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Abstract

JavaSeal is a secure mobile agent kernel that provides
a small set of abstractions for constructing agent applica-
tions. This paper describes the design of these abstractions
and their implementation. We address the limitations of
the Java security model that had to be overcome, and then
present a medium-sized e-commerce application that runs
over JavaSeal.

1 Introduction

Mobile agent systems come in all shapes and sizes.
There is little consensus over the services that an agent sys-
tem should offer, or on the exact nature of mobile agents
for that matter. Recent standardization efforts notwithstand-
ing [28, 12], most agent systems are hardly comparable and
even less compatible. While variety fosters new ideas, most
projects end up having to solve similar problems and leave
some of the same key questions unanswered:

• Structure: What software structuring principles are
appropriate for mobile agents? How should one dis-
tinguish between mobile and immobile software com-
ponents? Further, which services should be provided
in the agent platform and which can be coded at user-
level?

• Security: What execution guarantees can an agent
platform provide? While, there is a wide consensus on
the need for security, few systems provide clear state-
ments of their meaning of security.

This paper reports on our experience in implementing and
using a Java-based agent kernel. The JavaSeal system has
been designed to support the minimal set of abstractions
needed for building mobile agent applications. We chose to
focus on providing a clear way to structure mobile programs
and to enforce security constraints. JavaSeal provides three
abstractions for supporting agents:

1. Hierarchically structured program units calledseals.

2. Secure communication primitives.

3. A state capture mechanism and custom archive format.

This kernel approach is visible in the implementation of ser-
vices,e.g., the network interface or the graphical user inter-
face are dynamically loaded user-level modules. The advan-
tage of the minimal kernel model is that it is easier to reason
about the properties of mobile programs. A related project
is investigating formal proof techniques for agent systems,
and has defined a formal semantics of JavaSeal as a process
calculus and has been able to validate security properties
[33, 34].

We begin by clarifying our use of terminology. Amo-
bile agent platformis an execution environment for mobile
agents. A platform is located on a single network node.
Several platforms connected by a communication infras-
tructure form amobile agent network. A mobile agentis
a program, in our case a multi-threaded program, that ex-
ecutes on a platform and may migrate to another platform
in the agent network. Migration implies that both data and
code of the agent will be available to continue its compu-
tation on the new platform. We assume a medium-grained
agent model in which every platform may host several hun-
dred concurrently executing agents.

In JavaSeal, agents are organized in a hierarchy rooted
at the kernel. This hierarchy is exploited to build composite
agents out of other existing agents. One important use of
aggregation is to move agents along with a portion of their
environment. In JavaSeal, this is achieved by representing
an environment as a seal, and the programs running in that
environment as children seals within this seal.

JavaSeal is written in Java as a package and runs over a
single virtual machine. This design choice favors portabil-
ity over performance. While services can be shared without
having to provoke context switches, the cost of communi-
cation is significant.

Agents are written in a restricted version of Java; they are
forbidden from using several primitives and library meth-



ods for security reasons. Agents are allowed to interact, but
these interactions are subject to a security policy. Security
in JavaSeal is enforced solely using language mechanisms.
This security model is derived from Java’s security model
though had to overcome several weaknesses of the latter.

Overview: This paper is structured as follows. Section
2 presents the security model of JavaSeal and Section 3
describes its main features. Section 4 discusses the limi-
tations of the Java security architecture that had to be ad-
dressed to implement JavaSeal. Section 5 details the im-
plementation of JavaSeal. Section 6 presents HyperNews,
a medium-sized mobile agent application for selling short-
lived digital documents that runs on JavaSeal. Section 7
compares JavaSeal with other agent platforms, and Section
8 concludes with future work.

2 The Meaning of Security

Security is frequently mentioned in the agent literature,
yet it is often difficult to know what security guarantees
are furnished by a particular system. We differentiate se-
curity measures against exogenous threats – attacks that oc-
cur from outside of the platform – from security measures
against endogenous threats. The latter are used to police
the execution of a single platform. Exogenous threats are
addressed with mechanisms like cryptography and digital
signatures [23, 18] which create secure network channels
and authenticate message senders. In this paper, we focus
on security within a single platform. Section 2.1 reviews the
security threats that are relevant in an agent system. Section
2.2 introduces some concepts. Finally Section 2.3 enumer-
ates the security guarantees provided in JavaSeal.

2.1 Threat Model

A mobile agent system allowsuntrustedagent programs
to execute locally, use local resources and services, and to
interact with other co-located agents. The threats are not
different from any other computer system:

• Unauthorized disclosure: An agent or service reads
data without the proper authorization.

• Unauthorized modification: An agent or service
modifies data in an incorrect fashion or destroys the
data without authorization.

• Denial of service: An agent or service consumes an
inordinate amount of a shared resource, thus prevent-
ing other programs from progressing.

• Trojan horses: An agent or service mistakenly uses
code that has been maliciously modified.

Each of the above attacks can be mounted by an agent
against the agent platform or other co-located agents, in
which case we call the agent amalicious agent, or by the
platform against the agents it hosts, in which case we call
the platform amalicious host.

When a mobile agent arrives, the platform typically
must:

1. Verify that the agent comes from the site that it claims
to have come from, and that it has not been tampered
with from the time it was sent.

2. Verify that the agent program is well formed, and that
it possesses the necessary credentials to execute on the
platform.

3. Grant the agent access to local resources and services.

4. Grant local services the necessary rights to communi-
cate with the agent.

5. Allow the agent to execute while enforcing that each
communication between the agent and the rest of the
platform is authorized.

The security architecture of an agent platform must cover
all of these aspects. Our kernel approach is to focus on
points 3, 4 and 5 as they are essential for providing execu-
tion guarantees. Points 1 and 2 counter exogenous threats
and are implemented by user-level services in JavaSeal. In
this way, the application can choose its own encryption al-
gorithms, and its own authentication policy.

2.2 Security Terminology

Before proceeding, we review essential security termi-
nology. Principals are the entities of a system whose ac-
tions must be controlled. Principals typically represent
users, though can also correspond to sites or services. Prin-
cipals consumeresourcesand invokeoperationsonobjects.
It is the role of thesecurity policyto determine if a princi-
pal may consume a resource or invoke an operation on an
object. Aprotection domainis a context in which a princi-
pal executes. It contains objects “owned” by that principal
and to which the security policy does not need to check ac-
cess. Only operations that cross domains need be mediated
by the security policy. Figure 1 illustrates these concepts.
The termreference monitoris used for that component of
a system that verifies the legality of each operation by con-
sulting the security policy [10]. A reference monitor must
satisfy two properties:total mediation— it intercepts all
operations, andencapsulation— it is protected from tam-
pering.

A real system contains a variety of channels over which
protection domains can exchange information [25].Legit-
imate channelsare mechanisms included in a system pre-
cisely as a means of communication,e.g., sockets, object
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Figure 1. A system’s security architecture. The reference
monitor intercepts each access to an object from a remote
domain, and queries the security policy.

references. Access control mechanisms regulate the use of
legitimate channels.Storage channelsare elements of the
environment that can be read or written by several programs
and which can therefore be used to exchange information
between these programs. Examples of such channels in-
clude shared buffers and kernel variables. The last category
is that ofcovert channelswhich are means for programs to
communicate by exploiting a visible system characteristic
in an unconventional manner. For instance, a program can
signal the value of a PIN to its environment by creating a file
with exactly that number of bytes. Covert channels are hard
to block, and many security architectures are satisfied if the
bandwidth of covert communication is sufficiently low. Of
course, if the secret is a password, even a low-bandwidth
channel is unacceptable.

2.3 JavaSeal Security

The goal of JavaSeal is to ensure that each agent executes
in a protection domain of its own. All actions that affect
other protection domains – either other agents or the ker-
nel itself – must be controlled by theagent reference mon-
itor (ARM). The JavaSeal kernel is an implementation of
an ARM, and thus must be encapsulated from attacks by
agents. The ARM verifies the legality of the following op-
erations with respect to the security policy in place:

1. Creation of a protection domain.

2. Creation of a thread.

3. Communication across domain boundaries.

4. Loading of code and data into a protection domain.

5. Termination of a protection domain.

These operations represent all domain operations allowed
in JavaSeal. Protection domains are represented by the
seal abstraction. Mediation and encapsulation of the ARM
are achieved by a combination of language mechanisms.

JavaSeal security addresses standard and storage channels;
covert channels are not specifically dealt with.

The following are the three security properties that an
implementation of JavaSeal must have. Note that these
properties must hold for all programs and all services.

• Confinement: This means that if the policy specifies
that an agent does not have any open communication
channels with other parts of the system, then that no
matter what this agent does, its actions cannot affect
any other part of the system. In essence, a confined
agent is running behind a firewall isolated from the rest
of the system.

• Mediation: Mediation means that it is possible to in-
terpose security code between an untrusted agent and
any service available in the environment. Mediation
is one step up from confinement. While confinement
simply says that the ARM can close all channels, me-
diation means that it is possible to intercept every mes-
sage going in and out of an agent.

• Faithfulness: This means that code executed in a pro-
tection domain under the authority of a principal ac-
tually belongs to that protection domain. This implies
that JavaSeal prevents agents from somehow tricking
other agents into executing foreign code.

The guarantees are enforced entirely by language based
protection mechanisms. The interesting point is that the de-
fault security model of Java is not sufficient to enforce any
of our requirements as we discuss in Section 4.

3 Seals — A Basis for Agents

Agents are autonomous programs that can move around
a network while they execute. In JavaSeal, they are rep-
resented by software abstractions calledsealswhich are
hierarchically-structured encapsulated computations. Mo-
bility is implemented by capturing the execution state of a
seal and shipping it to another platform.

We now present a high-level overview of the system and
discuss how seals are used to structure mobile agent appli-
cations. Section 5 describes the actual implementation.

3.1 Seal Hierarchies

A seal is a self-contained program, and protection do-
main, with its own data, code and execution threads. A seal
may also contain a number of nested seals, called direct
children. At the same time, every seal is enclosed within
some other seal referred to as its direct parent. The set of
children and parents of a seal refer to the transitive closure
of direct children and of direct parents respectively. The



base of the hierarchy is theroot sealwhich houses kernel
code.

The key feature here is the strict encapsulation that is en-
forced at seal boundaries. Sharing of objects, classes, or
threads is disallowed. Instead, every object and thread be-
longs to a single seal and the resources it consumes can be
charged to that seal.

Seals communicate solely through named channels. A
seal can send a message only to its direct parent or to one
of its children. Messages to distant seals, such as most ser-
vice requests, are encoded as a sequence of neighborly mes-
sage exchanges and every seal along the way must accept to
transfer the request.

Only the core services (seal creation and destruction,
communication, memory management, scheduling and
state capture) are under the control of the kernel. Services
such as migration, network access and even user interface
are implemented at user-level byservice seals. Service seals
are special in that they are not mobile. They can only be
loaded directly from disk by the root seal. Service seals
have fewer security constraints imposed on them for this
reason; for instance, they may use a larger number of library
classes compared with standard mobile user seals. A sim-
ilar dichotomy between untrusted mobile components and
trusted local services is found in PLAN [20] and Mole [4].

A seal controls its children in two ways. First, it is able
to stop and start its children seals. Second, it intercepts mes-
sages sent from its children to other seals in its environment,
and imposes security constraints on these messages. In con-
trast, a seal is not able to peek and poke the internals of any
of its children seals, or of any other seal. This is essentialfor
protecting visiting agent seals from their local environment.

Root Seal

NetMgr Seal

NameServ Seal

Gui Seal

NHUQHO

VHUYLFHV

Trustedbox

Portable Gui

Sandbox

CompA

Figure 2. A seal hierarchy. The root seal runs three ser-
vice complets and two envlets. Sandbox hosts untrusted
agents while Trustedbox hosts friendly ones.

Two types of agents: JavaSeal has two categories of
agents. The leaves of the seal hierarchy, which are called
complets, are “traditional” mobile agents. Intermediate
levels of the hierarchy, calledenvlets, are mobile environ-
ments. The role of envlets is to interpose between requests
of a complet, or nested envlet, and its environment. They
can play the role of adapters when the services on the cur-
rent platform do not match an agent’s expectation or act as
the facilitators of [21]. Envlets can also implement a secu-
rity policy. Figure 2 shows a platform running a complet
named CompA. The requests that this complet is allowed to
make to services such as the NetMgr seal are filtered by the
Sandbox envlet. This envlet is provided by the local envi-
ronment to control the behavior of CompA. Depending on
the current policy, the Sandbox seal may choose to disallow
all network communication or only allow communications
with a restricted set of sites. Service seals are usually rep-
resented as complets.

Envlets are mobile just as any other seal. They can, for
example, be used to make mobility somewhat more trans-
parent. In Figure 2 the user interface is maintained by a
local service seal. This means that when CompA moves its
binding with its user interface are torn down. The Portable
Gui envlet wrapped around CompA interposes on UI re-
quests to keep track of the state of the user interface and
rebuilds it after each move. In this scenario the envlet moves
with its complet.

From a security standpoint, malicious envlets are simi-
lar to malicious hosts in that they can control all commu-
nications going in and out of a subseal and can stop a sub-
seal. Thus even on a trusted machine and a trusted kernel
there may be a malicious host problem. However, malicious
envlets are restricted by the core kernel protection mecha-
nisms, and can not, for instance, modify the memory of a
child.

3.2 Communication

Synchronous message passing via named channels is the
only inter-agent communication mechanism of the JavaSeal
kernel. Channels are used for communication between
neighbor seals: a parent may send a message to one of its
children or a child may send a message to its parent. Chan-
nels are named; thus it is possible to have multiple different
channels for different purposes. Use of channels is regu-
lated by a separate access control mechanism calledportals.

Channels are synchronous. The sender thread blocks un-
til a receiver accepts the message. In order to have multi-
ple outstanding requests a seal must create multiple threads.
Values exchanged over channels are transmitted by copy
to avoid the accidental or malicious introduction of storage
channels between seals.

The primitives for channel based communication are



send, receive andopen, to, respectively, send a mes-
sage on a channel, receive a message on a channel and open
a portal. Creation and destruction of channels is implicit.
As an example consider seal A sending a message to its
parent on a channel namednetreq:

send( netreq , parent , message ) ;

The channelnetreq is created if it does not already ex-
ist. The sender blocks until the parent accepts the message,
which is written:

receive( netreq , self, val ) ;

Objectval is bound to a copy of message. For the com-
munication to fire the parent must have first opened a portal
allowing A to usenetreq:

Portal.open( netreq , A , 1) ;

This allows one use of thenetreq channel. Portals can
be opened for any number of uses (including unbounded).
Separating portals from communication allows seal design-
ers to localize the security code in an access control module
independent from the main logic, and thus eases the task of
verifying security properties.

send()

seal A

open()

Channel Portal seal B

recv()

close()

capsule

capsule

Figure 3. Channel based communication.

Communication between a sender sealA and receiver
sealB is illustrated in Figure 3. We assume thatA and
B agree on a channel name, initial agreement is achieved
using a set of pre-programmed channel names. A strand ex-
ecuting withinA invokes thesend primitive on the channel
with a capsule – a message container – as argument.A’s
strand blocks until the communication completes. SealB

must at some point (possibly after the call tosend) open a
portal forA on the agreed channel. ThenB must invoke a
receive operation on the channel. This primitive blocks
until a matching offer appears. In this case, the commu-
nication proceeds: the portal is first closed, the capsule is

copied intoB, and then both strands are notified that the
communication was successful.

The choice of synchronous communication is somewhat
controversial. Many systems offer asynchronous commu-
nication mechanisms [8, 2, 26]. The advantages of syn-
chronous communication are that (1) messages from the
same thread are causally ordered, (2) acknowledgments of
message reception are not needed, and (3) the number of
outstanding request is bounded by the number of threads in
a seal. This last property makes it easier to prevent denial
of service attacks. It is not possible to flood an agent with
requests since the kernel limits the number of threads in any
given seal.

Programming with channels and portals is sometimes
cumbersome. Other communication utilities can be de-
signed to run over the channel mechanism. One example
is a shared object space that offers the possibility for asso-
ciative, asynchronous and anonymous communication be-
tween objects [7]. This proposition includes access control
mechanisms to protect the contents of entries in the shared
space.

3.3 State Capture

The state capture mechanism of JavaSeal creates a ma-
chine independent portable representation of a seal. The
procedure recursively traverses the seal hierarchy rootedat
the target seal, stops the threads in each seal and pickles the
data and code of each one into aseal archive formatob-
ject. This format is used for storing the seal on disk, and for
transferring it on the network. Archives are used to restore
seals; the creation procedure first verifies the validity of the
archive with extended bytecode verification (see Section 5)
and then unpickles the topmost seal in the archive. It is then
up to that seal to decide if its children should be awakened.

With the exception of kernel code, all the code used by a
seal is included in its archive. This means that our archives
are potentially quite large, definitely larger than those of
agent systems that do loading on demand. Our motivations
for this choice are the following: (1) We cannot rely on the
connectivity of an agent’s source. If an agent’s source site
is a portable PC, then the site might not be connected to the
Internet when an agent begins to execute at its destination
and discovers that a class that it needs is not present. (2)
Versioning support in Java is weak, we cannot guarantee
faithfulness if, for example, two classes are released with
the same interface and version number (a common prob-
lem). The disadvantage is that the size of archive objects
is larger and thus their transfer costs more. We have de-
veloped a custom code compressor called Jazz [6] which is
able to reduce Java bytecode files to 24% of their original
size. Further reduction can be achieved by not transmitting
code if it is certain that the receiving site already has that



class.
The interface for archiving and loading seals consists of

two operations:wrap which takes the name of a subseal
and returns an archive andunwrap which takes an archive
object and a subseal name and creates a new subseal.

safObj = wrap( subsealName ) ;

unwrap( safObj , subsealName ) ;

These operations are consistent with the hierarchical control
of the seal model. The kernel ensures that only the direct
parent of a seal can wrap it. Similarly, new seals are always
rooted in the currently executing seal. A single thread is
started by default in each unwrapped seal and executes by
default therun method of the seal.

4 Limitations of Java Security Model

JavaSeal has strong security requirements since its goal
is to enforce separation between seals. We considered the
Java security architecture [36, 17], but after a detailed in-
vestigation concluded that it is not sufficient to guarantee
the properties of confinement, mediation and faithfulness
that we mentioned earlier. We also identified some serious
denial of service attacks that can jeopardize the entire plat-
form.

Java treats classes as protection domains and usesSe-
curityManager objects to ensure that a class from one
domain can only call methods that it has been authorized
to invoke. Access modifiers are a second form of protec-
tion. They are used to protect sensitive fields of the JVM.
For instance, a user cannot have a system class replaced by
subtyping it since these classes are declared with the access
modifierfinal. Bytecode verification guarantees that pro-
grams are well formed and will not break language safety.
In addition to this, applet programs from different origins
are separated from one another by name spaces. That is, all
classes of each applet are considered to have a distinct type
from the same class in other applets. This ensures that ap-
plets do not acquire references to objects belonging to other
applets, and so any attempt to reference an object of an-
other applet is signaled as a type violation. However, this
also means that applets are not allowed to communicate.

The main problem for enforcing security with the Java
model comes from the choice of class-based protection do-
mains. A conservative estimate places the number of cross-
domain operations per second at 30,000 [36]. This means
that it is impossible on efficiency grounds to check all op-
erations; thus there can be no real reference monitor. Class
domains do not facilitate resource accounting: though one
can controlwhat codeis using memory and CPU resources,
one cannot controlwhat appletis using this code. It is clear

that the primary goal of Java’s security architecture is to
protect the virtual machine from the applets and programs
running over it.

There are ways to circumvent Java security. We iden-
tified a few in earlier work [35], here we focus on those
related to the three JavaSeal security properties.

Confinement: The difficulty in obtaining confinement is
that the JVM is one very large shared data structure. There
are numerous covert and storage channels for domains to
communicate due to shared library classes. In Javastatic
variables are variables of a class that are visible to all in-
stances of that class. A storage channel is opened if there
is a way through some sequence of calls to cause a static
variable to be modified and if it possible to read back that
value. Every object in Java has an associated lock. When
two domains can access the same lock they have a covert
way to exchange information. Similarly the fields like the
threadCount of classThread can be used as a low
bandwidth storage channel.

Threads also pose problems as they can be stopped
abruptly by their creator. For instance, if an agent createsa
thread and calls a method in the interface of another agent,
then stopping that thread while it is executing in the second
agent could leave the victim in an inconsistent state.

Mediation: Even if confinement holds, as soon as any
inter-agent communication is allowed, unchecked channels
can arise through dynamic aliasing. A good example is the
security breach found in the JDK 1.1.1 implementation of
digital signatures which allowed untrusted code to acquire
extended access rights [30]. This was caused by mistakenly
returning a reference to the system’s key ring which allowed
any applet to increase its own access rights by adding sign-
ers to the key ring. As we observe in [5] there is no system-
atic way to ensure that such channels do not exist.

Faithfulness: Java version control does not guarantee
faithfulness because version numbers are not guaranteed to
be unique. Further, subtyping can be used to mount code
injection attacks. In this attack, instead of sending an ob-
ject of an expected type, the attacker sends an instance of a
subtype; this is allowed by the type system, and when the
victim uses the object it is the code of the attacker that is
executed. For instance, one could define a subclass of some
Java collection type with an iterator that does not return, so
that when a thread tries to traverse the iterator it blocks and
loops forever, leading to a denial of service attack.

Denial of service attacks are effective since Java does
not have a resource management interface that could ac-
count for the usage of resources such as CPU and memory



by a program. Simply creating an unbounded number of
new threads can cause a denial of service attack. Another
problem is linked with finalization, if an object has a final-
izer method that contains an infinite loop, then when the
garbage collector will be stuck and most JVM implemen-
tations crash in less than a minute. Finalizers also make
domain termination difficult to implement. The finalization
code may be executed at any time and revive a killed appli-
cation.

Under these circumstances, in a system the size and com-
plexity of the virtual machine security breaches inevitably
occur andproving that an application built over the JVM
is secure is bound to be difficult. On a more fundamental
level, the problem with JDK is that the shared kernel inter-
face (comprised of the JDK core classes) is too big to rea-
son with, and there are no checks of the communication ef-
fected between the kernel and the protection domains. The
JVM model is adequate for protecting a single user from
the dangers of executable content downloaded from remote
Internet hosts but does not provide a secure basis for build-
ing complex applications composed of untrusted or fallible
components such as agent applications.

5 JavaSeal Implementation

JavaSeal consist of 20,000 lines of pure Java code. The
system runs on JDK1.2, though can run on 1.1 with only
slight modification. The body of the system is struc-
tured as several packages (namedseal.sys, seal.lib,
seal.srv andseal.usr) which almost completely re-
place the standard JDK packages. User code can only be
added to the packageseal.usr. This restriction is en-
forced by the loader which has a list of classes that can be-
long to these packages.

5.1 JavaSeal Kernel classes

There are only a few core classes in the kernel that are
visible at user-level. The classSeal is the base class of all
user defined agents. Channels are instances of theChan-
nel class and exchange capsules. ClassPortal is used
to control access to channels. ClassStrand is a restricted
version ofThread, the name has been changed partly to
avoid confusion. Finally, theSealLoader class imple-
ments seal loading and verification. Some interfaces are
shown in Figure 4.

5.1.1 Seals

A seal is made up of classes, objects, threads and aSeal-
Loader object. When a seal is created, the name of its
main class is specified and aSealLoader is created to

public abstract class Seal implements Runnable,
Serializable {

public static Seal currentSeal()
public static void dispose(Name subseal)
public static void rename(Name subseal, Name subseal)
public static SAF wrap(Name subseal)
public void run();

...
}

public final class Channel {
private Channel(Name me);
public static Capsule receive(Name channel, Name seal);
public static void send(Name channel, Name seal,

Capsule caps);
}

public final class Portal {
private Portal();
public static int status(Name channel, Name seal);
public static int open(Name channel, Name seal);
public static int close(Name channel, Name seal);

}

public class Capsule implements Serializable{
public Capsule(Object obj);
public Object open();

}

public class Strand {
private Strand();
public static Strand create(Runnable target);
public static Strand currentStrand();
public void start();
public void stop();
...

}

Figure 4. The JavaSeal kernel classes

load all classes needed by the seal. If all classes pass the
extended verification discussed in Section 5.2, an instance
of the main seal class is created. The seal thus consists of
a base object and all objects reachable from that root. A
seal’s objects and classes are not shared with any other seal.
JavaSeal’s use of class loaders is a key element in achieving
seal domain separation. A type cast error is raised when-
ever an object of one domain attempts to directly reference
an object of another domain.

A SealLoader has two ways to resolve classes. Sys-
tem classes are found in predefined locations on disk. User-
defined classes are stored in a seal’sarchive. As mentioned,
the archive is used to enforce faithfulness: a seal always
uses the classes with which it was defined and so does not
rely on any other seal to furnish it with a (perhaps infected)
version of its classes. Furthermore, seal archive files are
immutable – a seal may not add new classes to its archive
during execution. An advantage of this is that the archive
may be digitally signed and so any attempt to tamper with
the code can be detected.

A seal creates a child seal through a kernel operation —
a class archive is created and a new loader is allocated for
the child. The parent can subsequently wrap the child seal.
Wrapping a seal entails stopping its threads, serializing its
data into a byte array, and then packing this byte array and



the class archive into a seal archive. This can be used to
re-instantiate the seal, or alternatively it can be sent over a
channel and then re-instantiated within another seal.

There is a small number of exceptions to the constraint
that classes not be shared between seals. In effect, basic
classes likejava.lang.Object must be shared. One
reason for this is practical: Sun’s JVM does not allow mul-
tiple instances of classObject. The other reason is that
shared classes are needed to effect communication between
seals.

Shared classes are loaded by the predefined system
loader. In Java, a class can only reference other classes
loaded by the same loader or by the system loader. For in-
stance, consider a classC which is loaded by two loaders;
we denote the resulting class instancesC1 andC2. Suppose
that the classC implements the Java interfaceI and that
this interface is loaded by the system loader. If some class
has a variable of typeI then objects of this interface may
reference instances of classesC1 andC2. This is because
I is visible in all domains, and dynamic typing permits an
object of a subclass (e.g., C1 or C2) to replace an instance
of I. This feature is used to maintain internal links in a seal
to the seal’s children and parent. In effect, a classInter-
nalSealPointer is a shared interface which points to
the related seals, even though seal classes possess their own
class loaders.

Seal domain termination is achieved by simply stopping
all of the strands of a seal and setting all domain-specific
kernel pointers to null. Memory will eventually be re-
claimed by the garbage collector. The resources used by
a seal are relatively easily accounted for. They include
classes loaded by the seal’s loader and objects reachable
from the seal class. Thread objects are accountable through
the strands. In the current version of JavaSeal, precise con-
trol over memory and CPU is not provided. It would be
fairly straightforward to approximate resource usage by in-
strumentation of the bytecode, but a cleaner approach would
be to extend the JVM interface with hooks for that pur-
pose [9].

5.1.2 Strands

The threads that execute inside of seals are calledStrands.
The crucial difference between threads and strands is that
strands are bound to the seal in which they were created
and that they cannot be used to gain information about other
seals. Each seal object has arun() method; when a seal is
created or unwrapped, a strand is automatically created to
execute this method.

In the implementation, there is a mapping between
threads and strands. An initial strand is explicitly created
when a seal is started, and to handle parallelism,daemon
strands should be started to service external calls. In prac-

tice, the daemon has a limit on the number of strands, and
manages strands by reusing passive strands when possible.

5.1.3 Channels

The channel class has methodssend and receive to
transfer a capsule from a sender seal to a receiver. Both
operations are blocking; the strands issuing them will be
blocked until the communication is allowed to fire.

String x = new String(‘‘req’’);
Capsule cp = new Capsule(str);
ch.send(x, cp, Seal.getParent());

String x = new String(‘‘req’’);
Portal.open(x, Name(‘‘Agent1’’), 1);
ch.receive(x, Name(‘‘Agent1’’), cp);
String s = (String) cp.open();

The first code fragment tries to send a string objectstr
along channelx, the second code fragment waits on channel
x and unpacks the value received into a string. A portal acts
as a control on a communication channel, and must be ex-
plicitly opened by the owning seal for any communication
to take place. This is represented by thePortal class. Its
open method opens a portal for a channel and seal pair, en-
abling the named seal to communicate with the owning seal
over the channel. Theclosemethod has the reverse effect.
If the receiver is not yet ready, the message remains stored
on thesender’sside. Thus, the message queue is moved
with the sending seal if the seal moves before the receiver
is ready. It also means that a seal cannot cause another seal
to have a memory overflow by sending it large messages.

5.1.4 Capsules

Capsules transport data over channels. A capsule contains
a copy of a group of objects. The copy is done in kernel
mode and ensures that the capsule does not share references
with objects in the sending seal. A capsule is created by
specifying a root object and copying all the objects in the
transitive closure from that root into the capsule. This is
currently done using Java serialization.

A capsule may only be opened once. Opening a capsule
requires that all classes be available in the current seal be-
fore releasing the capsule’s contents. If theSealLoader
is not able to find all classes required by the capsule, then
theopen operation fails. The classes found might have dif-
ferent versions; we rely on Java type compatibility rules to
verify the validity of a capsule.



5.1.5 Performance measures

We conducted some measurements on a JavaSeal kernel
running over SunOS 5.6 on a 333 MHz UltraSparc-IIi pro-
cessor with 124MB of main memory. The time taken to
create an agent (with an emptyrun() method) is 45 mil-
liseconds. The platform can support over 1100 concurrent
agents (where each agent has its own executing thread); fur-
ther creates are very slow, resulting from too much swap-
ping. Inter-agent communication is slow. In one config-
uration measurement, a child sends a request to its parent
who sends back a reply. This mimics an RMI call and re-
turn between seals (involving two seal context switches) and
yields an average cost of 414µ-seconds. A communication
through the hierarchy from a child A to its parent and then to
another child B takes an average of 380µ-seconds. Agents
and messages are exchanged in capsules. A capsule con-
taining thenull object is 5 bytes. A capsule for a 100-byte
array is 127 bytes. A capsule for an agent with an empty
run() method occupies 1287 bytes, and an agent with a
thread blocked on a receive has a 1644 byte capsule. A
sample agent containing an article representing the HTML
pagewww.unige.ch has a capsule of size 84434.

5.2 JavaSeal Security

We mentioned the set of ARM operations in Section 2.3:
protection domain creation and termination, loading code
and data in a domain, and control of communication be-
tween domains. The concepts whose implementation we
outlined in 5.1 are designed precisely with this functional-
ity as a goal. JavaSeal’s goal is also give precise security
guarantees: confinement, mediation and faithfulness. This
subsection summarizes how these properties are met.

Confinement There are four basic mechanisms needed to
enforce this in JavaSeal:

1. Class loader enforced domains: by assigning a class
loader to each seal, Java’s typing rules prohibit user-
level classes and their objects from being directly
shared.

2. The capsule mechanism is designed to ensure that no
inter-seal alias can result from communication.

3. Threads do not cross seal domain boundaries. The ef-
fects of killing a thread are thus confined to the owning
seal.

4. A number of restrictions are placed on the classes
loaded into a seal bySealLoader: 1 Only classes
fromseal.usr or system classes fromCLASSPATH
may be loaded. In particular, no user-defined subtype

of seal kernel classes may be used.2 Stringent restric-
tions on finalizers are imposed. They are forbidden
from containing loops or calls to methods, as the latter
could be an invocation of a non-terminating method.
A more sophisticated analysis could be used to allow
more behavior in finalizers but we have not yet encoun-
tered practical cases where this is needed in applica-
tions written for JavaSeal.

The isolation imposed by seal loaders may appear a bit
drastic as we effectively separate each seal from most of the
JDK. One may argue that it may be possible to prove the
JDK classes free of storage channels and then it would be
safe to share them. The problem is that we cannot be sure
in which environment a JavaSeal platform will be used. De-
pending on which classes are loaded on the JVM, or which
versions of the classes, storage channels may exist. It takes
only one class to break the entire security.

As mentioned,mediation is obtained by nesting a target
seal in another seal, the second seal being responsible for
interposing on sensitive channels.Faithfulness is enforced
by the seal loader. When a seal is created all of its classes
are extracted from its archive. In addition, when messages
are exchanged, the seal loader checks that no opened cap-
sule tries to inject new classes.

5.3 Kernel Security

An important requirement for the agent reference moni-
tor is that it be protected from tampering by user seals (sec-
tion 2.3). The agent reference monitor of JavaSeal is im-
plemented within the JavaSeal kernel, which is shared by
all seal domains. The kernel is made up of kernel classes
– theseal.sys package – as well as base JDK classes.
Classes that are shared between domains, like communi-
cation classes are also withinseal.sys. There are too
many classes within the JDK to allow these to be shared by
all domains. Kernel security in JavaSeal is concerned with
protecting the kernel from tampering by user seals, and min-
imizing the chance of storage channels being created by the
kernel for seals to exploit.

The key to enforcing kernel security is to have awell-
definedandsmall interface between the kernel and the pro-
gram seals. This is done in a number of ways.

First, the kernel executes inside of the root seal. When-
ever a seal requires a JDK-like service, e.g., a reading from
disk, it must send the request to the kernel over a channel.
The only point where a seal is allowed to exchange arbitrary
objects with the kernel is as arguments in the capsule of a
message that the seal exchanges with the root seal. How-
ever, capsules are always opened in the receiving environ-
ment and so a seal can at no time gain a reference to a kernel
object.



Second, the number of classes actually shared be-
tween seals and the kernel is kept to a minimum. We
cannot enforce strong isolation for the kernel classes
since some key JDK classes have to be shared. The
JavaSeal kernel classes are also shared. The kernel in-
terface is restricted to 8 JavaSeal kernel types and 25
standard Java types most of them exceptions (this in-
cludes classesObject, String andStringBuffer,
as well as interfacesjava.io.Serializable and
java.lang.Runnable). All arguments and return val-
ues of these types are also part of the kernel. These classes
have no static variables and instances have no accessible
fields that are not instances of kernel types.

The final part of kernel security is obtained byselective
access modifierswhich are enforced by a form of extended
bytecode verification. We extend the standard Java access
modifiers with a more fine-grained version enforced at load
time by theSealLoader. We introduce directives that
specify selective access modifiers. An example directive
sequence is the following:

see java.lang.Object;
final seal.sys.Capsule;
private java.lang.Object.getClass();

The first directive specifies that classObject is visible. In
other words, the running seal object may link against this
(shared) class. The second specifies that a class is to be
treated as final; thus no subclasses are allowed in the seal.
The last directive specifies that an attribute of a class cannot
be used within a seal. These modifiers are read in by the
SealLoader and all classes loaded are checked to con-
form to these restrictions. The directives are enough to en-
sure that the only types exchanged using shared classes are
those permitted in the kernel interface. A different set of ac-
cess modifiers can be given to different seals. In this way a
GUI service seal has access to GUI classes that must remain
invisible to other seals.

6 HyperNews: Selling News on the Web

HyperNews is a system for the electronic distribution of
news articles in which a client can only read the contents of
an article that he has paid for [29]. This section describes
the implementation of HyperNews over JavaSeal.

6.1 The HyperNews Business Model

The goal of HyperNews is to support the electronic sale
of news articles (or inexpensive documents) on the Internet.
The actors are the consumers, the press agencies producing
articles, and the credit institutions (CIs) that manage pay-
ments. A typical HyperNews transaction is illustrated in

Figure 5. A consumer requests a set of articles from a news
agency. These articles are downloaded to the consumer’s
site. To read an article the consumer must have paid for
it. For this reason an article’s contents are encrypted witha
symmetric keyk. The article containsk encrypted with the
public key of the CI. If the consumer is reading the article
for the first time, the CI is contacted and the article price is
debited from the consumer’s account. The CI extracts the
value ofk for the consumer and sends it to the consumer
with a receipt of payment. It is only with the keyk that the
article can be read. Subsequent uses of the article simply
require presenting the receipt to the CI, after validation of
whichk is extracted and returned.

Credit 
Institution

News
 Provider

Customer

1: request
article 
description

2: news article
CI(k)

k(contents)

3: access request
CI(k)

4: receipt
k

Figure 5. HyperNews allows customers to request news
articles from news agencies. Payment is handled through
trusted credit institutions. All exchanges between any two
sites are encrypted by a session key negotiated between
those sites.

HyperNews is designed as a large scale distributed ap-
plication. Not only are there many consumers, but there
are, of course, also multiple competing news agencies and
credit institutions. A consumer is at liberty to buy articles
from any news agency. There is also a certain symmetry
in the architecture. For instance, a client can act as a press
agency. He can collect articles, annotate them with his own
comments, and later resell them. HyperNews nevertheless
guarantees that whenever the original article is viewed, its
rightful owner still gets paid. This is because the initial ar-
ticle remains encrypted with a key chosen by its owner.

6.2 The HyperNews Security Model

HyperNews is built with the goal of doing electronic
commerce over the Internet. With respect to security, this
implies having well-specified and maintainable trust rela-
tions and the use of encryption.



Regarding trust, a consumer trusts his credit institution to
store his credit account. Similarly, news agencies trust the
CIs with the keysk to their articles which become visible
when handling payments. At the same time, CIs are also
trusted to archive public keys.

The detail of the payment is as follows. Each article’s
contents is encrypted with a symmetric keyk that is chosen
by the news agency. The keyk is then encrypted with the
public key of the CI, yieldingCI(k). The encrypted contents
andCI(k) are packed into the article agent which is down-
loaded to the consumer. At the consumer’s site the local Hy-
perNews platform manages payment requests. Whenever a
user asks to read an article, HyperNews sends a request to
the CI and this request containsCI(k). If the customer has
sufficient funds to pay for the article, the CI debits the con-
sumer’s account and then forwards a receipt of payment and
k back to the consumer. The HyperNews system can now
decrypt the article contents. Immediately following the de-
cryption, the keyk is discarded by the runtime in order to
reduce the risk that an attack on the consumer platform can
lead tok being revealed. The next time the user wishes to
read the same article, the CI must again be contacted. This
time, the user sends a copy of his receipt, which the CI val-
idates, and replies withk.

Security of the article keys relies on the integrity of the
HyperNews platform on the client’s site. Clearly, a hacker
may tamper with the system and steal keys. But this re-
quires some skills, and a key only unlocks a single article.
Further keys are obtained only after the document has been
paid for. In this way, the worst that an attacker can do is
to distribute the article contents free of charge. For com-
mercialization of short-lived, low-value, documents suchas
news articles, this is an acceptable risk to run.

HyperNews uses agents to customize the treatment and
user interface of different news sources. Thus, each
provider is allowed to install anews feedagent at the cus-
tomer. The news feed is responsible for verifying receipt of
payment before access to the article, and for decrypting the
contents and then throwing the keyk away. Articles also
may contain code for interacting with the user. The remain-
ing security measures in HyperNews are directed to guar-
anteeing that different news agencies are not able to disrupt
each other using their feeds or articles, at preventing mali-
cious agents damaging the consumer’s system, and at pre-
venting denial of service attacks.

6.3 Implementing HyperNews

The main attraction of agents for implementing Hyper-
News is that they allow different news providers to cus-
tomize the application installed on the customer’s station
with value-added services on a per-document basis. The ad-
vantage over a client-server solution is that no connectivity

RootSeal

HyperNews

Times Hebdo Default

A A A C

HTTP

GUI

File

Wallet

Figure 6. The HyperNews application. News Feeds for
the Times, Hebdo (a Swiss magazine) and a default news
feed are shown. These are envlets with couriers and articles
as complets. The dotted line represents the trust boundary,
that isolates mobile seals and the network area from trusted
immobile services.

with the news provider is needed.
The HyperNews application is built as a collection of co-

operating seals. AHyperNews platformis a JavaSeal kernel
loaded with the HyperNews seals. The entire application
has been designed using agent technology. Everything from
session key negotiation to news articles is done with agents.

6.3.1 Architecture

The overall structure of a running HyperNews platform con-
sists of a number of News Feed agents and a large number
of article agents (see Figure 6). The News Feed agents are
envlets that manage all the data and services common to
one news provider. For example, a News Feed may keep
track of the news classification of its provider, it may con-
tain code for filtering incoming articles according to user-
defined criteria, as well as custom code for decryption or
decompression. Articles are complets which execute within
their provider’s envlet. They also may contain code. Ar-
ticles can have special behavior with respect to payment,
display or consumer interaction.

Every HyperNews platform has a reception area imple-
mented by a complet. The reception area is a service seal
with network access. Its role is to receive incoming seals,
authenticate them, and decide if they should be allowed
to execute. The incoming seals can be either new Article
agents or Courier agents (A and C in Figure 6 respectively).
An Article agent contains articles, a Courier agent carries
receipts or article keys. The former are expected only if the



user signed up for news from that particular press agency,
the latter should belong to one of the existing feeds. A News
Feed is started on its own in the Sandbox (another envlet).
Couriers are forwarded to their feed and will be allowed to
execute within that envlet.

The services include a HTTP daemon for the Netscape
browser used to visualize article contents and a Swing-
basedGUI implements the HyperNews control panel. A
storageagent is used for storing serialized article agents; as
soon as the environment detects that the platform is becom-
ing too heavily loaded, articles are selected for swapping to
disk by the file storage agent. Anelectronic commerceagent
manages a purse GUI containing the consumer’s credit, and
decides to ask for more credit when needed. Finally, autil-
ity agent implements cryptographic functions and manages
the environment variables.

Starting JavaSeal creates a RootSeal. This creates the
main application seal of the application, whose name must
have been passed as parameter in the command line. This
seal proceeds to create new seals.

After the RootSeal has instantiated itself, it starts the
NetSeal that is responsible for communicating between
sites. The kernel actually treats the NetSeal as being the
parent of RootSeal. There are two reasons for this. First,
the NetSeal represents the network, which from the hierar-
chy point of view, encapsulates all platforms of the mobile
agent network as children [33]. Second, the elements re-
ceived from the network must be isolated from the system
services and other agents; for this reason this component
is inside of the JavaSeal protection barrier. NetSeal is the
only service that executes within JavaSeal; all other ser-
vices exist outside of JavaSeal though execute within the
same JVM.

After creating the NetSeal, RootSeal creates a Bridge ob-
ject that is used to forward messages between seals and the
services. Services like GUI, FileStorage, etc. are repre-
sented as static classes; these classes are instantiated inthe
main() of RootSeal, and use the basic system loader. Ser-
vices are represented in this way so that sharing with seals is
kept to a minimum, since the seals occupy different loader
spaces – and protection domains.

6.3.2 HyperNews Security

One important point related to security is that a Hyper-
News platform is a long-lived application. The state capture
mechanism is used to make the platform persistent. The im-
plication is that malicious agents should not be allowed to
crash the system, and also that shutting down the JVM is
not an appropriate response to a denial of service attack.
JavaSeal tries to control resources so as to reduce the po-
tential for denial of service attacks, but there is plenty more
work to do in that field.

One problem that is solved by JavaSeal is the protection
of News Feeds from one another. This is achieved by the
isolation imposed by the seal model: all feeds are repre-
sented as child seals of the main application seal. All po-
tential interactions are subject to the reference monitor and
allowed only if there is a specific permission for two seals
to communicate. By default, News Feeds are not allowed
to communicate. Security on the articles is enforced by the
News Feeds which decide whether the articles that they host
may communicate (usually there is no need to).

7 Related Work

Mobile Agents are a combination of active objects [2]
and mobile objects [22]. Active objects are objects that pos-
sess their own thread of control and which execute indepen-
dently of their creator. Mobile objects in Emerald could also
be moved transparently between sites of a distributed sys-
tem. The arrival of the Internet renewed interest in mobile
objects, though mobility could no longer be done transpar-
ently: an agent had to be aware of where it was executing
because resources and administration could differ between
sites.

Among the first mobile agent systems were Telescript
[37], TACOMA [31] and M0 [32]. The former two possess
a coarse-grained notion of agent, the latter uses lightweight
agents. Telescript transported much information with its
agents; the model became too complicated and eventually
the project was stopped. M0, and other agent systems
based on scripting languages such as Tcl/Tk and FACILE
are lighter weight agents; ironically, their simplicity makes
coding of envlets harder.

Java brought a wave of Java-based agent systems.
The reason for this is that use of Java is widespread, it
has enough utility classes and possesses notions of secu-
rity and mobility. Example systems include Mole [4],
D’Agents [18] (from Tcl/Tk), Voyager [16], Ajanta [24]
and Aglets [26]. However, these systems do not provide a
level of security based on strict separation between agents,
since the kernel does not occupy a different domain to the
agent domains. A protection domain in the J-Kernel is
also a name space implemented using a class loader [19].
Communication between domains is achieved by invok-
ing a method on a capability object which acts as a mini-
RMI stub. Parameters are deep-copied between domains
and only capabilities and core classes are shared. In the J-
Kernel service classes are shared between agents, thus lend-
ing themselves to covert channels. Further, J-Kernel does
not possess the notion of hierarchy; this makes it difficult
to implement envlets, as required by HyperNews and other
applications.

Sun’s JVM (JDK1.2) includes many changes to the se-
curity model — including protection domains based on dis-



tinct class loader spaces. But as we argued here, distinct
loader spaces do not constitute real protection domains un-
less a real attempt is made to isolate the variables shared be-
tween loaders — those variables whose classes are loaded
by the system loader. More work is needed on Java security
for resource control, and for isolating domains from one an-
other. As we mentioned, type casting and sharing can easily
violate the constraint that one domain not reference an ob-
ject of another domain (name space).

The hierarchical communication model has been in-
spired by the Fluke micro-kernel [13], L3 [27], and work
on interposition in operating systems [11, 14, 15]. We have
not addressed interposition of low-level resources such as
memory and the scheduler as this requires modifications to
the virtual machine [3].

8 Conclusion

This paper has described the JavaSeal platform. This is
a secure kernel for mobile environments (envlets) and mo-
bile objects (complets). JavaSeal is a kernel in that it offers
minimal service functionality. Since services differ between
sites, one should be able to build different services on a ker-
nel. JavaSeal is secure in that it isolates agents (or seals)
from one another by exploiting the typing mechanism, and
it extends the class loading verifier to ensure that seals do
not use forbidden or untrusted classes.

The main lesson that we have learned from the JavaSeal
implementation is that it is possible to implement a secure
kernel based on Java. We qualify security in this case as
strong separation between agents, and between agents and
services. Of course, some covert channels may remain in
the kernel though we believe these to be of insignificant
bandwidth compared to the storage channels that can ex-
ist in the JDK service classes. Like others [1], we have also
learned that full migration was not easy in the Sun JDK due
to low-level implementation issues. Finally, JavaSeal still
has some efficiency problems, with respect to data transfer
times and the fact that messages are rerouted through com-
mon parents. Our current work includes investigation of a
shared object concept: this is an object that can be directly
shared between two domains without the security policy in
place being violated.
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