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ABSTRACT
Motivation: Nuclear magnetic resonance (NMR) spectroscopy is
widely used to determine and analyze protein structures. An essential
step in NMR studies is backbone resonance assignment, which maps
individual atoms to experimentally measured resonance frequencies.
Performing assignment is challenging due to the noise and ambiguity
in the spectra. While automated procedures have been investigated,
by-and-large they are struggling to gain acceptance due to inherent
limits in scalability and unacceptable numbers of assignment errors.

To have confidence in the results, an algorithm should be complete,
i.e. able to identify all solutions consistent with the data, including
all arbitrary configurations of extra and missing peaks. The ensuing
combinatorial explosion in the space of possible assignments case
has led to the perception that complete search is hopelessly inefficient
and cannot scale to realistic proteins.
Results: This paper presents a complete branch-contract-and-bound
search algorithm for backbone resonance assignment. The algorithm
controls the search space by hierarchically agglomerating partial
assignments and employing statistically sound pruning criteria. It con-
siders all solutions consistent with the data, and uniformly treats
all combinations of extra and missing data. We demonstrate our
approach on experimental data from 5 proteins ranging in size from
70 to 154 residues. The algorithm assigns over 95% of the positions
with over 98% accuracy. We also present results on simulated data
from 259 proteins from the RefDB database, ranging in size from 25
to 257 residues obtained in a fully automated manner. The median
computation time is 1 minute, and the assignment accuracy is over
99%. These results demonstrate that complete search not only has
the advantage of guaranteeing fair treatment of all feasible solutions,
but is efficient enough to be employed effectively in practice.
Availability: The MBA2 software package and data sets can be
obtained from the contact author.
Contact: ovitek@stat.purdue.edu

1 INTRODUCTION
Nuclear magnetic resonance (NMR) spectroscopy is an experimen-
tal method capable of determining three-dimensional structures of
proteins in atomic detail under nearly physiological conditions.
Some 15%-20% of new protein structures are currently determined
by NMR, and the rate is likely to grow (Montelione et al., 2000).
A bottlenecks in NMR studies isbackbone resonance assignment, a
computational procedure establishing values of thechemical shifts
of the atoms of the protein backbone. Chemical shifts can be viewed

as magnetic signatures of the atoms, and are extensively used in
analyses of structure, dynamics, and molecular interactions.

Backbone resonance assignment typically uses a set of three-
dimensional NMR experiments. An example of such an experiment
is the HN(CO)CA shown in Fig. 1(a), which magnetically correlates
a bonded pair of HN–N backbone nuclei with the Cα nucleus of the
preceding residue, and yields a three-dimensional spectrum. Peaks
in the spectrum indicate the triples of HN–N–Cα nuclei that exhibit
magnetic interactions. The coordinates of the peaks are the chemi-
cal shifts of the nuclei. Each HN(CO)CA peak records signals from
two neighboring residues and therefore capturessequentialinterac-
tions. Another three-dimensional experiment, HNCA, magnetically
correlates the bonded HN–N pairs with the Cα either of the pre-
ceding residue (as in the HN(CO)CA), or of the same residue. It
yields approximately twice as many three-dimensional peaks as the
HN(CO)CA, gathering both sequential andwithin-residuemagnetic
interactions. Similar NMR experiments can be designed to correlate
the HN–N pairs with Cβ , Hα, and C′. Coordinates of peaks from the
various experiments can be combined by reference to shared coor-
dinates of the HN–N resonance types. The resultingspin systems,
shown in Fig. 1(b), contain chemical shifts of the anchor HN–N
nuclei, of other backbone nuclei within the same residue, and of
nuclei in the sequentially preceding residue.

While NMR studies assume that the primary sequence is known,
the spectra provide no information about which position in the
sequence generated a particular chemical shift. This must be
inferred from the observed spin systems by the process of back-
bone resonance assignment. A typical resonance assignment pro-
cedure (Moseley and Montelione, 1999) searches formappings
between spin systems and positions in the sequence that satisfy the
following constraints (Fig. 1(b)): (1) For two spin systems mapped
to adjacent positions, the within-residue chemical shifts of the first
matchthe sequential chemical shifts of the second. (2) Each spin
system mapped to a position isalignedwith the amino acid type,
meaning that its chemical shifts are consistent with the expected
values for the amino acid. (3) Each spin system is mapped to at most
one position in the protein sequence, and each position is mapped to
at most one spin system.

Noise and ambiguity in the spectra reduce the effectiveness of
these constraints in the resonance assignment process. First, peak
coordinates are uncertain, so approximate matches in constraint (1)
must be allowed within pre-specified tolerance values. All matches
must be allowed in the case of a missing chemical shift. Second, the
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Fig. 1. NMR data. (a) The HN(CO)CA experiment correlates the HN-N pair from one residue with the Cα from the preceding residue.
Spectral peaks capture various such interactions. Coordinates of the peaks are the chemical shifts of the involved atoms. (b) Compilation
of peaks from a set of experiments yields spin systemsxi that represent chemical shifts of atoms within a residue and in the sequentially
preceding residue. Resonance assignment algorithms proceed by matching the chemical shifts of pairs of spin systems and aligning them at
adjacent positions in the primary sequence.

ranges of chemical shifts for an amino acid type in constraint (2) are
fairly broad, and usually allow multiple mappings of spin systems
to a position. Third, positions in the sequence can have entirely mis-
sing spin systems, and the number and identity of such positions is
unknown. At the same time, observed data can be extraneous.

These artifacts of noise and ambiguity result in a combinatorial
explosion of the search space of candidate mappings. Consequently,
exhaustive search algorithms (Andrec et al., 2001; Lin et al., 2002;
Vitek et al., 2004) have been dismissed as impractical for anything
but small proteins and “clean” datasets. Semi-automated procedures
such as CAMRA (Gronwald et al., 1998), MAPPER (Güntert et al.,
2000) and PACES (Coggins and Zhou, 2003) require human inter-
vention to manage the search space. Fully automated approaches
gain in scalability but compromise accuracy or efficiency by using,
e.g., best-first search (Zimmerman et al., 1997), approximation algo-
rithms (Chen et al., 2003), global and local stochastic optimization
TATAPRO (Atreya et al., 2000), MONTE (Hitchens et al., 2003),
MARS (Jung and Zweckstetter, 2004).

In order to fully characterize the confidence in an assignment,
an algorithm must becomplete. That is, it must be able to iden-
tify all solutions consistent with the data, including those with
arbitrary configurations of matches and placements of extra and
missing peaks. It is not sufficient to focus on optimization for just
the “best” solution, since the ranking may be sensitive to small
details in the method used to evaluate the quality of the satisfac-
tion of the constraints. On the other hand, it is not appropriate to
treat all solutions as plausible, as statistical scoring models can pro-
vide estimates of quality and indicate that some solutions are clearly
inconsistent with the data. Finally, it is dangerous to fix “unambi-
guous” chains of matched spin systems. This does not appropriately
represent our uncertainty regarding the process that generated the
data as a “break” due to an entirely missing spin system can in
principle appear at any position.

We present here the first efficient algorithm that performs a com-
plete search for backbone resonance assignment. It uniformly treats
all matches and combinations of extra and missing data, and returns
all assignments that are statistically consistent with the data. Our
branch-contract-and-bound algorithm explores the space of admis-
sible solutions, not a single solution at a time, but in groups of partial
solutions, so that entire sets of infeasible solutions can be ruled

out simultaneously. The algorithm branches on choices of restric-
tions on missing data and on selections of partial mappings, and
prunes according to both local and global statistical criteria. Since
missing data essentially act as wildcards, we explore all possible
combinations of missing by gradually increasing their number until
solutions are found. We employ a Bayesian probability model for
NMR spectra (Vitek et al., 2004) which serves as a scoring func-
tion in the search for candidate mappings. This model appropriately
assesses uncertainty, is amenable to formal statistical inference, and
contributes greatly to the high accuracy of our algorithm.

2 METHODS

Scoring Function
Consider a primary sequence ofR residues. Letµ = (µ1, . . . , µR)
denote the unknown “true” chemical shifts of the backbone nuclei
of the protein. Here eachµj is a vector composed of individual che-
mical shiftsµtj for each resonance typet = 1, . . . , T at positionj.
Theµj are the parameters of interest, and the goal of the backbone
resonance assignment is to estimate these values. The input data are
I observed spin systemsx = {(xs

1,x
w
1 ), . . . , (xs

I ,xw
I )}, wherexs

i

is the vector of sequential chemical shiftsxs
ti, andxw

i is the vec-
tor of within-residue chemical shiftsxw

ti, over resonance typet. We
assume that the spin systems are correctly and unambiguously com-
piled prior to the analysis. The total number of spin systemsI can
be greater than, equal to, or less than the length of the proteinR,
depending on presence of extra and missing spin systems.

Let a = (a1, . . . , aR) be a candidate mapping of the observed
spin systems to positions in the primary sequence. Hereaj = i if
xw

i is mapped to positionj (or equivalentlyxs
i is mapped to posi-

tion j − 1). We will also use the notationa = (j, i) to emphasize
the relationship between positions in the sequence and spin systems.
A candidate mapping is one-to-one and gives the putative origin of
the observed data. Some of the spin systems can be considered as
extras bya, and will be associated with sources of noise. According
to the Bayesian paradigm, comparison between candidate mappings
requires 1) specification of probability distribution of the observed
datax; 2) specification of prior distributions of the unknown para-
meters; 3) integrating out the unknowns with respect to the prior
distributions; and 4) calculation of posterior probabilitiesPr(a|x)
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Fig. 2. (a) Histogram of absolute match differences of Cα reso-
nance type combined from six AutoAssign data sets. (b) Histogram
of estimates of experimental variance obtained as a transforma-
tion of match differences. Dashed line is a fitted Scaled Inverseχ2

distribution with 1 degree of freedom.

by applying Bayes theorem. The remainder of this section details
these steps.

Likelihoods.We view the observed chemical shiftsx as noisy rea-
dings from the unknown true chemical shiftsµ. We assume that
errors of the readings are independent across positions and across
resonance types, and are Normally distributed. Specifically,

xs
aj
| µ, V , a ∼ N (µj−1, Vj−1) and xw

aj
| µ, V , a ∼ N (µj , Vj)

MatricesVj are unknown experimental variances that need not be
identical for allj. The independence across resonance types implies
thatVj are diagonal, and we denote the non-zero elements asv2

tj .

Priors for µ, V anda. A prior distribution for the chemical shifts
µj has been proposed by Marinet al. (Marin et al., 2004), and is
a result of a comprehensive study of entries in the database Bio-
MagResBank (Seavey et al., 1991). The distribution is residue-type
specific and takes into account the over-representation of certain
protein sequences in the database as well as the correlation of chemi-
cal shifts within a residue type. Formally,µj ∼ N (θj , Σj) where
θj is a known vector, andΣj is a known non-diagonal matrix.

The prior distribution ofVj relaxes the stringent assumption of
constant and known experimental variances made in our previous
work (Vitek et al., 2004). It is obtained by examining the esti-
mates of experimental variances for each resonance type, namely
1
2
(xs

t aj+1−xw
t aj

)2, in six data sets provided as a test to the AutoAs-
sign program (Zimmerman et al., 1997). As shown in Fig. 2, we fit
the histograms with Scaled Inverseχ2 distributions with 1 degree of
freedom having densities

f(v2
tj) =

1√
2πv3

tj

exp

„
− S2

t

2v2
tj

«

The scale parametersS2
t depend on the resonance type, and the spe-

cific values are 0.0016 ppm2 for C′, 0.004 ppm2 for Cα, 0.005 ppm2

for Cβ and 0.00005 ppm2 for Cα. The choice of 1 degree of freedom
comes from the fact that all experimented variances are estimated on
the basis of two data points.

The prior distribution of mappingsa is used to determine the
number of entirely missing spin systems (or, equivalently, the num-
ber of extra spin systems) in the data set. By analogy with the model
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Fig. 3. (a) Plausibility of a match between two Cα chemical shifts.
Dashed line: scaled Cauchy density in Eq. 1. Solid line: a Nor-
mal density where the standard deviation is equal to a third of
the standard match tolerance of the Cα resonance type, namely
0.5/3 = 0.17. The latter is used by resonance assignment methods
such as MARS. (b) Plausibility of aligning Cα and Cβ chemical
shifts to an Alanine residue. Solid lines are level curves of the
multivariate Normal distribution in Eq. 1.

selection literature, we use Bayesian Information Criterion (BIC)
weights to penalize mappings with an excessive number of extra
spin systems. Specifically,log Pr(a) ∝ (log N) ·R ′ for mappings
whereN is the total number of observed chemical shifts, andR ′

is the number of chemical shifts considered as noise. Furthermore,
we assume a uniform prior distribution of missing spin systems in
the sequence conditionally on their total number. This appropriately
represents our uncertainty in the physical process producing mis-
sing spin systems, but requires a search algorithm considering the
possibility of a missing spin system at each position in the sequence.

Marginal likelihoods.The marginal likelihoodPr(x|a) of the data
given a mapping can be obtained by integrating out the unknownµj

andVj with respect to their prior distributions. In our case,

Pr(x|a) ≈
RQ

j=1

TQ
t=1

C
“

1√
2St

(xs
t aj+1 − xw

t aj
)

”
·

RQ
j=1

φ

„
Σ
− 1

2
j (x̄aj − θj)

«
, (1)

whereC denotes the density of the standard Cauchy distribution,φ
denotes the density of the standard multivariate Normal distribution,
and x̄aj is the average ofxs

aj+1 andxw
aj

. The first term in Eq. 1
evaluates the plausibility of the match at a positionj. As shown in
in Fig. 3(a), it gives more weight to tight matches than other scoring
functions, but has heavier tails. The second term in Eq. 1 evaluates
the plausibility of the alignment. As shown in in Fig. 3(b), it takes
into account both range and correlation of the chemical shifts.

Posterior probabilities.Through the application of the Bayes theo-
rem, Pr(a|x) ∝ Pr(x|a) · Pr(a). The posterior probabilities are
scores used to compare the candidate mappings.

Algorithm for Complete Search
We develop here a complete, fully automated, backbone reso-
nance assignment algorithm. Our algorithm explores the space of
all plausible assignments with a branch-and-bound (more precisely,
branch-contract-and-bound) search technique, illustrated in Fig. 4.
Nodes in a search tree compactly represent partial assignment soluti-
ons. The search recursively expands “promising” nodes, eventually
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Fig. 4. Branch-contract-and-bound. here illustrate the algorithm.
The topmost space consists of three windows covering, respectively,
position (1-3), (4-5) and (6-7) with, respectively 4, 3 and 4 different
strands. Lettersa – h denote spin systems,? are missing observa-
tions. We show two branching steps. The left-hand side, fixesa at
position 4. As a result, the space is pruned of strands that conflict
with this assignment. The contract step yields to complete map-
pings (b?caefg) and (h?caefg) which differ only in one position.
The right-hand side branches on (b, 4), and after the contraction, we
find no consistent mappings. This branch is thus a dead end.

identifying entire assignments at the leaves. The expansion of a node
brancheson the possible placements for individual spin systems,
as well as constraints on the number of missings. Expanded nodes
are evaluated and pruned according toboundsthat test consistency
with the data according to the statistical scoring criteria, as well
as plausibility relative to other solutions. In order to enhance the
effectiveness of the bounds, we employ an additionalcontraction
step between branching and bounding. Contraction takes advantage
of the reduced combinatorics in the context of a particular branch,
and generates combinations of partial solutions to be tested by the
bound.

The practical utility of branch-and-bound algorithms critically
depends on the effectiveness of the branching and bounding steps,
and näıve approaches generally do not scale. Below we discuss the
particular insights underlying our approach which result in the first
complete algorithm able to handle large and noisy proteins.

Let us define astrand D = 〈(j, i1), . . . , (j + |D|, i|D|)〉 as
a partial assignment of spin systemsi to consecutivepositionsj.
Then let awindow, W = {D1, . . . D|W |}, be a set of alternative
strands covering the same positions but with different combinati-
ons of spin systems. With these definitions, the searchspaceS =
{W1, . . . , W|S|} can be represented as a set of disjoint windows
that cover all residues. A candidate mappinga has one strand selec-
ted for each window. We maintain a setA = {a1, . . . , a|A|} of
candidate mappings discovered during the course of the search, and
explore the search tree as follows. We also maintain the mappinga∗

with the highest posterior probability found so far.

Initialization. For a protein withR residues andI spin systems, we
initialize the search spaceS = {W1, . . . , WR} with R windows.

Each windowWj = {(j, 1), (j, 2), . . . , (j, I), (j, I + 1)} contains
I + 1 unit-length strands, one for each spin system and one for a
wild-card representing a missing spin system.

Branching. The search space is split according to two types of
branches: a “missing” branch and a “mapping” branch. A missing
branch places an upper bound on the number of missing placehol-
ders that can be used in a window. Only strands with at most the
specified number of missings are considered in the subtree. Thus
different missing branches for the same window explore solutions
that leave different numbers of positions as “wild cards.” A mapping
branch fixes a spin system at a position in the sequence. Strands
in the subtree are filtered according to the mapping, so that the
same spin system is not mapped to multiple locations, and multiple
spin systems are not mapped to the same location. Different map-
ping branches thus explore different hypotheses about individual
position-spin system assignments.

Leaf nodes.The expansion of a node ends when it is identified as
either a leaf node or a dead end. A leaf node has been reached when
the spaceS = {W} has a single windowW covering the entire
protein. In this case, all strands inW are added to the set of candi-
date mappingsA, and the best mappinga∗ is updated accordingly.
A dead end occurs when the spaceS = {W1, . . . , W|S|} has some
window Wk = ∅. That is, no combination of spin systems can be
mapped to the positions of the window with respect to the branching
constraints, and thus there is no need to explore further. In both cases
the algorithm backtracks and considers the next alternative branch.

Contraction.After each branch, the algorithm contracts the search
space by merging adjacent windows. A pair of windowsW and
W ′ covering positions{j, . . . , k} and{k + 1, . . . , l} is merged into
a new window covering positions{j, . . . , l}. It contains a subset
of the strands{D ∪D′|D ∈ W, D′ ∈ W ′} that are consistent with
the bound. If the number of strands in the new window does not
exceed a user-specified threshold, we substitute it for the original
two windows; otherwise, we leave the original windows. We then
iterate, until no adjacent windows can be merged.

Bounding.Properties of the NMR spectra, along with the probability
model in the previous section, can be used to bound the search space.
Specifically, we evaluate the quality of each strand at a node in the
tree, and determine whether the strand should be kept. Bounds (1)–
(3) arise from the constraints in Sec. 1, and from the functional form
of Eq. 1.

(1) Match: |xs
t, aj+1 − xw

t, aj
| ≤ ξt for all t, j anda. Hereξt are

typical match tolerances in NMR studies, namely 0.25 ppm for
C′, 0.5 ppm for Cα and Cβ , and 0.05 ppm for Hα. ξt determines
the valid differences of chemical shifts in Fig. 3(a).

(2) Align: Σ−1/2
j (x̄aj−θj) ≤ quantile(χ2

T , 0.9999) for all j and
a. The quantile determines a level curve such as in Fig. 3(b)
which encircles the valid region of chemical shifts for the
residue at positionj.

(3) Unique map: if aj is not a missing spin system, thenaj 6=
a(j′) for all j andj′.

(4) and (5) are global bounds derived from the probability model,
based on the solutions discovered so far.
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(4) Posterior probability: P (x|a∗)/P (x|a) ≤ 100 for all a. In
other words, we need not consider mappings that are more than
100 times less likelya posteriorithana∗.

(5) Number of missings: Miss(a) ≤ Miss(a∗) + 1 for all a.
The prior distribution of candidate mappings heavily penalizes
additional missing spin systems. In the vast majority of cases
it is sufficient to consider mappings where the number of mis-
sing spin systems does not exceed the number of missing spin
systems ina∗ by more than 1.

Heuristics. When faced with choices of branches in the tree, we
must decide which branch to explore first. In practice, we parti-
tion the branches to perform all missing branches first, followed
by mapping branches for the rest of the tree. The policy for mis-
sing branches is to monotonically increase the number of missings.
When taking a mapping branch, it is necessary to decide which
position to fix and in which order to try assigning spin systems.
Experimental results suggest that an effective policy is to always
select the position with the smallest set of alternative spin systems
that could be mapped to it. Once a position has been selected, we
order the alternative spin systems according to the the likelihood
of the strands in which they occur. This policy tends to reduce the
width of the tree and typically find solutions significantly faster than
other policies. Finally, in choosing which windows to contract first,
we prefer windows with fewer strands, as they are less likely to
cause a combinatorial explosion.

Interpreting the results
The probability model above can be used to make inference regar-
ding mappings of the observed spin systems to positions. In the
following, we say that a position has areliable mapping if it is
mapped to a same spin system according to all solutions satisfying
bounds (1)–(5).

The probability model can also be used for inference regarding
the unknown chemical shifts. Given a candidate mappinga, the
posterior distribution of a chemical shiftµtj is a scaled Cauchy dis-
tribution truncated by the match tolerancesξt. The overall posterior
distribution ofµtj can be obtained by averaging over the candidate
mappingsak:

Pr(µtj |x) =
KP

k=1

Pr(µtj |x, ak)Pr(ak|x)

In the following, we say that a chemical shiftµtj is reliably determi-
ned if its posterior variance is within the range of variances for the
resonance typet. We say that it is correctly determined if the dif-
ference between the posterior mean ofµtj and the reference value
does not exceedξt.

3 RESULTS

Experimental Data Sets
We use our algorithm to analyze several publicly available expe-
rimental datasets: Human Ubiquitin,v and Zdomain, CspA, Ns1,
RnaseWt, RnaseC6572S and Fgf. (Zimmerman et al., 1997). Fig. 5
describes the data sets and the corresponding reference solutions.
The length of the proteins is between small and average for modern
NMR studies.

As shown in Fig. 6, multiple mappings were found for all pro-
teins. Furthermore, the agreement between reliably mapped spin
systems and the reference solution is very good, but not perfect. This
is due to match differences in the reference solutions that exceed
the tolerances in bound (1) of Sec. 2. In such cases the algorithm
typically introduces a missing spin system that compensates for the
invalid match. Therefore the number of missing spin systems is
larger than the corresponding number in the reference solution.

Disagreements in the mappings of spin systems do not affect
the inference regarding the chemical shifts. Fig. 6 shows a perfect
agreement between the determined chemical shifts and the reference
solution. All executions took less than 3 hours of running time.

Importance of missing spin systems in the search space
Many existing algorithms for resonance assignment reduce the
search space by compiling chains of unambiguously connected spin
systems with no breaks. In our opinion, ignoring the possibility of a
“break” at each position in the sequence underestimates the impact
of missing spin systems, and of match differences that exceed the
tolerance values. This section illustrates that point by comparing
two approaches to resonance assignment. The first, proposed in this
paper and calledfreein Fig. 7, considers the possibility of a missing
spin system at each position in the sequence. The second approach,
proposed by (Lin et al., 2002) and (Chen et al., 2003), enforces
unambiguous matches between spin systems. Specifically, if a spin
systemx1 can be uniquely followed by a spin systemx2, andx2

can be uniquely preceded byx1, the match is considered as fixed.
Therefore matches betweenx1 and a missing, or between a missing
andx2 are not allowed in the search space. The percentage of spin
systems forming such unambiguous chains is a metric of “density”
of adjacency information.

Protein Length Miss Extra Resonance types
ss ss Sequential Within

Ubiquitin 76 2 0 C′,Cα,Cβ C′,Cα,Cβ

Zdomain 70 2 2 C′,Cα,Cβ ,Hα Cα,Cβ ,Hα

CspA 70 2 4 C′,Cα,Cβ ,Hα Cα,Cβ ,Hα

Ns1 73 4 2 C′,Cα,Cβ ,Hα Cα,Cβ ,Hα

RnaseW 124 0 37 C′,Cα,Cβ ,Hα C′,Cα,Cβ ,Hα

RnaseC 124 0 37 C′,Cα,Cβ ,Hα C′,Cα,Cβ ,Hα

Fgf 154 2 24 C′,Cα,Cβ ,Hα C′,Cα,Cβ ,Hα

Fig. 5. Description of the experimental data sets.

Protein |A| Miss r c rCα cCα Hours

Ubiquitin 2 5 66 100% 71 100% 0.005
Zdomain 3 3 62 98% 68 100% 0.02
CspA 11 3 59 98% 64 100% 0.26
RnaseC 2 1 118 100% 124 100% 2.44
Fgf 4 4 140 99% 151 100% 0.74

Fig. 6. Summary of assignment results for the experimental data sets.|A| is
the number of candidate mappings satisfying bounds (1)–(5) in Sec. 2.Miss
is the number of missing spin systems in the mapping with the highest poste-
rior probability. The terms in the next four columns are introduced in Sec. 2:
r is the number of positions with unambiguous mappings of spin systems,
andc is the fraction of correct mappings among the reliable positions.rCα

is the number of reliably determined chemical shifts, andcCα is the fraction
of correctly determine chemical shifts among the reliable ones.Hours is the
execution time in hours on a 2.5Ghz PowerPC G5 with 3GB of memory.
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The second column of Fig. 7 describes the adjacency informa-
tion in Human Ubiquitin and in the AutoAssign proteins. As can be
seen, it ranges between 0 and 0.81, suggesting that these data have
less adjacency than the data sets in (Chen et al., 2003) where the
metric varies between .5 and .9. Furthermore, a comparison of Fig. 6
and Fig. 7 suggests that adjacency is not a good measure of the diffi-
culty of a data set. While CspA has adjacency information of 0 and
RnaseC6572S has adjacency information of 0.8, it takes almost 10
times longer to complete the assignment of RnaseC6572S.

According to columns 2–4 in Fig. 7, enforcing adjacency in Rna-
seC6572S and Ubiquitin reduces the number of unambiguously
mapped positions without compromising the accuracy of the deter-
mined Cα chemical shifts. In Zdomain, it increases the number of
unambiguously mapped positions at the expense of accuracy. While
these differences are small they can be easily exacerbated in larger
and noisier data sets.

Protein Adjacency Free Enforced
rCα cCα rCα cCα

RnaseC 0.81 124 100% 121 100%
Zdomain 0.54 68 100% 71 95%
Ubiquitin 0.50 71 100% 70 100%
Fgf 0.34 151 100% 152 100%
CspA 0.00 64 100% – –

Fig. 7. Assignments with adjacency information.Adjacencyis the propor-
tion of the spin systems forming unambiguous chains.Free denotes the
approach considering a missing spin system at each position in the sequence,
andEnforcedis the approach that enforces unambiguous matches.cCα and
rCα are as in Fig. 6. Since CspA has 0 adjacency, one can not enforce the
connectivity information for this protein.

Synthetic Data
We evaluate the large-scale performance of our approach using syn-
thetic data sets from 259 randomly selected entries to the database
RefDB (Zhang et al., 2003). In order to generate data sets of realistic
quality and size, we examined noise characteristics in the AutoAs-
sign proteins, and simulated data according to these characteristics
as follows. First, since it is unlikely that all the unreported che-
mical shifts in the database correspond to truly missing peaks, we
simulate the missing values in the RefDB entries from the prior dis-
tributions in (Marin et al., 2004), and compile spin systems on the
basis of the full sets of chemical shifts. Second, we delete a random
number of the correct spin systems, and add a random number of
extra spin systems to the data sets. The two numbers were gene-
rated from Poisson distributions with mean 2. Third, we randomly
delete chemical shifts with frequencies observed in the AutoAssign
proteins for each resonance type. Finally, we consider three scena-
rios of experimental noise. Scenario one, calledclean, is unrealistic
but often used to evaluate assignment procedures, e.g., in (Jung and
Zweckstetter, 2004). It considers spin systems with no experimental
noise. Scenario two, calledconsistent, is realistic. Here noise added
to the chemical shifts is sampled from the histograms of match
tolerances in the AutoAssign proteins such as in Fig. 2(a). The
histograms are truncated to satisfy the standard match tolerances
for each resonance type. Scenario three, callednoisy, investigates
the robustness of the proposed approach. It allows invalid match
tolerances in the reference solution by sampling noise from the full

(non-truncated) distribution of match differences in the AutoAs-
sign proteins. In total, the procedure generated 777 synthetic data
sets that are available from the contact author along with automated
scripts for their execution.

The data sets were analyzed using the MBA2 software with
default settings and no manual intervention. The results of the exe-
cutions are summarized in Fig. 8. As can be seen, the proposed
procedure reliably determines most of the mappings between spin
systems and positions. On average, 99.8% of assignable positions
are unambiguously mapped in thecleandata sets, and 99.7% of assi-
gnable positions are mapped in thenoisyexperiments. The accuracy
of assignment is measured byc, the proportion of reliable assi-
gnment that agree with the reference solution. It is on average 100%
for clean data, 99.96% forconsistentdata, and 99.36% fornoisy
data. The last row in Fig. 8 gives execution times on a log scale. As
expected, time grows exponentially, in particular innoisydata set
where large numbers of missing spin systems are required to com-
pensate for invalid matches. At the same time, the execution times
remain within acceptable limits for the majority of the data sets.

4 DISCUSSION
We have presented the first approach to backbone resonance assi-
gnment that is based on a complete algorithm and scales to data sets
of realistic quality and size. We have validated our claims by con-
ducting a large-scale automated resonance assignment study. The
results show that, contrary to commonly accepted wisdom, complete
search algorithm can handle problems of practical interest.

Where applicable, our approach will increase the number of relia-
bly determined chemical shifts, and yield fewer errors as compared
to the existing methods of resonance assignment. The characteristics
that contribute to the excellent overall performance are (1) a rigorous
probability model that assesses the uncertainty in the NMR spectra
and is amenable to formal statistical inference; (2) the correct defi-
nition of the search space that considers a possibility of a missing
spin system at any position in the sequence, and an arbitrary num-
ber of missings; (3) a complete algorithm that relies on hierarchical
association of partial mappings to control the search space.

Complete algorithms are not a panacea. In our experimental study
we encountered two AutoAssign datasets, Ns1 and RnaseWt, which
proved challenging to the algorithm. But this is hardly surprising
considering the quality of the data. Ns1 has 4 missing spin systems
(out of 73 positions) and an average of 23% of the resonances mis-
sing per spin system. RnaseWt is missing 11% of its resonances and
has 37 extraneous spin systems. Moreover, in both cases the refe-
rence solutions have spin systems with scores outside the standard
match tolerances (7 for RnaseWt and 5 for Ns1).

Complete search algorithms can thus be an useful tool in many
situations. In cases of very noisy data, they can be used to guide heu-
ristic or stochastic search algorithms that consider only promising
portions of the space, sacrificing completeness for scalability.
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