
DATA - D R I V E N E C O S Y S T E M M I G R AT I O N
Non-Intrusive Migration of R Ecosystem

from Lazy to Strict Semantics

aviral goel

Doctor of Philosophy

Khoury College of Computer Sciences
Northeastern University

Boston, Massachusetts, USA
2023

https://www.khoury.northeastern.edu/
https://www.northeastern.edu/


PhD Thesis Approval
Northeastern University�
Khoury College of 
Computer Sciences

$XWKRU��

3K'�7KHVLV�$SSURYDO�WR�FRPSOHWH�DOO�GHJUHH�UHTXLUHPHQWV�IRU�WKH�DERYH�3K'�SURJUDP�

KHOURY COLLEGE APPROVAL:

Associate Dean for Graduate Programs Date

Thesis Advisor Date

Thesis Reader Date

Thesis Reader Date

Thesis Reader Date

Thesis Reader

COPY RECEIVED BY GRADUATE STUDENT SERVICES:

Recipient’s Signature Date

%JTUSJCVUJPO��0ODF� DPNQMFUFE� UIJT� GPSN� TIPVME� CF� BUUBDIFE� BT� QBHF� �� JNNFEJBUFMZ� GPMMPXJOH� UIF� UJUMF�
QBHF� PG� UIF� EJTTFSUBUJPO� EPDVNFOU�� "O� FMFDUSPOJD� WFSTJPO� PG� UIF� EPDVNFOU� DBO� UIFO� CF� VQMPBEFE� UP�
UIF� /PSUIFBTUFSO�6OJWFSTJUZ�6.*�8FCTJUF�

3K'�3URJUDP�

7KHVLV�7LWOH�

&RPSXWHU�6FLHQFH &\EHUVHFXULW\ 3HUVRQDO�+HDOWK�,QIRUPDWLFV

Date

Aviral Goel

Data-Driven Ecosystem Migration: Non-Intrusive Migration of R Ecosystem from Lazy to Strict Semantics 

Dr. Jan Vitek

Dr. Arjun Guha

Dr. Jonathan Bell

Dr. Manu Sridharan

Dr. Jeffrey Foster

31 March 2023

31 March 2023

31 March 2023

31 March 2023

31 March 2023

4/13/2023

4/13/2023



© 2023, Aviral Goel



4



A B S T R A C T

Once you factor in documentation, debuggers, editor support,
syntax highlighting, and all of the other trappings,

doing it yourself becomes a tall order.

— Robert Nystrom, “Crafting Interpreters” [22]

Evolving a contemporary mainstream language ecosystem can be a
formidable undertaking owing to huge package repositories and mil-
lions of active users. For example, as of this writing, the R ecosystem
has 19,022 packages in CRAN and over 2 Million users worldwide, as
estimated by the R Consortium. At this scale, even a modest language
update can impact millions of active users by breaking a significant
portion of otherwise functional code, discouraging adoption. If the
updates do not offer clear incentives to the users, partial adoption
ensues, leading to fragmentation of the ecosystem from incompatible
library “islands.” Nevertheless, language designers routinely roll out
updates to programming languages to fix bugs and incorporate new
features without systematic migration strategies in place, leading to
undesirable but easily avertible situations, such as the Python 2 to 3

migration fiasco.
In this thesis, I assess the feasibility of migrating R to strict semantics

by studying the use of laziness in legacy R code. To evolve a language
like R, which has a substantial package ecosystem and a large user
base, requires a strategy that can scale while minimizing the impact on
its users. I propose and evaluate a strategy for large-scale migration of
the R language ecosystem to strict semantics semantics with minimal
user-visible changes and good precision.

5

https://cran.r-project.org/
https://www.r-consortium.org/about


6



A C K N O W L E D G E M E N T S

First and foremost, I thank my parents and wife for their constant love
and support. Their infinite patience, positivity, wisdom, and maturity
helped me immensely through this challenging journey. Without them,
this would not have been possible.

Frank Tip deserves special recognition; his push for securing fund-
ing made this journey possible.

Matthias Felleisen shared valuable advice and prescient predictions
in my first year as a graduate student. He likes doing that!

Heather Miller was my first mentor at Northeastern. She took the
time to guide me, critique my research ideas, and help me navigate
complex situations.

Amal Ahmed’s “Intensive Principles of Programming Languages”,
Eli Barzilay’s “Programming Languages”, and Kapil Arya’s “Com-
puter Systems” are easily the best courses I have ever taken. Not
only did I learn a lot, but their teaching style also left a profound
pedagogical impact.

This dissertation has significantly benefited from the suggestions
and criticisms of my thesis committee. Arjun Guha meticulously re-
viewed every detail of my proposal and thesis. I met him innumerable
times to discuss ideas and experiments. Jon Bell suggested an inter-
esting application of fuzzing. Manu Sridharan provided sage counsel
at many steps along the way. I met him in the early days of graduate
school and have kept running into him since then. Jeff Foster raised
many thoughtful questions and provided valuable suggestions. His
“Dynamic Inference of Static Types for Ruby” was the first paper I
presented as part of my graduate coursework. Jan Vitek identified
the research potential in this problem and ensured rigorous empirical
validation.

Meg Barry, Sarah Gale, and Laura Adrien promptly resolved all
graduation, travel, and immigration issues. They made dealing with
bureaucracy and administration a breeze.

I owe much gratitude to my colleagues at PRL. Ben Chung, Artem
Pelenitsyn, Julia Belyakova, Ming-Ho Yee, and Alexi Turcotte pro-
vided excellent critiques for my practice talks. Apart from creating
an intellectually stimulating environment, they make for lively con-
versationalists. Ben, in particular, can be counted upon to discuss
anything from language semantics, video production, cheese making,
rocket landing, and Minecraft. The solitary lifestyle imposed by the
pandemic made their constant virtual presence even more valuable.
Celeste Hollenbeck provided counsel and support at a time when it
was sorely needed. I will be forever reminded of her courage in the

7



face of adversity. Petr Maj ensured the smooth operation of the Prague
servers, without which my large-scale analyses would not be so large.
I am leaving with many fond memories of our travel with Guido Chari
in Greece. In Filip Křikava, I found a friend, mentor, and collaborator.
Gabriel Scherer helped me understand various aspects of language
semantics. He is a storehouse of knowledge and a very warm person.
Ben Greenman provided a lot of help along the way, patiently listening
to my problems and research ideas. Michael Ballantyne explained the
inner workings of Racket macros and shared insights for rewriting R
code. Andrew Cobb’s and Justin Slepak’s witty remarks still make me
laugh. The name rastr was coined by Andrew Cobb as a joke; it has
remained with me ever since. Dimitri Racordon’s ideas on engineering
abstract syntax trees made their way into the design of rastr. Thank
you all for helping me in this journey.

8



9



C O N T E N T S

1 introduction 13

1.1 Migration in the Wild . . . . . . . . . . . . . . . . . . . . 15

1.2 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 18

2 r and call-by-need 20

2.1 Call-by-need . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Interface . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2 Implementation . . . . . . . . . . . . . . . . . . . 25

2.1.3 Semantics . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 dynamic analyzer 32

3.1 Instrumented R . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Tracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 use of call-by-need 37

4.1 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Analyzing Laziness Usage Patterns . . . . . . . . . . . . 40

4.2.1 Life Cycle of Promises . . . . . . . . . . . . . . . 40

4.2.2 Strictness . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 Meta-programming . . . . . . . . . . . . . . . . . 49

4.2.4 Revisiting the Traditional Benefits of Laziness . 52

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . 56

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 strictness inference 58

5.1 LazR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 StrictR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 rastr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 ecosystem migration 68

6.1 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Strictness Signatures . . . . . . . . . . . . . . . . . . . . 70

6.3 Robustness of inferred signatures . . . . . . . . . . . . . 74

6.4 Migrating tidyverse . . . . . . . . . . . . . . . . . . . . . 76

6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 79

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 79

10



contents 11

7 conclusions 80

bibliography 82



12



1 I N T R O D U C T I O N

Software migration is a routine activity in modern-day software devel-
opment. Migration is the process of performing syntactic changes to
a codebase to conform to a new version of the language, runtime, or
dependency while offering the same functionality. The new versions
typically fix bugs, address design issues, and add new features. Mi-
gration can be a trivial task if the new version is backward-compatible
or a formidable undertaking if a feature is redesigned.

From the perspective of migration, a language ecosystem can be
viewed as a tiered structure. At the base are the language implemen-
tation and associated core packages maintained and developed by a
small set of core developers who intimately understand the design
and implementation of the language. These form the base for the next
tier consisting of packages from official packages repositories written
by expert language users. Standing upon this is the last tier: notebooks,
scripts, blog posts, and books written by end-users with varying ex-
pertise. Language changes happen at the base tier by developers on a
relatively small codebase with the deepest understanding of language
internals. The expert package authors, assisted by their tests suites,
absorb these changes by updating their packages. Finally, they are
propagated to the end-users, least equipped with the knowledge of
the language’s internals. Thus, the migration process proceeds like
a ripple: from a few thousand lines of code to millions of lines of
code, from maximum to limited user expertise, from a controlled to
an open-ended codebase, from implementation and packages with
tests to end-user scripts, usually without tests. This migration ripple
originates from a controlled, predictable setting and culminates with
a potentially unforeseen impact on the end-users.

From the perspective of migration, large package repositories of
language ecosystems are a deterrent. While they are primarily respon-
sible for a language’s popularity and adoption; they discourage, or
at the very least, restrict, evolution of the language. If fixing design
mistakes and retrofitting new features in a language breaks millions of
lines of otherwise functional code, the changes will be met with much
resistance from the users. An even worse predicament is when changes
introduced in a language are adopted partially by the users, splitting
the ecosystem into islands of incompatible package ecosystems.

The goal of this dissertation is to address an instance of the soft-
ware migration problem, that of migrating the R ecosystem from
lazy to strict-by-default and lazy-on-demand. R uses the call-by-need
evaluation strategy; function argument evaluation in R is delayed

13



introduction 14

by bundling it in a thunk called a promise. The promise is evaluated
when the argument is used, and the computed value is captured for
future reference. Lazy evaluation in R is the building block of its meta-
programming facilities; argument text can be accessed reflectively from
a promise as a first-class expression object, modified, and evaluated
in any environment. This is used for extending the language and for
creating embedded domain-specific languages. Unfortunately, laziness
is error-prone, inconsistent, and costly, at least when combined with
side-effects in a language without type annotations. When a function
with multiple evaluation orders is provided side-effecting arguments,
the order of effects is hard to predict, leading to subtle bugs. R’s lazi-
ness is inconsistent as there are points where evaluation is arbitrarily
forced, e.g., the right-hand side of assignments and function returns.
Laziness is costly as each argument has to be boxed in a promise
object that must be allocated and freed, and compiler optimizations
are hindered due to the side-effects from evaluating arguments.

This dissertation will focus exclusively on the migration of packages
found in CRAN, the official package repository of R. Changes to
the R implementation and core packages are made by the language
developers; hence they are excluded from the migration process. End-
user scripts and notebooks are also excluded since they are often use-
and-throw, do not have tests, and are scattered all over the internet,
unlike the packages in official repositories. If required, they can be
bundled with tests to migrate them like packages. Migrating blog
posts, books, and social media posts is beyond the scope of this work.
Finally, this work only proposes and evaluates a migration strategy; the
actual migration would require polishing the tools and techniques for
industrial adoption and convincing the package authors to incorporate
strict semantics.

https://cran.r-project.org/


1.1 migration in the wild 15

1.1 migration in the wild

In this section, I briefly discuss a few languages that have dealt with the
problem of migration in recent times. Understanding their failures and
emulating their successes will help us avoid pitfalls in our migration
journey.

python One of the most unsuccessful migrations is the transition
from Python 2 to Python 3. Python 3.0 was released in 2008 with a
plan to end Python 2 support by 2015. However, the transition was
so slow that support for Python 2 was extended till 2020

1. Python
3 introduced numerous backward-incompatible changes2 to Python
2 but did little to incentivize the developers to migrate. The official
migration program shipped with the Python distribution could not
automate the migration process beyond simple syntactic transforma-
tions. Migration to Python 3 proceeded glacially, with most major
open-source Python packages pledging to drop support for Python
2.73 after a decade. Many factors facilitated this slow migration: first,
“visible” incentives introduced by subsequent Python releases, such as
support for asynchronous programming, second, migration of popular
libraries such as NumPy [10] and django which served as dependencies
for a significant chunk of Python’s ecosystem, and lastly, improvement
in migration tooling support over time.

scala Scala 3, released in May 2021, introduces new features and
restricts and drops a few Scala 2.13 constructs while retaining a sig-
nificant chunk of the old syntax. To facilitate interoperability, both
Scala 2.13 and Scala 3 share the same ABI, and Scala 3 source can be
consumed as a dependency by a Scala 2.13 compiler after compilation.
The Scala 3 compiler with appropriate flags can migrate parts of Scala
2.13 to the new syntax. The scalafix refactoring tool provides rewrite
rules to fix some incompatibilities in Scala 2.13 source to facilitate
migration. Libraries can be migrated incrementally: first migrate the
dependencies, then the compiler options, and finally, the deprecated
library syntax using scalafix. Formatting tools and IDE plugins are
in the process of adding Scala 3 support. The migration tooling does
not yet support automatic migration of implicits and macros. As of
this writing, most Scala libraries are still stuck on older Scala versions.
According to Scaladex, the Scala library index, there are 1,364 libraries
on version 3, 3,358 on version 2.13, 5,570 on version 2.12, and 4,644 on
version 2.11. Scala migration has a long way to go.

1 Sunsetting Python 2: https://www.python.org/doc/sunset-python-2/
2 Miscellaneous Python 3.0 Plans: https://www.python.org/dev/peps/pep-3100/
3 Python 3 Statement: https://python3statement.org/

https://www.python.org/
https://numpy.org/
https://djangoproject.com.
https://www.scala-lang.org/
https://www.python.org/doc/sunset-python-2/
https://www.python.org/dev/peps/pep-3100/
https://python3statement.org/


1.1 migration in the wild 16

javascript Because of its humble beginnings as a language for
embedding short code snippets in web pages, JavaScript had many
design issues related to its dynamic behavior and reluctance to throw
runtime errors, hindering the development of large dynamic webpages.
The strict mode, an opt-in dialect of JavaScript, sought to address some
of these design oddities. It was designed to be subtractive: it didn’t
add new features, only eliminated problematic ones. For the most part
many common coding errors were turned into runtime errors, such
as assignment to an undeclared variable. This facilitated adoption by
ensuring that the code exhibited the same runtime behavior when run
under a browser that did not yet support strict mode. Furthermore,
instead of introducing new syntax, "use strict";, a literal string con-
stant followed by a semicolon, was chosen to opt into strict mode.
Evaluating this constant has no side effects, so browsers that did not
implement strict mode would ignore its presence. This enabled users
to incrementally migrate their scripts to the new dialect without wor-
rying about browser support. Today, all major browsers support strict
mode, and JavaScript modules are in strict mode by default.

typescript TypeScript is a typed superset of JavaScript. It pro-
vides a structural type system for JavaScript for static type-checking.
TypeScript only extends the JavaScript syntax to add support for
type annotations; hence, JavaScript code remains valid TypeScript
code. Types can also be provided through external declaration files.
After typechecking, the TypeScript compiler translates the code to
plain JavaScript by erasing the types. TypeScript neither changes the
program behavior based on the inferred types nor does it add any
additional runtime libraries to the program. This makes it trivial to
migrate existing JavaScript code to TypeScript. Types can be added
incrementally. Tight editor integration helps in identifying bugs based
on type information. This has made TypeScript extremely popular
among JavaScript developers.

hack Hack is a dialect of PHP, developed and used at Facebook.
The migration of PHP to Hack at Facebook has enjoyed the benefits
of a closed feedback loop. As all Hack users share an employer and
a source code repository, it is possible to develop language features
targeted at relevant usage patterns and ensure rapid migration. Un-
fortunately, most mainstream language ecosystems don’t enjoy such
closed feedback loops. They are used by multiple corporations and
open-source developers which makes it difficult to ensure Hack like
rapid migration.

We can make a few valuable observations from these examples for
software migration. It is not surprising in hindsight that forcing a
new backwards-incompatible Python version with no tooling support

https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.typescriptlang.org/
https://hacklang.org/


1.1 migration in the wild 17

and incentive for adoption, failed. Scala is providing well-integrated
tooling support from the beginning to facilitate migration to the new
version. JavaScript’s strict was deliberately designed to be backwards-
compatible, so that the migrated code could still be run on browsers
that did not support it. Hack speaks to the advantage of having a con-
trolled ecosystem, which is not usually the case for most mainstream
languages.



1.2 thesis 18

1.2 thesis

My thesis is:

It is possible to effectively migrate R from a lazy to strict
semantics with minimal impact on its legacy code.

A migration strategy is effective if it minimizes user-visible changes and
automates migration with provide good precision. I will address this thesis
in two steps. First, I will assess the impact of migration on the ecosys-
tem. Impact analysis will help assess the suitability of strict semantics
for R and identify the affected parts of the ecosystem. It will also help
identify incentives for the users to migrate to strict semantics. Next,
I will develop tools to migrate the ecosystem at scale. Automation is
crucial for migrating R’s large package repository since manual mi-
gration is time-consuming and error-prone and will inhibit adoption.
The proposed tools will perform a minimal rewrite of R code. Finally,
I will evaluate the effectiveness of these tools at scale and manually
perform a migration of the tidyverse ecosystem.

1.3 contributions

I have published the following papers towards the implementation of
my three-step migration strategy:

1. On the Design, Implementation, and Use of Laziness in R [8]
This paper reviews the design and implementation of laziness in R
and presents a data-driven study of how generations of program-
mers have put laziness to use in their code. Analysis of 16,707 R
packages reveals that for the most part R code appears to have been
written without reliance on, and in many cases even knowledge
of, delayed argument evaluation. The only significant exception
is a small number of packages which leverage call-by-need for
meta-programming.

2. Promises Are Made to Be Broken [7]
This paper explores how to evolve the semantics of R towards
strictness-by-default and laziness-on-demand by providing tooling
for developers to migrate libraries without introducing errors. It
reports on a dynamic analysis that infers strictness signatures for
functions to capture intentional and accidental laziness with over
99% accuracy.

https://doi.org/10.1145/3360579
https://doi.org/10.1145/3485478


1.3 contributions 19

Overall, I present the following contributions:

1. A description of the design and implementation of laziness in
R and a small-step operational semantics for a subset of the
language. This is covered in chapter 2.

2. An open-source, carefully optimized, dynamic analysis pipeline,
consisting of an instrumented R interpreter and data analysis
scripts for analyzing the use of laziness in R programs. This is
covered in chapter 3.

3. Empirical evaluation of 232,290 scripts exercising code from
16,707 R packages on the use of laziness by programmers, the
strictness of R functions and their possible evaluation orders,
and the life cycle of promises. This is covered in chapter 4.

4. Tools that automate the migration of the R ecosystem by infer-
ring strictness signatures for functions and rewriting them to
introduce strict semantics. This is covered in chapter 5.

5. An evaluation of the automated migration of R to strict semantics.
The tools infer strictness with good accuracy; over 99% of the
inferred signatures were correct when tested against clients of
the libraries. This is covered in chapter 6.

The following chapters provide a detailed discussion of these contri-
butions.



2 R A N D C A L L- B Y- N E E D

The R project is a tool for implementing sophisticated data analysis
algorithms. This chapter provides a brief primer on the design of R,
followed by a detailed description of the interface, implementation,
and small-step operational semantics of the call-by-need semantics of
R. At heart, R is a vectorized, dynamic, lazy, functional, and object-
oriented programming language with a rather unusual combination
of features [20], designed to be easy to learn by non-programmers and
enable rapid development of new statistical methods. It was created in
1993 by Ihaka and Gentleman [15] as a successor to an earlier language
for statistics named S [3].

data types In R, most data types are vectorized; this includes
integers, doubles, strings, logicals (booleans), complex numbers, and
raw bytes. Vectors are constructed by the c(...) function: c("hi","ho")
creates a vector of two strings. The language does not differentiate
scalars from vectors, thus 1==c(1). R provides a heterogeneous vector
type, list, which also serves as a record type since the elements can be
named. Environments are used as mutable maps. Native code pointers
are wrapped as externalptr values for interoperability with R.

attributes Custom types can be constructed by tagging values
with user-defined attributes. For instance, one can attach the attribute
dim to the value x<-c(1,2,3,4) by evaluating attr(x,"dim")<-c(2,2).
Once done, arithmetic functions will treat x as a 2x2 matrix. Another
attribute is class which can be bound to a list of names. For instance,
class(x)<-"human", sets the class of x to human. Attributes are used
for object-oriented dispatch. The “S3 object system” supports single
dispatch on the class of the first argument of a function, whereas the
“S4 object system” allows dispatch on all arguments. These names
refer to the version of the S language which introduced them. Popular
data types, such as data frames, also leverage attributes. A data frame
is a list of vectors with class and colname attributes.

functions R has lexically-scoped higher-order functions. In R, ev-
ery linguistic construct is desugared to a function call, even control
flow statements, assignments, and bracketing. Furthermore, all func-
tions can be redefined. This makes R both flexible and challenging
to compile. A function definition can include default expressions for
parameters that can refer to other parameters. The following snippet
declares a function f which takes a variable number of arguments,

20



r and call-by-need 21

whose parameters x and y, if missing, have default expressions y and
3*x, and which are only evaluated when needed. The function returns
a closure.

f <- function(x=y,...,y=3*x) { function(z) x+y+z }

This function can be called with a single argument matching x, as in
f(3), with named arguments, as in f(y=4,x=2), with a variable number
of arguments, for example f(1,2,3,4,y=5), with multiple arguments
captured by ..., or with no arguments at all, f(), which creates a
cyclic dependency between x and y and errors out when the returned
function is used. Some functions are written to behave differently in
the presence of missing arguments. To this end the missing(x) built-in
can be used to check if parameter x was provided at the call site
or not, even if it was later substituted by a default value. A vararg
parameter, written ..., accepts an arbitrary number of arguments,
including missing arguments. A vararg can be materialized into a
list with list(...). Most frequently varargs are forwarded to a called
function. This enables the function to expose its callee’s interface to
the callers without listing the callee’s parameters and their default
values.

reflection R supports meta-programming.
The substitute(exp,env) function yields the AST of the expression exp

after performing substitutions defined by the bindings in env. The env

parameter can be a list of bindings or an environment. It defaults to the
current environment if not explicitly supplied. Consider the following
call that substitutes 1 for a in the expression a + b and returns the
expression 1 + b.

> substitute(a + b, list(a = 1))

1 + b

Environments, used as scopes, are first-class mutable maps with a
reference to their lexical environment. Code can always access its local
environment, but it is also possible to reflectively extract the environ-
ment of any function currently on the call stack [9]. Such reflective code
is brittle. The following example shows that code that looks up its call
stack is sensitive to small implementation changes, such as the addition
of a call to an identity function. A call to as.environment(-1) returns
the environment of the caller. Positive argument to as.environment

refers to package environments instead of call stack. In the first call
to f, both x and y yield the global environment, i.e., the environment
from which f is called. In the second call, argument y returns the
environment of f since y is evaluated inside the id function which
is called from f. Thus, the evaluation of x and y will yield different
results as the latter is executing within the id function.



r and call-by-need 22

f <- function(x, y) { x; y }

f(as.environment(-1), as.environment(-1))

id <- function(a) a

f <- function(x, y) { x; id(y) }

f(as.environment(-1), as.environment(-1))

R provides other functions for reflective stack access, such as
parent.frame. However, this function is less brittle as it accesses frames
relative to the promise’s creation environment.

effects While R strives to be functional, it has imperative features
such as assignment to local variables <-, assignment to variables in
an enclosing scope <<-, and assignment in a programmatically chosen
scope assign(). R supports non-local returns either through exceptions
or by delayed evaluation of a return statement. Of course, there are all
sorts of external effects and no monads.

Logically, function arguments are passed by value to facilitate equa-
tional reasoning. To avoid unnecessary copying of values, the imple-
mentation performs a copy-on-write of aliased values. As long as an
aliased value is not modified, the variables refer to the same object. On
write, a copy of the value is modified and the corresponding binding
is updated. Consider the swap function which exchanges two elements
in a vector and returns the modified vector:

> swap <- function(x, i, j) { t<-x[i]; x[i]<-x[j]; x[j]<-t; x }

> v <- c(1,2,3)

> swap(v,1,3)

The argument vector v is shared, as it is aliased by x in the func-
tion. Thus, when swap first writes to x at offset i, the vector is copied,
leaving v unchanged. It is the copy that is returned by swap. Behind
the scenes, a reference count is maintained for all objects. Aliasing a
value increases the count. Any update of a value with a count larger
than one triggers a copy. One motivation for this design was to allow
users to write iterative code that updates vectors in place. A loop that
updates all elements of an array will copy at most once.

In a nutshell, R is a lexically-scoped pass-by-value dynamic language
with higher-order functions, first-class environments, and rich support
for reflection.



2.1 call-by-need 23

2.1 call-by-need

Since its inception, in 1993, R has had a call-by-need semantics. When
a function is invoked its arguments are packaged up into promises
which are evaluated on demand. The values obtained by evaluating
those promises are memoized to avoid the need for recomputation.
Thus the following definition when called with a+b and d+d evaluates
a+b and does not evaluate d+d.

f <- function(x,y) x + x

With an estimated two million users world-wide [28], R is the most
widely used lazy functional programming language in existence. It
is fascinating to observe that R’s laziness mostly remains secret. The
majority of end-users are unaware of the semantics of the language
they write code in. Anecdotally, this holds even for colleagues in the
programming language community who use R casually.

Hudak [12] defined lazy evaluation as the implementation of normal-
order reduction in which recomputation is avoided. He went on to enu-
merate two key benefits for programmers: (1) Sub-computations are
only performed if they are needed for the final result; (2) Unbounded
data structures include elements which are never materialized. Haskell
is a language designed and implemented to support lazy evaluation,
its compiler has optimization passes that remove some of the overhead
of delayed evaluation, and its type system allows laziness to co-exist
with side effects in an orderly manner.

R differs from Haskell in its approach to lazy evaluation. The differ-
ences are due in part to the nature of the language and in part to the
goals of its designers. As R frequently calls into legacy C and Fortran
libraries, performance dictates that the memory layout of R objects be
consistent with the expectations of those libraries. For statistical and
mathematical codes, this mostly means array of primitive types, inte-
ger and floating point, should be laid out contiguously using machine
representations for primitives. Interoperability is thus the reason for
builtin datatypes being strict, and consequently for mostly giving up
on the second benefit of laziness right out of the gate. As for the first
benefit, it goes unfulfilled because R tries to only be as lazy as it needs.
In numerous places, design choices limit its laziness in favor of a more
predictable order of execution; this is compounded by a defensive
programming style adopted in many packages where arguments are
evaluated to obtain errors early.

Given the above, one may wonder why bother being lazy? In particular,
when this implies run-time costs that can be significant as R does not
optimize laziness. Communications with the creators of R suggests call-
by-need was added to support meta-programming and, in particular,
user-defined control structures. While R was inspired by Scheme,
the latter’s macro-based approach to meta-programming was not



2.1 call-by-need 24

adopted; macros were deemed too complex for users. Instead, R offers
a combination of call-by-need and reflection. Call-by-need postpones
evaluation so that reflection can inspect and modify expressions, either
changing their binding environment or their code. This approach was
deemed sufficiently expressive for the envisioned use-cases and, unlike
macros, it was not limited to compile-time redefinition—an important
consideration for an interactive environment.

The combination of side effects, frequent interaction with C, and
absence of types has pushed R to be more eager than other lazy
languages. Let’s look at the design and implementation of laziness in
R.

2.1.1 Interface

In R, arguments to a user-defined function are bundled into a thunk
called a promise. Logically, a promise combines an expression’s code,
its environment, and its value. To access the value of a promise, one
must force it. Forcing a promise triggers evaluation and the computed
value is captured for future reference. The following snippet defines a
function f that takes argument x and returns x+x. When called with
an argument that has the side effect of printing to the console, the side
effect is performed once as the second access to the promise is cached.

> f <- function(x) x+x

> f( {print("Hi!");2} )

"Hi!"

4

Promises associated to parameters’ default values have access to all
variables in scope, including other parameters. Promises cannot be
forced recursively, that is an error. Promises are mostly encapsulated
and hidden from user code. R only provides a small interface for
operating on promises:

• delayedAssign(x,exp,eenv,aenv): create a promise with body exp

and binds it to variable x (where x is a symbol). Environment
eenv is used to evaluate the promise, and aenv is used to perform
the assignment.

• substitute(e,env): substitutes variables in e with their values
found in environment env, returns an expression (a parse tree).

• force(x): forces the promise x. This replaces a common program-
ming idiom, x<-x, which forces x by assigning it to itself.

• forceAndCall(n,f,...): call f with the arguments specified in the
varargs of which the first n are forced before the call.

While R does not provide built-in lazy data structures, they can be
encoded. Figure 2.1 shows a lazy list that uses environments as structs;



2.1 call-by-need 25

environments have reference semantics. R provides syntactic sugar for
looking up variables ($), functions for creating environment out of lists
(list2env) and for capturing the current environment (environment).
The singleton nil has a tag that is tested in the empty function. A new
list is created by cons; it returns its environment in which h and t are
bound to promises. The head and tail functions retrieve the contents
of h and t respectively. This example also illustrates how promises
can be returned from their creation environment, namely by being
protected by an environment.

nil <- list2env(list(tag="nil"))

empty <- function(l) l$tag=="nil"

cons <- function(h,t) environment()

head <- function(l) l$h

tail <- function(l) l$t

Figure 2.1: Lazy list in R

R evaluates promises aggressively. The sequencing operator a;b will
evaluate both a and b, assignment x<-a evaluates a, and return also
triggers evaluation. In addition, many core functions are strict. R has
two kinds of functions that are treated specially:

• Builtins: There are 680 builtins, typically written in C, providing
efficient implementations of numerical methods and other math-
ematical functions. The argument lists of builtins are evaluated
eagerly.

• Specials: There are 46 specials used to implement core language
features such as loops, conditionals, bracketing, etc. These func-
tions take expressions (parse trees) which are evaluated in the
calling environment or in a specially constructed environment.

Builtins and specials are exposed as functions to the surface language
either directly or through wrappers which perform pre-processing of
arguments before passing them to these functions.

I would be remiss if I did not mention context-sensitive lookup, one
of the unusual features of R. When looking up a variable x, in head
position of a function call, e.g., x(...), R finds the first definition of x
in a lexically enclosing environment, if x is bound to a closure, that clo-
sure is returned. Otherwise, lookup continues in the enclosing scope.
A corollary of function lookup is that it forces promises encountered
along the way.

2.1.2 Implementation

A promise has four slots: exp, env, val and forced. The exp slot contains
a reference to the code of the promise, the env refers to environment



2.1 call-by-need 26

in which the promise was originally created. The val slot holds the
result of evaluating the exp. The forced flag is used to avoid recursion.
When a promise is accessed, the val slot is inspected first. If it is
not empty, that value is returned. Otherwise, forced is checked, and
if it is set an exception is thrown. The forced flag is updated and
the expression is evaluated in the specified environment. Once the
evaluation finishes, the val slot is bound to the result, the env slot is
cleared to allow the environment to be reclaimed, and the forced flag
is unset. The implementation does little to optimize promises. In some
cases, a promise can be created pre-forced with a value pre-assigned.
The GNU R implementation recently added a bytecode compiler, this
compiler eliminates promises when they contain a literal [29].

2.1.3 Semantics

This section describes a small-step operational semantics in the style
of Wright and Felleisen [38] for a core R language with promises. My
goal is to provide an easy to follow—the entire semantics fits on a
page—but precise—unlike the above prose description—account of
R’s call-by-need semantics. I build upon the semantics of Core R [20],
but omit vectors and out-of-scope assignments. Instead, I add delayed
assignment, default values for arguments, substitute and eval. To
support these features I add strings as a base type and the ability to
capture the current environment.

e ::= s | x | e # e | x← e | fun(x=e) e | x(e) | x() | env
| subst(x) | eval(e, e) | delay(x, e, e)

C ::= [] | | C # e | v # C | x← C | C(e) | C() | eval(C, e)

| eval(v, C) | delay(x, e, C)

F ::= ε | F[x 7→ l] frames

E ::= ε | l · E environments

S ::= ε | e E · S stacks

H ::= ε | H[l 7→ v] | H[l 7→ F] | H[l 7→ (v, e, E, R)] heap

R ::= ↑ | ↓ forced flag

E = l · E′ H(l) = F F(x) = v

get(H, E, x) = v

E = l · E′ H(l) = F x /∈ dom(F)

get(H, E, x) = get(H, E′, x)



2.1 call-by-need 27

[Fun]
v = (λx=e.e′, E)

C[fun(x=e) e′] E · S; H → C[v] E · S; H′

[Concat]

C[s # s′] E · S; H → C[ss′] E · S; H

[Assign]
E = l′ · E′ H(l′) = F

F′ = F[x 7→ v] H′ = H[l′ 7→ F′]

C[x← v] E · S; H → C[v] E · S; H′

[Delay]
H(l) = l′ · E′ H(l′) = F fresh l′′

F′ = F[x 7→ prom(l′′)] H′ = H[l′′ 7→ (⊥, e, E, ↓)][l′ 7→ F′]

C[delay(x, e, env(l))] E · S; H → C[env(l)] E · S; H′

[Env]
fresh l H′ = H[l 7→ E]

C[env] E · S; H → C[env(l)] E · S; H′

[Subst]
get(H, E, x) = v v = (_, e, _, _) string(e) = s

C[subst(x)] E · S; H → C[s] E · S; H

[Eval]
e = eval(s, env(l)) parse(s) = e′ H(l) = E′

C[e] E · S; H → e′ E′ · C[e] E · S; H

[EvalRet]
e = eval(s, env(l′))

v E′ · C[e] E · S; H → C[v] E · S; H

[Invk1]
v = (λx=e′.e′′, E′) fresh l, l′

E′′ = l · E′ H′ = H[l 7→ F]
F = [x 7→ l′] H′′ = H′[l′ 7→ (⊥, e, E, ↓)]
C[v(e)] E · S; H → e′′ E′′ · C[v(e)] E · S; H′′

[Invk0]
v = (λx=e′.e′′, E′) fresh l, l′

E′′ = l · E′ H′ = H[l 7→ F]
F = [x 7→ l′] H′′ = H′[l′ 7→ (⊥, e′, E′′, ↓)]

C[v()] E · S; H → e′′ E′′ · C[v()] E · S; H′′



2.1 call-by-need 28

[Ret1]

v E′ · C[v′(e)] E · S; H → C[v] E · S; H

[Ret0]

v E′ · C[v′()] E · S; H → C[v] E · S; H

[Lookup]
get(H, E, x) = v v 6= prom(l)

C[x] E · S; H → C[v] E · S; H

[Lookup2]
get(H, E, x) = prom(l)

C[x] E · S; H → prom(l) E · C[x] E · S; H

[Force]
H(l) = (⊥, e, E′, ↓) H′ = H[l 7→ (⊥, e, E′, ↑)]

prom(l) E · S; H → e E′ · prom(l) E · S; H′

[ReadVal]
H(l) = (v, e, ε, ↓)

prom(l) E · S; H → v E · S; H

[Memo]
v 6= prom(l′′) H(l) = (⊥, e, E′, ↑) H′ = H[l 7→ (v, e, ε, ↓)]

v E′ · prom(l) E · S; H → v E · S; H′

[RetProm]
v 6= prom(l)

v E′ · C[x] E · S; H → C[v] E · S; H′

Figure 2.2: Syntax and Semantics

Figure 2.2 gives the syntax and semantics of my calculus. The sur-
face syntax includes terms for strings, variables, string concatenation,
assignment, function declaration, function invocation (one and zero
argument functions), environment capture, substitution, eval, and
delayed assignment. The syntax is extended with additional terms
used during reduction where variables and expressions can be re-
placed by values ranged over by meta-variable v which can be one
of a string (s), a closure (λx=e.e, E), an environment (env(l)), or a
promise (prom(l)). Mutable values are heap allocated and ranged over
by meta-variable l. I use the ⊥ value to denote an invalid reference.



2.1 call-by-need 29

The reduction relation is of the form S E → S′; E′ where the stack
S is a collection of expression-environment pairs (e E) and the heap
maps variables to values. Frames are mutable and can be shared
between closures, so they are stack allocated. Promises are quadruples
(v, e, E, R) where v is the cached result of evaluating the body e in
environment E. R is a status flag where ↓ indicates that the promise has
started evaluating. Evaluation contexts C are deterministic. Following
R, some builtin operations such as string concatenation are strict.
But function calls are lazy in their argument, the expression in x (e)
remains untouched by the context. I omit the definition of the functions
parse and string which, respectively, turn strings into expressions and
vice-versa. The expression fresh is used to obtain new heap references.

The semantics is given by the following rules. Rules Fun and Concat

deal with creating a closure in the current environment and concate-
nating string values. Rule Assign will add a mapping from variable x

to value v in the current frame. As frames are allocated in the heap,
this updates the heap. Rule Delay performs a delayed assignment, that
is to say, an assignment that does not force the right-hand side. It takes
a variable, an expression and an environment in which this expression
will be evaluated. The rule creates a new unevaluated promise and
binds it to x. Rule Env grabs the current environment and returns it as
a value. Rule Subst looks up the variable given as argument, obtains
the promise bound to it, extracts its body and deparses it into a string.
Rule Eval takes a string and an environment, parses that string into
an expression and schedules it for execution. Rule EvalRet takes the
result of that evaluation and replaces the call to eval with it. Rule
Invk1 and Invk0 handle user-defined function calls. Both rules expect
v to be a closure. They allocate a new promise for x. They differ on the
body of that closure and the environment. Invk0 has no argument and
will use the default expression e’ specified in the function declaration,
it uses the environment where x is bound for evaluation. Rules Ret1

and Ret0 are the corresponding returns rules that replace the call
with the computed value. Rules Lookup and Lookup1 are used to read
variables from the current environment. If the result is a promise it is
scheduled for execution by Lookup1. Rule Force will actually evaluate
a promise that has been pushed on the stack, if that promise has not
yet been evaluated. It sets the flag to avoid recursive evaluation. Rule
ReadVal retrieves the value of an already evaluated promise. Rule
Memo stores the result of evaluation in the promise and discard its
environment. Finally, rule RetProm returns from evaluating a promise
by replacing the variable looked up with the result.



2.2 related work 30

2.2 related work

Lazy functional programming languages have a rich history. The
earliest lazy programming language was Algol 60 [2] which had a call-
by-name evaluation strategy. This was followed by a series of purely
functional lazy languages [1, 31, 32]. The motivations for the pursuit
of laziness were modularity, referential transparency and the ability to
work with infinite data structures [14]. These languages inspired the
design of Haskell [13].

I compare the small-step operational semantics to the work of Bodin,
Diaz, and Tanter [4]. The semantics makes no claims of being correct
(there is no specification of R) or of being faithful to the language.
The semantics is useful in as much it provides a readable account of
delayed evaluation in R. Bodin’s work is more ambitious, it aims to
provide an executable semantics. The benefits of executable semantics
is that they can be tested against an implementation, in this case the
GNU R virtual machine. The semantics consists of 28,026 lines of Coq
and 1,689 lines of ML. Validation is done through testing and visual
comparison between the GNU R’s C code and Coq code. Unfortunately,
in the current state Bodin’s specification is still far from complete.
Out of 20,976 tests, only 6,370 pass. Inspection of the specification
reveals that key functions for laziness such as force, forceAndCall, and
delayedAssign are not implemented. Only a handful of the provided
tests deal with lazy evaluation (they check that promises are evaluated
only when forced). Furthermore, package loading and interaction with
C code is not supported, thus packages from my corpus cannot be
tested. I tried to match my semantics to theirs but their paper Bodin,
Diaz, and Tanter [4] does not describe their treatment of laziness. Due
to the size of the Coq codebase and lack of documentation, it is unclear
how to align the two artifacts.

2.3 conclusions

R is rather strict for a lazy language. This manifests itself in the
definition of evaluation contexts. Intuitively, any position where C

appears is evaluated strictly in left-to-right order. The key place where
R differs from other lazy languages is that the right-hand side of
assignments is strict. The semantics does not show data structures, in
R they are all strict. Strictness also shows up in the Ret1 and Ret0 rules
which force the evaluation of the return expression. Lastly, strictness is
enforced in the Lookup2 rule which does function lookup. If a promise
is returned, it must be evaluated. Another property that the semantics
ensures is that promises are stored in environments and, whenever
they are accessed they are forced. The only way for a promise to outlive
the frame that created it is to be returned as part of an environment



2.3 conclusions 31

or closure. Following R, it is possible to create a cycle in promise
evaluation, the expression (fun(x=x) x)() when evaluated creates a
closure and invokes it. The function’s body triggers evaluation of the
promise bound to x. Since no argument was provided, the default
expression is evaluated causing a cycle. Like in R, this results in a
stuck state in the semantics.



3 DY N A M I C A N A LY Z E R

In this chapter, I discuss the first step towards understanding the
real-world use of laziness in R. I present an open-source, carefully
optimized, dynamic analysis pipeline, published in Goel and Vitek
[8]. This pipeline consists of an instrumented R interpreter and data
analysis scripts to analyze the use of laziness in R packages, which is
described in detail in the next chapter. The artifact has been validated
as Functional and Reusable and is available from:

https://doi.org/10.5281/zenodo.3369573

The analysis pipeline starts with scripts to download, extract and in-
stall open source R packages. Next, an instrumented R virtual machine
generates events from program runs. This is followed by an analyzer
that processes the execution traces to generate tabular data files in a
custom binary format. Other scripts post-process the data, compute
statistics, and generate graphs. The entire pipeline is managed by a
Makefile that invokes an R script to extract runnable code snippets
from installed packages and runs the other steps in parallel. Paral-
lelization is achieved using GNU Parallel. Figure 3.1 shows the main
stages of the pipeline. The figure provides corpus size, number of files
generated, size of data and time taken by each step. The remainder of
this chapter details the various stages.

Report

1.4	h

36

21	GB

2.3	h

77

1.5	GB

Corpus Reduce CombineTrace Merge Summarize

16.7	K

232.3	K

51.5	h

2.8	M

5.1	TB

38.7	h

7.4	M

76	GB

3.5	h

842

20.4	GB 243

37	s

15

Figure 3.1: Tracing Pipeline

3.1 instrumented r

The instrumented R Virtual Machine is based on GNU-R version 3.5.0.
Its goal is to produce program execution traces with all the events
required to answer the research questions. On the face of it, this is
not a difficult task. And, in the end, I only had to add 1,886 lines of
C code to expose an event data structure with fields to describe a
variety of execution events that capture the internal interpreter state.
The challenge was identifying where to insert those 1,886 lines in an
interpreter whose code is 542,809 LOC written over twenty-five years
by many developers and outside contributors. The system has grown

32

https://doi.org/10.5281/zenodo.3369573


3.1 instrumented r 33

in complexity with an eclectic mix of ad hoc features designed to
support growing user requirements. For instance, the code to manage
environments and variable bindings in main/envir.c is over 2,864 LOC
with 131 functions with a large number of identical code fragments for
managing these data structures duplicated in various files. I succeeded
by a lengthy trial and error process. The events recorded by the
instrumented virtual machine are:

• Call, Return: at each function call, records function’s type, arguments, envi-
ronment and return value.

• S3Dispatch: at each S3 dispatch, records method name and first argument.

• S4Dispatch: at each S4 dispatch, records method name, definition, environ-
ment and dispatch arguments.

• Eval: at each eval, records the evaluated expression and its environment.

• Substitute: at each substitute, records the arguments.

• ArgListEnter, ArgListExit: records expressions that are being promised.

• CtxtEnter, CtxtExit: records the address of a stack frame.

• CtxtJmp: records the popped stack frames at each non-local return.

• PromEnter, PromExit: records evaluated promise and when evaluation ter-
minates.

• PromRead: when a promise’s value is read, records the promise and its value.

• PromSubst: generated when a promise’s expression is read.

• FunLoadStart, FunLoadEnd: generated when looking up a function.

• GC: generated at each garbage collection cycle.

• Alloc: generated when memory is allocated.

• Free: generated memory is reclaimed.

• Deserialize: generated when an object is deserialized.

• VarDef: when a variable is defined, record the symbol, value and environment.

• VarWrite: when a variable is updated, record a the symbol, value and envi-
ronment.

• VarRem: when a variable is deleted, records the symbol and environment.

• VarRead: when a variable is read, record the symbol, value and environment.

Events can be disabled to ignore implementation details of the virtual
machine and also to avoid recursion. R objects captured in events
are protected from the garbage collector to prevent them from being
reclaimed during analysis. Table 3.1 shows the number of times events
are triggered.



3.2 tracer 34

Table 3.1: Events

Alloc 2.4 T

Free 2.3 T

Eval 1.7 T

VarRead 1.6 T

Call 831 B

Return 807.4 B

VarDef 365 B

PromEnter 223 B

PromExit 223 B

CtxtEnter 143 B

CtxtExit 143 B

VarWrite 140 B

ArgListEnter 111 B

ArgListExit 111 B

Deserialize 109 B

PromRead 102 B

FunLoadStart 78 B

FunLoadEnd 78 B

VarRem 8.4 B

CtxtJmp 6 B

S3Dispatch 2.6 B

PromSubst 1.9 B

Substitute 1.7 B

S4Dispatch 936 M

GC 4.8 M

3.2 tracer

The tracer is a small R package (73 LOC) that calls into a larger C++
library (6,080 LOC). It is loaded in the instrumented R virtual machine
and, during program execution, it maintains objects that model various
aspects of the program such as functions, calls, promises, variables,
environments, stacks and stack frames. As events are generated, the
tracer updates its model of the state. The tracer is able to process
803.1 K events per second on the benchmark machine.

Some design decisions allowed the tracer to scale. Firstly, copying
model objects is avoided as much as possible. They are created by a
singleton factory that caches them in a global table. This optimization
pays off as model objects are large and costly to copy. But keeping
these objects alive too long will increase footprint and hinder any
attempt at running multiple tracers on the same machine in parallel.
To reduce tracing footprint, the R garbage collector was modified so
that model objects can be deallocated as soon as the R object they
represent is freed. One slightly surprising design choice is to link all
model objects together. This pays off when an event triggers a cascade
of changes to model objects. This comes at a price of course, as lists of
model objects are circular it is necessary to perform reference counting
to reclaim them. One last implementation trick is the use of a shadow
stack that mirrors the stack maintained by the R virtual machine. The
shadow stack is used to look up data after a longjump.

The tracer generates large amounts of data. My first prototype used
Sqlite to store the generated data. However, I found the approach
limiting. During development I kept running into errors because the
database schema and the tracer were out of sync. Due to the iterative
nature of data analysis, I was modifying the schema frequently and
this became a pain point. Furthermore, the database was normalized,
thus requiring join operations in the analysis. At scale, these joins
were expensive, causing database operations to run for days. Lastly,
insertions ended being a bottleneck; I could trace fewer than 1000



3.3 execution 35

packages per day and filled up a 1 TB disk. In the end, I implemented
a custom format. As the event stream has substantial amounts of
redundancy, I applied streaming compression on the fly. Compression
yields an average 10x saving in space and 12x improvement in loading
time.

3.3 execution

For each package to be analyzed the infrastructure extracts executable
code from that package. Extraction invokes an R API which locates
executable code snippets in the documentation and RMarkdown files.
Files in the test directory are copied as is. All snippets and tests set
up the tracer and initialize it with paths to input and output data
before execution. For each package, the tracer generates 12 data files
and 4 status files. These files denote the different possible states of
the tracing. They allow the infrastructure to discard data from failing
programs. The R scripts responsible for generating traces do extensive
logging of intermediate steps for debugging purposes.

3.4 processing

This part of the pipeline analyzes the raw data. It is 4K lines of R
code. Scale was the major challenge. I faced difficulties both due
to execution time and data size. In the 232,290 programs that were
traced, the tracer observed 1.7 T expression evaluations, 831 B calls to
698.4 K functions and 270.9 B promises. The raw data generated by
the tracer is 5.1 TB but the reduced data is just 76 GB. In hindsight, it
appears that incorporating analysis in the tracer, i.e., pre-summarizing
data in C++ would have been beneficial. However, this would require
knowing ahead of time all the analysis that I would perform. Part of
the challenge lies in the fact that the event of interest and attached
analyses were not fixed ahead of time. Pre-summarized data makes it
harder to pose new questions. It also makes it harder to detect bugs
because summarized data resists correlation with actual code.

The pipeline steps are detailed next.

• Prescan: Scan the raw data directory and output a list of all the
subdirectories that contain raw data. There is a directory per
package and multiple files in each directory.

• Reduce: Given a list of directories, this step uses GNU Parallel
to partially summarize the raw data. This is the most expensive
step in terms of size and speed. Since the data files are large, I
limit the degree of parallelism drastically to avoid running out
of memory.



3.5 related work 36

• Scan: Create a list of all the files successfully reduced.

• Combine: Combine information from all the programs into a
single data table per analysis question.

• Summarize: Compute summaries of the merged data for: (1)
event frequency, (2) object frequency, (3) functions with their
definitions, (4) argument information, (5) escaped arguments, (6)
information about parameters, (7) information about promises.

• Report: Generate graphs and tables from an RMarkdown note-
book as well as LATEX macros for inclusion in the paper.

3.5 related work

Morandat et al. [20] implemented a tool called TraceR for profiling
R programs. The architecture of TraceR was similar to that of the
pipeline presented here, but it did not target large scale data collection
and has gone unmaintained for several years. My infrastructure is less
invasive than TraceR.

3.6 conclusions

This chapter discussed the design and implementation of a dynamic
analyzer for R. While the idea of instrumenting the interpreter to
collect runtime information is simple at heart, the complex design
of R and the scale of data collection introduces a surprising amount
of complexity. The following chapter will employ this analyzer for
performing a large-scale data-driven study of how generations of
programmers have put laziness to use in their code.



4 U S E O F C A L L- B Y- N E E D

In this chapter, I present an empirical evaluation of 16,707 R packages
on the use of call-by-need by programmers, the strictness of functions
and their possible evaluation orders, and the life cycle of promises.
One might be tempted to question the choice of using dynamic anal-
ysis for this evaluation. Unfortunately, alternative approaches suffer
from serious drawbacks. An obvious alternative is to modify the R VM
to perform strict evaluation and observe how much code will break.
However, built-in functions (e. g., conditionals and exception handling
mechanism) require unevaluated terms, so all scripts will break. An-
other alternative is to annotate the arguments in the entire code base
manually, but that is cumbersome, error-prone, and unscalable. The
final alternative, static analysis, would fail to yield meaningful insights
because of R’s dynamic nature. However, dynamic analysis is not with-
out shortcomings. It is limited to behaviors that it observes; arguments
whose evaluation is not observed dynamically may be evaluated along
code paths that were not exercised. Hence low code coverage will
affect the quality of results. However, it is encouraging to note that
Krikava and Vitek [18] reports line-level code coverage of over 60% for
a similar corpus. To mitigate this threat to validity, I will also perform
a qualitative analysis of a sample of the corpus.

For this evaluation, I have analyzed 16,707 packages hosted in the
CRAN and Bioconductor software repositories, and observed the cre-
ation of 270.9 B promises. The results were obtained with version 3.5.0
of GNU R and packages retrieved on August 1st, 2019. The software
and data was validated as Functional and Reusable and is available in
open source from:

https://doi.org/10.5281/zenodo.3369573

The data suggests that there is little supporting evidence to assert
that programmers use laziness to avoid unnecessary computation
or to operate over infinite data structures. For the most part R code
appears to have been written without reliance on, and in many cases
even knowledge of, delayed argument evaluation. The only significant
exception is a small number of packages which leverage call-by-need
for meta-programming.

37

https://doi.org/10.5281/zenodo.3369573


4.1 corpus 38

4.1 corpus

The corpus used in this study was assembled on August 1st, 2019

from the two main code repositories, namely the Comprehensive R
Archive Network (CRAN) [19] and Bioconductor [11]. Both are curated
repositories; to be admitted packages must conform to some well-
formedness rules. In particular, they must contain use-cases and tests
along with the data needed to run them. I believe this corpus is
representative of sophisticated uses of the R language. Anecdotal
evidence suggests that the majority of R code written is made up of
small scripts, straight-line sequences of package calls, that read data,
apply some models to it and then visualize the results. Most end-users
neither define functions nor write loops, their code is simple. Without
a source of end-user code it is not possible to validate this hypothesis,
but if true then the corpus is representative of the interesting R code. R
is also used in many industrial settings that do not publish their code
to open source repositories. I have no information on those use-cases.

My snapshot of CRAN includes 14,762 packages, and for Biocon-
ductor, 3,087 packages. Bioconductor is also used to store data, 1,741

packages contain software, 1,319 contain data and 27 are so-called
workflows. Starting with 17,849 software packages, the scripts down-
loaded and successfully installed 17,479 of them. The reasons some
packages did not install were varied, they included missing dependen-
cies and compiler errors.

These installation errors may be fixable but automating those fixes
would be hard. I chose to discard the packages that could not be in-
stalled. Out of the installed packages, I was able to successfully record
execution traces for 16,707 packages. Some packages did not trace
owing to run-time failures. Again, I discarded the failing packages on
the grounds of having a sufficient number of running ones

For each package, the scripts gathered runnable code from three
different sources: test cases, examples and vignettes. Test cases are
typically unit tests written to exercise individual functions, while
examples and vignettes demonstrate the expected end-user usage of
the particular package. These use-cases may load other packages and
access data shipped with the package or obtained from the internet.

Table 4.1: Corpus

Tests Examples Vignettes

Scripts
44.1 K 220 K 9.8 K Install

23.3 K 202 K 6.6 K Trace

LOC
2.7 M 1.6 M 614 K Install

1.3 M 1.6 M 327 K Trace



4.1 corpus 39

Table 4.1 gives the number of scripts of each kind that could be
installed and the number of scripts that were successfully traced. In
terms of lines of code, I exercised 25.6 M lines of R and 10.4 M lines of
C. The total size of the database after analysis is 5.2 TB.

I observed 831 B calls to 698.4 K functions. 26.7% of the calls are
made to 157 builtin functions, and 60.3% are made to 33 special
functions. The remainder are calls to R functions. Of these, 2% are
calls to 34.1 K different S3 methods and 0.8% are calls to 60.2 K S4

methods. There are 415.3 K plain R functions.
The number of times delayedAssign is called is 82 M, force is called

101.8 M times, forceAndCall is invoked 1.3 B times and substitute 1.7 B
times. Functions exit due to lonjumps 23.7 B times (this marks explicit
use of the return function).

Figure 4.1 shows how many functions were exercised in each test
package. More than 9 K (59.2%) of the packages had over 10 functions
called. On the other hand 2.7 K of the packages had a single function
invoked (7.0%). These may either be small packages, or, more likely,
the provided tests have low coverage.

0 2.5 K 5 K 7.5 K 10 K

1
2
3
4
5
6
7
8
9

10
> 10

0% 20% 40% 60%

Figure 4.1: Functions per package

Figure 4.2 shows how many times functions were called. 45.0% of the
exercised functions were called more than ten times and 18.9% of the
functions were called only once. Clearly functions that are called only
once may lack coverage.

0 50 K 100 K 150 K 200 K

1
2
3
4
5
6
7
8
9

10
> 10

0% 10% 20% 30% 40%

Figure 4.2: Function calls

Figure 4.3 shows the number of parameters per function; 43.7%
have only one, while 9.8% have more than five. The function meta

::forest.meta has the most with 199 parameters. There are 2.1 M
distinct parameters.



4.2 analyzing laziness usage patterns 40

0 50 K 100 K 150 K 200 K

0
1
2
3
4
5

> 5

0% 10% 20% 30% 40%

Figure 4.3: Formal Parameters

Of the 261 B arguments that were passed at run-time, 25.1% were de-
fault arguments, 72.1% were non-default arguments and the remaining
2.8% were missing arguments.

4.2 analyzing laziness usage patterns

This section presents the results of the empirical study of call-by-need
in the R language.

4.2.1 Life Cycle of Promises

The first research question I address is how promises are created and
used in the wild.

RQ1: What is the life cycle of R promises in the corpus?

In my corpus, and likely, all R programs, promises are the most fre-
quently allocated object. I observed the creation of 270.9 B promises.
For context, Figure 4.4 shows the distribution of application-level ob-
jects; most are vector of characters, logical, integers, and doubles, in
that order. Lists are often used in package code and internal func-
tions. Raw values hold uninterpreted byte strings. Closures repre-
sent functions and environments map names to value, symbols are
language-level names and S4 are instance of classes. Environments are
frequently observed because one is created for each function call, but
they are also, albeit rarely, used as hashmaps in user code.

0 100 B 200 B

Promise
Character

Environment
Logical
Integer
Double

List
Closure

Raw
Symbol

S4
Complex

0% 10% 20% 30%

Figure 4.4: Object counts



4.2 analyzing laziness usage patterns 41

where are promises created? Argument lists account for 94.3%
of promises. The remainder are used for lazy loading of functions,
are created by calls to delayedAssign, or in internal functions of the R
virtual machine. One could expect that there would be more promises
than values since every operation in R is a function call. This is not
the case. Some values are composite of multiple simpler elements (e.g.
data frames) and these are wrapped in a single promise. Values can
be returned without being bound to a promise. Lastly, calls to internal
(builtin and special) functions do not pack arguments in promises.

what do promises yield? Figure 4.5 shows the contents of promises
that were forced. The most common types are character vector, logical
vector, environment, closure, integer vector, double vector, null and
list, in that order. The presence of null values is explained by the fact
that many default parameter values are set to null and these default
values are promised. S4 objects are rarely used in R programs outside
of Bioconductor packages. Symbol, complex vector and raw vector are
also quite rare in practice.

0 25 B 50 B 75 B

Character
Logical

Environment
Closure
Integer
Double

Null
List
S4

Symbol
Complex

Raw

0% 10% 20% 30% 40%

Figure 4.5: Promise results

Figure 4.6 shows the content of the expression slot of promises, i.e.
their code. Only 17.3% of promises contain a function call, e.g. 1+2
or f(z). The majority contain a single symbol to be looked up in the
promise’s defining environment, e.g. x. That symbol may be bound to
another promise, in which case forcing the promise will be recursive.
Promises can also hold inlined scalar constants, such as a single double
1.1.

0 25 B 50 B 75 B 100 B 125 B

Symbol
Function Call

Logical
Character

Integer
Null

Double
Closure

Environment
List
S4

Raw
Complex

0% 10% 20% 30% 40%

Figure 4.6: Promise expressions



4.2 analyzing laziness usage patterns 42

how often are promises accessed? 87.3% of argument promises
are forced; the remaining went unused. Unused arguments are not
unusual, some functions have over twenty parameters, and many of
these are only needed in special circumstances. Figure 4.7 shows, for
each individual promise, the number of times its value was read. Most
promises are used once (forced), 9.6% are accessed twice, and 3% are
accessed three times.

0 50 B 100 B 150 B

0
1
2
3
4
5
6

> 6

0% 20% 40% 60%

Figure 4.7: Reads

how far are promises forced from their creation? Promises
can be passed from one function to the next, traveling down the
call stack. Regardless of the distance from the frame that created
them, promises evaluate in their creation environment. But the far-
ther from creation, the harder it is for a compiler to optimize them.
Figure 4.8 shows the distance between promise creation and forcing.
79.7% promises are evaluated in the callee, 17.1% promises are forced
two level down, and the remaining 3.2% are evaluated deeper.

0 50 B 100 B 150 B

1
2
3
4
5
6

> 6

0% 20% 40% 60% 80%

Figure 4.8: Force depth

how long do promises live? Promises are short-lived, over 99.5%
do not survive one garbage collection cycle. This confirms the folklore
that most objects die young. It also means that promises are exerting
pressure on the memory subsystem of the virtual machine. Only 0.5%
of promises survive multiple cycles. Of those, 76.7% are non-argument
promises and 0.08% are escaped arguments. As mentioned earlier, non-
argument promises are created explicitly through delayedAssign and
implicitly through lazy-loading of package code; both are expected
to be long-lived. Escaped promises are promises that outlive their
defining function. They may be long-lived as well. Of the long-lived
promises, 23.2% are argument promises; their longevity is likely due
to long running functions.



4.2 analyzing laziness usage patterns 43

Table 4.2: Promise life cycle

F 70.5%

– 11.9%

FR 9.5%

FRR 3%

FRRRR 2%

FRRR 1%

M 0.5%

a. Argument

EF 70.7%

FRER 5.4%

FER 5%

FRRER 4%

EFR 3%

FRRERR 1%

EFRR 1%

b. Escaped

A 67.5%

– 16.5%

AR 11.2%

AA 2%

F 2%

S 0.2%

c. Non-Argument

what are promise life cycles? If we characterize the life of a
promise by the events that affect it, promise life cycles can be summa-
rized by sequences of events. Ignoring creation and reclamation, the
events of interest are Force, Read, Meta-program, Escape, Assign, and
deSerialize. Note that forcing a promise is an implicit read. I observed
28.1 K unique life cycles. Table 4.2 shows the most frequent sequences
for (a) argument promises (19.2 K unique sequences), (b) escaped argu-
ment promises (7.3 K sequences) and (c) non-argument promises (6.2 K
sequences). For argument promises the two most common sequence
are F (a promise that is forced) and the empty sequence (unused
promise). The next sequences are forces followed by a growing num-
ber of reads. Meta-programming occurs only infrequently. For escaped
promises the most frequent sequence is EF, the promise escapes and is
forced later. The second most frequent sequence is FRER, the promise is
forced, read, escapes and is read again. Lastly, non-argument promises
are most often created and assigned a value in the C code. About
0.2% of these promises are obtained from deserialization (S) owing to
lazy-loading of packages.

does context sensitive lookup force promises? Looking
up a function name such as f() may force a promise if that name
is bound to one in the environment. If the promise yields a closure,
that closure will be invoked, otherwise lookup continues. This allows
“harmless” shadowing of function names as seen in Figure 4.9 where
addToGList.grob from package grid defines a parameter gList that
shadows a function of the same name defined by the same package.

addToGList.grob <- function(x, gList)

if (is.null(gList)) gList(x) else { gList[[length(gList)+1L

]]<-x; return(gList) }

Figure 4.9: Shadowing



4.2 analyzing laziness usage patterns 44

I observed 651.7 K function lookups (out of a total of 831 B lookups)
which caused a promise to be forced. Out of those, 86.3% yielded
a closure. The 13.7% that did not yield a closure are cases where a
function name was shadowed. Table 4.3 shows the 30 most commonly
shadowed function names and the number of functions in which
shadowing happens. Many of those names correspond to common R
functions such as c, names, print and max.

Table 4.3: Context sensitive lookup

plot 971

log 821

c 461

legend 334

file 221

length 209

formula 204

scale 188

t 184

names 182

round 130

title 129

order 83

drop 82

which 82

grid 76

class 74

print 74

ncol 71

dim 69

max 67

format 66

sort 60

nrow 57

list 53

rug 49

matrix 48

clean 47

start 45

unique 43

do promises force each other? A parameter list can include
parameters with default values that refer to each other. This is a
semantic quirk that can lead to promises forcing one another. Consider
Figure 4.10 and function sample.int from the base package. Parameter
useH has a default value that depends on the other four arguments
and s depends on n. Function rmslash has a recursive dependency
between center and Scatter. The function expects at least one of those
to be provided at each call site, if this is not the case an error will be
reported.

sample.int <- function(n,s=n,r=F,p=NULL,useH=(!r && is.null(p)

&& s<=n/2 && n>1e+07))

if (useH) .Internal(sample2(n,s)) else .Internal(sample(

n,s,r,p))

rmslash <- function(center=rep(0,nrow(Scatter)), Scatter=diag(

length(center))) {

if (length(center) != nrow(Scatter)) stop("<error-message>")

...

Figure 4.10: Argument lists

I found 4.8 K default value expressions in 3.9 K functions. At run-time,
there were 336.9 M default expressions forcing other parameters. This
is 0.2% of the forced promises.



4.2 analyzing laziness usage patterns 45

does method dispatch force promises? The two widely used
object systems, S3 and S4, have an impact on promises. In order to
find which method to invoke, one or more arguments must be forced.
Overall, only 1% of promises participate in method dispatch. 671.5 M
promises are forced due to S3 dispatch and 536.2 M are forced due
to S4 dispatch. As these numbers are small, I ignore dispatch for the
remainder of the study.

how often does non-local return happen? The return func-
tion pops the call stack until it arrives at the frame where it originated
from. A call such as f(return(1)) will, when f’s argument is forced,
return from f and its caller. So, when a promise containing return is
forced, the current function stops executing and the stack is unwound;
this is a non-local return. Only 297.4 M arguments to 16 functions
performed non-local returns. One of the most common causes is the
base::tryCatch function. The function sequentially attaches handlers
specified in its vararg list and executes exp by wrapping it in a call
to return. The return causes the control flow to exit doTryCatch and
tryCatch.

tryCatch <- function(exp, ..., fin) {

...

doTryCatch <- function(e, nm, penv, handler) {

.Internal(.addCondHands(nm,handler), penv, environment(),

F))

e

}

value <- doTryCatch(return(exp), nm, penv, handler)

...

takeways. Promises dominate the memory profile of R programs.
They are short lived, 80% are evaluated in the called function and over
99% do not survive a single GC cycle. The vast majority of promises
contain a value or a variable. Only 17.3% contain code that needs to be
evaluated. Of those expression-carrying promises 80.7% are unused,
7.0% are evaluated in the called function and 12.3% are evaluated
down the call-stack or meta-programmed. Overall most promises lead
a rather mundane life that one would hope a compiler could optimize
out of existence.

4.2.2 Strictness

My second research question concerns strictness. A function is said
to be strict if it evaluates all of its arguments in a single pre-ordained
order (e.g., left to right).

RQ2: What proportion of R functions are strict?



4.2 analyzing laziness usage patterns 46

To answer this question I start with individual parameters. I only
consider plain R functions that are called more than once, have at
least one parameter and have not abruptly stopped executing owing
to non-local returns. There 2.1 M distinct parameters to such functions.
For a given parameter and a given function, I aggregate all calls and
all uses of that parameter into three categories: parameters that are
Always evaluated, parameters that are Never evaluated, and Sometimes
evaluated. Figure 4.11 summarizes this analysis. 87.6% of parameters
are always evaluated, 6.0% parameters are evaluated in some calls and
not others, 6.4% parameters are never used.

0 500 K 1 M 1.5 M

Always

Never

Sometimes

0% 25% 50% 75%

Figure 4.11: Parameter strictness

A function is strict if its parameters are always evaluated in the same
order. Most functions, 93.6% to be precise, have a single order of
evaluation. This means they are candidate for being strict. Functions
with multiple orders of evaluation for their arguments are summarized
in Figure 4.12. About 4.7% of the functions have two force orders, and
very few functions have more.

0 10 K 20 K 30 K 40 K

2

3

4

5

> 5

0% 1% 2% 3% 4% 5%

Figure 4.12: Function force orders

Based on the above data, out of a total of 388.3 K functions, 83.7% are
strict. Figure 4.13 gives a histogram of function strictness ratios per
package. The majority of packages contain only strict functions. The
packages that are less than 75% strict account for only 2.6 K packages
(16.9% of all packages) and 81.7 K functions (21.0% of all functions).

0 2 K 4 K 6 K 8 K

0%

25%

50%

75%

100%

0% 10% 20% 30% 40% 50%

Figure 4.13: Strictness per package (x-axis=packages; y-axis=strict function
ratio)



4.2 analyzing laziness usage patterns 47

One could consider relaxing strictness to allow multiple orders of
evaluation if those orders of evaluation could be shown to be semanti-
cally equivalent. Some features of R may help. First, all vectors have a
copy-on-write semantics, thus many side effects are hidden from view.
Moreover, as Figure 4.14 shows only 25% of Sometimes promises per-
form any computation. In my experience most of those computations
are side effect free.

Symbol
Character

Function Call
Logical
Integer
Double

Null
Closure

Environment
List

0% 20% 40% 60%

Always Sometimes

Figure 4.14: Promise expressions

I performed an additional analysis to get an upper bound on the
side effects performed during promise evaluation. I considered only
variable reads and writes, external side effects such as filesystem
operations were not taken into account. A meager 16.5 M promises (out
of 270.9 B) perform any side-effecting computation. There are several
cases to consider, the simplest when the promise performs a side effect
to its local environment. For example, consider the stats::power

function:

power <- function() {

linkinv <- function(eta) pmax(eta^(1/lambda),

.Machine$double.eps)

mu <- linkinv(eta <- eta + offset)

...

The call to linkinv takes, as argument, an expression that performs a
side effect to the local variable eta. This could have been avoided by
moving the assignment above the call to linkinv but the programmer
likely wanted to save one line. This kind of local side effect can affect
other promises coming from the same environment (which is not the
case here). Of the side-effecting promises, 41.2% are local. Non-local
effects can be performed, e.g., using the <<- operator to assign to
a variable in the lexically enclosing environment. The following is
snippet from a test script in cliapp package. The argument to capt0

modifies id using <<-.



4.2 analyzing laziness usage patterns 48

test_that("auto closing", {

id <- ""

f <- function() capt0(id <<- cli_par(class = "xx"))

capt0(f())

...

Out of the side-effecting promises, 0.5% affect a parent environment.
Finally, 58.3% promises perform side effects in other environments.
The methods::callNextMethod function is among the most common
sources of mutation of other environments.

callNextMethod <- function (...) {

...

callEnv <- parent.frame(1)

assign(".nextMethod", nextMethod, envir = callEnv)

...

I further count how many of those side effects are performed di-
rectly by assignments occurring textually in the promise. Of the 6.8 M
promises performing local side effects, 98% perform side effects di-
rectly. Of the 9.6 M promises performing side effects in other envi-
ronments, 0.1% perform side effects directly. Of the 80.2 K promises
performing side effects in the lexical parent environment, 0.08% per-
form side effects directly.

qualitative analysis I inspected 100 randomly selected functions
that the dynamic analysis marked as strict. Out of those, 82 were
indeed strict. The remaining 18 were not, but I did not observe their
laziness. The majority (16 out of 18) of incorrectly labeled functions
were not using all of their parameters, using them along some exe-
cution paths or returning early. I found a single function that was
lazy because it called another function that was itself lazy in that
particular argument and one function for which an argument escaped.
The functions that do not evaluate all parameters could be cases where
computational effort is saved if the arguments passed are complex
expressions. I also found occurrences of explicit argument forcing.
Programmers write code such as x<-x or force(x) to ensure that argu-
ment are values. An example of such code is the scales::viridis_pal

function; it returns a closure, but forces all of its arguments to avoid
capturing their environments:

function(alpha=1, begin=0, end=1, dir=1) {

force_all(alpha,begin,end,dir)

function(n) viridis(n,alpha,begin,end,dir)

}

The authors of higher-order functions such as apply or reduce often en-
force strictness after receiving bug reports from end-users around



4.2 analyzing laziness usage patterns 49

unwanted lazy evaluation and variable capture interactions. The
forceAndCall function has been introduced to mitigate this issue by
forcing the arguments of a function prior to calling it. Looking for uses
of forceAndCall revealed additional packages that enforce strictness for
higher-order functions. The function is invoked 1.3 B times. The force

function is also widely used to enforce strictness; it is called 101.8 M
times and used in 60% of the packages I inspected. In summary,
manual inspection suggests that I overestimate strictness. Improving
precision of the analysis would require increasing code coverage. I
also found numerous occasions where programmers require strictness
to control side effects.

4.2.3 Meta-programming

The next research question pertains to the use of call-by-need to enable
meta-programming.

RQ3: How frequently are promises used for meta-programming?

For the purposes of this discussion I define meta-programming as the
manipulation of code through calls to substitute which lets program-
mers extract an abstract syntax tree from the body of a promise, modify
it, and evaluate with eval. I observed 1.7 B calls (2% of all calls) to
substitute. Figure 4.15 shows the number of promises that were meta-
programmed. The graph has four categories: promises that were cre-
ated but never used, promises that were meta-programmed, promises
that were both meta-programmed and accessed, and lastly, promises
that were only accessed. The data shows that 0.5% of promises were
used purely for meta-programming purposes, while 0.2% were both
forced to obtain a value and used for meta-programming.

0 50 B 100 B 150 B 200 B

Lookup

Lookup & Metaprogram

Metaprogram

Unused

0% 25% 50% 75%

Figure 4.15: Meta-programmed promises

Meta-programming is widespread with 2 K (11.9%) packages using
it. One feature of substitute is that programmers can specify the en-
vironment in which to resolve names occurring in its argument. It
is also possible to access an environment up the call chain and in-
voke substitute on it. Over 99% of calls to substitute use the current
environment. Only 0.7% of calls use a custom replacement list or
a new environment, and 209.9 K use a parent frame. These are al-
most entirely due to deparse, eval and do.call which allow specifying



4.2 analyzing laziness usage patterns 50

their arguments’ evaluation environment. For example, the envnames::

get_env_names function uses substitute in different contexts to extract
user-defined names of environments. The first call to substitute runs
in the second frame from the top of the stack, the next call in the first
frame, and the third call in the environment in which it is called.

get_env_names <- function(envir=NULL, include_functions=FALSE) {

get_informative_environment_name <- function(envir)

if (...) envir_name <- deparse(substitute(envir,

parent.frame(n = 2)))

else envir_name <- deparse(substitute(envir, parent.frame

(n = 1)))

if (!is.null(envir) && !is.environment(envir))

{ error_NotValidEnvironment(deparse(substitute(envir)));

return(NULL) }

envir_name <- get_informative_environment_name(envir)

...

The glmmTMB::makeOp function constructs ASTs from replacement lists
instead of an environment. Arguments x, y and op are evaluated and
bound to X, Y and op respectively in the list which is then used for
replacement in the AST by substitute.

makeOp <- function(x, y, op=NULL) {

if (is.null(op) || missing(y)) {

if (is.null(op)) substitute(OP(X), list(X = x, OP = y))

else substitute(OP(X), list(X = x, OP = op))

} else substitute(OP(X, Y), list(X = x, OP = op, Y = y))

}

qualitative analysis I manually inspected 100 functions that
meta-program their arguments, and classified them based on the
usage patterns. One common pattern is to extract the source text of an
argument. This is used by various plotting functions to give default
names to the axes of a graph if none are provided. In the following
definition xAxis and yAxis are parameters used that way. The call to
substitute returns the AST of the arguments, and deparse turns those
into text.

function(design, xAxis, yAxis) {

designName <- deparse(substitute(design))

xAxisName <- deparse(substitute(xAxis))

yAxisName <- deparse(substitute(yAxis))

plot(1, type = "n", main = designName, xlab = xAxisName, ylab

= yAxisName,

...



4.2 analyzing laziness usage patterns 51

The following pattern explains why many promises are both evaluated
and meta-programmed. The call to substitute extracts the AST for deg

and the next line evaluates deg.

function(deg) {

degname <- deparse(substitute(deg))

deg <- as.integer(deg)

if (deg < 0 || deg > 1) stop(paste0("Error ",degname))

deg

}

Another common pattern, that is a syntactic convenience, is to allow
the use of symbols instead of strings. The :: operator is used to prefix
function names with their packages. It is implemented as a reflective
function that expects two strings. But programmers would rather
write base::log than "base"::"log". To this end, the arguments are left
uninterpreted, instead the function deparses them to strings.

‘::‘ <- function(pkg, name) {

pkg <- as.character(substitute(pkg))

name <- as.character(substitute(name))

get(name, envir=asNamespace(pkg), inherits=FALSE)

}

Meta-programming is also used for better error reporting and logging.
This example shows code that only retrieves the source text of the
argument.

function(arg)

if (!is.numeric(arg)) stop(paste(deparse(substitute(arg)),"is

not numeric"))

I also found functions that leverage non-standard evaluation. The
following definition is for base::local which provides limited form of
sandboxing by evaluating code in a new environment. The argument
is extracted and evaluated using eval in an empty or user-supplied
environment.

function(arg, envir=new.env()) eval.parent(substitute(eval(quote

(arg),envir)))

A combination of meta-programming, dynamic evaluation and first-
class environments opens up the door for domain specific languages.
The pipe operator heavily used in the tidyverse group of packages
performs non-standard evaluation on its arguments. While the user
writes code like this df %>% mean, what is actually executed is mean(df

). While the actual definition relies on more intricate non-standard
evaluation techniques, a simple definition that achieves a similar effect
turns both arguments into abstract syntax trees, and captures the
calling environment.



4.2 analyzing laziness usage patterns 52

function(lhs, rhs) {

lhs <- substitute(lhs)

rhs <- substitute(rhs)

eval(call(pipe, rhs, lhs), parent.frame(), parent.frame())

}

Overall, the use of meta-programming is widespread and falls in two
rough categories: access to the source text of an argument in the direct
caller and non-standard evaluation of an argument. The latter is the
source of much of the expressive power of the language and is critical
to some of the most widely used packages such as ggplot and dplyr.

4.2.4 Revisiting the Traditional Benefits of Laziness

The next research question asks whether the benefits of lazy evaluation
that were advocated by Hudak [12] are realized in the R ecosystem.

RQ4: Are the traditional benefits of laziness realized in R?

These benefits are that programmers need not worry about the cost
of unused arguments and they are able to define and use unbounded
data structures. I posit the following hypothesis, if programmers
understand how call-by-need works, they will feel free to pass com-
plex computations in non-strict positions. If true, one could hope
to observe a difference in running time for arguments known to be
strict (promises passed to Always parameters) and those that are not
(promises passed to Sometimes parameters). Figure 4.16 shows the
probability density of promise running times with times smaller than
a millisecond discarded. The promises that are passed to Sometimes
arguments tend to be less expensive to evaluate. While there is a
difference in the profiles, the data does not allow us to confirm that
programmers are taking advantage of laziness.

Always

Sometimes

1 ms 10 ms 100 ms 1 s 10 s 1.7 mins 16.7 mins

Figure 4.16: Promise evaluation

Laziness makes it possible to compute over infinite data structures.
While R does not provide such data structures, it is conceivable that
programmers created some in their code. As I have shown, one can



4.2 analyzing laziness usage patterns 53

use promises together with environments to create unbounded data
structures. While it is difficult to measure this directly, we can measure
escaped promises. These promises outlive the function they are passed
into, and these would be a superset of lazy data structures. Of the 261 B
promises I have observed, only 11.6 M escape. This is a rather small
number. We need to establish the reason why they escape. Figure 4.17

compares the return types of functions which have at least one of their
promises escaping, and functions that do not have escaping promises.
The main difference between them is that functions with escaping
promises have a large number of symbols and closures as their return
values. The next section performs a qualitative analysis to understand
how those closures are used.

Symbol
Closure

Null
List
S4

Logical
Double

Environment
Character

Integer
Function Call

0% 10% 20% 30% 40%

Escaped Not-escaped

Figure 4.17: Function results

qualitative analysis It is not easy to assess, from the quantitative
results alone, whether programmers benefit from laziness. Consider a
call, f(a+b,c), and imagine that depending on the value of c, the first
argument may or may not be evaluated. If a and b are large matrices
and c is infrequently true, a programmer aware of laziness would not
worry about the performance of this code. Without laziness, the API of
the function would likely have to change so that instead of passing the
result of the computation one would pass the individual arguments
and let the function perform the addition if needed. In my manual
inspection, I have not found any code suggesting that programmers
are concerned about the cost of evaluating expressions, but this is most
likely due to the fact that many users are not performance sensitive.

One promising use of laziness is related to delayedAssign. I observed
82 M calls to this function. I inspected manually 36 packages that use
it. I found several recurring patterns that aim to avoid unnecessary
computation. Examples are: the AzureML package uses delayed assign-
ment to avoid loading unneeded parts of its workspace; crunch uses it
to delay fetching data from a server; and (slightly surprisingly) callCC
uses it in conjunction with non-local return to implement the call

/cc function. Overall I found little evidence of programmers taking
advantage of call-by-need, other than in cases where they explicitly
called delayedAssign, in the sample of functions I inspected. I did find
cases where the authors of the code seemed to want to enforce a



4.2 analyzing laziness usage patterns 54

consistent evaluation order and prevent argument-induced side effects
from happening in the midst of evaluation of the function.

To detect an infinite data structure I looked at occurrences of
promises that outlive the function in which they were passed. I in-
spected 100 functions with escaping arguments and observed the
following patterns: (1) arguments captured in closures, (2) arguments
captured in S4 objects, (3) arguments stored in environments, (4) ar-
guments passed into finalizers, (7) argument passed into delayed
assignments, and (8) arguments passed into formulas. Figure 4.18

gives examples of each of these categories.

function(arg, e=10^-5) {

function(x) (arg(x+e)-arg(x-e))/(2*e)

}

(a) Closure

function(arg) {

new("FLXcomponent",df=arg$df)

}

(b) S4 object

function(arg) {

env<-new.env();

env$fn<-function(x) {

...

out<-arg(x)

...

}

env

}

(c) Environment

function(arg) {

reg.finalizer(environment(), function(...) dbDisconnect(arg))

}

(d) Finalizer

function(arg, e) {

delayedAssign(x, get(from, arg), assign.env=as.environment(e))

)

}

(e) Delayed assignment

function(arg, i) {

as.formula(arg[, 1] ~ arg[, i])

}

(f ) Formula

Figure 4.18: Escaping promises



4.3 related work 55

In terms of linguistic mechanisms, all but the last two end up as
variants of closure-captured promises. Formula is interesting, because
it is really a domain specific language that is interpreted with different
semantics. In my time spent working with R, I found a single pack-
age, Rstackdeque [23] that advertised the use of lazy data structures,
specifically fully persistent queues based on [24]. This package, which
depends on lazy lists, is the only use of lazy data structures I am
aware of in the R ecosystem.

4.3 related work

The meta-programming support of R is reminiscent of fexprs [33] in
Lisp. Fexprs are first class functions with unevaluated arguments. In
R, functions always have access to their unevaluated and evaluated
arguments. Pitman [26] argued in favor of macros over fexprs. Macros
are transparent, their definition can be understood by expanding them
to primitive language forms before the evaluation phase. fexprs on the
other hand perform code manipulation during evaluation. This makes
it harder for compilers to statically optimize fexprs. Furthermore,
expression manipulation such as substitution of an expression for
all evaluable occurrences of some other expression can be performed
correctly by macros because they expand before evaluation to primitive
forms.

Purdue FastR [17] is an AST interpreter for R written in Java to
explore the applicability of simple compiler optimization techniques,
within the reach of scientific community lacking expertise in language
run-times. The authors implement an optimization technique that
defers element wise operations on vectors by constructing expression
trees called Views, which are evaluated on demand. This prevents the
materialization of temporary vectors in a chain of vectorized mathe-
matical operations. Like promises, views cache the result of evaluating
the expression. However, unlike promises which are exposed to the
user through meta-programming, views are completely transparent
to the user. Promises are built by packaging arbitrary argument ex-
pressions but views are built incrementally by piling referentially
transparent vector operations such as +, -, log, ceil, etc. Promises are
evaluated very quickly due to the eager nature of most functions, but
the expression trees of views are evaluated only when the entire result
vector or its subset is demanded or a selected aggregate operation
such as sum is applied.

Building upon the implicit argument quoting of promises is a data
structure called quosure, short for quoted closure, that bundles an
expression and its evaluation environment for explicit manipulation
at the the language level. A quosure is thus an explicit promise object
exposed to the user, with APIs to access the underlying expression



4.4 threats to validity 56

and environment. Quosures are a central component of a collection of
R packages for data manipulation, Tidyverse [36], that have a common
design language and underlying data structures. Dplyr [37], a package
of Tidyverse, implements a DSL for performing SQL like data trans-
formations on tabular data and ggplot2 [35] implements a declarative
language for graphing data, inspired by the Grammar of Graphics.
These packages quote, unquote and quasiquote user supplied expres-
sions and evaluate them in appropriate environments. To facilitate
this, these packages also provide an evaluation function, eval_tidy
that extends the base eval to deal with quosures. This suggests that
reifying promises can be useful.

Renjin is an implementation of R built on the Java virtual machine
designed to analyze large data sets and facilitate integration with
enterprise systems. Renjin supports delaying evaluation of side effect
free computation [21]. Instead of returning the actual result of a
computation, Renjin returns placeholders which look and behave
exactly like the actual computation result, but will only calculate
results if forced to. The difference between Renjin and FastR, both
systems are more “lazy” than GNU R, lies in Renjin’s support for
relational-style optimization.

4.4 threats to validity

Code coverage is a worry for any dynamic approach. There are two
additional points to consider. Firstly, C and C++ functions can bypass
the R extension API and directly modify R objects’ internals. For
example, set a promise’s value without going through the API thus
obviating the hooks. Such behavior breaks the R semantics and is
error prone as the R internals do change. I have not observed this
behavior in practice, but given the large number of packages, it may
happen. Secondly, I disable the bytecode compiler for this study. Since
the compiler eliminates promises for literal arguments, I observe more
promises than actually created by the GNU R Virtual Machine under
its default settings.

4.5 conclusion

This chapter offers a glimpse into the use of call-by-need in the R
programming language. Call-by-need is the default in R, but this data
suggests that it is used less than one would expect. To deal with
side effects and manage programmers’ expectation, many functions
are stricter than they need to be. I found little evidence of lazy data
structures or that users leverage lazy evaluation to avoid unnecessary
computation. I found only two broad categories of usages that bene-



4.5 conclusion 57

fited from it. The first is the creation of delayed bindings. These, in my
experience, are always explicit. The second is for meta-programming.
Within that category, uses are split between accessing the source text of
an expression for debugging purposes and performing non-standard
evaluation.

The costs of lazy evaluation in performance and memory use are
substantial. Every argument to a function must be boxed in a promise,
retaining a reference to the function’s environment until evaluated.
Every access to a variable must check if it is bound to a promise and
either evaluate it or read the cached value. Lazy evaluation complicates
the task of compilers and program analysis tools as they must deal
with the possibility of any variable access causing side effects. Lastly,
the majority of users do not expect arguments to be evaluated in a
lazy fashion, thus leading to hard to understand bugs.

If laziness is mostly unused, could it be eliminated? Any change to
the semantics of a widely used language has to be minimally invasive.
The next chapter discusses a set of tools and techniques to remove
undue laziness from R code.



5 S T R I C T N E S S I N F E R E N C E

In this chapter, I will describe three tools to migrate R code to strict
semantics: LazR, a scalable infrastructure for inferring strictness anno-
tations for function arguments by dynamic program analysis, StrictR,
an R package that inserts strictness in R packages at runtime, and
rastr, an R package that performs source rewriting to insert strictness
information in R package code. The goals behind the design of these
tools are minimal code changes and accurate strictness inference.

Tying these tools together is a strictness signature, a mechanism to
specify function strictness. A strictness signature is of the form:

sig ::= strict ‘fun‘ 〈i1, i2, i3, . . . 〉

Here, fun is the name of the function. The sequence of integers speci-
fies which argument positions are evaluated strictly. These signatures
are stored in signature files; there is one signature file per package.
These files are generated and consumed by the tools described in
this chapter. The advantage of using external signature files is that
the developers don’t have to modify the source code of programs. It
also enables easy experimentation by switching the signature files. A
limitation of storing strictness signatures in external files is that they
will inevitably diverge from the code over time. From the point of
view of maintainability, it would be preferable to provide strictness
information in the source code so they can evolve in tandem. Another
drawback of specifying strictness through signatures is that anony-
mous and inner functions can not be annotated as they have no names.
Only top-level functions have a canonical name. Additionally, some
packages generate functions at runtime, which are also not handled
since they don’t have a canonical name. However, I have found these
cases to be relatively rare.

LazR and StrictR have been validated as Functional and Reusable and
are available from:

https://doi.org/10.5281/zenodo.5394235

rastr is available from:

https://doi.org/10.5281/zenodo.7803644

58

https://doi.org/10.5281/zenodo.5394235
https://doi.org/10.5281/zenodo.7803644


5.1 lazr 59

5.1 lazr

LazR generates strictness signatures for R packages through dynamic
analysis. It has two important components: a system for tracing the
execution of R scripts and an infrastructure for extracting executables
and running analyses that scale to thousands of packages. The goal
behind the design of LazR is not to infer maximally strict signatures
but rather to minimize the impact of semantic change on clients by
considering both intrinsic and accidental laziness.

intrinsic laziness. When should an argument be lazy? The em-
pirical evaluation discussed in the previous chapter found barely any
use of functional programming idioms related to call-by-need, such
as infinite data structures. In fact, most code seems to be written as if
R was strict. There is one significant exception: meta-programming.
Consider the following:

f <- function(a,b) {

print(deparse(substitute(a)))

x <- eval(substitute(b))

x+a

}

A call of f(1+2,3+4) creates two promises. The first is accessed by
substitute, turned into a string by deparse and printed. The code of
the second is accessed by substitute and evaluated by eval. Then
expression x+a forces the first promise; the second is never forced.
Both arguments are intrinsically lazy. Additionally, C code sometimes
expects an argument to be a promise, when using the PREXPR macro to
access its expression. Lastly, an argument that is not always evaluated
may be marked as lazy. Though, this is rarely necessary.

accidental laziness. In order to preserve the behavior of legacy
code, some parameters will be labeled as lazy even if the called func-
tion does not require it. An argument that performs a side-effect is
treated as lazy to retain semantics. For instance, in the call f(g(),x<-1),
function f is free to evaluate its arguments in any order. Enforcing
one particular order may lead to observable differences in behavior,
e. g.if the call to g() reads x. Writing such code is error-prone, as small
changes to f may break it. R has a call-by-value semantics for vectors
and lists. These are the most frequently used data types, so many
updates will be locally contained. Errors and exceptions are another
source of effects inside promises. Some reflective functions can make
evaluation of a promise sensitive to its position on the call stack, for
e.g., as.environment accesses specific frames on the stack by their in-
dex. Strict evaluation of such promises is observable if it changes the
position of the promise on the call stack. It is worth noting, again, that



5.1 lazr 60

such code is brittle as any change in the target function can change
the frame returned by the reflective calls.

One special case is that of vararg arguments. Assigning a single
strictness annotation to ... is tricky because a function can have
different strictness behaviors for each element. For example, object-
oriented dispatch uses a vararg to forward all method arguments from
the caller to the target function. The current choice is pragmatic but
imprecise; all varargs remain lazy.

order of evaluation A design choice I faced was to select an
evaluation order for strict arguments. My tool evaluate all arguments
left-to-right in the order they appear in the function signature. This
means that end-users need to know in what order arguments are
defined. I elucidate this point in Fig. 5.1 which shows a popular func-
tion that takes six arguments; a is always evaluated, b is conditionally
evaluated, c is forwarded to substitute for meta-programming, d and
e are forwarded to a strict function, and f is evaluated if it is not miss-
ing. The client code has three invocations. In all of them, f is missing.
This makes f lazy because there is no information available about
its evaluation. For r1, variable b should not be evaluated, evaluating
it strictly will change the output of the program; for r2, evaluating
c will immediately terminate execution, departing from the original
program behavior; and for r3, if d is evaluated before e a different
result can be observed. To summarize, the expected output of the
analysis of legacy code is to increase strictness while keeping the
number of observable semantic differences low. For new code, I expect
programmers to mostly use strict parameters.

popular <- function(a,b,c,d,e,f) {

if (a) b

print(substitute(c))

if(!missing(f)) print(f)

return(e+d)

}

(a) Library

r1<-popular(FALSE,print(’Hi’),3,4,5)

r2<-popular(TRUE,1+2,stop(),0,9)

r3<-popular(TRUE,1+2,3,r1<-4,r1+1)

(b) Client code

Figure 5.1: Inferring strictness signatures

tracing The heart of LazR is a dynamic analysis tool built on the
R-dyntrace package which extends the GNU R virtual machine version
4.0.2 [8]. When R-dyntrace executes a script, it generates a trace which
is a sequence of low-level events that mirrors the operations performed
by the interpreter. The trace exposes raw R objects being operated on



5.1 lazr 61

as well as control flow. As traces can get large, rather than recording
them, R-dyntrace exposes callbacks that are used to hook analysis-
specific functionality to events. LazR intercepts these callbacks and
provides a layer of abstraction by maintaining model objects to abstract
from concrete R data structures. These objects represent function
instances, environments, and stack frames. Model objects help in
handling some of the complexities of R. For instance, they have unique
identities, whereas R objects are identified by their memory address
which can be reused. For scalability, LazR reclaims model objects when
the corresponding raw R object is garbage collected and supports
efficient indexing of these objects. Model objects are also used for
bookkeeping of the relevant operations on the corresponding raw R
objects. Model functions have names heuristically reconstructed by
keeping track of their lexical scopes. The model stack can also deal
with the use of longjump for non-local returns. Lastly, LazR maintains
a notion of logical time, used to record when some events of interest
happened. For instance, environments record the time of last read and
last write. Similarly, code blocks record evaluation start and end.

inference LazR monitors traces looking for signals that parameters
are lazy. These signals are relative to how the called function uses the
parameter and what the provided argument does; I summarize them
here:

V: A vararg parameter; I consider this to be a signal of intrinsic
laziness. The reason for this particular choice is that it is unclear
how to treat individual elements of the varag.

M: A parameter passed to substitute or PREXPR is meta-programmed;
this is a signal of intrinsic laziness.

G: A parameter that did not receive an argument on any func-
tion invocation; this is a signal for laziness owing to a lack of
information.

U: A parameter that remains unevaluated; this is a signal of intrinsic
laziness as we do not know the contract of the function for that
parameter.

S: An argument with side-effects; a signal of accidental laziness as
some effects may be benign. I monitor three kinds of effects: vari-
able reads, variable writes (definitions, updates, and removals of
variables), and errors.

R: An argument that uses reflection to observe the state of the call
stack; this is a signal of accidental laziness as strict evaluation
may evaluate the promise with a different stack.

For any trace, LazR models each argument of each function. If a
function is invoked, the tracer records all operations related to its



5.1 lazr 62

arguments and correlates them with the parameters. For each opera-
tion performed by the interpreter, the analysis finds the responsible
promises, i.e., all promises on the call stack. Since each promise is
bound to an argument of a function, one can connect that promise to
a corresponding parameter. When a side-effect or reflection occurs,
the parameters corresponding to all responsible promises are marked
S or R. Reads and writes are ignored in some cases. LazR keeps track
of the last accessed and modified time of each binding. For a write
from a promise, if the binding being modified was not accessed or
modified after the promise was created and before it was executed,
the write is ignored because evaluating the promise early will not
introduce a conflict. Similarly, for reads, if the binding being read was
not modified after the promise was created and before it was executed,
then the read is ignored. For performance but at the cost of precision,
only the last 10K read and write times for each variable are recorded.

The result of analyzing an R script is a summary for each function
and each parameter of the signals that were observed during trac-
ing. Multiple scripts can be straightforwardly merged as the union
of signals for each parameter. Finally, from this summary, strictness
signatures are generated. Given a set of signals the current imple-
mentation treats them all strong signals and conservatively makes a
parameter lazy at the first signal.

Consider Fig. 5.1, for a and e no signals are observed, b is U due to r1,
c is M from all invocations, d is S due to r3 since its argument mutates
r1 after a read by e, and f is G since it is missing in all invocations.
LazR combines this information to synthesize the signature, strict
popular<1,5>, parameters a and e are strict, and others are lazy.

limitations The strictness signatures generated by LazR are un-
sound. LazR does not handle IO. The R ecosystem has a rich collection
of libraries for handling data, resulting in a vast API for reading and
writing files to disk. These functions call arbitrary C/C++ libraries
for IO. Tracking these calls would require tracing syscalls which is
currently not supported by the dynamic analysis infrastructure. LazR
also does not handle state changes in the native code of packages
because there is no particular API that can be intercepted to track
those changes. Finally, since LazR relies on dynamic analysis, code
coverage directly affects the quality of strictness signatures.



5.2 strictr 63

5.2 strictr

StrictR is a tool that enforces strict semantics on R code as dictated
by the strictness signatures produced by LazR. StrictR inserts force

calls at function boundaries for arguments specified in the strictness
signatures.

Consider the str_to_upper function from the stringr package and its
strictness signature as shown below.

str_to_upper <- function(string, locale = "en") {

stri_trans_toupper(string, locale = locale)

}

strict str_to_upper 〈1, 2〉

Figure 5.2: stringr::str_to_upper: definition and strictness signature

Based on the strictness signature, StrictR modifies str_to_upper as
follows after stringr is loaded.

str_to_upper <- function(string, locale = "en") {

force(string)

force(locale)

stri_trans_toupper(string, locale = locale)

}

Figure 5.3: stringr::str_to_upper definition updated by strictr

implementation StrictR is implemented as an R package that
works with an unmodified GNU R interpreter. It uses a feature of R
that allows registering callbacks when packages are loaded. The call-
back reads the signature file for the loaded package from the current
directory or from the load path and injects force calls in the func-
tions accordingly. An important design decision was to copy functions
as they were rewritten. An earlier implementation mutated function
bodies without copying. This resulted in failures because the same
function object can occur with different names and signatures. For
instance, in the rlang package, is_same_body aliases is_reference. Mu-
tating is_reference to make arguments strict inadvertently also made
the function is_same_body strict if it was not copied before rewriting.
To remedy this, StrictR copies functions as it rewrites them.

limitations Dynamic strictness insertion through StrictR intro-
duces an extra run time dependency on StrictR. Furthermore, a user
interested in leveraging strictness would have to modify their program
to manually import StrictR at the beginning of the file so that the
functions in subsequently loaded packages are rewritten per their



5.3 rastr 64

signatures. Dynamic code modification also complicates debugging
since the modified code does not match the source.

5.3 rastr

In this section, I will describe rastr, a tool that implements an extension
to R syntax, sugr. sugr enables strictness annotations to be supplied
as part of a function declaration. rastr also provides functions to
transform this extended R syntax to standard R syntax and vice-versa.
Conceptually, rastr performs the same task as StrictR in that it replaces
strictness annotations with force calls. It differs in that it performs
rewriting on the concrete source code instead of modifying abstract
syntax at run time. Since annotations can be provided in source files,
rastr can handle anonymous and inner functions.

To explain how rastr works, I will use the example of str_to_upper
function from the case.R file of stringr package as shown in Fig-
ure 5.2. Running the sugar function from rastr on this code generates
a case.sugr file with the following definition for str_to_upper.

str_to_upper <- function(strict string, strict locale = "en") {

stri_trans_toupper(string, locale = locale)

}

Figure 5.4: Sugared version of stringr::str_to_upper

The sugar function introduces the strictness annotations inside the
source code. This facilitates their co-evolution with code. Additionally,
this makes it easy to identify and fix annotations that are inferred
incorrectly on account of unsoundness. After ensuring the correctness
of these annotations, the desugar function is invoked, which converts
the case.sugr file back to case.R by replacing the annotations with
force calls, as shown in Figure 5.3. rastr also provides an RStudio
plugin to invoke the desugar function on the current file or project
with the click of a button.

rastr is implemented as an R package consisting of 26K lines of
C/C++ code and 1.5K lines of R code. Conceptually, the implementa-
tion has three parts: a hand-written R parser to read code into an AST,
an exhaustive API for manipulating syntax tree nodes, and functions
for rewriting ASTs.

parser The main component of rastr is a full-featured hand-written
parser for R, written in a recursive-descent operator-precedence style
as described by Pratt [27]. The parser reads the R source into an AST,
which can be traversed to annotate function parameters with strict



5.3 rastr 65

annotations. The parser keeps track of the concrete code in the file,
including spaces and comments.

GNU R already includes an R parser which can be invoked via the
parse function to obtain an AST. Why bother reimplementing it? The
goal is to keep changes to the original code to a minimum; the R
code written back to file after incorporating the strict annotations
should be identical to the code originally written by the developer
in every other way. Unfortunately, the abstract representation of R
code used by GNU R ignores many source-level details. Spaces and
comments are ignored; this means the indentation and documentation
supplied by the developer are lost. Literals are parsed to values in
a canonical form; this makes it impossible to know if a string is
delimited using one or two quotes, or if a function is defined using
the function keyword or the \ operator, or the precision used to write
floating point numbers. While R does provide a srcref mechanism
that stores concrete representation of tokens, this mechanism is flaky
at best and won’t satisfy all the requirements. The APIs provided
by GNU R to manipulate its AST have inconsistent behavior when
handling missing arguments or literal NULL values in the source code.
This makes it challenging to perform source rewritings. The GNU R
parser is an LALR parser generated using yacc. It was difficult to
extend it with optional strictness annotations without introducing new
parsing conflicts. One limitation of my implementation is that it only
supports UTF-8 encoding.

ast rastr provides APIs to inspect and manipulate ASTs both from
R, for convenience and quick prototyping, and from C/C++, for per-
formance. There are 390 APIs as of now. The AST nodes are modeled
using a C struct with a type tag to disambiguate the different node
types. To avoid the difficulty of managing memory for cyclic tree
structures and nodes with multiple owners, the tree data structure
is engineered to ensure unique ownership, i.e., a node can have at
most one parent. Nodes are allocated from a custom allocator, which
provides constant-time deletion and an amortized constant-time al-
location. Instead of providing the address of the allocated node, the
allocator returns a number that represents the index at which the
node is stored in the allocator’s internal store. These opaque node
references force clients to use rastr APIs for all node operations. The
APIs perform the necessary checks and clone nodes to satisfy the
unique ownership constraint. Interoperability between R and native
code requires significant boilerplate code. Currently, there are 42 types
of nodes. For every node type, there is a constructor, and getters and
setters for child nodes. For every API, there is a C function and an
R function that invokes the C function via a mediator. The mediator
function converts R values to their C equivalents and vice-versa. The
implementation exploits the regular structure of these APIs by gener-



5.4 related work 66

ating them from a template whose parameters are substituted from a
YAML file containing a description of all the nodes. This affords two
conveniences: bugs can be fixed by changing the relevant template
and regenerating the APIs, and new node APIs can be generated by
simply adding the node description to the YAML file.

source rewriting The desugar and sugar functions are imple-
mented using a generic walk function. walk performs a depth-first
walk over the AST. It takes node-specific functions as arguments and
invokes them when it encounters the corresponding nodes. These func-
tions can inspect or modify the nodes. Modifications are performed
in-place for performance reasons. The clone function can be used to
copy the AST for functional updates.

limitations In terms of its limitations, rastr complements StrictR.
rastr cannot enforce strictness in dynamically generated functions.
StrictR can handle functions that are generated during package load-
ing. Neither of the two can handle functions that are generated while
the program is being executed. However, rastr can add strictness to
inner functions which StrictR cannot. Unlike StrictR, the use of rastr
does not add a run time dependency because the package code is
modified before it is even installed.

5.4 related work

Functional languages with a call-by-need evaluation strategy must
contend with memory pressure and associated performance issues
due to the allocation of a substantial number of thunks (suspended
computations) [6, 16, 25]. The Glasgow Haskell Compiler performs a
strictness analysis pass to identify arguments that can be evaluated
strictly. While most programs benefit from such a transformation, due
to its conservative nature, this pass misses some opportunities for
optimizations. To recover performance, programmers can manually
insert strictness annotations to control evaluation; identifying where
to put them, however, can be challenging. Wang, Nunez, and Fisher
[34] proposed Autobahn, a tool that automatically infers strictness an-
notations using a genetic algorithm. This approach relies on dynamic
analysis, which can be more precise than static analysis but does not
guarantee termination on all inputs. As the annotations are based on
a heuristic, developers must manually validate their soundness. The
authors report an average 8.5% speedup (with a maximum speedup
of 89%). Chang and Felleisen [5] solve the complementary problem
of suggesting laziness annotations for call-by-value λ calculus using
dynamic analysis. They introduce the notion of laziness potential, a
predictor of the benefit obtained by making an expression lazy. They



5.5 conclusions 67

use this as a guide to insert laziness annotations. They demonstrate
benefits on Racket implementations of Okasaki’s purely functional
data structures [24], monadic parser combinators, and an AI game. My
work is similar to Autobahn in that I infer annotations dynamically
and I do not guarantee soundness. I depart from Autobahn in that
I use dynamic analysis of execution traces to determine strictness.
Furthermore, I must deal with side-effects and reflective operations
which adds extra complexity to the inference algorithm.

The concept of sugr is inspired by TypeScript, but unlike TypeScript,
the strictness annotations change the semantics of the code. Similar to
TypeScript, I intend to extend sugr to support type annotations and a
C++-style class declaration syntax for R’s object systems.

5.5 conclusions

I discussed the implementation of three tools in this chapter, LazR,
StrictR, and rastr, to remove laziness with high accuracy and minimal
modifications to existing code. LazR uses dynamic analysis to observe
argument usage and synthesizes strictness signature: a sequence of
argument positions that can be evaluated eagerly. LazR considers al-
most all features of R that interact with laziness; arguments that were
not evaluated at least once, varargs, missing arguments, arguments
used for meta-programming, and arguments performing a non-local
side-effect or a reflective operation on the call-stack are all marked
lazy. LazR does not handle IO and state changes in the native code,
which makes the signatures unsound. Since it relies on dynamic anal-
ysis, which depends on code coverage, LazR underestimates laziness,
which further adds to the unsoundness of signatures. The signatures
generated by LazR are used by StrictR and rastr to add strictness to
R code by calling force on the arguments at the function boundary.
While StrictR inserts these calls at run time, rastr inserts them in the
source code itself. The next chapter goes on to remove laziness from R
code and, in the process, evaluate the impact of unsoundness of the
strictness signatures.



6 E C O S Y S T E M M I G R AT I O N

In this chapter, I will use LazR, StrictR, and rastr to assess the impact
of automated migration on a subset of the R ecosystem. First, I will
show that the automated migration breaks only a small number clients.
Next, I will focus on the tidyverse packages and discuss the errors
arising from the automated inference.

6.1 corpus

For this experiment, I selected a corpus of 500 packages with most
client packages from CRAN [19].have a total of 13,308 clients ranging
from ggplot2 with 2,382 clients all the way to factoextra with only
14. The packages have 2.1M lines of R code and 2.8M lines of native
code.

Table 6.1 summarizes the runnable code extracted from these 500

packages. Each test is run as a separate script. Examples and vignettes
are snippets of code embedded in the documentation. LazR extracts
them into self-standing scripts. Typically, vignettes are longer exam-
ples with input data, while examples are smaller code fragments.

Table 6.1: Corpus

Tests Examples Vignettes

Scripts 4.7K 18.9K 581

LOC 342.9K 195.6K 44.4K

Given the large corpus size, the amount of data to process can reach
multi-terabyte sizes. LazR adopts a simple map-reduce style for scala-
bility. It splits the analysis in phases as shown in Fig. 6.1.

Corpus Tracing Post-processing

Install

CRAN

Extract

Programs
Trace Reduce Combine Summarize Report

8 Hours

17K Packages

5 Minutes

500 Packages

24K Scripts

24 Hours

240K Files

966 GB

6 Hours

264K Files

38 TB

1 Hour

11 Files

37 GB

53 Minutes

9 Files

107 MB

5 Minutes

11 Reports

Figure 6.1: Analysis Pipeline

68



6.1 corpus 69

The reduce maps a function on the output of one trace to get a partial
summary. The combine phase concatenates partial summaries. Then,
the summarize phase aggregates summaries into a result table. Finally,
the report phase creates graphs and tables for inclusion in the paper.
For reproducibility, the LazR pipeline is set up with a container image
that includes all the dependencies for installing analysis code and R
packages. To run it, I mirrored the repositories, installed their packages,
and executed the script to generate traces. These traces are analyzed to
output tabular data files and strictness signatures. Whenever possible,
I parallelized the steps. The experiments were performed on two Intel
Xeon 6140, 2.30GHz machines with 72 cores and 256GB of RAM each.

The tracer encounters 51.5K top-level functions; 161 packages have
25 functions or less, and 13 packages with more than 500 functions.
The largest package, spatstat.geom, has 889 functions. We observe
130M calls to these functions, their distribution per function is in
Fig. 6.2; 49% of functions are called more than ten times, while 17%
are called only once.

Figure 6.2: Call Distribution

The traces record 288M arguments, of those, 3.7M are missing, 20K are
varargs, and the remaining are promises. These arguments correspond
to 204K parameter positions, their distribution per function is in
Fig. 6.3; 2% of functions have no parameters, 20% have 1, 6% have
over 10, and 13 functions have over 50. Function ergm::control.ergm

takes the cake with 150 parameters.

Figure 6.3: Parameter Distribution



6.2 strictness signatures 70

6.2 strictness signatures

There are three signals I consider strong, parameters marked by either
one of them are considered lazy. LazR recorded 1.3K parameters be-
ing meta-programmed (marked M), furthermore 3.2K were missing
(marked G), and 20K were varargs (marked V). All these remain lazy.
For other combinations of signals Table 6.2 summarizes their distri-
bution. One function can be counted in multiple rows as its different
parameters may have different combinations. Rows are interpreted as
follows: the fourth row, for instance, indicates that no signals were
observed for 148.4K parameters coming from 49.3K functions and 489

packages.

Table 6.2: Signature Summary

V M G U S R Parameters Functions Packages

3 7 7 7 7 7 20.0K 9.8% 20.0K 38.8% 430

7 3 7 7 7 7 1.3K 0.6% 825 1.6% 118

7 7 3 7 7 7 3.2K 1.6% 1.7K 3.2% 240

7 7 7 7 7 7 148.4K 72.9% 49.3K 95.7% 489

7 7 7 7 7 3 529 0.3% 509 1% 119

7 7 7 7 3 7 1.3K 0.6% 950 1.8% 207

7 7 7 7 3 3 76 0% 74 0.1% 22

7 7 7 3 7 7 28.5K 14% 12.4K 24.1% 450

7 7 7 3 7 3 33 0% 32 0.1% 24

7 7 7 3 3 7 314 0.2% 226 0.4% 98

7 7 7 3 3 3 9 0% 9 0% 5

The majority of parameters (72.9%) are always evaluated, and the
corresponding arguments do not perform side-effects or reflective
operations. These parameters can safely be evaluated strictly. Un-
evaluated parameters account for 14.2% of observations, a significant
source of potential laziness. Variable lengths arguments and missing
arguments account for 9.8% and 1.6% of the data respectively. The
remaining configurations are in the noise. It is noteworthy that param-
eters marked R come from very few functions and packages. I now
discuss the different sources of laziness in more detail.

[V] varargs Some 20K parameters from 20K functions are marked
V for vararg.

[M] meta-programming Table 6.3 counts arguments, parameters
and functions using the meta-programming facilities of R. Numbers
are also provided for C code that uses PREXPR. Arguments count all of
the invocations of a function. PREXPR was not addressed there: it is a C



6.2 strictness signatures 71

macro used to extract a promise’s expression for ad-hoc evaluation.
Packages such as lazyeval and rlang use it. PREXPR is also used by
the builtins of the GNU R interpreter, a canonical example is the
missing function which checks if an argument is provided. Unlike
user packages, these uses of PREXPR do not require the corresponding
arguments to be lazily evaluated. Hence, uses of PREXPR from the
interpreter are not signals.

Table 6.3: Meta-programming

R Native Total

Arguments 1.6M 922.2K 2.5M

Parameters 613 680 1.3K

Functions 387 438 825

[G] missing arguments Some 3.2K parameters never receive
arguments, default, or explicitly supplied; they are classified as Always.
This is in contrast to the 3.3K Sometimes parameters which sometimes
receive arguments.

Table 6.4: Missing

Sometimes Always Total

Argments 2.8M 864.7K 3.7M

Parameters 3.3K 3.2K 6.5K

Functions 1.8K 1.7K 3.1K

Table 6.4 gives numbers of missing arguments and parameters.
Always parameters are a strong signal, whereas Sometimes missing
are only lazy if also marked U. In the following definition the names

argument was missing in all calls to this function from rlang, it is thus
an Always parameter. That fact is not surprising when inspecting the
code of the function: the argument is not used! It is presumably only
there for backwards compatibility.

new_environments <- function(envs, names) {

stopifnot(is_list(envs))

structure(envs,names=map_chr(unname(envs),env_name),class="

rlang_envs")

}

For a Sometimes parameter, consider the linewidth argument which is
missing in some calls to this function which assigns a default value of
0L to linewidth.



6.2 strictness signatures 72

base64encode <- function(what, linewidth, newline) {

linewidth <- if (missing(linewidth) || !is.numeric(linewidth))

0L

else as.integer(linewidth[1L])

[U] unevaluated arguments Some parameters are Sometimes
evaluated and others are Never evaluated. The latter may correspond
to code paths not exercised or to dummy parameters. Table 6.5 has
numbers for both categories.

Table 6.5: Unevaluated

Sometimes Never Total

Parameters 17.3K 11.6K 28.9K

Functions 7.4K 6.4K 12.5K

A common pattern is to evaluate one argument only if another has a
given value.

%||% <- function(x,y) if(is.null(x)) y else x

Another pattern is to delay evaluation: expr argument is delayed until
pkg is loaded in the example below.

glue::on_package_load <- function(pkg, expr) {

if (isNamespaceLoaded(pkg)) { expr } else {

thunk <- function(...) expr

setHook(packageEvent(pkg, "onLoad"), thunk)

} }

S3 generic methods are functions dynamically dispatched: here, x

is always evaluated in order to dispatch, the evaluation of others
depends on where the call dispatches to.

abind::acorn <- function(x,n=6,m=5,r=1,...) UseMethod(’acorn’)

Some functions implement a common interface, the proxy package
defines over a dozen methods with interface function(a,b,c,d,n) to
compute different proximity metrics with a subset of the arguments.
Arguments can also be Never by design; tail is not defined for tbl_lazy
objects, so it terminates the program with an error message without
using its arguments.

dbplyr::tail.tbl_lazy <- function(x, n = 6L, ...)

stop("tail() is not supported by sql sources", call.=FALSE)



6.2 strictness signatures 73

[S] side-effects Few promises have side-effects and many of
those are benign for our purposes as they happen to local variables
of the promise. Only 455.7K arguments out of 288M are made lazy
owing to effects. This corresponds to 1.7K lazy parameters from 1.2K
functions. A typical example of this category is the along parameter
of abind function from the abind package. Its default value is the
parameter N which is computed internally in the body of the function
before along is used. Clearly, the evaluation of along has to be delayed.

abind <- function(..., along=N, ...) {

N <- max(1, sapply(arg.list, function(x) length(dim(x))))

if (!is.null(rev.along))

along <- N + 1 - rev.along

}

Another example is the expr parameter of withPrivateSeed function
from the shiny package. This function evaluates expr after setting the
global random number generator seed to its own private value. The
seed is set back to its initial value on function exit. The expr parameter
should not be evaluated until the seed has been changed, hence it is
made lazy by LazR.

withPrivateSeed <- function(expr) {

origSeed <- .GlobalEnv$.Random.seed

GlobalEnv$.Random.seed <- .globals$ownSeed

on.exit({.GlobalEnv$.Random.seed <- origSeed})

expr

}

[R] reflection Very few promises look up the parent environ-
ments. In the whole corpus, 647 parameters in 614 functions probed
the call stack. But in all cases, this was because they invoked either
of two functions, .getFunctionByName, or backports:::get0. To give an
example, the first function searches for a function by name in different
scopes, and its second argument probes the stack by default.

R.oo:::.getFunctionByName <- function(..., callEnvir=

as.environment(-1L)) {

envirT <- callEnvir

#...

In Goel et al. [7], I developed tools to migrate the R ecosystem to
strict semantics. This contribution addresses the second step of the
migration strategy. The tools have been validated as Functional and
Reusable and are available from:

https://doi.org/10.5281/zenodo.5394235

https://doi.org/10.5281/zenodo.5394235


6.3 robustness of inferred signatures 74

Table 6.6: Client Corpus

Tests Examples Vignettes

Scripts 7.6K 42.6K 1.8K

LOC 663.6K 366.1K 118.5K

To investigate whether this unsound approach to strictness is viable,
I conducted an experiment to synthesize and validate strictness sig-
natures for R packages. I obtained 500 most widely used packages
(corpus) in the R ecosystem and, using LazR, leveraged their regres-
sion tests to infer strictness signatures. LazR synthesized signatures for
51.5K top-level functions with 204K parameter positions from these
packages. Overall, 27.1% of the parameters were marked lazy, and a
majority, 72.9% of parameters, were marked strict. Then, I assessed
the robustness of strictness signatures using the client packages of the
corpus for which strictness signatures were generated. These client
packages import the corpus packages and call their functions. From
the 13,308 clients of the corpus, I selected 2000 packages for this exper-
iment. From these packages, I extracted 51.5 K runnable programs and
executed them twice to filter 45.1K deterministic programs – programs
with the same output on both runs, which I then executed by applying
strictness signatures using StrictR. I then compared the output of this
strict run with the lazy run; a difference in outputs was attributed to
the modified semantics. I observed that 3,139 scripts produced erro-
neous output. I narrowed down the cause of these errors to a handful
of packages: R.oo, R.utils, rlang, vctrs, ggplot2, Matrix, and spam. Making
these packages lazy decreased the number of failures to 358, a meager
0.79% of all the scripts with deterministic output. The differences in
output originated from many sources, such as errors in native code or
different startup messages printed by some packages. This experiment
shows that it is possible to automatically infer strictness signature
for legacy R code with reasonable accuracy for migration to the strict
semantics.

6.3 robustness of inferred signatures

This section reports on the robustness of strictness signatures gener-
ated by LazR. Each package in the corpus is widely used, there are
many packages in CRAN which import it and call its functions, the
idea is to use the tests of these clients for validation. From the 13,308

clients of the corpus, I select 2000 packages for this experiment.
Fig. 6.4 shows the steps performed in the experiment. First, I extract

runnable code from the clients. Table 6.6 counts the various scripts
and the lines of code they represent. Next, GNU R evaluates each

https://cran.r-project.org/web/packages/R.oo/index.html
https://cran.r-project.org/web/packages/R.utils/index.html
https://rlang.r-lib.org/
https://vctrs.r-lib.org/
https://ggplot2.tidyverse.org/
https://cran.r-project.org/web/packages/Matrix/index.html
https://cran.r-project.org/web/packages/spam/index.html


6.3 robustness of inferred signatures 75

script twice. Scripts that do not have the same output are considered
non-deterministic and filtered out. This leaves us with 45.1K scripts.
They are then run with StrictR after applying the strictness signatures
obtained by LazR. LazR generates signatures for 51.5K functions with
204K parameters of which 148.4K (72.9%) parameters are strict. When
the output of this strict run differs from the one obtained by GNU R,
the difference is attributed to the modified semantics. Comparing the
output of scripts is standard practice in the R community for detecting
regressions. There may, of course, be differences in execution that do
not manifest in the output; so the results reported here are a lower
bound.

Corpus
First

Lazy Run
Second

Lazy Run
StrictR Run

Compare
Output

5 Minutes

2000 Packages

51.9K Files

6 Hours 6 Hours 7 Hours
1 Hour 10 Minutes

358 Failures

Figure 6.4: Validation Pipeline

With all the signatures applied, I observed 3,139 scripts produce erro-
neous output. I narrowed down the cause of these errors to a handful
of packages: R.oo, R.utils, rlang, vctrs, ggplot2, Matrix, and spam. Mak-
ing these packages lazy decreased the number of failures to 358 which
is only 0.79% of all the scripts with deterministic output. I detail some
of the errors next.

Loading package R.oo, and R.utils terminates execution with an
error as strict semantics interfere with the initialization code.

call: getStaticInstance.Object(this, envir = ...envir)

error: Cannot get static instance.

Failed to locate Class object for class ’Package’.

Execution halted

Loading package vctrs fails non-deterministic error originating from
native code. I believe it to be a memory bug as the error disappears
after a couple of attempts.

Error: ’rho’ must be an environment not NULL:

detected in C-level eval

Loading Matrix and spam changes the message on package loading.
This does not affect execution of the package itself.

These results suggest that the semi-automated inference algorithm
works well for the most part. Errors in signatures could be located
easily and do not require much effort to fix. It should be noted that
one could increase the strictness by turning some of the parameters
that are lazy for accidental reasons into strict ones, but this would
require notifying clients and ensuring that their code is changed.



6.4 migrating tidyverse 76

6.4 migrating tidyverse

The tidyverse is an influential collection of R packages for data science
with a common underlying design philosophy. On account of being
widely used, these packages are the most common dependencies in the
ecosystem. Effective migration of the R ecosystem rests heavily on the
successful migration of tidyverse packages. Furthermore, on account
of being well-tested, these packages provide an excellent opportunity
to identify bugs in the automated migration. For example, the dplyr

package has 432 top-level functions and 2,266 tests. I will focus on the
migration of eight tidyverse packages: ggplot2, dplyr, purrr, tibble,
readr, tidyr, stringr, and forcats. Table 6.7 gives the size of these
packages in terms of lines of code, number of top-level functions, and
number of parameters.

Table 6.7: Tidyverse Corpus

Package LOC Functions Parameters

R C/C++ Total Strict %

ggplot2 25.2K 0 619 2,839 2,110 74.3%

dplyr 14.7K 1.2K 432 1,359 763 56.1%

purrr 4.5K 1.1K 229 680 454 66.8%

tibble 9.7K 315 205 485 321 66.2%

readr 4.4K 6.2K 170 802 580 72.3%

tidyr 5K 436 116 415 207 49.9%

stringr 1.3K 0 66 162 133 82.1%

forcats 1.1K 0 46 110 73 66.4%

To migrate these packages, I perform the following steps.

1. I run LazR to generate strictness signatures for these packages.

2. I use rastr::sugar to introduce the strictness annotations in these
packages, followed by a call to rastr::desugar to transform these
annotations into force calls.

3. I compare and report the differences in test results between the
migrated and the original packages.

Table 6.8 gives the number of test failures for every package.



6.4 migrating tidyverse 77

Table 6.8: Tidyverse Migration

Package Total Tests Failed Tests

ggplot2 1,648 0

dplyr 2,266 0

purrr 762 0

tibble 1,487 0

readr 746 3

tidyr 638 1

stringr 236 0

forcats 163 0

The results are encouraging; Out of 7,946 tests only four fail. These
tests come from readr and tidyr packages. The tidyverse packages
make heavy use of meta-programming, dynamic evaluation, dynamic
code generation, and native code to implement domain-specific lan-
guages. Additionally, the size and complexity of GNU R make it un-
likely for the inference algorithm to ever be exhaustive. Despite these
limitations, the automated migration is very precise. Next, I will dis-
cuss the reasons for failing tests and fix them.

readr The three failing tests from readr throw the same error:

object ’n_max’ not found

Manual inspection reveals that the error arises from dynamic code
generation. I will take the example of melt_csv_chunked function to
explain the cause of this error. The figure below shows how it is
generated dynamically from the definition of melt_csv.

melt_csv_chunked <- generate_melt_chunked_fun(melt_csv)

melt_csv <- function(..., strict n_max = Inf, ...) {

...

}

generate_melt_chunked_fun <- function(x) {

args <- formals(x)

# Remove n_max argument

args <- args[names(args) != "n_max"]

....

}

Since melt_csv is strict in parameter n_max, the desugaring inserts force

(n_max) in the body of melt_csv. At run time,
generate_melt_chunked_fun generates a definition for melt_csv_chunked

by removing n_max from the parameter list. However, the body of the
function still contains force(n_max). Upon invocation, melt_csv_chunked



6.4 migrating tidyverse 78

calls force on n_max, which is no longer defined, leading to the error:
object ’n_max’ not found.

Interestingly, this error is a consequence of static source rewriting:
the body of melt_csv is modified statically and reused at run time for
melt_csv_chunked. Run time source rewriting using StrictR avoids this
problem because strictness insertion will happen directly in the body
of melt_csv_chunked after its definition is generated.

The error can be fixed by removing the strict annotation on n_max.
This has the consequence of adding superfluous laziness to melt_csv

but prevents melt_csv_chunked from raising the error.
The same fix was applied to melt_csv2, melt_delim, and melt_tsv.

These functions forward n_max to melt_delimited, so melt_delimited

was also made lazy in n_max. After applying these changes, all tests
passed.

tidyr The test in tidyr fails with the following message:

Names must be unique.

x These names are duplicated:

* "a" at locations 1 and 2.

The source of the error is a call to the wrap_error_names function, whose
definition is shown below.

wrap_error_names <- function(strict code) {

tryCatch(code, ...)

}

Figure 6.5: tidyr::wrap_error_names: definition and strictness signature

The signature causes code to be evaluated before entering the tryCatch

block. The fix is easy; delay the evaluation of code so that any error
raised by it can be caught by the surrounding tryCatch function. The
test passes after removing the strict annotation on code.

Identifying and fixing the source of the errors from failing tests
was relatively straightforward since failing tests clearly indicated the
top-level functions from which to start the debugging process. In
a program, such as an example or a vignette, it is challenging to
identify the top-level function responsible for the error. The situation
is even more complex for clients since they typically invoke functions
indirectly, sometimes via dynamically generated code invoked from
native code. Sometimes, intervening exception handlers capture the
original error and raise a different error , masking the source of the
error. Hence, I restricted this manual migration to just the package tests.
In the real world, I expect developers to use tests to infer strictness,
fix broken signatures manually, and require the clients to rewrite code
that breaks from unexpected reliance on laziness, or enrich their test



6.5 related work 79

suite per client usage patterns. The goal should be to minimize the
breakage of clients. Not all clients can be accommodated; there are
many subtle ways in which they can introduce laziness. Satisfying
all of them may create unnecessary technical debt on the package
maintainers and incentivize undesirable API usage.

6.5 related work

Turcotte et al. [30] empirically inferred type signatures for functions by
observing the type of arguments and return values. These signatures
were validated by inserting type checking code and monitoring failures
on client programs. This approach inspired the strictness inference;
however, types are easier to check than strictness. Types are checked
by validating that if an argument is evaluated, it has the expected type.
For strictness, I have to worry about the interplay of side-effects and
changes to the order of evaluation of arguments.

6.6 conclusions

This chapter used the migration tools to infer strictness signatures for
R functions to capture both intentional and accidental laziness. The
large-scale evaluation showed that over 99% of the inferred signatures
were correct when tested against clients of the libraries. The package
authors can subsequently refine these signatures. To elucidate the
process, I perform this refinement manually for tidyverse packages
and discuss the errors arising from the unsoundness of the tooling. The
results shown in this chapter are encouraging. Automated migration of
R to strict semantics can be performed with reasonably good accuracy.



7 C O N C L U S I O N S

In R, function arguments are not evaluated at the call-site, instead, the
evaluation is suspended until the callee needs them. The definition of
need is quite liberal here as, for example, local re-binding, returning,
and many builtin functions are strict. As this dissertation shows, this
leads to many programs being on the strict side of the spectrum for a
lazy language. Why is R lazy at all? It turns out that allowing users to
reflectively alter argument expressions, before evaluating them, is a
very expressive and powerful meta-programming technique, enjoyed
by many package authors in the R ecosystem to build, e. g.embedded
domain-specific languages. It is part of what makes R appealing to
its users, even if they do not realize that the language they use has
a lazy core. However, the joy is limited when it comes to writing
robust R code — as both the caller and the callee co-determine what a
function actually does — and also when implementing the language
itself. Taking everything into account, I believe that R should be strict
by default, giving package authors the option to opt-in to laziness.

In this dissertation, I propose and evaluate a strategy for evolving R
as an ecosystem to strict semantics. First, I provide strictness signatures
as a non-invasive R extension to avoid changes to legacy code. Second,
I automatically infer robust strictness signatures for package code by
capturing the desired and accidental laziness of arguments passed to R
functions, thereby allowing most of the client code to run unchanged —
in my experiments, only 0.79% of all depending packages’ tests failed.
Such automatically generated strictness signatures can be subsequently
refined by the package authors and users. I elucidate this by fixing the
strictness signatures for tidyverse.

Changing R to a strict language would be beneficial in several
ways. Implementations would become faster, compilers and program
analyses would be easier to perform, users would be presented with
a more commonly expected call semantics, and it would open up
the path for further evolution. Currently, many standard techniques
such as gradually typed function signatures and efficient just-in-time
optimizations are difficult to apply to R because of laziness.

While the dissertation focuses exclusively on making R strict, it is
worth mentioning that there is also an argument for strengthening
laziness. In many ways, R is only weakly lazy, it forces promises
in many places where other languages would not. The works of
Wickham [36], Mühleisen, Bertram, and Kallen [21] and Kalibera et al.
[17] suggest that more laziness can bring interesting optimization

80



conclusions 81

opportunities, especially when performing operation on large data
objects.

Through this dissertation, I have addressed an instance of software
migration. In most cases, this problem has been addressed in ad-hoc
ways. My approach for migrating the R ecosystem to strict semantics
can be generalized in the form of a recipe for language migration:

• Analyze code to assess the feasibility of changing the language
feature.

• Identify incentives to encourage language users to adopt the
change.

• Design tools to automate migration with good accuracy.

• Migrate popular packages to encourage adoption.

I believe these steps generally apply to a wide array of language migra-
tion problems. For instance, Python’s migration would have benefited
greatly if changes were introduced in Python 3 after assessing devel-
opers’ needs so they could be incentivized to migrate. Automating
the conversion and migrating popular packages such as NumPy and
django would have significantly sped up Python migration. In stark
contrast is the migration to TypeScript, which enjoyed much-needed
additions to JavaScript and tooling support from the beginning.



B I B L I O G R A P H Y

[1] Lennart Augustsson. “The Interactive Lazy ML System”. In:
Journal of Functional Programming 3.1 (1993). doi: 10 . 1017 /

S0956796800000617.

[2] J. W. Backus et al. “Revised Report on the Algorithm Language
ALGOL 60”. In: Communications of the ACM 6.1 (1963). doi:
10.1145/366193.366201.

[3] Richard A. Becker, John M. Chambers, and Allan R. Wilks. The
New S Language. Chapman & Hall, 1988.

[4] Martin Bodin, Tomás Diaz, and Éric Tanter. “A trustworthy
mechanized formalization of R”. In: International Symposium on
Dynamic Languages (DLS). 2018. doi: 10.1145/3276945.3276946.

[5] Stephen Chang and Matthias Felleisen. “Profiling for Laziness”.
In: POPL ’14 49.1 (2014). doi: 10.1145/2578855.2535887.

[6] Robert Ennals and Simon Peyton Jones. “Optimistic Evaluation:
An Adaptive Evaluation Strategy for Non-Strict Programs”. In:
ICFP ’03 38.9 (2003). doi: 10.1145/944746.944731.

[7] Aviral Goel, Jan Ječmen, Sebastián Krynski, Olivier Flückiger,
and Jan Vitek. “Promises Are Made to Be Broken: Migrating R to
Strict Semantics”. In: PACMPL 5.Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA)
(2021). doi: 10.1145/3485478.

[8] Aviral Goel and Jan Vitek. “On the Design, Implementation,
and Use of Laziness in R”. In: PACMPL 3.Conference on Object-
Oriented Programming Systems, Languages and Applications
(OOPSLA) (2019). doi: 10.1145/3360579.

[9] Aviral Goel and Jan Vitek. “First-Class Environments in R”. In:
International Symposium on Dynamic Languages (DLS). 2021. doi:
10.1145/3486602.3486768.

[10] Charles R. Harris et al. “Array programming with NumPy”. In:
Nature 585 (2020). doi: 10.1038/s41586-020-2649-2.

[11] W. Huber et al. “Orchestrating high-throughput genomic analy-
sis with Bioconductor”. In: Nature Methods 12.2 (2015), pp. 115–
121. doi: 10.1038/nmeth.3252. url: http://www.nature.com/
nmeth/journal/v12/n2/full/nmeth.3252.html.

[12] Paul Hudak. “Conception, Evolution, and Application of Func-
tional Programming Languages”. In: ACM Comput. Surv. 21.3
(1989). doi: 10.1145/72551.72554.

82

https://doi.org/10.1017/S0956796800000617
https://doi.org/10.1017/S0956796800000617
https://doi.org/10.1145/366193.366201
https://doi.org/10.1145/3276945.3276946
https://doi.org/10.1145/2578855.2535887
https://doi.org/10.1145/944746.944731
https://doi.org/10.1145/3485478
https://doi.org/10.1145/3360579
https://doi.org/10.1145/3486602.3486768
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/nmeth.3252
http://www.nature.com/nmeth/journal/v12/n2/full/nmeth.3252.html
http://www.nature.com/nmeth/journal/v12/n2/full/nmeth.3252.html
https://doi.org/10.1145/72551.72554


bibliography 83

[13] Paul Hudak, John Hughes, Simon L. Peyton Jones, and Philip
Wadler. “A history of Haskell: being lazy with class”. In: History
of Programming Languages Conference (HOPL-III). 2007. doi: 10.
1145/1238844.1238856.

[14] John Hughes. “Why Functional Programming Matters”. In: The
Computer Journal 32.2 (1989). doi: 10.1093/comjnl/32.2.98.

[15] Ross Ihaka and Robert Gentleman. “R: A Language for Data
Analysis and Graphics”. In: Journal of Computational and Graphical
Statistics 5.3 (1996). doi: 10.2307/1390807. url: http://www.
amstat.org/publications/jcgs/.

[16] Simon Peyton Jones and Will Partain. “Measuring the effec-
tiveness of a simple strictness analyser”. In: Proceedings of the
1993 Glasgow Workshop on Functional Programming. Workshops in
Computing. 1993. doi: 10.1007/978-1-4471-3236-3\_17.

[17] Tomas Kalibera, Petr Maj, Floreal Morandat, and Jan Vitek. “A
Fast Abstract Syntax Tree Interpreter for R”. In: Conference on Vir-
tual Execution Environments (VEE). 2014. doi: 10.1145/2576195.
2576205.

[18] Filip Krikava and Jan Vitek. “Tests from traces: automated unit
test extraction for R”. In: International Symposium on Software Test-
ing and Analysis (ISSTA). 2018. doi: 10.1145/3213846.3213863.

[19] Uwe Ligges. “20 Years of CRAN (Video on Channel9)”. In: UseR!
Conference. 2017.

[20] Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek.
“Evaluating the Design of the R Language: Objects and Functions
for Data Analysis”. In: European Conference on Object-Oriented
Programming (ECOOP). 2012. doi: 10.1007/978-3-642-31057-
7_6.

[21] Hannes Mühleisen, Alexander Bertram, and Maarten-Jan Kallen.
“Database-Inspired Optimizations for Statistical Analysis”. In:
Journal of Statistical Software 87.4 (2018). doi: 10.18637/jss.v087.
i04.

[22] Robert Nystrom. Crafting Interpreters. Genever Benning, 2021.
isbn: 9780990582939. url: https : / / craftinginterpreters .

com/.

[23] Shawn T. O’Neil. “Implementing Persistent O(1) Stacks and
Queues in R”. In: The R Journal 7 (1 2015). doi: 10.32614/RJ-
2015-009.

[24] Chris Okasaki. “Simple and efficient purely functional queues
and deques”. In: Journal of Functional Programming 5.4 (1995).
doi: 10.1017/S0956796800001489.

https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1093/comjnl/32.2.98
https://doi.org/10.2307/1390807
http://www.amstat.org/publications/jcgs/
http://www.amstat.org/publications/jcgs/
https://doi.org/10.1007/978-1-4471-3236-3\_17
https://doi.org/10.1145/2576195.2576205
https://doi.org/10.1145/2576195.2576205
https://doi.org/10.1145/3213846.3213863
https://doi.org/10.1007/978-3-642-31057-7_6
https://doi.org/10.1007/978-3-642-31057-7_6
https://doi.org/10.18637/jss.v087.i04
https://doi.org/10.18637/jss.v087.i04
https://craftinginterpreters.com/
https://craftinginterpreters.com/
https://doi.org/10.32614/RJ-2015-009
https://doi.org/10.32614/RJ-2015-009
https://doi.org/10.1017/S0956796800001489


bibliography 84

[25] Simon L. Peyton Jones and André L. M. Santos. “A Transformation-
Based Optimiser for Haskell”. In: Sci. Comput. Program. 32.1–3

(1998). doi: 10.1016/S0167-6423(97)00029-4.

[26] Kent M. Pitman. “Special Forms in LISP”. In: LISP Conference.
1980. doi: 10.1145/800087.802804.

[27] Vaughan R. Pratt. “Top down Operator Precedence”. In: POPL
’73. 1973. doi: 10.1145/512927.512931.

[28] David Smith. “The R Ecosystem”. In: The R User Conference 2011.
2011.

[29] Luke Tierney. A Byte Code Compiler for R. 2019. url: www.stat.
uiowa.edu/~luke/R/compiler/compiler.pdf.

[30] Alexi Turcotte, Aviral Goel, Filip Křikava, and Jan Vitek. “De-
signing Types for R, Empirically”. In: Proceedings of the ACM
on Programming Languages (PACMPL) 4.Conference on Object-
Oriented Programming Systems, Languages and Applications
(OOPSLA) (2020). doi: 10.1145/3428249.

[31] David A. Turner. “A New Implementation Technique for Ap-
plicative Languages”. In: Softw., Pract. Exper. 9.1 (1979). doi:
10.1002/spe.4380090105.

[32] David A. Turner. “Miranda: A Non-Strict Functional language
with Polymorphic Types”. In: Functional Programming Languages
and Computer Architecture (FPCA). 1985. doi: 10.1007/3-540-
15975-4\_26.

[33] Mitchell Wand. “The Theory of Fexprs is Trivial”. In: Lisp and
Symbolic Computation 10.3 (1998). doi: 10.1023/A:1007720632734.

[34] Yisu Remy Wang, Diogenes Nunez, and Kathleen Fisher. “Auto-
bahn: Using Genetic Algorithms to Infer Strictness Annotations”.
In: SIGPLAN Not. 51.12 (2016). doi: 10.1145/3241625.2976009.

[35] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag, 2016. url: http://ggplot2.org.

[36] Hadley Wickham. tidyverse: Easily Install and Load the ’Tidyverse’.
2017. url: https://CRAN.R-project.org/package=tidyverse.

[37] Hadley Wickham, Romain Francois, Lionel Henry, and Kirill
Müller. dplyr: A Grammar of Data Manipulation. 2018. url: https:
//CRAN.R-project.org/package=dplyr.

[38] Andrew K. Wright and Matthias Felleisen. “A Syntactic Ap-
proach to Type Soundness”. In: Information and Computation 115

(1992). doi: 10.1006/inco.1994.1093.

https://doi.org/10.1016/S0167-6423(97)00029-4
https://doi.org/10.1145/800087.802804
https://doi.org/10.1145/512927.512931
www.stat.uiowa.edu/~luke/R/compiler/compiler.pdf
www.stat.uiowa.edu/~luke/R/compiler/compiler.pdf
https://doi.org/10.1145/3428249
https://doi.org/10.1002/spe.4380090105
https://doi.org/10.1007/3-540-15975-4\_26
https://doi.org/10.1007/3-540-15975-4\_26
https://doi.org/10.1023/A:1007720632734
https://doi.org/10.1145/3241625.2976009
http://ggplot2.org
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://doi.org/10.1006/inco.1994.1093

	Contents
	1 Introduction
	1.1 Migration in the Wild
	1.2 Thesis
	1.3 Contributions

	2 R and Call-by-need
	2.1 Call-by-need
	2.1.1 Interface
	2.1.2 Implementation
	2.1.3 Semantics

	2.2 Related Work
	2.3 Conclusions

	3 Dynamic Analyzer
	3.1 Instrumented R
	3.2 Tracer
	3.3 Execution
	3.4 Processing
	3.5 Related Work
	3.6 Conclusions

	4 Use of Call-by-need
	4.1 Corpus
	4.2 Analyzing Laziness Usage Patterns
	4.2.1 Life Cycle of Promises
	4.2.2 Strictness
	4.2.3 Meta-programming
	4.2.4 Revisiting the Traditional Benefits of Laziness

	4.3 Related Work
	4.4 Threats to Validity
	4.5 Conclusion

	5 Strictness Inference
	5.1 LazR
	5.2 StrictR
	5.3 rastr
	5.4 Related Work
	5.5 Conclusions

	6 Ecosystem Migration
	6.1 Corpus
	6.2 Strictness Signatures
	6.3 Robustness of inferred signatures
	6.4 Migrating tidyverse
	6.5 Related Work
	6.6 Conclusions

	7 Conclusions
	 Bibliography

