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Abstract
The Jazz file format is intended to be a replace-
ment for the JAR file format when used for stor-
age and distribution of Java programs. A Jazz file
is compressed to a degree that far exceeds what is
possible with a JAR file. The smaller size of the
Jazz format permits faster transmission speeds
over a network and has the additional benefit of
conserving disk storage. The compression is
achieved as a combination of different data com-
pression methods, adapted to suit the characteris-
tics of collections of Java class files.

1 Introduction
A typical Java application program consists of
numerous small class files. Distribution of the pro-
gram over a network requires a suitable means of
shipping and storing the class files as a single unit.
The official approach is to use Sun’s JAR format.
The JAR format combines the class files, protect-
ing them from file systems with length limitations,
and optionally compressing the individual mem-
bers. The JAR format also allows other types of
data to be bundled with the class files.

Unfortunately, class files are not easy to com-
press and JAR does not achieve competitive com-
pression results. We have an approach that
achieves great compression at the cost of making
single member extraction more difficult. Our
implementation, called Jazz, is intended to be a
replacement for JAR in the domain of software

distribution, archiving class files, and network dis
tribution of class files where bandwidth is limited

2 JAR files and Compression
JAR files are the standard means of packagi
Java class files for distribution and storage. T
JAR file format is based on and almost identical 
the Zip format [6]. In fact, it is often possible to
extract members from JAR files using Zip decod
ers. A JAR file contains a directory and the mem
ber files. A member file is, optionally, in a
compressed format. A constituent file is com
pressed separately from the other members, a
that allows for rapid retrieval of the file. However
it limits the possible gains that would be achieve
by compressing several member files togeth
This is a particular problem if the files tend to b
small, such as is normally the case with Java cla
files.

2.1 Class File Structure
Class files are usually quite small. They have
format [4] which structures the contents int
many, even smaller, sections. Each section 
likely to contain types of data very different from
those in surrounding sections. The compressi
method used in Zip file and JAR files tries to tak
advantage of repetitive patterns in a file in order 
get good results. The fractured structure of Ja
class files makes it extremely difficult for Zip o
JAR to find the kinds of redundancy necessary f
good compression. Redundancy does exist in
class file. However, Zip and other general purpo



compression algorithms based on similar princi-
ples are ill suited to take advantage of it. Jazz
takes full advantage of knowledge of the structure
of class files to identify redundancy, making selec-
tive use of existing compression algorithms and
custom coding techniques to compress class files
efficiently.

The largest component of a class file is typi-
cally the constant pool. It is not unusual for the
constant pool to occupy more than 50% of the
class file. The Java constant pool contains all the
information needed for run-time linking of Java
class files. As its name implies, it also contains
constant data used by the Java bytecode instruc-
tions. Within the constant pool, the largest portion
usually consists of text strings. Despite the size of
the constant pool, its structure is broken up into
small sections containing type information,
indexes to other constant pool entries, and the con-
stant data itself. Furthermore, the constant pool
entries are in no particular order, hampering the
performance of general purpose compression
algorithms.

The remainder of the class file consists of
methods, fields, and attributes. Except for the code
attribute, most of a class file consists of constant
pool indices, counts, and structure information.
The code attribute contains the bytecode, the
instructions executed by the Java Virtual Machine
(JVM). It can occupy a significant fraction of a
class file. Java instructions are variable length and
have several different formats, making them diffi-
cult to compress.

2.2 Zip Compression
The compression algorithm used in Zip is based
on LZSS. It works by checking its input for a
repeated sequence of bytes and replacing it with a
pointer to the previous occurrence. It is an algo-
rithm that adapts to the data it is compressing.
This allows it to adapt to local changes in a file. In
a typical executable file, the characteristics of the
file change considerably at the boundary between
the code portion and the data section. Zip would
adapt to such a change. However, if changes occur
frequently, Zip would not have time to adapt from
one to the other before it changes again, limiting
the effectiveness of the compression algorithm.

3 The Jazz Approach
The goal of Jazz is to provide all of the features
and functionality of the JAR format, while attain-
ing the best compression possible in a reasonable
amount of time. Like JAR, Jazz allows a number
of class files to be bundled together and com-
pressed. Later, a class file can be extracted and
uncompressed. This class file can be stored as a
separate file or put into a JAR file. Unlike JAR,
Jazz always compresses the class files.

In order to achieve good compression of Java
class files, the following strategies are taken.

1. Huffman codes are used for constant pool
indices.

2. A unified constant pool is used for all classes
in the Jazz archive.

3. Strings, opcodes, and arbitrary data are com-
pressed with Zip.

4. Start-step-stop codes [1] are used for instruc-
tion offsets and string lengths; they are also
used to encode the tables of Huffman codes.

5. Redundant constant pool entries are elimi-
nated.

Figure 1 shows the rearrangement of informa-
tion that takes place when a Jazz file is created
from two class files.

3.1 Huffman Codes
Huffman coding [1] [5] is an optimal method of
assigning variable length codes to symbols, where
the symbols occur independently and randomly
with known probabilities. Jazz uses Huffman
codes for all indexes into the constant pool.

The constant pool contains more than one type
of information and one Huffman table is created
for each type of constant. During encoding, a
count is made of the number of references to each
unique constant in all classes. This frequency
information is used to construct the Huffman table
which maps constants to variable length codes and
vice versa. This table is stored in an efficient form
in the Jazz file. Any time a reference to a constant
pool entry is needed, the appropriate variable
length Huffman code is used.

With one exception, the appropriate Huffman
table to use is always known from context and an
identification of the kind of constant does not need
to be stored in the compressed file. That exception
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occurs with the LDC (load constant) instruction
which has a parameter that refers to a constant
pool entry that can be one of a number of different
types of constant. In this case it is necessary to
output 1 or 2 extra bits to indicate the appropriate
table.

The advantage of using a Huffman code for
constant pool indices is a constant pool pointer
size that is much less, on average, than the normal
8 or 16 bits. This is a consequence of the fact that
some constant pool entries are referenced fre-
quently, while others might be referenced only
rarely. The savings are offset by the need to store
the decoding table in the Jazz file. In practice, the
savings are significant.

3.2 Unified Constant Pool
Any Java class file must store in its constant pool
the name of any class referenced by that class file.
The name and signature of any method call also
needs to be stored. Java has a rich set of class
libraries that are used by almost every class file in
one capacity or another. This causes exceptional
amounts of redundancy between class files, exac-
erbated by the fact that every class is contained in
its own individual file. Any reasonably compli-
cated part of a program will consist of many class
files but they may be working on similar prob-
lems. As a result, many related class files will con-
tain constant pools with references to the same
classes and methods. Jazz capitalizes on this by
combining the constant pools of all of the classes
that are compressed. In this way, any given con-
stant string will only appear once in a Jazz file,
regardless of the number of classes that make use
of it. The same is true for method names, signa-
tures, integer constants, and so on. The unified
constant pool is normally larger than the constant
pool for any class file in the Jazz archive. That
would normally cause an index into the combined
pool to require more bits than an index into the
constant pool for the original class file. However,
the reduction of duplication between the original
constant pools results in a net gain, as our experi-
mental results confirm.

Two kinds of constant pool entries are com-
pletely eliminated in the Jazz format. These are
the CLASS, and STRING constant pool entries.
They consist solely of a constant pool pointer to a
UTF8 string and serve only to differentiate

between CLASS and STRING where necessary.
The distinction is not needed when extracting a
class file from a Jazz archive.

3.3 Strings, opcodes, and data
Strings make up a large proportion of any class
file. Class names, method names, signatures, and
the class file attribute names are stored as strings
in the constant pool, in addition to the constant
strings used by the methods themselves. Zip uses a
general purpose compression technique that is par-
ticular effective at compressing repetitive text.

To achieve good compression, all strings in all
the class files are concatenated, compressed using
Zip, and stored in one part of the Jazz file. The
lengths of the strings also need to be stored. To
make this efficient, the strings are sorted by length
and delta coding used to encode the string lengths.
A delta code is the difference between one value
and the next. By sorting the strings on length, the
values will usually be small and will require fewer
bits to store. Start-step-stop codes are used to
reduce the number of bits even further.

All Java opcodes are one byte. Compressing
them is typically difficult. However, there are
sometimes short sequences of instructions that
occur frequently, such as pushing an operand
before invoking a method call. Finding and com-
pressing such sequences is precisely what Zip and
other dictionary-based compression algorithms
handle well. Unfortunately Zip does not perform
well on unprocessed bytecode because the oper-
ands are mixed together with the opcodes, obscur-
ing the relationship between adjacent instructions.
Therefore, the opcodes and their operands are sep-
arated. Then the opcodes from all methods in all
classes are combined together and compressed
with Zip. The operands are processed individually
because different encoding schemes are appropri-
ate for different kinds of operands.

Some class file data is difficult to compress
using anything other than a general technique.
Such data includes integer constants, floating
point constants, and the operands for some
opcodes. These are combined together into a block
and compressed with Zip.



3.4 Instruction Format
Instructions are variable length, ranging from one
byte upward. All instructions are in the form of a
one byte opcode followed by zero or more bytes of
parameters. The size of each instruction is fixed
except for TABLESWITCH, LOOKUPSWITCH,
and WIDE. The parameters can have any one of a
number of different types. A parameter could be a
constant pool index, a constant value, a local vari-
able table offset, a bytecode offset for branches,
another opcode, or padding. Each case must be
handled separately. Constant pool indices are
encoded as variable length Huffman codes, as
described above. Constant values are compressed
with Zip. Local variable table offsets and bytecode
offsets are encoded with Start-step-stop codes on
the grounds that most such offsets are small. Pad-
ding bytes can be safely discarded.

Branch offsets are measured in bytes relative
to the address of the instruction they are associated
with. However, branch offsets are only valid if
they branch to the beginning of an instruction.
Therefore the byte offsets are first converted to
instruction count offsets before being encoded
with a start-step-stop code.

3.5 Preserving Java Semantics
The most important restriction on the Jazz format
is that a class file which has been compressed and
then decompressed must execute in exactly the
same way as the original class file.  It is not neces-
sary for the decompressed class file to be byte for
byte identical as long as the semantics are pre-
served.  Although no formal proof is offered here,
it is not difficult to show that Jazz produces class
files which preserve all semantics except in the
case of bugs in Jazz or future changes to the Java
class file format.

To date there have been no changes to the Java
class file format since Java 1.0, despite changes to
the Java Language Specification.  Java 1.1 saw the
addition of Inner Classes to the Java Language
Specification. This addition was implemented at
the Java Class file format level using existing
structures.  The addition of new attributes is also
not a problem for Jazz, which simply copies them
byte for byte.  The only likely change to the Java
class file format that would break Jazz would be
the addition of new instruction opcodes.  In that

case, Jazz would report an error rather than gener-
ating incorrect output.

Assuming that the Java class file format is sta-
ble, Jazz produces class files which are nearly the
same as the original.  The only possible differ-
ences are the order of items in the constant pool,
the removal of redundant constant pool entries,
and instructions changing between long and short
formats because of the renumbered constant pool
entries. 

The relative position of constant pool entries is
completely irrelevant. All constant pool references
use absolute indexes.  Constant pool entries which
reference other constant pool entries also use
absolute indexes.  As long as these indexes resolve
to the correct values, the position of each constant
pool entry is not important.

The removal of duplicate constant pool entries
is also not a problem. Constant pool entries are
considered duplicate if they have exactly the same
values, except for constant pool indexes which
must resolve to constant pool entries with the
same values recursively.  Since the actual indexes
are not relevant to the semantics of a Java class
file, the fact that two references to the constant
pool have different or same indexes does not mat-
ter as long as the values they resolve to are exactly
the same. 

Some Java instructions have two forms, one
with an 8 bit index into the constant pool and one
with a 16 bit index.  The only difference between
the short form and the long form is the size of the
constant pool index which is interpreted in the
same way in both cases.  Changing from the short
form to the long form or vice versa can have no
effect on the semantics of the class file as long as
branches are properly updated to reflect the new
size of the instruction.  There is a very small possi-
bility that the resized instructions will cause a 16-
bit branch at the extreme end of its range to not be
able to reach its destination.  While technically
possible, it is unlikely.  Java methods have a maxi-
mum size of 216 bytes while the smallest relative
branch is a 16-bit signed offset.  Typical Java
methods are very small.  Therefore, the current
implementation reports an error if a branch is out
of range.  It would be possible to implement a
scheme that renumbered the constant pool entries
in such a case if it was found to be necessary.



 4.
4 Experimental Results
Our prototype of Jazz is implemented in Java.
Therefore one method that we could use to verify
the functional equivalence of Jazz’s input and out-
put was to use Jazz to compress itself, and then
uncompress the resulting Jazz file. This produced
a number of class files that differed from those
originally produced by the Java compiler. How-
ever, when these class files were executed, they
produced identical output to the original versions.
Therefore, our confidence in the implementation
was increased.

4.1 Collections of class files
In the tests below, Jazz is compared with the
archive files produced by the commands shown
below.

• JAR file, uncompressed
jar cvf0 output1.jar classfiles

• JAR file, compressed
jar cvf output2.jar classfiles

• Gzip
cat classfiles | gzip -9 > out.gz

• Clazz
clazz classfiles

Uncompressed JAR files are used as a standard
with which to compare the efficiency of compres-
sion of the other methods. Compressed JAR files
show the efficiency of the JAR format. The Gzip
results will be slightly optimistic, since concate-
nating the files and applying gzip to them does not
permit the original files to be extracted again very
easily. Clazz is the method developed in [2] and
[3] but it only operates on individual class files. In
this section, the results for clazz are computed
from the total size of all of the class files, com-
pressed individually.

Tests were performed on four collections of
class files. These collections were as follows.

• The Jazz class files, compiled with debugging
information using Metrowerks 3.0.1.

• The Jazz class files, compiled with Sun JDK
1.1.4 on Solaris with optimization enabled.

• The class files contained in icebrowser-
bean.jar, a collection of Java class files
available on the internet.

• The class files that comprise the java.lang
hierarchy from Sun JDK 1.1.4.

The test results are shown in Tables 1, 2, 3, and

Table 1: Metrowerks 3.0.1 Class Files 
with Debugging Information

File Format Size % orig. size

JAR file
uncompressed

198,191 100.0%

JAR file
compressed

101,154 51.0%

Gzip 75,371 38.0%

Clazz 73,778 38.0%

Jazz 48,279 24.4%

Table 2: Sun JDK 1.1.4 Class Files

File Format Size % orig. size

JAR file,
uncompressed

122,871 100.0%

JAR file
compressed

61,312 49.9%

Clazz 44,290 36.0%

Gzip 36,020 29.3%

Jazz 31,771 25.9%

Table 3: Class Files from 
icebrowserbean.jar

File Format Size % orig. size

JAR file,
uncompressed

260,178 100.0%

JAR file,
compressed

132,600 51.0%

Clazz 97,341 37.4%

Gzip 97,223 37.4%

Jazz 59,321 22.8%



In summary, Jazz performed 14.6% better than
the second best method in the best case, 3.4% bet-
ter in the worst case, and 9.7% better on average
for these four examples. In round numbers, the Zip
compression used by JAR files reduces the data to
one half of its original size. The Jazz approach
reduces the data to one quarter of its original size.

4.2 Compression of Single Class Files
Although Jazz is optimized for compressing col-
lections of class files, it can also be used to com-
press class files individually. We can compare its
results to other methods. The JAR format is not
really relevant to distributing individual class
files, so the baseline comparison is to the actual
class file itself. In all cases, gzip, clazz, and Jazz
were run individually on one class file. The results
were averaged over all the class files in a collec-
tion, and the results reported below. In each case,
the average Jazz result was compared to the aver-
age class file size when all classes were com-
pressed at once with Jazz. This indicates the
amount of benefit gained by unifying the constant
pool and combining opcodes and strings from all
classes before compressing them.

The results of our two tests are summarized in
Tables 5 and 6. It is clear that Jazz achieves better
results than the competing methods, even when
applied to individual class files. The additional
benefit of applying Jazz to a collection of files is
also apparent. 

5 Conclusions and Future Work
Jazz already yields highly satisfactory results as
currently implemented. Reducing the size of a

Java class file to one quarter of its original size
while maintaining full compatibility with the Java
virtual machine is a significant achievement.
There are, of course, a few areas that show some
promise for improved performance.

5.1 Complete JAR Functionality
Jazz is intended to be fully compatible with JAR.
However, as of this writing the implementation
does not handle files other than class files. Adding
support for these is a high priority and presents no
technical challenges.

It is often desirable to execute Java class files
directly from a JAR file without decompressing
them first.  This ability is used to get around file-
name length restrictions in some operating sys-
tems, or to avoid cluttering up the file system.
Jazz should have the same functionality.

Table 4: Class Files from java.lang

File Format Size % orig. size

JAR file, 
uncompressed

193,788 100.0%

JAR file, com-
pressed

93,418 48.2%

Clazz 77,641 77.6%

Gzip 69,100 35.7%

Jazz 55,408 28.6%

Table 5: Compressing Individual Class 
Files from icebrowserbean.jar

File Format Size % orig. size

original class 
file

3,197 100.0%

Gzip 1,618 50.6%

clazz 1,315 41.1%

Jazz,
individually

1,064 33.3%

Jazz, all 
together

802 25.1%

Table 6: Compressing Individual Class 
Files from java.lang

File Format Size % orig. size

original class 
file

2,275 100.0%

Gzip 1,094 48.1%

clazz 1,024 45.0%

Jazz,
individually

879 38.6%

Jazz, all 
together

684 30.1%
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We would need to write a class loader which
has access to the Jazz decompressor.  To achieve
reasonable performance, it would likely be neces-
sary to decompress the entire constant pool the
first time a Jazz file was accessed and to cache it.
When each class file is requested, it would be pos-
sible to jump directly to that class in the Jazz file
and decompress it.  This requires a couple of
minor changes to the Jazz file format.

The first change would would be to make the
class names easily accessible by putting them in
order at the beginning of the constant pool. The
second change would be to add a table of offsets
which is in one-to-one correspondence with the
class names in the constant pool. These offsets
provide the byte offset into the Jazz file where the
class-specific information resides. The extra over-
head would be only 4 bytes per class, at the most.

5.2 Shared Dictionaries
Some of the largest improvements in Jazz come
from the unified constant pool. It might be possi-
ble to take this a step further and have shared dic-
tionaries. The idea would be to make a “constant
pool” consisting of class names, method names,
and signatures from the standard libraries. This
shared dictionary could then be bundled with the
encoder and decoder. The result would be that any
Jazz file with a constant that also appeared in the
shared dictionary could eliminate the redundant
entry. The cost would be an extra bit to indicate
whether a given constant was in the local dictio-
nary or the shared dictionary. This bit would only
appear in the encoded Huffman tables, so the over-
head might not be that great. The idea could be
extended to allow for multiple shared dictionaries.
The only caveat would be that you would have to
be sure that the decoder had the exact same dictio-
naries available as the encoder.

5.3 Implementation Improvements
The Huffman tables do not incur significant over-
head for each individual table over and above the
size of the indexes into the constant pool. There-
fore it is desirable to partition the Huffman tables
into several smaller tables if possible. The over-
head is minimal and the length of each Huffman
code will be shorter, on average. One area that
could benefit from this is the strings in the con-
stant pool. Some of the strings represent the names

of classes, the names of methods, method sig
tures, and others. It is possible for one string to 
used for more than one purpose. It would almo
certainly be beneficial to make a separate Hu
man table for class names. Another table for ty
signatures and yet another for method nam
would be less likely to be useful, but should b
investigated. The overhead would increase 
those cases where a string was used in more t
one table, because of duplication of indexes 
particular strings in the Huffman tables, but th
advantage of smaller Huffman codes to the fr
quently referenced class names could be great.

Another potential optimization would be to
eliminate the Huffman tables and use an adapt
Huffman code [1][5] instead. This would elimi-
nate the overhead of the Huffman table whi
increasing the run-time cost of the algorithm
Adaptive Huffman codes yield similar compres
sion efficiency, but the need to continuousl
update the Huffman table as each symbol 
decoded adds an additional run-time burde
Adaptive codes based on arithmetic coding [1] a
also worth considering. They would provid
slightly more efficient encoding because they, 
effect, generate fractional bit lengths for code
There would be an implementation cost in th
switch because the current implementation mix
start-step-stop codes and Huffman codes in t
output. A consistent use of arithmetic codin
throughout would probably be desirable.

Finally, reimplementing the Jazz program in 
or C++ would provide a speed improvement an
give a production version.
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