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ABSTRACT
Motivation: Nuclear magnetic resonance (NMR) spectroscopy is
widely used to determine and analyze protein structures. An essential
step in NMR studies is backbone resonance assignment, which maps
individual atoms to experimentally measured resonance frequencies.
Performing assignment is challenging due to the noise and ambiguity
in the spectra. While automated procedures have been investigated,
by-and-large they are struggling to gain acceptance due to inherent
limits in scalability and unacceptable numbers of assignment errors.
To have confidence in the results, an algorithm should be complete,
i.e. able to identify all solutions consistent with the data, including
all arbitrary configurations of extra and missing peaks. The ensuing
combinatorial explosion in the space of possible assignments case
has led to the perception that complete search is hopelessly inefficient
and cannot scale to realistic proteins.
Results: This paper presents a complete branch-contract-and-bound
search algorithm for backbone resonance assignment. The algorithm
controls the search space by hierarchically agglomerating partial
assignments and employing statistically sound pruning criteria. It con-
siders all solutions consistent with the data, and uniformly treats
all combinations of extra and missing data. We demonstrate our
approach on experimental data from 5 proteins ranging in size from
70 to 154 residues. The algorithm assigns over 95% of the positions
with over 98% accuracy. We also present results on simulated data
from 259 proteins from the RefDB database, ranging in size from 25
to 257 residues obtained in a fully automated manner. The median
computation time is 1 minute, and the assignment accuracy is over
99%. These results demonstrate that complete search not only has
the advantage of guaranteeing fair treatment of all feasible solutions,
but is efficient enough to be employed effectively in practice.
Availability: The MBAs software package and data sets can be
obtained from the contact author.
Contact: ovitek@stat.purdue.edu

1 INTRODUCTION

as magnetic signatures of the atoms, and are extensively used in
analyses of structure, dynamics, and molecular interactions.

Backbone resonance assignment typically uses a set of three-
dimensional NMR experiments. An example of such an experiment
is the HN(CO)CA shown in Fig. 1(a), which magnetically correlates
a bonded pair of H—N backbone nuclei with the®Cnucleus of the
preceding residue, and yields a three-dimensional spectrum. Peaks
in the spectrum indicate the triples of'HN-C* nuclei that exhibit
magnetic interactions. The coordinates of the peaks are the chemi-
cal shifts of the nuclei. Each HN(CO)CA peak records signals from
two neighboring residues and therefore captgezpuentiainterac-
tions. Another three-dimensional experiment, HNCA, magnetically
correlates the bonded™HN pairs with the C either of the pre-
ceding residue (as in the HN(CO)CA), or of the same residue. It
yields approximately twice as many three-dimensional peaks as the
HN(CO)CA, gathering both sequential awithin-residuemagnetic
interactions. Similar NMR experiments can be designed to correlate
the H'-N pairs with @&, H*, and C. Coordinates of peaks from the
various experiments can be combined by reference to shared coor-
dinates of the H—N resonance types. The resultisgin systems
shown in Fig. 1(b), contain chemical shifts of the anchot-N
nuclei, of other backbone nuclei within the same residue, and of
nuclei in the sequentially preceding residue.

While NMR studies assume that the primary sequence is known,
the spectra provide no information about which position in the
sequence generated a particular chemical shift. This must be
inferred from the observed spin systems by the process of back-
bone resonance assignment. A typical resonance assignment pro-
cedure (Moseley and Montelione, 1999) searchesnfappings
between spin systems and positions in the sequence that satisfy the
following constraints (Fig. 1(b)):1) For two spin systems mapped
to adjacent positions, the within-residue chemical shifts of the first
matchthe sequential chemical shifts of the secori?). Each spin
system mapped to a position aigned with the amino acid type,
meaning that its chemical shifts are consistent with the expected
values for the amino acid3) Each spin system is mapped to at most

Nuclear magnetic resonance (NMR) spectroscopy is an experimefane position in the protein sequence, and each position is mapped to
tal method capable of determining three-dimensional structures o4t most one spin system.

proteins in atomic detail under nearly physiological conditions.

Noise and ambiguity in the spectra reduce the effectiveness of

Some 15%-20% of new protein structures are currently determineghese constraints in the resonance assignment process. First, peak
by NMR, and the rate is likely to grow (Montelione et al., 2000). coordinates are uncertain, so approximate matches in constraint (1)

A bottlenecks in NMR studies isackbone resonance assignment
computational procedure establishing values ofdhemical shifts

must be allowed within pre-specified tolerance values. All matches
must be allowed in the case of a missing chemical shift. Second, the

of the atoms of the protein backbone. Chemical shifts can be viewed
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Fig. 1. NMR data. &) The HN(CO)CA experiment correlates thé'HN pair from one residue with the ®Cfrom the preceding residue.
Spectral peaks capture various such interactions. Coordinates of the peaks are the chemical shifts of the involvdy) &omgilgtion
of peaks from a set of experiments yields spin systamthat represent chemical shifts of atoms within a residue and in the sequentially

preceding residue. Resonance assignment algorithms proceed by matching the chemical shifts of pairs of spin systems and aligning them «
adjacent positions in the primary sequence.

ranges of chemical shifts for an amino acid type in constraint (2) ar@ut simultaneously. The algorithm branches on choices of restric-

fairly broad, and usually allow multiple mappings of spin systemstions on missing data and on selections of partial mappings, and

to a position. Third, positions in the sequence can have entirely misprunes according to both local and global statistical criteria. Since

sing spin systems, and the number and identity of such positions isiissing data essentially act as wildcards, we explore all possible

unknown. At the same time, observed data can be extraneous.  combinations of missing by gradually increasing their number until
These artifacts of noise and ambiguity result in a combinatoriakolutions are found. We employ a Bayesian probability model for

explosion of the search space of candidate mappings. ConsequentyMR spectra (Vitek et al., 2004) which serves as a scoring func-

exhaustive search algorithms (Andrec et al., 2001, Lin et al., 2002tion in the search for candidate mappings. This model appropriately

Vitek et al., 2004) have been dismissed as impractical for anythingissesses uncertainty, is amenable to formal statistical inference, and

but small proteins and “clean” datasets. Semi-automated proceduresntributes greatly to the high accuracy of our algorithm.

such as @MRA (Gronwald et al., 1998), MPPER (Guntert et al.,

2000) and RcEs (Coggins and Zhou, 2003) require human inter-

vention to manage the search space. Fully automated approaches METHODS

gain in scalability but compromise accuracy or efficiency by USing'Scoring Function

e.g., best-first search (Zimmerman et al., 1997), approximation algo- . . .

rithms (Chen et al., 2003), global and local stochastic optimizatiorCONSIder a primary sequenceBfresidues. Lep = (yseibp)

TATAPRO (Atreya et al., 2000), MONTE (Hitchens et al., 2003), denote the .unknown true' chemical shifts of the pagkpone nuclei

MARS (Jung and Zweckstetter, 2004). of the protein. Here eagh; is a vector composed of individual che-

In order to fully characterize the confidence in an assignmentMical shiftsy.; for each resonance type= 1,.. ., 7" at position;.
an algorithm must beomplete That is, it must be able to iden- Theuj are the_paramet_ers of |n_terest, and the goal of th_e backbone
tify all solutions consistent with the data, including those with resonance assignment is to estimate these values. The input data are

arbitrary configurations of matches and placements of extra and OPServed spin systems= {(xi, x{'),. .., (x7,x7)}, wherex;
missing peaks. It is not sufficient to focus on optimization for just 'S the vector of sequential chemical shiits, andx;” is the vec-

the “best” solution, since the ranking may be sensitive to smallf©" Of within-residue chemical shifts;;, over resonance type We
details in the method used to evaluate the quality of the satisfac2SSUme that the spin systems are correctly and unambiguously com-
tion of the constraints. On the other hand, it is not appropriate td!led Prior to the analysis. The total number of spin systdman
treat all solutions as plausible, as statistical scoring models can prd€ greater than, equal to, or less than the length of the préigin
vide estimates of quality and indicate that some solutions are clearlfféPending on presence of extra and missing spin systems.
inconsistent with the data. Finally, it is dangerous to fix “unambi- L€t@ = (a1,...,ar) be a candidate mapping of the obgt_erved
guous” chains of matched spin systems. This does not appropriateRPIN SyStems to positions in the primary sequence. Hgre: 4 if
represent our uncertainty regarding the process that generated tie 'S Mapped to positioi (or equivalentlyx; is mapped to posi-

data as a “break” due to an entirely missing spin system can ifionJ — 1). We will also use the notatioa = (j, i) to emphasize
principle appear at any position. the relationship between positions in the sequence and spin systems.

We present here the first efficient algorithm that performs a com?* candidate mapping is one-to-one and gives the putative origin of

plete search for backbone resonance assignment. It uniformly treat3€ observed data. Some of the spin systems can be considered as

all matches and combinations of extra and missing data, and retur&ras bya, and will be associated with sources of noise. According

all assignments that are statistically consistent with the data. O the Bayesian paradigm, comparison between candidate mappings

branch-contract-and-bound algorithm explores the space of admi£duires 1) specification of probability distribution of the observed

sible solutions, not a single solution at a time, but in groups of partiafatax: 2) specification of prior distributions of the unknown para-

solutions, so that entire sets of infeasible solutions can be rule'€t€rs: 3) integrating out the unknowns with respect to the prior
distributions; and 4) calculation of posterior probabilitiesa |x)
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Fig. 2. (a) Histogram of absolute match differences dof €&so-  Fig. 3. (a) Plausibility of a match between twd*@hemical shifts.
nance type combined from six AutoAssign data sets. (b) Histogranbashed line: scaled Cauchy density in Eg. 1. Solid line: a Nor-
of estimates of experimental variance obtained as a transformawnal density where the standard deviation is equal to a third of
tion of match differences. Dashed line is a fitted Scaled Invgfse the standard match tolerance of th& @sonance type, namely
distribution with 1 degree of freedom. 0.5/3 = 0.17. The latter is used by resonance assignment methods
such as MARS. (b) Plausibility of aligning®Cand & chemical
shifts to an Alanine residue. Solid lines are level curves of the
by applying Bayes theorem. The remainder of this section detailsnultivariate Normal distribution in Eq. 1.
these steps.

selection literature, we use Bayesian Information Criterion (BIC)
dings from the unknown true chemical shifis We assume that weights to penalize mappings with an excessive number of extra

errors of the readings are independent across positions and acrodan systems. Specificallipg Pr(a) o (log V) - R for mappings
resonance types, and are Normally distributed. Specifically, where N is the total number of observed chemical shifts, d&d

is the number of chemical shifts considered as noise. Furthermore,
X3, [ Via~N(p,_y,Vic) and x|, V,a ~N(u;,V;) Weassume a unifo_rm prior distripution of missing s_pin systems in

the sequence conditionally on their total number. This appropriately
MatricesV; are unknown experimental variances that need not bgepresents our uncertainty in the physical process producing mis-
identical for allj. The independence across resonance types implie§ing spin systems, but requires a search algorithm considering the
thatV; are diagonal, and we denote the non-zero elemem;%,- as possibility of a missing spin system at each position in the sequence.

Likelihoods.We view the observed chemical shiftsas noisy rea-

Priors for p, V anda. A prior distribution for the chemical shifts Marginal likelihoods.The marginal likelihoodPr(x|a) of the data
1, has been proposed by Marat al. (Marin et al., 2004), and is ~ given a mapping can be obtained by integrating out the unknewn
a result of a comprehensive study of entries in the database Big@ndV; with respect to their prior distributions. In our case,
MagResBank (Seavey et al., 1991). The distribution is residue-type Pr(x|a) ~ ﬁ FTI C ( A (a5, —a¥ v))
specific and takes into account the over-representation of certain j=14=1 V2s e I
protein sequences in the database as well as the correlation of chemi- R .
cal shifts within a residue type. Formally,; ~ N(8;,%;) where Tl o ( ¥, 2 (Ra; — 6j) > , 1)
6, is a known vector, anL; is a known non-diagonal matrix. J=1

The prior distribution ofl; relaxes the stringent assumption of \yherec denotes the density of the standard Cauchy distribution,
constant and known experimental variances made in our previougenotes the density of the standard multivariate Normal distribution,
work (Vitek et al., 2004). It is obtained by examining the esti- andx,, is the average ok ., andxy,. The first term in Eq. 1
mates of experimental variances for each resonance type, namelyajuates the plausibility of the match at a positjors shown in
3(@f a;,, —i'a;)? insix data sets provided as atest to the AutoAs-n Fig. 3(a), it gives more weight to tight matches than other scoring
sign program (Zimmerman et al., 1997). As shown in Fig. 2, we fitfynctions, but has heavier tails. The second term in Eq. 1 evaluates
the histograms with Scaled Invergé distributions with 1 degree of  {he plausibility of the alignment. As shown in in Fig. 3(b), it takes

freedom having densities into account both range and correlation of the chemical shifts.
2
f(vfj) = #exp (_ig> Posterior probabilitiesThrough the application of the Bayes theo-
V2my; 2vg; rem, Pr(a|x) « Pr(x|a) - Pr(a). The posterior probabilities are

scores used to compare the candidate mappings.
The scale parametef§ depend on the resonance type, and the spe-

cific values are 0.0016 pphfor C', 0.004 ppri for C%, 0.005 pprd ~ Algorithm for Complete Search

for C® and 0.00005 pprifor C*. The choice of 1 degree of freedom We develop here a complete, fully automated, backbone reso-

comes from the fact that all experimented variances are estimated arance assignment algorithm. Our algorithm explores the space of

the basis of two data points. all plausible assignments with a branch-and-bound (more precisely,
The prior distribution of mappings is used to determine the branch-contract-and-bound) search technique, illustrated in Fig. 4.

number of entirely missing spin systems (or, equivalently, the numNodes in a search tree compactly represent partial assignment soluti-

ber of extra spin systems) in the data set. By analogy with the modeadns. The search recursively expands “promising” nodes, eventually
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e] Each windowW; = {(4,1), (4,2),...,(4,1), (4,1 + 1)} contains
a] I + 1 unit-length strands, one for each spin system and one for a
‘ wild-card representing a missing spin system.

Branching. The search space is split according to two types of

(aA)/\gM) branches: a “missing” branch and a “mapping” branch. A missing

branch places an upper bound on the number of missing placehol-
b7 cl[a _elf gl 09 ders that can be used in a window. Only strands with at most the
specified number of missings are considered in the subtree. Thus
h 2?2 ¢ h ? ¢ different missing branches for the same window explore solutions
ONONONONOXOXO) ORORORORONORO, that leave different numbers of positions as “wild cards.” A mapping
lcomm lmm branch fixes a spin system at a position in the sequence. Strands
in the subtree are filtered according to the mapping, so that the
b7 o & & T g same spin system is not mapped to multiple Ioca.tions, gnd multiple
F 7 = = =« 7 3] spin systems are not mapped to the same location. Different map-

® @ ®O6 60 DB O®OE O ping branches thus explore different hypotheses about individual
position-spin system assignments.

Fig. 4. Branch-contract-and-bound. here illustrate the algorithm. . L .
The topmost space consists of three windows covering, respectively€af nodes:The expansion of a node ends when it is identified as
position (1-3), (4-5) and (6-7) with, respectively 4, 3 and 4 different €ither a leaf node or a dead end. A leaf node has been reached when
strands. Letters — h denote spin systemg,are missing observa- the spaceS = {WW} has a single windowV" covering the entire
tions. We show two branching steps. The left-hand side, fixas  protein. In this case, all strands i# are added to the set of candi-
position 4. As a result, the space is pruned of strands that confliaate mappingsi, and the best mapping"* is updated accordingly.
with this assignment. The contract step yields to complete mapA dead end occurs when the spate= {W1, .. ., Ws|} has some
pings p?caefg and fi?caefg which differ only in one position.  window 1%, = (. That is, no combination of spin systems can be
The right-hand side branches dn §), and after the contraction, we  mapped to the positions of the window with respect to the branching
find no consistent mappings. This branch is thus a dead end. constraints, and thus there is no need to explore further. In both cases
the algorithm backtracks and considers the next alternative branch.

identifying entire assignments at the leaves. The expansion of a nodeontraction.After each branch, the algorithm contracts the search
brancheson the possible placements for individual spin systemsspace by merging adjacent windows. A pair of windoWsand
as well as constraints on the number of missings. Expanded nodé®” covering positiongj, ..., k} and{k + 1,...,1} is merged into
are evaluated and pruned accordindtandsthat test consistency a new window covering position§j, ..., [}. It contains a subset
with the data according to the statistical scoring criteria, as wellof the strand§ D U D'|D € W, D’ € W'} that are consistent with
as plausibility relative to other solutions. In order to enhance thehe bound. If the number of strands in the new window does not
effectiveness of the bounds, we employ an additi@mualtraction  exceed a user-specified threshold, we substitute it for the original
step between branching and bounding. Contraction takes advantaggo windows; otherwise, we leave the original windows. We then
of the reduced combinatorics in the context of a particular branchiterate, until no adjacent windows can be merged.
and generates combinations of partial solutions to be tested by the
bound. Bounding Properties of the NMR spectra, along with the probability
The practical utility of branch-and-bound algorithms critically model in the previous section, can be used to bound the search space.
depends on the effectiveness of the branching and bounding stefSpecifically, we evaluate the quality of each strand at a node in the
and nédve approaches generally do not scale. Below we discuss thigee, and determine whether the strand should be kept. Bounds (1)—
particular insights underlying our approach which result in the first(3) arise from the constraints in Sec. 1, and from the functional form
complete algorithm able to handle large and noisy proteins. of Eq. 1.
Let us define sstrand D = ((j,%1),...,(j + |D|,%p|)) as

a partial assignment of spin system$ consecutivepositions;. (1) Mateht |27, ,, — iq;| < & forallt, j anda. Here¢, are

Then let awindow W = {Dx, ... D;w,}, be a set of alternative ty,pical match tolerances in NMR studies, namely 0.25 ppm for
strands covering the same positions but with different combinati- €+ 0-5ppmfor C and o and 0.05 ppm for Hi. ¢, determines
ons of spin systems. With these definitions, the seapetteS — the valid differences of chemical shifts in Fig. 3(a).
{W1,...,W|s} can be represented as a set of disjoint windows (2) Align: 2.7.‘1/2(5(%. —0;) < quantile(x?3, 0.9999) for all j and
that cover all residues. A candidate mappéngas one strand selec- a. The quantile determines a level curve such as in Fig. 3(b)
ted for each window. We maintain a sdt = {a1,..., a4} of which encircles the valid region of chemical shifts for the

candidate mappings discovered during the course of the search, and residue at positior.
explore the search tree as follows. We also maintain the magpging <)

Unigue map if a; is not a missing spin system, th
with the highest posterior probability found so far. f P % g spin sy e #

a(j’) for all j andj’.

Initialization. For a protein withR residues and spin systems, we (4) and (5) are global bounds derived from the probability model,
initialize the search spac® = {W1,..., Wgr} with R windows. based on the solutions discovered so far.
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(4) Posterior probability P(x|a™)/P(x|a) < 100 for all @. In As shown in Fig. 6, multiple mappings were found for all pro-
other words, we need not consider mappings that are more thateins. Furthermore, the agreement between reliably mapped spin
100 times less likelya posteriorithana™. systems and the reference solution is very good, but not perfect. This

(5) Number of missingsMiss(a) < Miss(a*) + 1 for all @. IS due to match differences in the reference solutions that exceed

The prior distribution of candidate mappings heavily penalizesthe tolerances in bound (1) of Sec. 2. In such cases the algorithm
additional missing spin systems. In the vast majority of casedyPically introduces a missing spin system that compensates for the
it is sufficient to consider mappings where the number of mis-invalid match. Therefore the number of missing spin systems is

sing spin systems does not exceed the number of missing spig"ger than the corresponding number in the reference solution.
systems ir* by more than 1. Disagreements in the mappings of spin systems do not affect

the inference regarding the chemical shifts. Fig. 6 shows a perfect
agreement between the determined chemical shifts and the reference
Heuristics. When faced with choices of branches in the tree, wesolution. All executions took less than 3 hours of running time.
must decide which branch to explore first. In practice, we parti- L . .
tion the branches to perform all missing branches first, followed/MpPortance of missing spin systems in the search space
by mapping branches for the rest of the tree. The policy for mis-Many existing algorithms for resonance assignment reduce the
sing branches is to monotonically increase the number of missingsearch space by compiling chains of unambiguously connected spin
When taking a mapping branch, it is necessary to decide whiclsystems with no breaks. In our opinion, ignoring the possibility of a
position to fix and in which order to try assigning spin systems.“break” at each position in the sequence underestimates the impact
Experimental results suggest that an effective policy is to alway®f missing spin systems, and of match differences that exceed the
select the position with the smallest set of alternative spin systemwlerance values. This section illustrates that point by comparing
that could be mapped to it. Once a position has been selected, weo approaches to resonance assignment. The first, proposed in this
order the alternative spin systems according to the the likelihoogbaper and callefteein Fig. 7, considers the possibility of a missing
of the strands in which they occur. This policy tends to reduce thespin system at each position in the sequence. The second approach,
width of the tree and typically find solutions significantly faster than proposed by (Lin et al., 2002) and (Chen et al., 2003), enforces
other policies. Finally, in choosing which windows to contract first, unambiguous matches between spin systems. Specifically, if a spin
we prefer windows with fewer strands, as they are less likely tosystemx; can be uniquely followed by a spin systet, andx.

cause a combinatorial explosion. can be uniquely preceded by, the match is considered as fixed.
. Therefore matches betwegn and a missing, or between a missing
Interpreting the results andx, are not allowed in the search space. The percentage of spin

The probability model above can be used to make inference regasystems forming such unambiguous chains is a metric of “density”
ding mappings of the observed spin systems to positions. In thef adjacency information.

following, we say that a position hasraliable mapping if it is
mapped to a same spin system according to all solutions satisfyin

bounds (1)-(5). Protein Length | Miss | Extra Resonance types
The probability model can also be used for inference regarding Ss Ss Sequential | Within
the unknown chemical shifts. Given a candidate mapginghe Ubiquitin 76 2 0 c/.coc? c/.coch
posterior distribution of a chemical shiit; is a scaled Cauchy dis- Zdomain 70 2 2 [ CccoCPHY | CcoCPH
tribution truncated by the match toleranggsThe overall posterior CspA 70 2 4 | c,coCPH> | C*CPHx
distribution of 1;; can be obtained by averaging over the candidate| Nsl1 73 4 2 |y CPHY | CcoCPHY
mappingsa: RnaseW | 124 0 37 | C/,c*,CP H™ | C',C™,CP H™
RnaseC | 124 0 37 | C,co,CPHY | C,C¥,CP H
Fgf 154 2 24 | c,c*,C8H | C,C¥,CP H

K
P i = P i P
(s x) ,;1 rpes %, ax)Pr(ak[x) Fig. 5. Description of the experimental data sets.

In the following, we say that a chemical shift; is reliably determi- [Protein [[JA[[Miss] r | ¢ Jrca | cce | Hours]|
ned if its posterior variance is within the range of variances for the Ubiquitin || 2 5 1 66 | 100% | 71 | 100% | 0.005
resonance typé. We say that it is correctly determined if the dif- Zdoman 113 3 | 62 | 98% | 68 | 100% | 0.02
ference between the posterior mearugf and the reference value CspA 11| 3 59 | 98% | 64 | 100% | 0.26
does not exceegt. RnaseC || 2 | 1 | 118 | 100% | 124 | 100% | 2.44

Fof 4 4 | 140| 99% | 151 | 100% | 0.74
3 RESULTS Fig. 6. Summary of assignment results for the experimental data| séts
Experimental Data Sets the number of candidate mappings satisfying bounds (1)—(5) in Sktisg.

. . . is the number of missing spin systems in the mapping with the highest poste-
We use our algorithm to a”alyze_ §evera| publicly gvallable €XPCior probability. The terms in the next four columns are introduced in Sec. 2:
rimental datasets: Human Ubiquitin,v and Zdomain, CspA, NS1; js the number of positions with unambiguous mappings of spin systems,
RnaseWt, RnaseC6572S and Fgf. (Zimmerman et al., 1997). Fig. &ndc is the fraction of correct mappings among the reliable positiogs.
describes the data sets and the corresponding reference solutioisthe number of reliably determined chemical shifts, eqd is the fraction

The length of the proteins is between small and average for moderef correctly determine chemical shifts among the reliable oHesrsis the
NMR studies. execution time in hours on a 2.5Ghz PowerPC G5 with 3GB of memory.
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The second column of Fig. 7 describes the adjacency informa¢non-truncated) distribution of match differences in the AutoAs-
tion in Human Ubiquitin and in the AutoAssign proteins. As can be sign proteins. In total, the procedure generated 777 synthetic data
seen, it ranges between 0 and 0.81, suggesting that these data haets that are available from the contact author along with automated
less adjacency than the data sets in (Chen et al., 2003) where tiseripts for their execution.
metric varies between .5 and .9. Furthermore, a comparison of Fig. 6 The data sets were analyzed using the MBgoftware with
and Fig. 7 suggests that adjacency is not a good measure of the diffiefault settings and no manual intervention. The results of the exe-
culty of a data set. While CspA has adjacency information of O anctutions are summarized in Fig. 8. As can be seen, the proposed
RnaseC6572S has adjacency information of 0.8, it takes almost 1frocedure reliably determines most of the mappings between spin
times longer to complete the assignment of RnaseC6572S. systems and positions. On average, 99.8% of assignable positions

According to columns 2—4 in Fig. 7, enforcing adjacency in Rna-are unambiguously mapped in ttleandata sets, and 99.7% of assi-
seC6572S and Ubiquitin reduces the number of unambiguouslgnable positions are mapped in thaisyexperiments. The accuracy
mapped positions without compromising the accuracy of the deteref assignment is measured lay the proportion of reliable assi-
mined C* chemical shifts. In Zdomain, it increases the number ofgnment that agree with the reference solution. It is on average 100%
unambiguously mapped positions at the expense of accuracy. Whiler cleandata, 99.96% foconsistentdata, and 99.36% fomoisy
these differences are small they can be easily exacerbated in largeéata. The last row in Fig. 8 gives execution times on a log scale. As
and noisier data sets. expected, time grows exponentially, in particulamioisy data set
where large numbers of missing spin systems are required to com-
pensate for invalid matches. At the same time, the execution times
remain within acceptable limits for the majority of the data sets.

Protein Adjacency Free Enforced
rca | cca [rea | cco

RnaseC 0.81 124 100% | 121 [ 100%

Zdomain | 054 | 68 | 100%| 71 | 95% 4 DISCUSSION

Ubiquitin 0.50 71 | 100% | 70 | 100% We have presented the first approach to backbone resonance assi-
Fof 0.34 151 | 100% | 152 | 100% gnment that is based on a complete algorithm and scales to data sets
CspA 0.00 64 | 100% | - - of realistic quality and size. We have validated our claims by con-

Fig. 7. Assignments with adjacency informatiodjacencyis the propor-  ducting a large-scale automated resonance assigrllment study. The
tion of the spin systems forming unambiguous chaifiee denotes the  results show that, contrary to commonly accepted wisdom, complete

approach considering a missing spin system at each position in the sequen&garch algorithm can handle problems of practical interest.

andEnforcedis the approach that enforces unambiguous mateesand Where applicable, our approach will increase the number of relia-
rce are as in Fig. 6. Since CspA has 0 adjacency, one can not enforce thigly determined chemical shifts, and yield fewer errors as compared
connectivity information for this protein. to the existing methods of resonance assignment. The characteristics

that contribute to the excellent overall performance are (1) a rigorous
probability model that assesses the uncertainty in the NMR spectra
Synthetic Data and is amenable to formal statistical inference; (2) the correct defi-
nition of the search space that considers a possibility of a missing

We evaluate the large-scale performance of our approach using syggin system at any position in the sequence, and an arbitrary num-

thetic data sets from 259 randomly selected entries to the databa%er of missings; (3) a complete algorithm that relies on hierarchical

RefDB (Zhang et al., 2003). In order to generate data sets of realistic - : .
association of partial mappings to control the search space.

quality and size, we examined noise characteristics in the AutoAs- . .
) . . . . . _Complete algorithms are not a panacea. In our experimental study
sign proteins, and simulated data according to these characteristics

i . o . We encountered two AutoAssign datasets, Ns1 and RnaseWt, which
as follows. First, since it is unlikely that all the unreported che- . . o -
mical shifts in the database correspond to truly missing peaks Wgroved challenging to the algorithm. But this is hardly surprising

. o . ; . . “considering the quality of the data. Ns1 has 4 missing spin systems
simulate the missing values in the RefDB entries from the prior dis- - 0 .
tributions in (Marin et al., 2004), and compile spin systems on the(out of 73 positions) and an average of 23% of the resonances mis-
basis of the full sets of cHemicaI’shifts Second, we delete a randor‘?ﬁing per spin system. RnaseWt is missing 1196 of its resonances and
number of the correct spin systems énd add 'a random number c}’)l s 37 extraneous spin systems. Moreover, in both cases the refe-
extra spin systems to tr?e daﬁa setsl The two numbers were genree_nce solutions have spin systems with scores outside the standard
rated from Poisson distributions with mean 2. Third, we randomlynggrr:qtolgeag(;i(g ;(I)rcl)?rir:srsnes\,\(/:taintdhﬁsfol::eNZr?l.Jseful tool in man
delete chemical shifts with frequencies observed in the AutoAssign P g y

- . . ituations. In f very noi ta, th n t ide heu-
proteins for each resonance type. Finally, we consider three scenge atons. N cases ot verynoisy data, they can be used to guide heu

. - . . . S fistic or stochastic search algorithms that consider only promising
rios of experimental noise. Scenario one, calilshn is unrealistic ; e .

. . rtions of the space, sacrificing completeness for scalability.
but often used to evaluate assignment procedures, e.g., in (Jung aRd
Zweckstetter, 2004). It considers spin systems with no experimental
noise. Scenario two, callabnsistentis realistic. Here noise added REFERENCES
to the chemical shifts is sampled from the histograms of matchAndrec, M., P. Du, and R. Levy (2001). Protein structural motif
tolerances in the AutoAssign proteins such as in Fig. 2(a). The recognition via NMR residual dipolar couplingsournal of the
histograms are truncated to satisfy the standard match tolerancesAmerican Chemical Society 12B222.
for each resonance type. Scenario three, cail@dy, investigates Atreya, H. S., S. C. Sahu, K. V. R. Chary, and G. Govil (2000).
the robustness of the proposed approach. It allows invalid match A tracked approach for automated NMR assignments in proteins
tolerances in the reference solution by sampling noise from the full (TATAPRO). Journal of Biomolecular NMR 17125-136.
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Fig. 8. Assignment Results for 259 proteins selected randomly from the Refll#ain data sets have spin systems with no experimental
noise.Consistentlata sets have distribution of experimental noise observed in the AutoAssign proteins, but within the match tolerances in
the bound (1)Noisydata sets have non-truncated experimental noise observed in the AutoAssign dataxigis protein length (ranging
between 25 and 257). Theaxeshave the following interpretations. F&eliable it shows the percentage of reliably mapped positiohs (
number of assignable positions). Hdisagree it gives the absolute number of disagreements between reliably mapped spin systems and
the reference solution. Finally, f@ime it shows computation time in seconds on a log scale. The median and maximum tinideare

median = .7 min., max = 20 mincpnsistentmedian = .7 min., max = 25 minoisy median = 1.4 min., max = 27 hrs.
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