miss its deadlines. Typical programming practices for sharing data between
threads involve lock-based synchronization. In a real-time system this might lead
to priority inversion and serious deadline misses. To encounter this, Reflexes
propose a scheme based on a limited form of transactional memory in the form
of obstruction-free transactional methods ensuring that the Reflex task meets
its temporal requirements.

In enforcing isolation of a Reflex task, static variables pose a particular type-
safety problem as references to objects allocated in different tasks or on the
heap, could easily pass the isolation boundaries. To circumvent this, Reflexes
restrict the use of static variables to primitive and reference- immutable types.
Informally speaking, an object of reference-immutable type provides access to an
object graph connected by references that cannot change but containing other
fields that can change, i.e., primitive types.

4 Static Safety Issues

To avoid interference from the public heap garbage collector, the Reflex program-
ming model relies on strict isolation between: (1) the Reflex tasks themselves,
and (2) the Reflex tasks and the time-oblivious Java code in which the Reflex
tasks have been integrated and might or might not interact with. The goal of the
safety checks is to statically guarantee this isolation by restricting unsafe code
that would violate the memory integrity and allow access to heap-allocated ob-
jects in inconsistent states, and dangling pointers to be observed. Note, the scope
of the restrictions enforced only apply to the time-critical parts of the Reflex ap-
plication, including any data shared between the Reflex tasks and time-oblivious
Java code; any legacy Java code is not subject to these restrictions. The details of
the simple set of restrictions that we apply to ensure this isolation are described
in [27]. Fig. 5 illustrates the valid and invalid references that are XX

In terms of function, events described here behave much like capsules used in
StreamFlex [28] in that they are used as units of communication between tasks.
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Fig. 5. Reflex Isolation. Enforcing Reflex task isolation through static safety checks
that prevent illegal (red) references while permitting valid (green) references.

Likewise, as objects they both impose similar safety risk in that references could
leak between tasks and break isolation through these objects. In StreamFlex
these risks are addressed by letting capsules be treated specially (i.e., they are
neither transient nor stable types), and any capsule instances are allocated from
a special fixed size pool. This prevents the StreamFlex task from retaining a
reference to the capsule once the execute method has completed. Furthermore,
capsules are restricted in the types of fields that they can carry, allowing only
fields of primitive or reference-immutable types. Together, the restrictions ef-
fectively prevents isolation from being violated and at the same time allow for
zero-copy communication between tasks resulting in fast throughput, crucial for
stream-processing applications, as demonstrated with StreamFlex [28].

In the extension described in this paper, the goal is not throughput of data
processing but rather efficient and flexible coordination between time-critical,
low-latency Reflex tasks. With this goal in mind, zero-copy communication is
not strictly necessary, although desirable, from a performance point of view.
Consequently, unlike capsules, events are not restricted in what object types
they can carry. However, to ensure type safety by preventing references from
leaking, when inserted into the shared space, or taken from here, the event ob-
jects (and the entire object graph they hold) are recursively deep-copied between
the memory contexts of the task performing the operation and the shared event
space. Furthermore, to ensure that no tasks retain a reference to an event, which
could only happen if the Event class were to be declared stable, the Event class is
treated as an ordinary transient type. This means that any event instances will
only survive for the duration of the execute method (unlike the deep-copied event
that following completion of the execute method will be present in the shared
space). If events were treated as stable objects, any event ever used by the Re-
flex task throughout its lifetime would be allocated in its stable heap, with the
probably risk of eventually running out of memory. Since, from the static safety



checks of Reflexes, stable types are prohibited from referencing transient ones,
an event also cannot be assigned to a field on a Reflex task (as the ReflexTask
is declared stable, see Fig. 4). With the treatment of events as normal transient
types, and the deep-copying of events into the shared space, no additional static
safety checks have to be defined than those specified in [27].

5 Implementation Highlights

Reflexes have been implemented on top of the Ovm [4] real-time Java virtual
machine, which comes with an optimizing ahead-of-time compiler and provides
an implementation of the Real-time Specification for Java (RTSJ). The virtual
machine was designed for resource constrained uni-processor embedded devices
and has been successfully deployed on a ScanEagle Unmanned Aerial Vehicle
in collaboration with the Boeing Company [2]. We leveraged the real-time sup-
port in the VM to implement some of the key features of the API. The virtual
machine configuration here described uses the ahead-of-time compiler to achieve
performance competitive with commercial VMs [24].

We outline some of the key implementation issues of Reflexes; a more detailed
description appears in [27]. Reflex tasks are run by real-time threads scheduled
by a priority-preemptive scheduler. For each Reflex task instance, the implemen-
tation allocates a fixed size continuous memory region for the stable heap and
another region for its transient area. The ReflexTask object, its thread, and all
other implementation specific data structures are allocated in the Reflex task’s
stable heap. These regions have the key property that they are not garbage col-
lected. We are in the process of investigating using hierarchical real-time garbage
collector, described in [23], to garbage collect the stable heap. This collector can
collect partitions of the heap independently and, due to the special structure
of the event space, we expect to have compaction with pause time bounds less
than 100 microseconds. Each thread in the VM has a default allocation area.
This area is the heap for ordinary Java threads and the respective transient area
for all real-time threads executing Reflex tasks. The garbage collector supports
pinning for objects. Pinned objects are guaranteed not to move during a garbage
collection. Thus they can safely be accessed from a Reflex. The allocation policy
for classes and static initializers ensures that all objects allocated at initialization
time are pinned.

Our implementation also relies on a simplified version of the RTSJ region API
to ensure that sub-millisecond deadlines can be met. We depart from the RTSJ
by our use of static safety checks in order to ensure memory safety. That has
the major advantage of avoiding the brittleness of RTSJ applications, and also
brings performance benefits as we do not have to implement run-time checks to
prevent dangling pointers. The details of the static safety checks being enforced
can be found in [27].

The event space uses an event-tree data structure for fast access based on the
fingerprinting scheme described in [30]. Registrations are maintained by a reverse



ReflexSupport.setCurrentArea(transientArea);

while (true) {
waitForNextPeriod();
if ((subscriptions.size() > 0) &&

(!subscriptions.hasMatch())) continue;

delta = new Transaction(space);
reflex.startLogging();
try {

execute();
}
catch (Abort a) {

reflex.undo();
ReflexSupport.reclaimArea(transientArea);
continue;

}
if (delta.validate(space)) {

delta.commit(space);
reflex.commit();

} else {
reflex.undo();
delta.abort();

}
ReflexSupport.reclaimArea(transientArea);

}

Fig. 6. Time-triggered Reflex (pseudo code).

event-tree that takes advantage of the duality between templates and events. The
empty template (an event with no fields) is not allowed in a registration.

Fig. 6 shows pseudo code for the implementation of a time-triggered periodic
Reflex task. The implementation of transactions is done at two levels:

– Event space transactions are managed by interposing a Delta between each
Reflex task and the space. The Delta records all operations and will try to
publish the changes when the execute() method returns. In Fig. 6, event
space transaction code is related to the delta object.

– Reflex-level transactions are implemented by logging all memory mutations
in the stable heap (as described in [18]) – transient objects can be ignored
because they will be discarded when the execute() method returns. The log is
used to undo the operations performed during an invocation of the execute()
method. As there can be only one thread executing within a Reflex task and
no other thread may observe the internals of a task (this is ensured by the
static safety checks [27]), memory operations can be performed on the main



memory while retaining strong atomicity. In Fig. 6, Reflex-level transactions
code is related to the ReflexTask object.

6 Performance Evaluation

We conducted a number of empirical experiments to evaluate the performance
and behavior of the proposed system. All experiments were performed on an
AMD Athlon 64 X2 Dual Core processor 4400+ with 2GB of physical memory
running Linux 2.6.17 extended with high resolution timer (HRT) patches [25]
configured with a tick period of 1 µs. We used an Ovm build with support for
POSIX high resolution timers, and configured it with an interrupt rate of 1
µs. In addition, we disabled the run-time checks of violations of memory region
integrity (read/write barriers), and configured it with a heap size of 512MB. The
version of the HotSpot client JVM used in our benchmarks is 1.5.0 09.

6.1 Throughput

We developed some micro-benchmarks to test the raw performance of our system.

Empty A single Reflex task that just increments a counter. No operations are
performed on the event space.

Solo A single Reflex task subscribes and takes events it sends to itself. A take()
and a write() are performed during each execute().

Duo The version of ‘solo’ with two Reflex tasks. Each one subscribes and takes
events it sends to the other one. A take() and a write() are performed during
each execute().

Max Before starting the Reflex task, the event space is filled with events con-
taining integers. The body of the execute() of the Reflex task takes two
integer events from the space and re-writes the one having the largest value
back into the space.

Table 1 shows the performance of these micro-benchmarks.

Benchmark Time (ms) Operations/ms

Empty 688 —
Solo 4 553 439,000
Duo 5 775 346,000
Max 6 463 464,000

Table 1. Execution time for 1 million iterations, and number of take/write operations
per second.
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Fig. 7. Execution time as a function of the number of Reflex tasks in the hand-off
chain. The x-axis is the number of executing Reflex tasks, the y-axis is the time in
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6.2 Scalability

How does a system based on Reflexes scale in the presence of an increasing
number of event processing elements? From a software engineering point of view,
it is advantageous to represent different business rules with different Reflexes as
they execute independently and can be added/removed at any time. But is it
feasible to have hundreds of Reflex tasks in the same JVM? The overheads come
from the memory regions and thread associated to Reflexes.

We set up a benchmark which implements a chained hand-off between Reflex
tasks. Each Reflex task in the benchmark is given a unique identifier, it takes
an event with its id and writes back a copy of the event with the identity of the
next Reflex task. As we increase the number of tasks, the chain gets longer.

Fig. 7 shows the time it takes for an event to travel down the chain. We
compare numbers for HotSpot and Ovm from one to 2,000 threads. As expected,
the execution time increases with the number of Reflexes. In term of numbers of
Reflex tasks, Ovm is limited only by the available memory. Thus, we were able
to run with 2,000 Reflex tasks, while HotSpot fails with a Java exception if we
try to create more than 1,024 threads. Interestingly, in the comparable range
Reflex tasks appear more efficient on Ovm than on HotSpot. The worst case for
Ovm is 1,849 microseconds while it is 2,541 for HotSpot (thus making HotSpot
27% slower for one thousand threads).

6.3 Predictability of Event Processing

Predictability is important in applications which require very low-latency re-
sponses to events. There are two challenges for a JVM here: scheduling threads



periodically and preemption of non-critical threads. In this benchmark we demon-
strate that Reflexes can be scheduled with sub-millisecond accuracy without
interference from other concurrently running threads. To establish a worst case
scenario, we consider a Reflex with a 50 µs period that performs a take() followed
by a write() of the same event. Concurrently, a low-priority thread performs reads
and writes to the space in a tight loop.
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Fig. 8. Frequency of inter-arrival time for a Reflex periodically scheduled with a period
of 50 µs when executed (over 50,000 iterations) concurrently with a noise maker thread.
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Fig. 11 shows the time between two invocations of the execute() method in
a Reflex. The results are clearly concentrated around the request period with
remarkably few outliers.

Fig. 9 show that when a Reflex misses a deadline the order of magnitude is
usually less than 50 µs. Interestingly, Fig. 9 also shows a few extreme deadline
misses going as high as around 1,500 µs (not shown). We believe these to be
bugs in the implementation. In terms of precision, out of 50,000 iterations only
18 periods were missed, which correspond to a deadline miss rate of 0.03%.

Fig. 10 shows the inter-arrival and processing time of the Reflex from stock
trade example when executed on Ovm with a period of 80 µs. Specifically, the
Reflex is responsible for generating real-time stock offers in a constant flow and
writing them to the event space. As can be seen from the figure, the processing
time of the stock seller Reflex lies constantly around 10 µs throughout the shown
execution period. Likewise, the inter-arrival time represents a stable level of
predictability – centered around the scheduled 80 µs period, and with very little
variation. In fact, in our experiments covering 100,000 periodic executions, we
only found 65 deadline misses (equivalent to a 99.93% met deadlines).



6.4 Reflexes on Multi-core Virtual Machine

One of the limitations of the Ovm implementation is that the virtual machine
is optimized for uni-processor systems. In order to validate applicability of our
approach we ported much of the functionality of Reflexes to the IBM WebSphere
Real-Time VM, a virtual machine with multi-processor support and a RTSJ-
implementation. The implementation of transactions in a multiprocessor setting
is significantly different. They use a roll-forward approach in which an atomic
method defers all memory mutations to a local log until commit time. Having
reached commit time, it is mandatory to check if the state of the Reflex has
changed, and if so abort the atomic method. The entries in the log can safely
be discarded, in constant time, as the mutations will not be applied. If the task
state did not change, the transaction is permitted to commit its changes with
the Reflex scheduler briefly locked out for a time corresponding to O(n), where
n is the number of stable heap locations updated. We rely on a combination of
program transformations and minimal native extensions to the VM to achieve
this.

We evaluate the impact of transactions on predictability using a synthetic
benchmark on an IBM blade server with 4 dual-core AMD Opteron 64 2.4 GHz
processors and 12GB of physical memory running Linux 2.6.21.4. A Reflex task
is scheduled at a period of 100 µs, and reads at each periodic execute the data
available on its input buffer in circular fashion into its stable state. An ordinary
Java thread runs continuously and feeds the task with data by invoking an
transaction on the task every 20 ms. To evaluate the influence of computational
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Fig. 9. Deadline misses over time for a Reflex periodically scheduled with a period
of 50 µs when executed concurrently with a noise maker thread. The x-axis depicts
the periodic executions over time whereas the y-axis depicts the logarithm of deadline
misses in microseconds.
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Fig. 10. Inter-arrival and processing time over time for a Reflex implementation of a
stock seller scheduled with a period of 80 µs. The x-axis shows the periodic executions
(only 1,000 shown) and the y-axis shows the inter-arrival and processing time (both in
µs).

noise and garbage collection, another ordinary Java thread runs concurrently,
continuously allocating at the rate of 2MB per second.

Fig. 11 shows a histogram of the frequencies of inter-arrival times of the
Reflex. The figure contains observations covering almost 600,000 periodic exe-
cutions. Out of 3,000 invocations of the atomic method, 516 of them aborted,
indicating that atomic methods were exercised. As can be seen, all observa-
tions of the inter-arrival time are centered around the scheduled period of 100
µs. Overall, there are only a few microseconds of jitter. The inter-arrival times
range from 57 to 144 µs.

7 Related Work

The approach presented in this paper is closely related to independent work
carried out at IBM Research, namely the Eventron [26] and Exotask [3] real-
time programming models. Both models have the goal of extending Java in a
non-intrusive way with real-time features. They differ in the constraints they
impose on programs and the real-time guarantees that can be achieved.

Eventrons provide strong responsiveness guarantees at the expense of expres-
siveness. In the Eventron model, a real-time task cannot allocate new objects
or modify the value of reference variables. Furthermore, they are prevented, by
load-time checks, from reading mutable reference variables. The stringent re-



Fig. 11. Frequencies of inter-arrival times of a Reflex with a period of 100 µs contin-
uously interrupted by an ordinary Java thread. The x-axis gives inter-arrival times in
microseconds, the y-axis a logarithm of the frequency.

striction make it safe for an Eventron task to preempt the garbage collector or
any other virtual machine service, and thus make it possible to run with periods
in the microseconds. Reflexes have similar responsiveness but are less restrictive
due to our combination of regions and ownership types.

Exotasks extend Eventrons on a number of accounts. Most importantly, Ex-
otasks are organized in a graph connected by non-blocking point to point com-
munication channels. As the task are isolated, the collection is task-local and can
usually be carried out in very little time. Tasks communicate by exchanging mes-
sages by deep-copy, whereas StreamFlex adopts the zero-copy communication of
[28]. Whereas the message exchange used in the extension presented in this pa-
per also is based on deep-copy, it is not limited to point-to-point communication
as the shared event space also facilitates one to many communication.

An interesting question is what advantages these programming models bring
compared to RTSJ’s NoHeapRealtimeThread which is, after all, supported by all
RT JVMs. Experience implementing [5, 13, 21, 2] and using [8, 20, 7, 22, 24] the
RTSJ revealed a number of serious deficiencies. In the RTSJ, interference from
the garbage collection is avoided by allocating data needed by time critical real-
time tasks from a part of the virtual machine’s memory that is not subject to
garbage collection, dynamically checked regions known as scoped memory areas.
Individual objects allocated in a scoped memory area cannot be deallocated;



instead, an entire area is torn down as soon as all threads exit it. Dynamically
enforced safety rules check that a memory scope with a longer lifetime does not
hold a reference to an object allocated in a memory scope with a shorter lifetime
and that a NoHeapRealtimeThread does not attempt to dereference a pointer into
the garbage collected heap.

Another issue with RTSJ is that, due to a lack of isolation, it is possible
for a NoHeapRealtimeThread to block on a lock held by a plain Java task. If
this ever occurs, all bets are off in term of real-time guarantees as the blocking
time cannot be bounded. Finally, dynamic memory access checks entail a loss
of compositionality. Components may work just fine when tested independently,
but break when put in a particular scoped memory context. This is because
for a RTSJ program to be correct, developers must deal with an added dimen-
sion: where a particular datum was allocated. Design patterns and idioms for
programming effectively with scoped memory have been proposed [22, 6, 8], but
anecdotal evidence suggests that programmers have a hard time dealing with
NoHeapRealtimeThreads and that resulting programs are brittle.

The static safety checks used by Reflexes to guard against memory error,
presented in [27], is an extension of the implicit ownership type system of [31], the
latest in a line of research that emphasizes lightweight type systems for region-
based memory [1, 32]. Ownership is implicit because, unlike e.g. [12, 10, 11], no
ownership parameters are needed. Instead, ownership is assumed by default by
using straightforward rules.

8 Conclusion

We have presented a new transactional framework in the context of event-based
programming that builds on our previous work on real-time systems. We extend
Reflexes, a restricted programming model for highly responsive systems, with a
shared event space, that is accessed with transactional semantics, and transac-
tionalize the execution of the Reflexes that operate on the shared space. The
resulting model ensures strong atomicity and very low performance overheads.

Our evaluation is encouraging in terms of performance, scalability and pre-
dictability when comparing to equivalent executions on a commercial JVM. Also,
we have shown that it is possible to achieve 50 µs response times with way less
than 1% of the executions failing to meet their deadlines.

In the future, we plan to enrich the programming model with a language for
expressing complex, and temporal, patterns of events. We also plan to integrate
events with the stream processing paradigm that was explored in [28]. In terms
of implementation, we intend to design a customized real-time garbage collector
to manage the event space and to integrate the multi-processor extensions that
are currently being added to our research infrastructure.
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