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A B S T R A C T

The design space for just-in-time (JIT) compilers is big, and Julia
represents one viewpoint. The outstanding features of this viewpoint
is simplicity and efficiency, which are enabled by a clever co-design of
the language and its implementation. The combination of simplicity
and efficiency also allows users to employ language strengths and
avoid common pitfalls that threaten the wide family of JIT compilers.

My work has been focused on type stability in Julia—a program
property enabling key optimizations in the compiler. Informally, a
function is type stable if the type of the output depends only on
the types of the inputs, not their values. In this dissertation, I make
the following contributions related to type stability. First, an analysis
of how widespread the property is in publicly available Julia code,
and what features may be related to the property. Second, a formal
model of a JIT compiler recognizing the property at run time and
performing optimizations accordingly. Third, an automated approach
to approximate type stability without running the program.
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1 I N T R O D U C T I O N

Performance is serious business for a scientific programming language.
Success in that niche hinges on the availability of a rich ecosystem
of high-performance mathematical and algorithm libraries. Julia is a
relative newcomer in this space. Its approach to scientific computing
is predicated on the bet that users can write efficient numerical code
in Julia without needing to resort to C or Fortran. The design of the
language is a balancing act between productivity features, such as mul-
tiple dispatch and garbage collection, and performance features, such
as limited inheritance and restricted-by-default dynamic code loading.
Julia has been designed to ensure that a relatively straightforward path
exists from source code to machine code, and its performance results
are encouraging. They show, on some simple benchmarks, speeds in
between those of C and Java. In other words, a new dynamic language
written by a small team of language engineers can compete with
mature, statically typed languages and their highly tuned compilers.

Writing efficient Julia code is best viewed as a dialogue between the
programmer and the compiler. From its earliest days, Julia exposed
the compiler’s intermediate representation to users, encouraging them
to (1) observe if and how the compiler is able to optimize their code,
and (2) adapt their coding style to warrant optimizations. This came
with a simple execution model: each time a function is called with
a different tuple of concrete argument types, a new specialization is
generated by Julia’s just-in-time compiler. That specialization leverages
the run-time type information about the arguments, to apply unboxing
and devirtualization transformations to the code. The former lets the
compiler manipulate values without indirection and stack allocate
them; the latter sidesteps the powerful but costly multiple-dispatch
mechanism and enables inlining of callees.

One key to performance in Julia stems from the compiler’s suc-
cess in determining the concrete return type of any function call it
encounters. The intuition is that in such cases, the compiler is able to
propagate precise type information as it traverses the code, which, in
turn, is crucial for unboxing and devirtualization. More precisely, Julia
makes an important distinction between concrete and abstract types:

4



1 introduction 5

a concrete type such as Int64, is final in the sense that the compiler
knows the size and exact layout of values of that type; for values of
abstract types such as Number, the compiler has no information. The
property I alluded to is called type stability. Its informal definition
states that a method is type stable if the concrete type of its output is
entirely determined by the concrete types of its arguments.1 Folklore
suggests that one should strive to write type-stable methods outright,
or, if performance is an issue, refactor methods so that they become
type stable.

My goal in this dissertation is three-fold. First, I show that type
stability is exhibited widely in practical Julia packages. Second, I
formalize the relationship between type-stable code and the ability
of a just-in-time (JIT) compiler to perform type-based optimizations
during program execution. Finally, I devise a procedure to statically
approximate type stability, wich allows Julia programmers to check
stability without running their code or supplying sample inputs.

1.1 thesis statement

Optimizing dynamic languages is difficult and remains an active
research field. Several state-of-the-art JIT compilers perform the job
well at the expense of being opaque and unpredictable for the user.
Julia’s unique design seemingly proposes a better approach based on
the notion of type stability. My thesis is, therefore:

Type stability is a widely used program property that can be
leveraged by a compiler to generate correct and efficient code and
can be approximated by automated techniques.

To validate this thesis, I make the following contributions:

1. Assess how widely type-stable code is deployed inside Julia’s
ecosystem, and whether any code patterns are associated with
type-stable code.

2. Establish a formal correspondence between type stability and
code optimizations and show that optimized code is semantically
equivalent to the initial version.

3. Design an approach for approximating type stability through a
static analysis and demonstrate the practicality of the approach
by building a tool for source code analysis.

1 https://docs.julialang.org/en/v1/manual/faq/#man-type-stability

https://docs.julialang.org/en/v1/manual/faq/#man-type-stability
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• Type Stability in Julia: Avoiding Performance Pathologies in JIT Com-
pilation (OOPSLA 2021)
By Artem Pelenitsyn, Julia Belyakova, Benjamin Chung, Ross
Tate, and Jan Vitek [Pelenitsyn et al. 2021]
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(VMIL 2023)
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2 B A C KG R O U N D A N D M OT I VAT I O N

2.1 typeful julia

The Julia language is designed around multiple dispatch [Bezanson
et al. 2017]. Programs consist of functions that are implemented by
multiple methods of the same name; each method is distinguished by
a distinct type signature, and all methods are stored in a so-called
method table. At run time, the Julia implementation dispatches a
function call to the most specific method by comparing the types of
the arguments to the types of the parameters of all methods of that
function. As an example of a function and its constituent methods,
consider the + function. As of version 1.8.5 of the language, there are
206 implementations of +, each covering a specific case determined
by its type signature. Fig. 2.1 displays custom implementations for
16-bit floating point numbers, missing values, big-floats/big-integers,
and complex arithmetic. Although at the source-code level, multiple
methods look similar to overloading known from languages like C++
and Java, the key difference is that those languages resolve overloading
statically whereas Julia does that dynamically using multiple dispatch.

The expressive power of multiple dispatch stems from the way it
constrains the applicability of a method to a particular set of values.
With it, programmers can write code that is concise and clear, as
special cases can be relegated to dedicated methods. To pick the

� �
# 206 methods for generic function "+":
[1] +(a::Float16, b::Float16) in Base at float.jl:398
[2] +(::Missing, ::Missing) in Base at missing.jl:114
[3] +(::Missing) in Base at missing.jl:100
[4] +(::Missing, ::Number) in Base at missing.jl:115
[5] +(a::BigFloat, b::BigFloat, c::BigFloat, d::BigFloat) in Base

.MPFR at mpfr.jl:541
[6] +(a::BigFloat, b::BigFloat, c::BigFloat) in Base.MPFR at mpfr

.jl:535
[7] +(x::BigFloat, c::BigInt) in Base.MPFR at mpfr.jl:394
[8] +(x::BigFloat, y::BigFloat) in Base.MPFR at mpfr.jl:363
...� �

Figure 2.1: Methods from the standard library

7



2 background and motivation 8

most specific applicable method, Julia’s runtime relies on a subtype
relation, denoted with <:, between run-time argument types and
method signatures. Method signatures are defined with a rich type
language that supports user-defined nominal types, built-in tuples and
unions, and bounded existential types. The type language is discussed
below, and a detailed discussion of subtyping can be found in [Zappa
Nardelli et al. 2018].

top and bottom. The abstract type Any is the type of all values
and is the default when type annotations are omitted. The empty
union Union{} is a subtype of all types; it is not inhabited by any value.
Unlike many common languages, Julia does not have a null value or a
null type that is a subtype of all types.

datatypes. Datatypes can be abstract or concrete. Abstract datatypes
may have subtypes but cannot have fields. Concrete datatypes have
fields but cannot have declared subtypes. Every value is an instance
of a concrete DataType that has a size, storage layout, supertype (Any
if not otherwise declared), and, optionally, field names. Consider the
following definitions:� �

abstract type Integer <: Real

end

primitive type Bool <: Integer 8

end

mutable struct PointRB <: Any

x::Real

y::Bool

end� �
The first declaration introduces Integer as a subtype of Real. The type
is abstract; as such it cannot be instantiated. The second declaration
introduces a concrete, primitive, type for boolean values and specifies
that its size is 8 bits; this type cannot be further subtyped. The last
declaration introduces a concrete, mutable structure PointRB with two
fields, x of abstract type Real and y of concrete type Bool. Abstract types
are always stored as references, while concrete types are unboxed.

parametric datatypes. The following defines an immtuable,
parametrized, concrete type.� �

struct Rational{T<:Integer} <: Real
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num :: T

den :: T

end� �
Rational, with no argument, is a valid type, containing all instances
Rational{Int}, Rational{UInt}, Rational{Int8}, etc. Thus, the following
holds:

Rational{Int} <: Rational.

Type parameters are invariant, thus the following does not hold even
though Int <: Integer:

Rational{Int} <: Rational{Integer}.

This restriction stems from practical considerations: the memory layout
of abstract types (Integer) and concrete types (Int) is different and can
impact the representation of the parametric type. In a type declaration,
parameters can be used to instantiate the supertype. This allows the
declaration of a Diagonal as an AbstractMatrix of values of type T:� �

struct Diagonal{T,V<:AbstractVector{T}} <: AbstractMatrix{T}

diag::V

...

end� �
Julia allows instantiating type variables of parametric types with

primitive values. For example, Array{Int,1} denotes a type for arrays
with one dimension and integer elements. There is no checking that
parameters instantiated in a sensible way except when constructing
values: defining a method with a parameter of type Array{1,Int} (note
the reversed order of the arguments) is allowed, although such method
will never be called because there are no values of this type, while
trying to create a value of this type with the standard notation: Array{
1,Int}([1,2,3]) will fail with a message that no constructors for such
type are defined.

tuple types. Tuples are an abstraction of the arguments of a
function; a tuple type is a parametrized immutable type where each
parameter is the type of one field. Tuple types may have any number
of parameters, and they are covariant in their parameters: Tuple{Int}
is a subtype of Tuple{Any}. Tuple{Any} is considered an abstract type;
tuple types are only concrete if their parameters are.
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union types. A union is an abstract type which includes, as val-
ues, all instances of any of its argument types. Thus, the type Union

{Integer,AbstractString} denotes any values from the set of Integer
and AbstractString values.

existential types. A parametric type without arguments like
Rational acts as a supertype of all its instances (Rational{Int} etc.)
because it is a different kind of type called a UnionAll type. Julia doc-
umentation describes UnionAll types as “the iterated union of types
for all values of some parameter”; a more accurate way to write such
type is Rational{T} where Union{ } <:T <:Any, meaning all values whose
type is Rational{T} for some value of T. UnionAll types correspond to
bounded existential types in the literature, and a more usual notation
for the type above would be ∃ T.Rational{T}. Julia does not have ex-
plicit pack/unpack operations; UnionAll types are abstract. Each where

introduces a single type variable. The combination of parametric and
existential types is expressive: the type of 1-dimensional arrays can be
simply specified by Array{T, 1} where T. Type variable bounds can refer
to outer type variables. For example,

Tuple{T, Array{S}} where S <:AbstractArray{T} where T <:Real

refers to 2-tuples whose first element is some Real, and whose sec-
ond element is an Array of any kind of array whose element type
contains the type of the first tuple element. The where keyword it-
self can be nested. Consider the types Array{Array{T, 1} where T, 1} and
Array{Array{T, 1}, 1} where T. The former defines a 1-dimensional array
of 1-dimensional arrays; each of the inner arrays consists of objects of
the same type, but this type may vary from one inner array to the next.
The latter type instead defines a 1-dimensional array of 1-dimensional
arrays all of whose inner arrays must have the same type. Existential
types can be explicitly instantiated with the type application syntax
(t where T){t ′}; partial instantiation is supported, and, for instance,
Array{Int} denotes arrays of integers of arbitrary dimension.

multiple dispatch. Any function call in a program, such as x+y,
requires choosing one of the methods of the target function. Method
dispatch chooses the method using a multi-step process. First, the
implementation obtains the concrete types of arguments. Second,
it retrieves applicable methods by checking for subtyping between
argument types and type annotations of the methods. Next, it sorts
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these methods into subtype order. Finally, the call is dispatched to the
most specific method—a method such that no other applicable method
is its strict subtype. If no such method exists, an error is produced.
As an example, consider the above definition of +: a call with two
BigFloat’s dispatches to definition 8 from Fig. 2.1:� �

[8] +(x::BigFloat, y::BigFloat)� �
Function calls are pervasive in Julia, and their efficiency is cru-

cial for performance. However, the many complex type-level oper-
ations involved in dispatch make the process slow. Moreover, the
language implementation, as of this writing, does not perform inline
caching [Deutsch and Schiffman 1984], meaning that dispatch results
are not cached across calls. To attain acceptable performance, the
compiler attempts to remove as many dispatch operations as it can.
This optimization leverages run-time type information whenever a
method is compiled, i.e., when it is called for the first time with a
novel set of argument types. These types are used by the compiler to
infer types in the method body. Then, this type information frequently
allows the compiler to devirtualize and inline the function calls within
a method [Aigner and Hölzle 1996], thus improving performance.
However, this optimization is not always possible: if type inference
cannot produce a sufficiently specific type, then the call cannot be
devirtualized. Consider the prior example of x+y: the method to call
cannot be determined if y is known to be one of BigFloat or BigInt.
This problem arises for various reasons, for example, accessing a struct
field of an abstract type, or the type inferencer losing precision due to
a branching statement. A more detailed description of the compilation
strategy and its performance is given in [Bezanson et al. 2018].

2.2 type stability: a key to performance?

Removing dispatch is the key to performance, but to perform the
optimization, the compiler needs precise type information. Thus, while
developers are encouraged to write generic code, the code also needs
to be conducive to type inference and type-based optimizations. In
this section, I give an overview of the appropriate coding discipline,
and explain how it enables optimizations.
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2.2.1 Julia Performance

To illustrate performance implications of careless coding practices,
consider Fig. 2.2, which displays a method for one of the Julia mi-
crobenchmarks, pisum. For the purposes of this example, we have
added an identity function id which was initially implemented to
return its argument in both branches, as well-behaved identities do.
Then, the id method was changed to return a string in the impossible
branch (rand() returns a value from 0 to 1). The impact of that change
was about a 40% increase in the execution time of the benchmark
(Julia 1.5.4).

� �
function id(x)

(rand() == 4.2) ? "x" : x
end

function pisum()
sum = 0.0
for j = 1:500

sum = 0.0
for k = 1:10000

sum += id(1/(k*id(k)))
end

end
sum

end� �
(a) Microbenchmark, redacted

� �
julia> @code_warntype id(5)
Variables

#self#b@::Core.Compiler.
Const(id, false)b@

x::Int64
Body::Union{Int64, String}
1 - %1 = Main.rand()::Float64
| %2 = (%1 == 4.2)::Bool
+-- goto #3 if not %2
2 - return "x"
3 - return x

julia> @code_warntype pisum()
...
| %20 = k::Int64
| %21 = Main.id(k)::Union{

Int64, String}� �
(b) Julia session

Figure 2.2: A Julia microbenchmark (a) illustrating performance implications
of careless coding practices: changing id function to return values
of different types leads to longer execution because of the Union
type of id(..), which propagates to pisum (b).

When a performance regression occurs, it is common for developers
to study the intermediate representation produced by the compiler.
To facilitate this, the language provides a macro, code_warntype, that
shows the code along with the inferred types for a given function
invocation. Fig. 2.2 demonstrates the result of calling code_warntype on
id(5). Types that are imprecise, i.e., not concrete, show up in red: they
indicate that concrete type of a value may vary from run to run. Here,
we see that when called with an integer, id may return either an Int64

or a String. Moreover, the imprecise return type of id propagates to
the caller, as can be seen by inspecting pisum with code_warntype. Such
type imprecision can impact performance in two ways. First, the sum

variable has to be boxed, adding a level of indirection to any operation
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performed therein. Second, it is harder for the compiler to devirtualize
and inline consecutive calls, thus requiring dynamic dispatch.

2.2.2 Type Stability

Julia’s compilation model is designed to accommodate source pro-
grams with flexible types, yet to make such programs efficient. The
compiler, by default, creates an instance of each source method for each
distinct tuple of argument types. Thus, even if the programmer does
not provide any type annotations, like in the id example, the com-
piler will create method instances for concrete input types seen during
an execution. For example, since in pisum, function id is called both
with a Float64 and an Int64, the method table will hold two method
instances in addition to the original, user-defined method. Because
method instances have more precise argument types, the compiler can
leverage them to produce more efficient code and infer more precise
return types.

In Julia parlance, a method is called type stable if its inferred return
type depends solely on the types of its arguments. In the example, id is
not type stable, as its return type may change depending on the input
value (in principle). On the contrary, the traditional implementation
of the id function is type stable: its return type is always the same
as the type of its sole input and does not depend on the input value,
so, given the input type, the return type is deducible. The definition
of type stability, though, is somewhat slippery. The community has
multiple, subtly different, informal definitions that capture the same
broad idea, but describe varying properties. The canonical definition
from the Julia documentation describes type stability as

“[...] the type of the output is predictable from the types of the
inputs. In particular, it means that the type of the output cannot
vary depending on the values of the inputs.”

However, elsewhere, the documentation also states that “An analogous
type-stability problem exists for variables used repeatedly within a function:”� �

function foo()

x = 1

for i = 1:10

x /= rand()

end

x

end� �
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This function will always return a Float64, which is the type of x at
the end of the foo definition, regardless of the (nonexistent) inputs.
However, the manual says that it is a type stability issue nonetheless.
This is because the variable x is initialized to an Int64 but then assigned
a Float64 in the loop. Some versions of the compiler boxed x as
it could hold two different types; of course, in this example, one
level of loop unrolling would alleviate the performance issue, but in
general, imprecise types limit compiler optimizations. Conveniently,
the code_warntype macro mentioned above will highlight imprecise
types for all intermediate variables. Furthermore, the documentation
states that

“[t]his serves as a warning of potential type instability.”

Effectively, there are two competing, type-related properties of func-
tion bodies. To address this confusion, I define and refer to them using
two distinct terms:

• type stability is when a function’s return type depends only on
its argument types, and

• type groundedness is when every variable’s type depends only on
the argument types.

Although type stability is strictly weaker than type groundedness,
we are interested in both properties. The latter, type groundedness,
is useful for performance of the function itself, as it implies that
unboxing, devirtualization, and inlining can occur. The former, type
stability, allows the function to be used efficiently by other functions:
namely, type-grounded functions may call a function that is only
type stable but not grounded. For brevity, when the context is clear,
I will refer to type stability and type groundedness as stability and
groundedness in what follows.

2.2.3 Flavors of Type Stability

Type stability is an inter-procedural property, and in the worst
case, it can depend on the whole program. Consider the functions
of Fig. 2.3. Function f0 is trivially type unstable, regardless of the
type of its input: if good(x) returns true, f0 returns an Int64 value,
otherwise f0 returns a String. Function f1 is trivially type stable as
all control-flow paths return a constant of Int64 type. Function f2 is
type stable as long as the negation operator is type stable and returns
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� �
function f0(x)
if (good(x))

0
else

"not 0"
end

end

function f1(x)
if (good(x))

0
else

1
end

end� �

� �
function f2(x)
if (good(x))

x
else

-x
end

end

function -(x::Float64)
if (x==0)

0
else

Base.neg_float(x)
end

end� �
Figure 2.3: Flavors of stability: f0 is unstable, f1 is stable; f2 is stable if (-)

is stable; (-) is unstable.

a value of the same type as its argument. In the example, method
-(::Float64) of the negation operator causes f2(::Float64) to lose type
stability. This is a common bug where the function (-) either returns a
Float64 or Int64 due to the constant 0 being of type Int64. The proper,
Julia-style implementation for this method is to replace the constant
0 with zero(x), which returns the zero value for the type of x, in this
case 0.0. The example of function f2 illustrates the fact that stability
is a whole-program property. Adding a method may cause some,
seemingly unrelated, method to lose type stability.

2.2.4 Type Stability Versus Type Groundedness

Type stability of a method is important for the groundedness of its
callers. Consider the function� �

h(x :: Int64) = g(x) + 1� �
If � �

g(x) = x� �
it follows that h is both stable and grounded, as g will always return
an Int64, and so will h. However, if we define� �

g(x) = (x == 2) ? "Ho" : 4� �
then h suddenly loses both properties. To recover stability and ground-
edness of h, it is necessary to make g type stable, yet it does not have
to be grounded. For example, despite the presence of the imprecise
variable y, the following definition makes h grounded:
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� �
g(x) =

let

y = (x==2 ? "Ho" : 4)

in

x

end� �
In practice, type stability is sought after when making architectural

decisions. Idiomatic Julia functions are small and have no internal
type-directed branching; instead, branches on types are replaced with
multiple dispatch. Once type ambiguity is lifted into dispatch, small
functions with specific type arguments are relatively easy to make type
stable. In turn, this architecture allows for effective devirtualization in
a caller, as in many cases, the inferred type at a call site will determine
its callee at compilation time.

Thus, writing type-stable functions is a good practice, for it provides
callers of those functions with an opportunity to be efficient. However,
stability of callees is not a sufficient condition for the efficiency of their
callers: the callers themselves need to strive for type groundedness,
which requires eliminating type imprecision from control flow.

2.2.5 Patterns of Instability

There are several code patterns that are inherently type unstable. For
one, accessing abstract fields of a structure is an unstable operation:
the concrete type of the field value depends on the struct value, not just
struct type. In Julia, it is recommended to avoid abstractly typed fields
if performance is important, but they are a useful tool for interacting
with external data sources and representing heterogenous data.

Another example is sum types (algebraic data types or open unions),
which can be modeled with subtyping in Julia. Take a hierarchy of an
abstract type Expr and its two concrete subtypes, Lit and BinOp. Such a
hierarchy is convenient, because it allows for an Expr evaluator written
with multiple dispatch:� �

run(e :: Lit) = ...

run(e :: BinOp) = ...� �
If we want the evaluator to be called with the result of a function
parse(s ::String), the latter cannot be type stable: parse will return
values of different concrete types, Lit and BinOp, depending on the
input string. If one does want parse to be stable, they need to always
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return the same concrete type, e.g. an S-expression-style struct. Then,
run has to be written without multiple dispatch, as a big if-expression,
which may be undesirable.



3 T R A C I N G T Y P E S TA B I L I T Y: A N
E M P I R I C A L S T U DY

Anecdotal evidence suggests that type stability is discussed in the
Julia community, but does Julia code exhibit the properties of stability
and groundedness in practice? And if so, are there any indicators
correlated with instability and ungroundedness? To find out, I ran
a dynamic analysis on a corpus of Julia packages. All the packages
come from the main language registry and are readily available via
Julia’s package manager; registered packages have to pass basic sanity
checks and usually have a test suite.

The main questions of this empirical study are:

1. How uniformly are type stability and groundedness spread over
Julia packages? How much of a difference can users expect from
different packages?

2. Are package developers aware of type stability?

3. Are there any predictors of stability and groundedness in the
code and do they influence how type-stable code looks?

3.1 methodology

I take as a main corpus the 1000 most starred (using GitHub stars)
packages from the Julia package registry; as of the beginning of 2021,
the registry contained about 5.5K packages. The main corpus is used
for an automated, high-level, aggregate analysis. I also take the 10 most
starred packages from the corpus to perform finer-grained analysis
and manual inspection. Out of the 1000 packages in the corpus, tests
suits of only 760 succeeded on Julia 1.5.4, so these 760 comprise
the final corpus. The reasons of failures are diverse, spanning from
missing dependencies to the absence of tests, to timeout.

For every package of interest, the dynamic analysis runs the package
test suite, analyzes compiled method instances, and records informa-
tion relevant to type stability and groundedness. Namely, once a test
suite runs to completion, we query Julia’s virtual machine for the

18
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Stable Grounded

Mean 74% 57%
Median 80% 57%
Std. Dev. 22% 24%

Table 3.1: Aggregate statistics for stability and groundedness

current set of available method instances, which represent instances
compiled during the tests’ execution. To avoid bias towards the stan-
dard library, instances of methods defined in standard modules, such
as Base, Core, etc., are removed, which typically leaves us with sev-
eral hundreds to several thousands of instances. For these remaining
instances, type stability and groundedness are analyzed. As type infor-
mation is not directly available for compiled, optimized code, I retrieve
the original method of an instance and run Julia’s type inferencer to
obtain each register’s type. In rare cases, type inference may fail; on
the corpus, this almost never happened, with at most 5 failures per
package. With the inference results at hand, we check the concreteness
of the register typing and record a yes/no answer for both stability
and groundedness. In addition to that, several metrics are recorded
for each method: method size, the number of gotos and returns in the
body, whether the method has varargs or @nospecialize arguments1,
and how polymorphic the method is, i.e. how many instances were
compiled for it. This information is then used to identify possible
correlations between the metrics and stability/groundedness.

To get a better understanding of type stability and performance,
I employ several additional tools to analyze the 10 packages. For
example, I look at their documentation, especially at the stated goals
and domain of a package, and check the Git history to see if and how
type stability is mentioned in the commits.

3.2 package-level analysis

The aggregate results of the dynamic analysis for the 760 packages
are shown in Table 3.1: 74% of method instances in a package are
stable and 57% grounded, on average; median values are close to the
means. The standard deviation is noticeable, so even on small samples

1 @nospecialize tells the compiler to not specialize for that argument and leave it
abstract.
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of packages, we expect to see packages with large deflections from the
means.

A more detailed analysis of the 10 most starred packages, in alpha-
betical order, is shown in Table 3.2. A majority of these packages have
stability numbers very close to the averages shown above, with the
exception of Knet, which has only 16% of stable and 8% of grounded
instances.

Package Methods Instances Varargs Stable Grounded

DifferentialEquations 1355 7381 3% 70% 44%
Flux 381 4288 13% 76% 70%
Gadfly 1100 4717 10% 81% 58%
Gen 973 2605 2% 64% 43%
Genie 532 1401 12% 93% 78%
IJulia 39 136 8% 84% 60%
JuMP 2377 36406 7% 83% 63%
Knet 594 9013 7% 16% 8%
Plots 1167 5377 8% 74% 58%
Pluto 727 2337 4% 80% 66%

Table 3.2: Stability, groundedness, and polymorphism in 10 popular Julia
packages

The Knet package is a type stability outlier. A quick search over
project’s documentation and history shows that the only kind of
stability ever mentioned is numerical stability; furthermore, the word
“performance” is mostly used to reference the performance of neural
networks or CUDA-related utilities. Indeed, the package primarily
serves as a communication layer for a GPU; most computations are
done by calling the CUDA API for the purpose of building deep
neural networks. Thus, in this specific domain, type stability of Julia
code appears to be irrelevant.

On the other side of the stability spectrum is the 93% stable (78%
grounded) Genie package, which provides a web application frame-
work. Inspecting the package, we can confirm that its developers
were aware of type stability and intentional about performance. For
example, Genie’s Git history contains several commits mentioning
(improved) “type stability.” The project README file states that the
authors build upon

“Julia’s strengths (high-level, high-performance, dynamic, JIT
compiled).”

Furthermore, the tutorial claims:

“Genie’s goals: unparalleled developer productivity, excellent run-
time performance.”
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type stability (non-)correlates One parameter that I conjec-
tured may correlate with stability is the average number of method
instances per method (Inst/Meth column of Table 3.2), as it expresses
the amount of polymorphism discovered in a package. Most of the
packages compile just 2–4 instances per method on average, but Flux,
JuMP, and Knet have this metric 5–6 times higher, with JuMP and
Knet exploiting polymorphism the most, at 15.3 and 15.2 instances per
method, respectively. The latter may be related to the very low type
stability index of Knet. However, the other two packages are more
stable than the overall average. Analyzing JuMP and Flux further, we
order their methods by the number of instances. In JuMP, the top 10%
of most instantiated methods are 5% less stable and grounded than
the package average, whereas in Flux, the top 10% have about the
same stability characteristics as on average. Overall, I cannot conclude
that method polymorphism is related to type stability.

Another dimension of polymorphism is the variable number of
arguments in a method (Varargs column of Table 3.2). I looked into
three packages with a higher than average (9%) number of varargs
methods in the 10 packages: Flux, Gadfly and Genie. Relative to the
total number of methods, Flux has the most varargs methods—13%—
and those methods are only 55% stable and 44% grounded, which
is a significant drop of 21% and 26% below this package’s averages.
However, the other two packages have higher-than-package-average
stability rates, 82% (Gadfly) and 99% (Genie), with groundedness
being high in Genie, 93%, and low in Gadfly, 38%. Again, no general
conclusion about the relationship between varargs methods and their
stability can be made.

3.3 method-level analysis

In this section, I inspect stability of individual methods in its possible
relationship with other code properties like size, control flow (num-
ber of goto and return statements), and polymorphism (number of
compiled instances and varargs). This analysis consists of two steps:
first, I plot histograms showing the number of methods with particu-
lar values of properties, and second, I manually sample some of the
methods with more extreme characteristics.
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3.3.1 Graphical Analysis

I use two-dimensional histograms like those presented in Fig. 3.1 to
discover possible relationships between stability of code and its other
properties. The vertical axis measures stability (on the left diagram)
or groundedness (on the right): 1 means that all recorded instances
of a method are stable/grounded, and 0 means that none of them
are. The horizontal axis measures the property of interest; in the case
of Fig. 3.1, it is method size (actual numbers are not important here:
they are computed from Julia’s internal representation of source code).
The color of an area reflects how many methods have characteristics
corresponding to that area’s position on the diagram; e.g. in Fig. 3.1,
the lonely yellow areas indicate that there are about 500 (400) small
methods that are stable (grounded).

Figure 3.1: Stability (left, OY axis) and groundedness (right, OY) by method
size (OX) in Pluto

I generate graphs for all of the 10 packages listed in Table 3.2, for
all combinations of the properties of interest; the graphs are provided
in Appendix A. Most of the graphs look very similar to the ones
from Fig. 3.1, which depicts Pluto—a package for creating Jupyter-like
notebooks in Julia. In the following paragraphs, I discuss features of
these graphs and highlight the discrepancies.

The first distinctive feature of the graphs is the hot area in the
top-left corner: most of the 10 packages employ many small, sta-
ble/grounded methods; the bottom-left corner is usually the second-
most hot, so a significant number of small methods are unstable/un-
grounded. For the Knet package, these two corners are reversed; for
DifferentialEquations, they are reversed only on the groundedness
plot. Both of these facts are not surprising after seeing Table 3.2, but
having a visual tool to discover such facts may be useful for package
developers.

The second distinctive feature of these graphs is the behavior of
large, ungrounded methods (bottom-right part of the right-hand-side
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graph). The “tail” of large methods on the groundedness graphs al-
most always lies below the 1-level; furthermore, larger methods tend
to be less grounded. However, if we switch from groundedness to sta-
bility plots, a large portion of the tail jumps to the 1-level. This means
larger methods are unlikely to be grounded (as expected, because of
the growing number of registers), but they still can be stable and thus
efficiently used by other methods. Pluto provides a good example
of such a method: its explore! method of size 13003 (right-most rect-
angle on Fig. 3.1, 330 lines in the source code) analyzes Julia syntax
trees for scope information with a massive if/else if/.. statement.
This method has a very low chance of being grounded, and it was
not grounded on the runs we analyzed. However, the method has a
concrete return type annotation, so Julia (and the programmer) can
easily see that it is stable.

In the case of the number of gotos and returns, the plots are largely
similar to the ones for method size, but they highlight one more
package with low groundedness. Namely, the Gen package (aimed at
probabilistic inference [Cusumano-Towner et al. 2019]) has the hottest
area in the bottom-left corner, contrary to the first general property
we identified for the size-based plots. Recall (Tables 3.1 and 3.2) that
Gen’s groundedness is 14% less than the average on the whole corpus
of 760 packages.

3.3.2 Manual Inspection

To better understand the space of stable methods, I performed a
qualitative analysis of a sample of stable methods that have either
large sizes or many instances.

Many large methods have one common feature: they often have a
return type ascription on the method header of the form:� �

function f(...) :: Int

...

end� �
These ascriptions are a relatively new tool in Julia, and they are used
only occasionally, in my experience. An ascription makes the Julia
compiler insert implicit conversions on all return paths of the method.
Conversions are user extendable: if the user defines type A, they can
also add methods of a special function convert for conversion to A.
This function will be called when the compiler expects A but infers
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a different type, for example, if the method returns B. If the method
returns A, however, then convert is a no-op.

Type ascriptions may be added simply as documentation, but they
can also be used to turn type instability into a run-time error: if the
ascribed type is concrete and a necessary conversion is not available,
the method will fail. This provides a useful, if unexpected, way to
assure that a large method never becomes unstable.

While about 85% of type-stable methods in the top 10 packages are
uninteresting in that they always return the same type, sampling the
rest illuminates a clear pattern: the methods resemble what we are
used to see in statically typed languages with parametric polymor-
phism. Below is a list of categories that we identify in this family.

• Various forms of the identity function—a surprisingly popular
function that packages keep reinventing. In an impure language,
such as Julia, an identity function can produce various side
effects. For example, the Genie package adds a caching effect to
its variant of the identity function:� �

# Define the secret token used in the app for encryption and

salting.

function secret_token!(value::AbstractString=Generator.

secret_token())

SECRET_TOKEN[] = value

return value

end� �
• Container manipulations for various kinds of containers, such

as arrays, trees, or tuples. For instance, the latter is exemplified
by the following function from Flux, which maps a tuple of
functions by applying them to the given argument:� �

function extraChain(fs::Tuple, x)

res = first(fs)(x)

return (res, extraChain(Base.tail(fs), res)...)

end

extraChain(::Tuple{}, x) = ()� �
• Smart constructors for user-defined polymorphic structures. For

example, the following convenience function from JuMP creates
an instance of the VectorConstraint structure with three fields,
each of which is polymorphic:� �

function build_constraint(_error::Function, Q::Symmetric{V,M

}, ::PSDCone)
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where {V<:AbstractJuMPScalar,M<:AbstractMatrix{V}}

n = LinearAlgebra.checksquare(Q)

shape = SymmetricMatrixShape(n)

return VectorConstraint(

vectorize(Q, shape),

MOI.PositiveSemidefiniteConeTriangle(n),

shape)

end� �
• Type computations—an unusually wide category for a dynami-

cally typed language. Thus, for instance, the Gen package defines
a type that represents generative functions in probabilistic pro-
gramming, and a function that extracts the return and argument
types:� �

# Abstract type for a generative function with return value

type T and trace type U.

abstract type GenerativeFunction{T,U <: Trace} end

get_return_type(::GenerativeFunction{T,U}) where {T,U} = T

get_trace_type(::GenerativeFunction{T,U}) where {T,U} = U� �

3.4 takeaways

The analysis shows that a Julia user can expect mostly stable (74%)
and somewhat grounded (57%) code in widely used Julia packages. If
the authors are intentional about performance and stability, as demon-
strated by the Genie package, those numbers can be much higher.
Although the sample of packages is too small to draw strong conclu-
sions, I suggest that several factors can be used by a Julia programmer
to pinpoint potential sources of instability in their package. For exam-
ple, in some cases, varargs methods might indicate instability. Large
methods, especially ones with heavy control flow, tend to not be type
grounded but often are stable; in particular, if they always return the
same concrete type. Finally, although highly polymorphic methods
are neither stable nor unstable in general, code written in the style of
parametric polymorphism often suggests type stability.

The dynamic analysis and visualization code is written in Julia (and
some bash code), and relies on the vanilla Julia implementation. Thus,
it can be employed by package developers to study type instability in
their code, as well as check for regressions.



4 F O R M A L I Z I N G T Y P E S TA B I L I T Y
AT R U N T I M E : J U L E S

To simplify reasoning about type stability and groundedness, I first
define Jules, an abstract machine that provides an idealized version of
Julia’s intermediate representation (IR) and compilation model. Jules
captures the just-in-time (JIT) compilation process that (1) specializes
methods for concrete argument types as the program executes, and (2)
replaces dynamically dispatched calls with direct method invocations
when type inference is able to get precise information about the
argument types. It is the type inference algorithm that directly affects
type stability and groundedness of code, and thus the ability of the JIT
compiler to optimize it. While Julia’s actual type inference algorithm
is quite complex, its implementation is not relevant for understanding
our properties of interest; thus, Jules abstracts over type inference and
uses it as a black box.

M

D

Julia source Jules method table

Jules type table

Julia source code 
combines type 
declarations and 
method definitions. 
Local variables are 
untyped.

Any is the default super 
type. Int is a built in.

Jules compiles field 
access into type-safe 
positional access.

Field access can fail at 
dispatch time.

The result of function is 
the last register.

JIT compilation extends the 
method table with 
specialized instances of 
existing methods. Here f is 
specialised to the concrete 
type of its argument. This 
allows the compiler to 
generate a direct call 
instead of a dispatched call.
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y :: Int
end

f(p::APt)
p.x
end

main()
p = Pt(41,42)
f(p)
end⌃ ⇧⌥ ⌅
x(%0::Pt)
%1 = %0[0]

f(%0::APt)
%1 = x(%0)

main()
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%2 = Pt(%0,%1)
%3 = f(%2)⌃ ⇧⌥ ⌅
f(%0::Pt)
%1 = x!Pt(%0)⌃ ⇧⌥ ⌅
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Figure 4.1: Compilation from Julia to Jules

Fig. 4.1 illustrates the relationship between Julia source code, the
Jules intermediate representation, and the result of compilation. I do
not model the translation from the source to Jules, and simply assume
that the front-end generates well-formed Jules code.1 A Jules program

1 The front-end does not devirtualize function calls, as Julia programmers do not have
the ability to write direct method invocations in the source.

26



4 formalizing type stability at run time: jules 27

consists of an immutable type table D and a method table M; the method
table can be incrementally extended with method instances that are
compiled by the just-in-time compiler.

The source program of Fig. 4.1 defines two types, the concrete Pt

and its parent, the abstract type APt, as well as two methods, f and
main. When translated to Jules, Pt is added to the type table along
with its supertype APt. Similarly, the methods main and f are added to
the Jules method table, along with accessors for the fields of Pt, with
bodies translated to the Jules intermediate representation.

The Jules IR is similar to static single assignment form. Each state-
ment can access values in registers, and saves its result into a new,
consecutively numbered, register. Statements can perform a dispatched
call f(%2), direct call x!Pt(%0), conditional assignment (not shown),
and a number of other operations. The IR is untyped, but the transla-
tion from Julia is type sound. In particular, type soundness guarantees
that only dispatch errors can occur at run time. For example, compi-
lation will produce only well-formed field accesses such as the one
in x(%0::Pt), but a dispatched call x(%0) in f could fail if f was called
with a struct that did not have an x field. In order to perform this
translation, Jules uses type inference to determine the types of the
program’s registers. We abstract over this type inference mechanism
and only specify that it produces sound (with respect to our dynamic
semantics) results.

Execution in Jules occurs between configurations consisting of both a
stack of frames F (representing the current execution state) and a method
table M (consisting of original methods and specialized instances),
denoted F, M. A configuration F, M evolves to a new configuration
F ′, M ′ by stepping F, M → F ′, M ′; every step processes the top
instruction in F and possibly compiles new method instances into M ′.
Notably, due to the so-called world-age mechanism [Belyakova et al.
2020] which restricts the effect of eval, source methods are fixed from
the perspective of compilation; only compiled instances changes.

4.1 syntax

The syntax of Jules methods is defined in Fig. 4.2. I use two key no-
tational devices. First, sequences are denoted · ; thus, ty stands for
types ty0 . . . tyn, %k for registers %k0 . . .%kn, and st for instructions
st0 . . . stn. An empty sequence is written ϵ. Second, indexing is de-
noted [·]; ty[k] is the k-th type in ty (starting from 0), %j[k] is the k-th
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field of %j, and M[m!ty] indexes M by method signature where m

denotes method name and ty denotes argument types.

ty ::= type
| T concrete type
| A abstract type

D ::= type table
( T!ty <: A )∗

M ::= method table(
⟨m!ty ′ st, ty⟩

)
∗

st ::= instruction
| %i← p int. assignment
| %i← %j reg. transfer
| %i← T(%k) allocation
| %i← %j[k] field access
| %i← %j ? m(%k) : %l dispatched call
| %i← %j ? m!T(%k) : %l direct call

i ∈N, p ∈ Z

Figure 4.2: Syntax of Jules

Types ty live in the immutable type table D, which contains both
concrete (T) and abstract (A) types. Each type table entry is of the form
T!ty <: A, introducing concrete type T, with fields of types ty, along
with the single supertype A. Two predefined types are the concrete
integer type Int, and the universal abstract supertype Any.

Method tables M contain method definitions of two sorts: first, orig-
inal methods that come from source code; second, method instances
compiled from original methods. To distinguish between the two sorts,
the type signature of the original method is stored in every table entry.
Thus, table entry ⟨m!ty ′ st, ty⟩ describes a method m with parameter
types ty ′ and the body comprised of instructions st; type signature ty

points to the original method. If ty is equal to ty ′, the entry defines
an original method, and st cannot contain direct calls.2 Otherwise,
ty ′ denotes some concrete types T, and the entry defines a method
instance compiled from m!ty, specialized for concrete argument types
T <: ty. Method table may contain multiple method definitions with
the same name, but they have to have distinct type signatures.

Method bodies consist of instructions st. An instruction %i ← op

consists of an operation op whose result is assigned to register %i.
An instruction can assign from a primitive integer p, another register
%j, a newly created struct T(%k) of type T with field values %k, or
the result of looking up a struct field as %j[k]. Finally, the instruction
may perform a function call. Calls can be dispatched, m(%k), where

2 All function calls in Julia source code are dispatched calls.
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the target method is dynamically looked up, or they can be direct,
m!T(%k), where the target method is specified. All calls are condi-
tional: %j ? call : %l, to allow for recursive functions. If the register
%j is non-zero, then call is performed. Otherwise, the result is the
value of register %l. Conditional calls can be trivially transformed into
unconditional calls; in examples, this transformation is performed
implicitly.

4.2 dynamic semantics

Jules is parameterized over three components: method dispatch D,
type inference I, and just-in-time compilation jit. I do not specify how
the first two work, and merely provide their interface and a set of
criteria that they must meet (in sections 4.2.2 and 4.2.3, respectively).
The compiler, jit, is instantiated with either the identity function,
which gives a regular non-optimizing semantics, or an optimizing
compiler, which is defined in section 4.2.5. The optimizing compiler
relies on type inference I to devirtualize method calls. Type inference
also ensures well-formedness of method tables. Method dispatch D is
used in operational semantics.

4.2.1 Operational Semantics

Fig. 4.3 gives rules for the dynamic semantics. Given a type table D

as context, Jules can step a configuration F, M to F ′, M ′, written as
F, M → F ′, M ′. Stack frames F consist of a sequence of environment-
instruction list pairs. Thus, E st · F denotes a stack with environment
E and instructions st on top, followed by a sequence of environment-
instruction pairs. Each environment is a list of values E = v, represent-
ing contents of the sequentially numbered registers. Environments
can then be extended as E+ v, indexed as E[k], and their last value is
last(E) if E is not empty.

The small-step dynamic semantics is largely straightforward. The
first four rules deal with register assignment: updating the environ-
ment with a constant value (Prim), the value in another register (Reg),
a newly constructed struct (New), or the value in a field (Field). The
remaining five rules deal with function calls, either dispatched m(%k)

or direct m!T(%k). Call instructions are combined with conditioning: a
call can only be made after testing the register %j, called a guard regis-
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v ::= p | T(v) E ::= v F ::= ϵ | E st · F

F, M → F ′, M

Prim

st = %i← p
E ′ = E+ p

E st st · F, M → E ′ st · F, M

Reg

st = %i← %j
E ′ = E+ E[j]

E st st · F, M → E ′ st · F, M

New

st = %i← T(%k)
E ′ = E+T(E[k])

E st st · F, M → E ′ st · F, M

Field

st = %i← %j[k]
v = E[j] E ′ = E+ v[k]

E st st · F, M → E ′ st · F, M

False1

st = %i← %j ? m(%k) : %l
0 = E[j] E ′ = E+ E[l]

E st st · F, M → E ′ st · F, M

False2

st = %i← %j ? m!T(%k) : %l
0 = E[j] E ′ = E+ E[l]

E st st · F, M → E ′ st · F, M

Disp

st = %i← %j ? m(%k) : %l
0 ̸= E[j] T = typeof (E[k]) M ′ = jit(M,m,T)

st ′ = body(D(M ′,m,T)) E ′ = E[k]

E st st · F, M → E ′ st ′ · E st st · F, M ′

Direct

st = %i← %j ? m!T(%k) : %l
0 ̸= E[j]

st ′ = body(M[m!T]) E ′ = E[k]

E st st · F, M → E ′ st ′ · E st st · F, M

Ret

E ′′ = E+ last(E ′)

E ′ ϵ · E st st · F, M → E ′′ st · F, M

Figure 4.3: Dynamic semantics of Jules

ter. If the register value is zero, then the value of the alternate register
%l is returned (False1/False2). Otherwise, the call can proceed, by
Disp for dispatched calls and Direct for direct ones. A dispatched
call starts by prompting the JIT compiler to specialize method m from
the method table M with the argument types T and produce a new
method table M ′. Next, using the new table M ′, the dispatch mecha-
nism D determines the method to invoke. Finally, the body st ′ of the
method and call arguments E[k] form a new stack frame for the callee,
and the program steps with the extended stack and the new table.
Direct calls are simpler because a direct call m!T uniquely identifies
the method to invoke. Thus, the method’s instructions are looked up
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in M by the method signature, a new stack frame is created, and the
program steps with the new stack and the same method table. The top
frame without instructions to execute indicates the end of a function
call (Ret): the last value of the top-frame environment becomes the
return value of the call, and the top frame is popped from the stack.

Program execution begins with the frame ϵ main()3, i.e. a call to
the main function with an empty environment. The execution either
diverges, finishes with a final configuration E ϵ, or runs into an error.

We define two notions of error. An err occurs only in the Disp rule,
when the dispatch function D is undefined for the call; the err corre-
sponds to a dynamic-dispatch error in Julia. A configuration is wrong
if it cannot make a step for any other reason. The well-formedness
criteria below (Subsec. 4.2.4) should rule out wrong programs statically,
but errs may happen at run time.

Definition 4.1 (Errors). A non-empty configuration F, M that cannot
step F,M → F ′,M ′ has erred if its top-most frame, E st, starts with
%i ← %j ? m(%k) : %l, where T is the types of %k in E, m ∈ M, and
D(M,m,T) is undefined. Otherwise, F, M is wrong.

4.2.2 Dispatch

Jules is parametric over method dispatch: any mechanism D that
satisfies the Dispatch Contract (Def. 4.2) can be used. Julia’s method
dispatch mechanism is designed to, given method table, method name,
and argument types, return the most specific method applicable to the
given arguments if such a method exists and is unique. First, applicable
methods are those whose declared type signature is a supertype of
the argument type. Then, the most specific method is the one whose
type signature is the most precise. Finally, only one most specific
applicable method may exist, or else an error is produced. Each of
these components appears in our dispatch definition. As in Julia,
dispatch is only defined for tuples of concrete types.

Definition 4.2 (Dispatch Contract). The dispatch function D(M,m,T)
takes method table M, method name m, and concrete argument types T,
and returns a method m!ty st ∈ M such that the following holds (we write
ty <: ty ′ as a shorthand for ∀i. tyi <: ty ′i):

1. T <: ty, meaning that m!ty is applicable to the given arguments;

3 Recall that unconditional calls are implicitly expanded into conditional ones.
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2. ∀m!ty ′ st ∈ M. T <: ty ′ =⇒ ty <: ty ′, meaning that m!ty is the
most specific applicable method.

4.2.3 Inference

The Julia compiler infers types of variables by forward data-flow
analysis. Like dispatch, inference is complex, so it is being param-
eterized over. For our purposes, an inference algorithm I returns a
sound typing for a sequence of instructions in a given method table,
I(⌊M⌋, ty, st) = ty ′, where ⌊M⌋ denotes the table containing only meth-
ods without direct calls. Inference returns types ty ′ such that each ty ′i
is the type of register of sti. Any inference algorithm that satisfies the
Soundness and Monotonicity requirements is acceptable.

Requirement 4.2.1 (Soundness). If I(M, ty, st) = ty ′, then for any envi-
ronment E compatible with ty, that is, typeof (Ei) <: tyi, and for any stack
F, the following holds:

1. If E st · F, M →∗ F ′ · F,M ′ and cannot make another step, then
F ′ · F,M ′ has erred.

2. If E st ·F, M →∗ EE ′ st ′′ ·F, M ′, then st = st ′ st ′′ and typeof (E ′
i) <:

ty ′i.

The soundness requirement guarantees that if type inference suc-
ceeds on a method, then, when the method is called with compatible
arguments, it will not enter a wrong state but may err at a dynamic call.
Furthermore, if the method terminates, all its instructions evaluate to
values compatible with the results of type inference. That is, when
E st · F, M →∗ EE ′ ϵ · F, M ′, we have typeof (E ′) <: ty ′.

The second requirement of type inference, monotonicity, is impor-
tant to specialization: it guarantees that using more precise argument
types for original method bodies succeeds and does not break assump-
tions of the caller about the callee’s return type. If inference was not
monotonic, then given more precise argument types, it could return
a method specialization with a less precise return type. As a result,
translating a dynamically dispatched call into a direct call may be
unsound.

Requirement 4.2.2 (Monotonicity). For all M, ty, st, ty ′,
such that I(M, ty, st) = ty ′,

∀ ty ′′. ty ′′ <: ty =⇒ ∃ty ′′′. I(M, ty ′′, st) = ty ′′′ ∧ ty ′′′ <: ty ′.
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4.2.4 Well-Formedness

Initial Jules configuration ϵ main(), M is well-formed if the method
table M is well-formed according to Def. 4.3. Such a configuration will
either successfully terminate, err, or run forever, but it will never reach
a wrong state.

Definition 4.3 (Well-Formedness of Method Table). A method table is
well-formed WF(M) if the following holds:

1. Entry method main!ϵ belongs to M.

2. Every type ty in M, except Int and Any, is declared in D.

3. Registers are numbered consecutively from 0, increasing by one for
each parameter and instruction. An instruction assigning to %k only
refers to registers %i such that i < k.

4. For any original method ⟨m!ty st, ty⟩ ∈ M, the body is not empty and
does not contain direct calls, and type inference succeeds I(⌊M⌋, ty, st) =
ty ′ on original methods ⌊M⌋.

5. Any two methods in M with the same name, m!ty and m!ty ′, have
distinct type signatures, i.e. ty ̸= ty ′.

6. For any method specialization ⟨m!ty ′, ty⟩ ∈ M, i. e. ty ′ ̸= ty, the
following holds: ty ′ = T, and T <: ty, and ⟨m!ty, ty⟩ ∈ M. Moreover,
∀m!ty ′′ ∈ M. T <: ty ′′ =⇒ ty <: ty ′′.

The last requirement ensures that only the most specific original
methods have specializations, which precludes compilation from mod-
ifying program behavior. For example, consider type hierarchy Int<:

Number<:Any and function f with original methods for Any and Number.
If there are no compiled method instances, the call f(5) dispatches to
f(::Number). But if the method table contained a specialized instance
f(::Int) of the original method f(::Any), the call would dispatch to
that instance, which is not related to the originally used f(::Number).
Thus, program behavior would be modified by compilation, which is
undesired.

4.2.5 Compilation

Jules implements devirtualization through the jit(M,m,T) operation,
shown in Fig. 4.4. The compiler specializes methods according to the
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m!T ̸∈ M st = body(D(M,m,T)) ty ′ = I(⌊M⌋,T, st)
ty = signature(D(M,m,T)) M0 = M+ ⟨m!Tϵ, ty⟩

T ty ′ ⊢ st0,M0 ⇝ st ′0,M1 . . . T ty ′ ⊢ stn,Mn ⇝ st ′n,Mn+1

M ′ = Mn+1[m!T 7→ ⟨m!T st ′, ty⟩]
jit(M,m,T) = M ′

m!T ∈ M

jit(M,m,T) = M

st = %i← %j ? m(%k) : %l T = ty[k]
M ′ = jit(M,m,T) st ′ = %i← %j ? m!T(%k) : %l

ty ⊢ st,M⇝ st ′,M ′

st ̸= %i← %j ? m(%k) : %l
or T ̸= ty[k]

ty ⊢ st,M⇝ st,M

Figure 4.4: Compilation: extending method table with a specialized method
instance (top rule) and replacing a dynamically dispatched call
with a direct method invocation in the extended table (middle-
right)

inferred type information, replacing non-err dispatched calls with di-
rect calls where possible. Compilation begins with some bookkeeping.
First, it ensures that there is no pre-existing instance in the method
table before compiling; otherwise, the table is returned immediately
without modification, by the bottom rule. Next, using dispatch, it
fetches the most applicable original method to compile. Then, using
concrete argument types, the compiler runs the type inferencer on
the method’s body, producing an instruction typing ty ′. Because the
original method table is well-formed, monotonicity of I and the defi-
nition of D guarantee that type inference succeeds for T <: ty. Lastly,
the compiler can begin translating instructions. Each instruction sti is
translated into an optimized instruction st ′i. This translation respects
the existing type environment containing the argument types T and
instruction typing ty ′. The translation ty ⊢ st,M ⇝ st ′,M ′ leaves
all instructions unchanged except dispatched calls. Dispatched calls
cause a recursive JIT invocation, followed by rewriting to a direct call.
To avoid recursive compilation, a stub method ⟨m!Tϵ, ty⟩ is added at
the beginning of compilation, and over-written when compilation is
done. As the source program is finite and new types are not added
during compilation, it terminates. Note that if the original method has
concrete argument types, the compiler does nothing.



4 formalizing type stability at run time: jules 35

4.3 type groundedness and stability

I now formally define the properties of interest, type stability and
type groundedness. Recall the informal definition which stated that a
function is type stable if its return type depends only on its argument
types, and type grounded if every variable’s type depends only on the
argument types. In this definition, “types” really mean concrete types,
as concrete types allow for optimizations. The following defines what
it means for an original method to be type stable and type grounded.

Definition 4.4 (Stable and Grounded). Let m!ty st be an original method
in a well-formed method table M. Given concrete argument types T <: ty, if
I(⌊M⌋,m,T) = ty ′, and

1. last(ty ′) = T ′, i.e. the return type is concrete, then the method is type
stable for T,

2. ty ′ = T ′, i.e. all register types are concrete, then the method is type-
grounded for T.

Furthermore, a method is called type stable (grounded) for a set W of
concrete argument types if it is type stable (grounded) for every T ∈W.

As all method instances are compiled from some original method
definitions, type stabiltiy and groundedness for instances is defined
in terms of their originals.

Definition 4.5. A method instance ⟨m!T st ′, ty⟩ is called type stable
(grounded), if its original method m!ty is type stable (grounded) for T.

4.3.1 Full Devirtualization

The key property of type groundedness is that compiling a type-
grounded method results in a fully devirtualized instance. We say
that a method instance m!T st is fully devirtualized if st does not
contain any dispatched calls. To show that jit indeed has the above
property, we will need an additional notion, maximal devirtualization,
which is defined in Fig. 4.5. Intuitively, the predicate ty ⊢DM st states
that an instruction st does not contain a dispatched call that can be
resolved in table M for argument types found in ty. Then, a method
instance is maximally devirtualized if this predicate holds for every
instruction using ty that combines argument types with the results of
type inference.
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ty ⊢DM st

D-NoCall

st ̸= %i← %j ? m(%k) : %l st ̸= %i← %j ? m!T(%k) : %l

ty ⊢DM st

D-Disp

st = %i← %j ? m(%k) : %l T ̸= ty[k]

ty ⊢DM st

D-Direct

st = %i← %j ? m!T(%k) : %l T = ty[k] m!T ∈ M

ty ⊢DM st

ty ⊢DM st

D-Seq

ty ⊢DM st0 . . . ty ⊢DM stn

ty ⊢DM st

⊢D M

D-Table

∀⟨m!T st ′, ty⟩ ∈ M. T ̸= ty ∧ st ′ ̸= ϵ
=⇒

m!ty st ∈ M ∧ ty ′ = I(⌊M⌋,T, st) ∧ T ty ′ ⊢DM st ′

⊢D M

Figure 4.5: Maximal devirtualization of instructions and method tables

Next, let us review the definition from Fig. 4.5 in more details.
D-NoCall states that an instruction without a call is maximally devir-
tualized. D-Disp requires that for a dispatched call, ty does not have
precise enough type information to resolve the call with D. Finally,
D-Direct allows a direct call to a concrete method with the right type
signature: as concrete types do not have subtypes, the m!T with con-
crete argument types is exactly the definition that a call m(%k) would
dispatch to. D-Seq simply checks that all instructions in a sequence st

are devirtualized in the same register typing ty. Here, ty has to contain
typing for all instructions sti, because later instructions refer to the
registers of the previous ones. The last rule ⊢D M covers the entire
table M, requiring all methods to be maximally devirtualized. Namely,
D-Table says that for all method instances (condition T ̸= ty implies
that m!T is not an original method) that are not stubs (st ′ ̸= ϵ), the
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ty ⊢ st, M ⇝ st ′, M ′

C-NoDisp

st ̸= %i← %j ? m(%k) : %l

ty ⊢ st, M ⇝ st, M

C-Disp

st = %i← %j ? m(%k) : %l T ̸= ty[k]

ty ⊢ st, M ⇝ st, M

C-Direct

st = %i← %j ? m(%k) : %l T = ty[k] m!T ∈ M st ′ = %i← %j ? m!T(%k) : %l

ty ⊢ st, M ⇝ st ′, M

C-Instance

st = %i← %j ? m(%k) : %l T = ty[k] m!ty ′ st = D(M,m,T) T ̸= ty ′

ty ′′ = I(⌊M⌋,T, st) M0 = M+ ⟨m!Tϵ, ty ′⟩
T ty ′′ ⊢ st0, M0 ⇝ st ′0, M1 . . . T ty ′′ ⊢ stn, Mn ⇝ st ′n, Mn+1

st ′ = %i← %j ? m!T(%k) : %l M ′ = Mn+1 + ⟨m!T st ′, ty ′⟩
ty ⊢ st, M ⇝ st ′, M ′

Figure 4.6: Reformulated compilation

body st ′ is maximally devirtualized according to the typing of the
original method with respect to the instance’s argument types.

Using the notion of maximal devirtualization, we can connect type
groundedness and full devirtualization.

Lemma 4.1 (Full Devirtualization). If M is well-formed and maximally
devirtualized, then any type-grounded method instance m!T st ′ ∈ M is fully
devirtualized.

Proof. Recall that a method instance is type-grounded if type inference
produces concrete typing T ′ for the original method body st, i.e.
I(⌊M⌋,T, st) = T ′. By the definition of a maximally devirtualized table,
we know that TT ′ ⊢DM st ′. Since all types in the register typing TT ′

are concrete, by analyzing maximal devirtualization for instructions,
we can see that the only applicable rules are D-NoCall and D-Direct.
Therefore, st ′ does not contain any dispatched calls.

The final step is to show that compilation defined in Fig. 4.4 pre-
serves maximal devirtualization. To simplify the proof, Fig. 4.6 re-
formulates Fig. 4.4 by inlining jit into the compilation relation. The
relation does not have a rule for processing direct calls because we
compile only original methods. Since the set of method instances is
finite, the relation is well-defined: every recursive call to compilation
happens for a method table that contains at least one more instance.
Every compilation step produces a maximally devirtualized instruc-
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tion and potentially extends the method table with new maximally
devirtualized instances.

Lemma 4.2 (Preserving Well Formedness). For any method table M

that is well-formed WF(M), register typing ty, and instruction st, if the
instruction st is compiled, ty ⊢ st, M ⇝ st ′, M ′, then the new table is
well-formed WF(M ′).

Proof. By induction on the derivation of ty ⊢ st, M ⇝ st ′, M ′. The
only case that modifies the method table is C-Instance. Let us analyze
M0 first. Since T ̸= ty ′ and M is well-formed, we know that m!ty ′ is an
original method and T ̸= ty ′. Furthermore, as dispatch is known to
return the most applicable method, m!T /∈ M and properties (5) and (6)
of Def. 4.3 for M0 are satisfied. Other properties are trivially satisfied
because M0 does not add or modify any original methods, so:

WF(M0).

Therefore, we can apply the induction hypothesis to T ty ′′ ⊢ st0, M0 ⇝

st ′0, M1 to get WF(M1). Proceeding in this manner, we arrive to:

WF(Mn+1).

As M ′ only changes the body of the compiled instance m!T compared
to the well-formed Mn+1, we get the desired conclusion:

WF(M ′).

Lemma 4.3 (Preserving Maximal Devirtualization). For any well-formed
method table M, register typing ty, and instruction st, if the method table
is maximally devirtualized, ⊢D M, and the instruction st is compiled,
ty ⊢ st, M ⇝ st ′, M ′, then the following holds:

1. the resulting instruction is maximally devirtualized in the new table,
ty ⊢DM ′ st ′,

2. the new table is maximally devirtualized, ⊢D M ′,

3. any maximally devirtualized instruction stays maximally devirtualized
in the new table, ∀ tyx, stx. tyx ⊢DM stx =⇒ tyx ⊢DM ′ stx.

Proof. By induction on the derivation of ty ⊢ st, M ⇝ st ′, M ′.
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• Cases C-NoDisp and C-Disp are straightforward: to show (1), we
use rules D-NoCall and D-Disp, respectively. Since the resulting
method table M is the same, (2) and (3) hold trivially.

• Case C-Direct. By assumption, we know that T = ty[k] and that
m!T ∈ M. Therefore, we have (1) by D-Direct:

ty ⊢DM %i← %j ? m!T(%k) : %l.

The resulting method table M is the same, so (2) and (3) hold.

• Case C-Instance. This is the interesting case where compilation
of additional instances happens. First, note that M0 is the same
as M except for a new instance stub ⟨m!Tϵ, ty ′⟩. By assumption,
⊢D M holds, and D-Table does not impose any constraints on
stubs, so ⊢D M0 also holds. As shown in the proof of Lem. 4.2,
M0 is also well-formed. Therefore, we can apply the induction
hypothesis to

T ty ′′ ⊢ st0, M0 ⇝ st ′0, M1,

and we get that:

– T ty ′′ ⊢DM1
st ′0,

– ⊢D M1, and

– ∀ tyx, stx. tyx ⊢DM0
stx =⇒ tyx ⊢DM1

stx.

The fact that M1 is maximally devirtualized by (2) and well-
formed by Lem. 4.2, lets us apply the induction hypothesis to
the next instruction st1 of the method body st, and so on. By
repeating the same steps, we get that the final table obtained by
compiling the body is also maximally devirtualized:

⊢D Mn+1.

Now, let us look at the property (3) that we need to prove.
Assuming we have some tyx, stx such that tyx ⊢DM stx, we want
to show that tyx ⊢DM ′ stx. First, observe that by case analysis
on the derivation of tyx ⊢DM stx, we can show that the property
holds in M0, i.e. tyx ⊢DM0

stx. For an instruction that is not
a direct call, the presence of an additional method instance is
irrelevant. If an instruction is a direct call to an existing method
instance, it stays maximally devirtualized because M0 does not
remove or alter any existing instances of M.
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Next, we can apply the fact (3) from the induction on st0 to
conclude that tyx ⊢DM1

stx, and so on, until we get that

tyx ⊢DMn+1
stx.

Since M ′ only replaces the body of m!T, by case analysis similar
to the above, we conclude

tyx ⊢DM ′ stx,

which proves (3) for C-Instance. Proceeding with similar reason-
ing, we can chain facts (3) from all intermediate compilations
and apply them to facts (1) of the induction, so we get that

∀i. T ty ′′ ⊢DM ′ st ′i,

and thus by D-Seq,
T ty ′′ ⊢DM ′ st ′.

Since the compilation does not remove or alter any original meth-
ods, ⌊M ′⌋ = ⌊M⌋, and thus type inference I(⌊M ′⌋,T, st) produces
the same results as I(⌊M⌋,T, st). Therefore, the requirement of
D-Table for the method instance ⟨m!T st ′, ty ′⟩ in M ′ is satisfied
to prove (2).
Finally, we can prove (1) for M ′ by D-Direct because m!T ∈ M ′.

Putting it all together, I have shown that type-grounded methods
compile to method instances without dynamically dispatched calls.

Proof. First, observe that the initial table M is maximally devirtualized
because it does not contain any compiled method instances. Then,
by induction on →∗ , we can show that the dynamic semantics
preserves maximal devirtualization of the method table. Namely, by
case analysis on one step of the dynamic semantics, we can see that the
only rule that affects the method table is Disp; all other rules simply
propagate the same maximally devirtualized table.

In the case of Disp, by Lem. 4.3, the new method table M ′ is also
maximally devirtualized. Since every step of the dynamic semantics
preserves maximal devirtualization of the method table, so does the
multi-step relation →∗ .

If the execution gets to a direct call, the call must have been pro-
duced by the JIT compiler. As all compiled code is maximally de-
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virtualized, by D-Direct, the method instance m!T exists, and, by
D-Table, it is known to be maximally devirtualized. Finally, as we
know by Lem. 4.1, any maximally devirtualized method instance that
is type-grounded, is also fully devirtualized, and thus, it does not
contain dispatched calls.

4.3.2 Relationship between Stability and Groundedness

While it is type groundedness that enables devirtualization, the weaker
property, type stability, is also important in practice. Namely, stability
of calles is crucial for groundedness of the caller if the type inference
algorithm analyzes function calls using nothing but type information
about the arguments. Since types are the object of the analysis, I call
such type inference context-insensitive: no information about the calling
context other than types is available to the analysis of a function call. A
more powerful type inference algorithm might be able to work around
unstable methods in some cases, but even then, stability would be
needed in general.

As an example, consider two type-unstable callees that return either
an integer or a string depending on the argument value,� �

f(x) = (x > 0) ? 1 : "1"� �
and� �

g(x) = (rand() > x) ? 1 : "1"� �
and two calls, f(y) and g(y), where y is equal to 0.5. If only type
information about y is available to type inference, both f(y) and g(y)

are deemed to have abstract return types. Therefore, the results of such
function calls cannot be stored in concretely typed registers, which
immediately makes the calling code ungrounded. If type inference
were to analyze the value of y (not just its type), the result of f(y)could
be stored in a concrete, integer-valued register, as only the first branch
of f is known to execute. However, the other call, g(y), would still have
to be assigned to an abstract register. Thus, to enable groundedness
and optimization of the client code regardless of the value of argument
x, f(x) and g(x) need to be type-stable.

Note that stability is a necessary but not sufficient condition for
groundedness of the client, as conditional branches may lead to im-
precise types, like in the f0 example from Fig. 2.3.

In what follows, I give a formal definition of context-insensitive type
inference, and show that in that case, reachable callees of a grounded
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method need to be type stable. The intuition behind the definition is
that inferring the type of a function call in the context of a program
gives us the same amount of information as inferring the return type
of the callee independently. Technical complexities of the definition
come from the fact that call instructions are conditional: if the callee is
not reachable, its return type does not need to be compatible with the
register of the calling instruction.

Definition 4.6 (Context-Insensitive Type Inference4). A type inference
algorithm I is context-insensitive, if, given any method table M, register
typing ty, and instructions st such that (1) type inference succeeds,

I(M, ty, st) = ty ′,

(2) instructions contain a function call m(%k),

st = . . . sti . . . ∧ sti = %i← %j ? m(%k) : %l,

and (3) the call is reachable by running st in a compatible environment,

∃E. typeof (E) <: ty ∧ E st, M →∗ (E ′ st ′) · (E ′′ sti . . .), M ′,

where st ′ is the body of the callee, that is st ′ = body(D(M,m, typeof (E ′))),
the inferred type of the calling instruction is no more precise than the inferred
return type of the callee:

last(I(M, typeof (E ′), st ′)) <: ty ′i.

Theorem 4.4 (Type Stability of Callees Reachable from Type-Grouned
Code). If type inference is context-insensitive, then for all type-grounded
sequences of instructions st where

I(M,T, st) = T ′,

any reachable callee in st is type stable for the types of its arguments.

Proof. The property follows from the definition of context-insensitivity.
Let sti be a reachable call %i ← %j ? m(%k) : %l. Since st is type-
grounded, the inferred type of sti is some concrete T ′

i. Because by

4 It may look strange to apply the term context-insensitive to an interface of a static
analysis rather than to a concrete analysis. But the requirement I define here limits
possible implementations of type inference in a way that would not allow a context-
sensitive analysis, and this is the reason I use the term. The reason I believe that
context-sensitive analysis cannot satisfy the requirement is because the requirement
does not allow to distinguish call sites of methods.
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the definition of context-insensitivity, T ′
i is no more precise than the

inferred return type tym of the body,

last(I(M, typeof (E ′), st ′)) = tym <: T ′
i,

and concrete types do not have subtypes other than themselves, tym =

T ′
i. Thus, according to the definition of type stability, the method m is

type stable for typeof (E ′).

4.4 correctness of compilation

In this section, I prove that evaluating a program with just-in-time
compilation yields the same result as if no compilation occurred. I use
two instantiations of the Jules semantics, one (written →D ) where jit
is the identity, and the other (written →JIT ) where jit is defined as
before. The proof strategy is to

1. define the optimization relation ▷ which relates original and
optimized code (Fig. 4.7),

2. show that compilation from Fig. 4.6 does produce optimized
code (Thm. 4.7),

3. show that evaluating a program with →JIT or →D gives the
same result (Thm. 4.10).

The main Thm. 4.10 is a corollary of bisimulation between →D and
→JIT (Lem. 4.9). The bisimulation lemma uses Thm. 4.7 but otherwise,
it has a proof similar to the proof of bisimulation between original
and optimized code both running with →D (Lem. 4.5). A corollary
of the latter bisimulation lemma, Thm. 4.6, shows the correctness of jit
as an ahead-of-time compilation strategy.

First, Fig. 4.7 defines optimization relations for instructions, method
tables, stacks, and configurations. According to the definition of M▷M ′,
method table M ′ optimizes M if (1) it has all the same original meth-
ods5, and (2) bodies of compiled method instances optimize the orig-
inal methods using more specific type information available to the
instance. These requirements guarantee that dispatching in an original
and optimized method tables will always resolve to related methods.
Optimization of instructions only allows for replacing dynamically

5 ⌊M ′⌋ denotes the method table containing all original methods of M ′ without com-
piled instances.
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ty ⊢M,M ′ st ▷ st ′ ty ⊢M,M ′ st ▷ st ′

OI-Refl

ty ⊢M,M ′ st ▷ st

OI-Direct

st = %i← %j ? m(%k) : %l T = ty[k]
signtr(D(M,m,T)) = o-signtr(M ′[m!T])

st ′ = %i← %j ? m!T(%k) : %l

ty ⊢M,M ′ st ▷ st ′

OI-Seq

ty ⊢M,M ′ st0 ▷ st ′0
. . .

ty ⊢M,M ′ stn ▷ st ′n

ty ⊢M,M ′ st ▷ st ′

M ▷M ′

O-Table

M = ⌊M ′⌋ ∀⟨m!T st ′, ty⟩, ⟨m!ty st, ty⟩ ∈ M ′, s.t. T ̸= ty, st ′ ̸= ϵ.
ty ′ = I(M,T, st) T ty ′ ⊢M,M ′ st ▷ st ′

M ▷M ′

∆ ::= ϵ | ty ·∆ ′ stack typing

∆ ⊢M,M ′ F ▷ F ′

O-StackEmpty

ϵ ⊢M,M ′ ϵ ▷ ϵ

O-Stack

ty ⊢M,M ′ st ▷ st ′ ∆ ⊢M,M ′ F ▷ F ′

ty ·∆ ⊢M,M ′ (E st) · F ▷ (E st ′) · F ′

⊢IM F <: ∆

I-StackEmpty

⊢IM ϵ <: ϵ

I-Stack

∃m!ty ′ stb ∈ M. E = E ′E ′′ F ̸= ϵ =⇒ F, M→D E ′ stb · F, M
E ′ stb · F, M→∗

D E st · F, M T = typeof (E ′) ty ′′ = I(M,T, stb)
T <: ty ′ T ty ′′ <: ty ⊢IM F <: ∆

⊢IM (E st) · F <: ty ·∆

F, M ▷ F ′, M ′ <: ∆

O-Config

⊢IM F <: ∆ ∆ ⊢M,M ′ F ▷ F ′ M ▷M ′

F, M ▷ F ′, M ′ <: ∆

Figure 4.7: Optimization relation for instructions, method tables, stacks, and
configurations
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dispatched calls with direct calls in the optimized table. Optimization
of stacks ensures that for all frames, instructions are optimized ac-
cordingly, and requires all value environments to coincide. The first
premise of configuration optimization O-Config guarantees that the
original configuration F, M is obtained by calling methods from the
original method table M, and bodies of those methods are amenable
to type inference. Based on the results of type inference, stacks F,F ′

need to be related in method tables M,M ′, and the method tables
themselves also need to be related.

As I show below, when run with the dispatch semantics, related
configurations are guaranteed to run in lock-step and produce the
same result.

Lemma 4.5 (Bisimulation of Related Configurations). For any well-
formed method tables M and M ′ (i.e. WF(M), WF(M ′) according to Def. 4.3)
where M ′ does not have stubs (i.e. all method bodies ̸= ϵ), any stacks F1, F ′

1,
and stack typing ∆1 that relates the configurations, F1, M ▷ F ′

1, M ′ <: ∆1,
the following holds:

1. Forward direction:

F1, M→D F2, M
=⇒

∃F ′
2,∆ ′

1. F ′
1, M ′ →D F ′

2, M ′ ∧ F2, M ▷ F ′
2, M ′ <: ∆ ′

1.

2. Backward direction:

F ′
1, M ′ →D F ′

2, M ′

=⇒
∃F2,∆ ′

1. F1, M→D F2, M ∧ F2, M ▷ F ′
2, M ′ <: ∆ ′

1.

Proof. For both directions, the proof goes by case analysis on the
optimization relation for configurations and case analysis on the step
of execution. By analyzing the derivation of the optimization relation
F1, M ▷ F2, M ′ <: ∆1, we have three assumptions, HS, HM, and H∆:

HI

⊢IM F1 <: ∆1

HS

∆1 ⊢M,M ′ F1 ▷ F ′
1

HM

M ▷M ′

F1, M ▷ F ′
1, M ′ <: ∆1

O-Config

The assumptions will be referenced in the proof below.
(1) Forward direction.
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To make a step, F1 has to have at least one stack frame, so HS has the
following form:

ty ·∆ ⊢M,M ′ (E stp) · F ▷ (E st ′p) · F ′,

where F1 = (E stp) ·F, F ′
1 = (E st ′p) ·F ′, and ∆1 = ty ·∆. Let us analyze

the top frame.
(a) If the sequence of instructions is empty, i.e. stp = ϵ, the only possible

step for F1, M is by Ret. Therefore, F = (E ′ st st) · Fr and F2 = (E ′+

last(E) st) · Fr. As ty ⊢M,M ′ stp ▷ st ′p, it has to be that st ′p = ϵ. By
analyzing the last premise of HS, ∆ ⊢M,M ′ F ▷ F ′, we know that
F ′ = (E ′ st ′ st ′) · F ′

r, and thus F ′
1, M ′ can step by Ret accordingly:

(E ϵ) · (E ′+last(E) st ′) · F ′
r, M ′ →D (E ′+last(E) st ′) · F ′

r, M ′.

By HI and the last premise of HI, i.e. ⊢IM (E ′ st st) ·Fr <: ty ′ ·∆r where
∆ = ty ′ ·∆r, combined with F, M→∗

D F1, M→D (E ′+last(E) st) ·Fr, M,
we can conclude HI ′:

⊢IM (E ′+last(E) st) · Fr <: ty ′ ·∆r.

By analyzing the derivation O-Stack of ∆ ⊢M,M ′ F ▷ F ′, we know
that ∆r ⊢M,M ′ Fr ▷ F ′

r and ty ′ ⊢M,M ′ E ′ st st ▷ E ′ st ′ st ′. It is easy to
see that ty ′ ⊢M,M ′ E ′+last(E) st ▷ E ′+last(E) st ′ also holds by OI-Seq,
and thus we can conclude HS ′:

ty ′ ·∆r ⊢M,M ′ (E ′+last(E) st) · Fr ▷ (E ′+last(E) st ′) · F ′
r.

Putting it all together, by HI ′, HS ′, and HM, we get F2, M ▷ F ′
2, M ′ <:

∆, i.e.:

(E ′+last(E) st) · Fr, M ▷ (E ′+last(E) st ′) · F ′
r, M ′ <: ty ′ ·∆r.

(b) If the top frame contains a non-empty sequence of instructions, i.e.
stp = st st, HS has the following form:

(tyEty ty) ·∆ ⊢M,M ′ (E st st) · F ▷ (E st ′ st ′) · F ′,

where F1 = (E st st) · F, F ′
1 = (E st ′ st ′) · F ′, and ∆1 = (tyEty ty) · ∆.

By analyzing the derivation O-Stack of HS, we get two assumptions,
HOpt for optimization of the top-frame instructions, tyEty ty ⊢M,M ′

st st ▷ st ′ st ′, and HS ′ for optimization of the residual stack, ∆ ⊢M,M ′

F ▷ F ′. The first premise of HOpt, HOpt0, indicates optimization for
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the first instruction, tyEty ty ⊢M,M ′ st ▷ st ′. By case analysis on the
step F1, M →D F2, M, we can always find a corresponding step for
F ′
1, M ′:

• Case Prim. Here, st = %i← p, and the configuration steps as:

(E st st) · F, M→D (E+p st) · F, M.

By analyzing HOpt0, we can see that the first instruction st ′ = st

by OI-Refl, and thus the optimized configuration F ′
1, M ′ has to

step by Prim:

(E st st ′) · F ′, M ′ →D (E+p st ′) · F ′, M ′.

By analyzing HI and recombining its premises with the Prim

step, we get:

⊢IM (E+p st) · F <: (tyEty ty) ·∆.

Since the rest of the instructions st, st ′ and stacks F,F ′ did not
change, putting it all together, by O-Stack we get:

(tyEty ty) ·∆ ⊢M,M ′ (E+p st) · F ▷ (E+p st ′) · F ′,

and thus by O-Config, we have the desired conclusion:

(E+p st) · F, M ▷ (E+p st ′) · F ′, M ′ <: (tyEty ty) ·∆.

• Cases Reg, New, Field, False1, and False2 proceed similarly to
Prim.

• Case Disp. Here, st = %i← %j ? m(%k) : %l, and the configuration
steps as:

(E st st) · F, M→D (E ′ stb) · (E st st) · F, M,

where E ′ = E[k], T = typeof (E ′), and stb = body(D(M,m,T)).
Note that because F1, M does make a step by assumption, we
know that dispatch is defined for the given arguments. Let’s
denote the dispatch target in M as ⟨m!tyo stb, tyo⟩. By the def-
inition of dispatch, we know that T <: tyo. Therefore, by well-
formedness of M and monotonicity of I, type inference suc-
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ceeds I(M,T, stb) = ty ′ (M contains only original methods, so
⌊M⌋ = M). Thus, we have:

⊢IM (E ′ stb) · (E st st) · F <: (T ty ′) · (tyEty ty) ·∆,

where ∆ ′
1 = (T ty ′) · (tyEty ty) ·∆. Next, let us consider F ′

1. There
are two possibilities for st ′.

1. If HOpt0 is built with OI-Refl, then F ′
1 = (E st st ′) · F ′

where the first instruction is exactly the same dispatch
call, i.e. st ′ = st = %i ← %j ? m(%k) : %l. The configura-
tion (E st st ′) · F ′, M ′ could either step by Disp or err if
D(M ′,m,T) is undefined. Let us inspect the possibility of
the latter. By HM, M ′ optimizes M, so M ′ contains the same
original method m!tyo. Thus, dispatch cannot fail due to
the lack of applicable methods. As M ′ is well-formed, we
also know that if there is a specialized method instance, it is
for the best original method and ambiguity is not possible.
Thus, D(M ′,m,T) succeeds, and F ′

1, M ′ steps by Disp:

(E st st ′) · F ′, M ′ →D (E ′ st ′b) · (E st st ′) · F ′, M ′.

There are two possibilities for st ′b. (a) If M ′ does not con-
tain a specialization, then st ′b = stb. By reflexivity of the
optimization relation, we then have:

T ty ′ ⊢M,M ′ stb ▷ stb.

(b) If M ′ contains a specialized method instance ⟨m!T st ′b, tyo⟩,
then st ′b ̸= ϵ by the assumption on M ′, and thus the desired
relation is guaranteed by HM:

T ty ′ ⊢M,M ′ stb ▷ st ′b.

2. If HOpt0 is built with OI-Direct, then st ′ is a direct call,
i.e. st ′ = %i ← %j ? m!T ′(%k) : %l where T ′ = tyE[k], and
method instance m!T ′ is in M ′. Note that by HI and the
soundness of type inference, we know that typeof (E[k]) <:

typeof (tyE[k]), i.e. T <: T ′. Since both are concrete types, and
concrete types do not have subtypes other than themselves,
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it has to be the case that T ′ = T and m!T ′
= m!T. Thus,

F ′
1, M ′ calls m!T and steps by Direct:

(E st ′ st ′) · F ′, M ′ →D (E ′ st ′b) · (E st ′ st ′) · F ′, M ′.

By OI-Direct, m!T st ′b specializes m!tyo. Since M ′ does not
have stubs, we have by HM:

T ty ′ ⊢M,M ′ stb ▷ st ′b.

Because the new top frames E ′ stb and E ′ st ′b are related in both
cases, and the rest of the stacks did not change, we get that the
entire stacks F2,F ′

2 are related:

(T ty ′) · (tyEty ty) ·∆ ⊢M,M ′ (E ′ stb) · (E st st) ·F ▷ (E ′ st ′b) · (E st ′ st ′) ·F ′.

And thus we get the desired:

F2, M ▷ F ′
2, M ′ <: ∆ ′

1.

• Case Direct. This case is not possible because F is obtained by
running methods of M, and M consists of only original methods,
which do not contain direct calls.

(2) Backward direction. This direction is similar to the forward
direction. Because the structure of F ′

1 matches the structure of F1, we
can always find the corresponding step for F1, M. The most interesting
cases of

F ′
1, M ′ →D F ′

2, M ′

are Disp and Direct, and some details on these are provided below.
In both cases, we have F1 = (E st st) · F, F ′

1 = (E st ′ st ′) · F ′, and
∆1 = (tyEty ty) ·∆, and we know that configurations step by making a
function call. As a result, we get:

(E ′ stb) · (E st st) ·F, M ▷ (E ′ st ′b) · (E st ′ st ′) ·F ′, M ′ <: (T ty ′) · (tyEty ty) ·∆,

where ty ′ = I(M,T, stb) just like in the forward direction.

• Case Disp. Here, st ′ = %i ← %j ? m(%k) : %l, and the configura-
tion steps as:

(E st ′ st ′) · F ′, M ′ →D (E ′ st ′b) · (E st ′ st ′) · F ′, M ′,
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where E ′ = E[k], T = typeof (E ′), and st ′b = body(D(M ′,m,T)).
There are two options for st ′b: it is the body of either the most
applicable original method or its specialization in M ′. Note that
HOpt0 can be built only with OI-Refl, so st = st ′. Because by
HM, M = ⌊M ′⌋, M has the same most applicable original method
as M ′, and thus F1, M steps by Disp. By reasoning similar to the
forward direction, we get that the new top frames (as well as
entire configurations) are related by the optimization relation.

• Case Direct. Here, st ′ = %i ← %j ? m!T(%k) : %l, and the
argument about HI and the soundness of type inference applies
similarly to the case (2) of Disp of the forward direction. As
HOpt0 can be built only by OI-Direct, we know st = %i ←
%j ? m(%k) : %l. Furthermore, dispatch is defined in M by OI-
Direct, and thus F1, M steps by Disp. By reasoning similar to the
forward direction, by HM, we know that the instructions in the
new top frames are related, and thus the entire configurations
are also related.

Theorem 4.6 (Correctness of Optimized Method Table). For any well-
formed method tables M and M ′ where (1) M ▷M ′, (2) table M ′ does not have
stubs, and (3) ⟨main!ϵ st, ϵ⟩ ∈ M,

ϵ st, M→∗
D E ϵ, M ⇐⇒ ϵ st, M ′ →∗

D E ϵ, M ′,

i.e. program st runs to the same final value environment in both tables.

Proof. This is a corollary of Lem. 4.5. By reflexivity of the optimization
relation and well-formedness of M, we know:

st, M ▷ st, M ′ <: ty,

where ty = I(M, ϵ, st). Thus, the bisimulation lemma is applicable: if
one of the configurations can make a step, so does the other, and the
step leads to a pair of related configurations. Since method tables did
not change, the lemma can be applied again to these configurations,
and so on. If the program terminates and does not err, both sides
arrive to final configurations where environments are guaranteed to
coincide by O-Stack.

Next, I show that compilation as defined in Fig. 4.6 produces opti-
mized code in an optimized method table according to Fig. 4.7.
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Theorem 4.7 (Compilation Satisfies Optimization Relation). For any
well-formed method tables M and M ′, typing ty, and instruction st, such that

M ▷M ′ ∧ ty ⊢ st, M ′ ⇝ st ′′, M ′′,

it holds that:

1. ty ⊢M,M ′′ st ▷ st ′′,

2. M ▷M ′′,

3. and the optimization relation on M,M ′ is preserved on M,M ′′:
∀tyx, stx, sty. tyx ⊢M,M ′ stx ▷ sty =⇒ tyx ⊢M,M ′′ stx ▷ sty.

Proof. By induction on the derivation of ty ⊢ st, M ′ ⇝ st ′′, M ′′.
Similar to the proof of Lem. 4.3 on maximal devirtualization, the
most interesting case is C-Instance where compilation of additional
instances happens.

• Cases C-NoDisp and C-Disp are straightforward: by reflexivity of
the optimization relation, we immediately get ty ⊢M,M ′′ st ▷ st;
by assumption M ▷M ′ and M ′′ = M ′, we also have M ▷M ′′;
property (3) also holds trivially because of M ′′ = M ′.

• Case C-Direct. Here, st = %i ← %j ? m(%k) : %l and st ′′ =

%i ← %j ? m!T(%k) : %l. Since M ′′ = M ′, we have M ▷M ′′ by
assumption, and (3) holds trivially.
If m!T is an original method, then by ⌊M ′⌋ = M (because of
M ▷M ′) and the properties of dispatch, m!T has to be the method
returned by D(M,m,T). Therefore, signtr(D(M,m,T)) = T =

signtr(M ′′[m!T]) = o-signtr(M ′′[m!T]).
If m!T is a compiled instance in M ′, then by well-formedness
of M ′, we know that its original method is the most applicable
method in ⌊M ′⌋. Since ⌊M ′⌋ = M, we get signtr(D(M,m,T)) =

o-signtr(M ′′[m!T]).
Thus, for both original and compiled m!T, we have ty ⊢M,M ′′

st ▷ st ′′ by OI-Direct.

• Case C-Instance. Here, st = %i ← %j ? m(%k) : %l and st ′′ =

%i← %j ? m!T(%k) : %l like in previous case, but M ′′ is obtained
by compiling the body of method m!ty ′ st that is a dispatch target
of D(M ′,m,T) where ty ′ ̸= T. Because of the latter condition,
we know that m!ty ′ has to be an original method in M ′. Since
⌊M ′⌋ = M, m!ty ′ is also the most applicable method in M, so it
has to be returned by D(M,m,T).
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Now, let us consider M0 = M ′ + ⟨m!Tϵ, ty ′⟩. Since m!T /∈ M ′ and
M0 only adds a new stub of a compiled instance to the well-
formed M ′, we know WF(M0). Furthermore, because M ▷M ′

and M0 adds the stub without modifying anything else in M ′,
it is easy to show that all instruction optimizations tyx ⊢M,M ′

stx ▷ sty are preserved by M0, that is tyx ⊢M,M0
stx ▷ sty, and

thus M ▷M0. Using the result of type inference on the original
body in ⌊M ′⌋, i.e. ty ′′ = I(M,T, st), we can apply the induction
hypothesis to T ty ′′ ⊢ st0, M0 ⇝ st ′0, M1, which gives us:

– T ty ′′ ⊢M,M1
st0 ▷ st ′0,

– M ▷M1,

– ∀tyx, stx, sty. tyx ⊢M,M0
stx ▷ sty =⇒ tyx ⊢M,M1

stx ▷ sty.

The fact that M ▷M1 and WF(M1) by Lem. 4.2, lets us apply the
induction hypothesis to the next instruction st1 of the method
body st, which produces:

– T ty ′′ ⊢M,M2
st1 ▷ st ′1,

– M ▷M2,

– ∀tyx, stx, sty. tyx ⊢M,M1
stx ▷ sty =⇒ tyx ⊢M,M2

stx ▷ sty.

Now we can apply the latter to T ty ′′ ⊢M,M1
st0 ▷ st ′0, which

gives us T ty ′′ ⊢M,M2
st0 ▷ st ′0.

Proceeding in this manner, we get:

T ty ′′ ⊢M,Mn+1
st ▷ st ′

and

∀tyx, stx, sty. tyx ⊢M,M ′ stx ▷ sty =⇒ tyx ⊢M,Mn+1
stx ▷ sty.

Finally, let us look at M ′′. Its only difference from Mn+1 is the
non-stub body st ′ for m!T. Thus, all tyx ⊢M,Mn+1

stx ▷ sty are
trivially preserved by M ′′, which gives us

∀tyx, stx, sty. tyx ⊢M,M ′ stx ▷ sty =⇒ tyx ⊢M,M ′′ stx ▷ sty

and
T ty ′′ ⊢M,M ′′ st ▷ st ′.
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The latter lets us conclude M ▷M ′′.
Finally, because signtr(D(M,m,T)) = ty ′ and m!T optimizes
m!ty ′ in M ′′, we get

signtr(D(M,m,T)) = o-signtr(M ′′[m!T])

and conclude ty ⊢M,M ′′ st ▷ st ′′ by OI-Direct.

Finally, using an auxiliary lemma about preserving stub methods
during compilation, we can show that the JIT-compilation semantics
is equivalent to the dispatch semantics.

Lemma 4.8 (Preserving Stubs). For any well-formed method tables M ′ and
M ′′, typing ty, and instruction st, such that

ty ⊢ st, M ′ ⇝ st ′′, M ′′,

it holds that
{T | m!T ϵ ∈ M ′} = {T | m!T ϵ ∈ M ′′},

i.e. the set of stubbed method instances is preserved by a compilation step.

Proof. By induction on the derivation of ty ⊢ st, M ′ ⇝ st ′′, M ′′,
similar to the proof of Lem. 4.2 on well formedness.

All cases except for C-Instance are trivial because the method table
does not change. For C-Instance, let’s denote the set of stubs in M ′

by S ′, that is:
S ′ = {T | m!T ϵ ∈ M ′}.

Since m!T /∈ M ′ and M0 = M ′ + ⟨m!Tϵ, ty ′⟩, we have S0 = S ′ ∪ {T}. By
applying the induction hypothesis to T ty ′′ ⊢ st0, M0 ⇝ st ′0, M1,
we know that the set S1 of stubs of M1 is the same as S0, and M1

is well-formed by Lem. 4.2. Proceeding by applying the induction
hypothesis to compilation of all sti, we get that:

Sn+1 = S0 = S ′ ∪ {T}.

Finally, the only difference between M ′′ and Mn+1 is that the stub
for m!T is replaced by an actual method body. Therefore, we get the
desired property:

S ′′ = Sn+1 \ {T} = S ′.
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Lemma 4.9 (Bisimulation of Related Configurations with Dispatch and
JIT Semantics). For any well-formed method tables M and M ′ where M ′

does not have stubs, any frame stacks F1, F ′
1, and stack typing ∆1, such that

F1, M ▷ F ′
1, M ′ <: ∆1, the following holds:

1. Forward direction:

F1, M→D F2, M
=⇒

∃F ′
2,M ′′,∆ ′

1. F ′
1, M ′ →JIT F ′

2, M ′′ ∧ F2, M ▷ F ′
2, M ′′ <: ∆ ′

1.

2. Backward direction:

F ′
1, M ′ →JIT F ′

2, M ′′

=⇒
∃F2,∆ ′

1. F1, M→D F2, M ∧ F2, M ▷ F ′
2, M ′′ <: ∆ ′

1.

Furthermore, M ′′ is well-formed and does not have stubs.

Proof. By case analysis on the derivation of optimization F1, M ▷

F ′
1, M ′ <: ∆1 and case analysis on the step ( →D for the forward

and →JIT for the backward direction), similarly to the proof of
bisimulation for the dispatch semantics (Lem. 4.5). The only differ-
ence appears in cases where F ′

1, M ′ steps by Disp: these are the only
places where JIT compilation fires and M ′′ might be different from
M ′. As an example, we consider only the case of the forward di-
rection where F1, M →D F2, M steps by Disp, and HOpt0 is built
by OI-Refl, reusing all the notation from Lem. 4.5. Thus, we have
st = st ′ = %i ← %j ? m(%k) : %l, F1 = (E st st) · F, F ′

1 = (E st st ′) · F ′,
∆1 = (tyEty ty) ·∆, and F1, M steps as:

(E st st) · F, M→D (E ′ stb) · (E st st) · F, M,

where E ′ = E[k], T = typeof (E ′), and stb = body(D(M,m,T)). F ′
1, M ′

can step only by Disp, which triggers JIT compilation. According to
the definition of jit from Fig. 4.4, there are two possibilities: either m!T
is already in M ′, in which case M ′′ = M ′, or m!T is not in M ′, in which
case the new method instance gets compiled and added to M ′′.

• In the former case, the proof proceeds exactly as in Lem. 4.5.
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• In the latter case, by Thm. 4.7, we know that M ▷M ′′ and all in-
struction optimizations on M,M ′ are preserved for M,M ′′. There-
fore, we know:

(tyEty ty) ·∆ ⊢M,M ′′ (E st st) · F ▷ (E st st ′) · F ′.

Furthermore, as M ′ is well-formed and does not have stubs by
assumption, M ′′ is also well-formed by Lem. 4.2 and does not
have stubs by Lem. 4.8. Reasoning similarly to Lem. 4.5, we
can see that the body stb of the original method returned by
D(M,m,T) optimizes to the body st ′b of the compiled instance
m!T. Thus, we get that F ′

1, M ′ steps by Disp,

(E st st ′) · F ′, M ′ →JIT (E ′ st ′b) · (E st st ′) · F ′, M ′′,

the resulting configurations are related,

(E ′ stb) · (E st st) ·F, M ▷ (E ′ st ′b) · (E st ′ st ′) ·F ′, M ′′ <: (T ty ′) · (tyEty ty) ·∆,

and M ′′ has no stubs.

Theorem 4.10 (Correctness ot JIT). For any original well-formed method
table M the following holds:

ϵ st, M→∗
D E ϵ, M ⇐⇒ ϵ st, M→∗

JIT E ϵ, M ′,

i.e. program st runs to the final environment E with the dispatch semantics
→D if and only if it runs to the same environment with the JIT-compilation
semantics →JIT .

Proof. This is a corollary of Lem. 4.9. Be reflexivity of the optimization
relation and well-formedness of M, we know: st, M ▷ st, M <: ty,
where ty = I(M, ϵ, st). Since M does not have stubs, the bisimulation
lemma is applicable: if one of the configurations can make a step,
so does the other, and the step leads to a pair of related configu-
rations such that the lemma can be applied again. If the program
terminates and does not err, both sides arrive to final configurations
where environments are guaranteed to coincide by O-Stack.



5 A P P R O X I M AT I N G T Y P E
S TA B I L I T Y S TAT I C A L LY

Chapters 3 and 4 consider type stability as it relates to program
execution: chapter 3 analyzes the state of Julia’s virtual machine after
running package test suites, and chapter 4 models a type-specializing
just-in-time compiler that executes at run time. In this chapter, I set
to approximate the property of type stability for arbitrary Julia code
statically, without running the code in question. I focus only on type
stability but not type groundedness because, as discussed in Chap. 4,
groundedness is enabled by calling type-stable API.

5.1 inferring type stability versus infer-
ring types

Explaining my approach to infer type stability requires a definition of
stability. So far, I approached the definition twice: informally in 2.2.2
and formally in 4.3. The original informal definition does not take into
account the distinction between concrete and abstract types: using this
loophole, any code can be declared type stable because it is always
possible to “predict the type of the output” as Any. Building upon
the formal definition (that does acknowledge the distinction between
abstract and concrete types) I provide another informal definition to
explain intuitions behind this chapter.

Definition 5.1 (Type Stability, Informally). A Julia method is called type
stable if, for any concrete type of the input, it is possible to infer a concrete
type of the return value.

A natural idea for inferring type stability in Julia would be to
formulate it as a forward static analysis: being an abstract or concrete
type is one bit of information that has a known value at the input
(concrete) and should be propagated to the output, possibly changing
on the way.

To test the static analysis idea, consider a positive example first: the
identity function.

56
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� �
function id(x)

x

end� �
It is straightforward to infer that, given any concrete input type, the
return value is also concretely typed: the one bit of information carries
over to the result in one step.

However, another example—the increment function—shows that
the task quickly becomes unwieldy.� �

function inc(x)

x + 1

end� �
Concreteness of the result returned by inc depends on concreteness of
the result of the call to +. In turn, the property of the return type of +
depends on which + method Julia will dispatch to at run time. There
are about two hundred method implementations of + in the standard
library alone, and packages add more. Some of those methods are type
stable (e.g. +(::Int64,::Int64)), and some of them are not (e.g. +(::
Rational{Bool},::Rational{Bool}) 1 ). Therefore, to infer the property
of interest, in general, we need to predict which methods are selected
at run time.

The inc example shows that inferring type stability of Julia code
requires reasoning about multiple dynamic dispatch, which leads to
reasoning about the types of intermediate values rather than only the
concreteness bit. But if there was a tool for computing type information
beforehand, a special-purpose analysis for type stability would not be
needed: it suffices to ask the tool for the type of the return value and
check if that type is concrete. This observation leads to the following
conjecture:

Conjecture 5.1. Inferring type stability of a Julia method statically is no
easier than performing type inference of that method.

1 The type Rational{Bool} represents rational numbers with boolean numerator
and denominator. The type is rarely useful but is allowed as a consequence of the
Bool <:Number subtyping and arithmetic operations on boolean values. In the early
history of Julia, the authors decided to count Bool as a number type because it can
be convenient in some applications.
The reason for the +(::Rational{Bool},::Rational{Bool}) method to be type
unstable is not important, but in a nutshell, Julia has made a questionable design
decision about the return type of +(::Bool,::Bool), which in the current implemen-
tation is Int (see discussion https://github.com/JuliaLang/julia/issues/19168),
and when adding two rational numbers with boolean components, depending on the
values of the summands, you get back either Rational{Bool} or Rational{Int}.

https://github.com/JuliaLang/julia/issues/19168
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A complete type inference algorithm would allow for checking type
stability of Julia code. But should type inference be implemented from
scratch? There are two reasons to not go this way.

1. It is not clear that inferring types for source-level Julia code with-
out changing anything in the language can yield a meaningful
result (more on this see [Chung 2023]). For instance, in the inc

example, a sound return type cannot be much better than Any.

2. Julia already has a built-in type inference engine, which was
modeled as a black box in Chap. 4. This engine is used for code
optimizations. Thus, analyzing type stability based on a custom
type inference algorithm can produce results that diverge from
Julia, misleading the users about potential optimizations. This
would be of limited usage for Julia users.

5.2 an algorithm to infer type stability

5.2.1 High-Level Description

If our predictions for type stability are to align with the Julia implemen-
tation, the analysis should closely model Julia’s run-time behavior, as
described in Chap. 4. The type-specializing JIT-compiler from Chap. 4

makes optimization decisions based on concrete input types with the
help of Julia’s type inference engine. Therefore, the algorithm for
predicting these decisions statically considers all (or as many as pos-
sible, see Sec. 5.3) allowed concrete input types of a method. Fig. 5.1
describes this algorithm at a high level.

Let us consider every step of the algorithm described on Fig. 5.1
and explain its meaning using an example. The list below also assigns
the numbers to each step in the algorithm.

step 1 The input of the algorithm is a Julia method. Methods in
Julia are represented by run-time objects of type Method and can
be manipulated as all other objects (e.g. stored in collections,
responding to field accesses, etc.).

For example, consider the length method from Julia’s standard
library. We can get the corresponding Method object using the
standard @which macro applied to an application of the length

method. This can be done in the Julia REPL (signified by the
julia> prefix).
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Input type
Possibly
abstract

Exists concrete subtype
of the input type

No Method type stable

Julia method

Yes

Run type inference
for the given
concrete type

Inferred type of result concrete? No Method not
type stable

Yes

Figure 5.1: Inferring type stability of a Julia method
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� �
julia> @which length([1,2,3])

length(a::Array) in Base at array.jl:215� �
The output shows that the given length-call will dispatch to the
method defined in the Base module (Julia-speak for the standard
library). The output also shows the location of the method in
the standard library and, most importantly for us, the signature
of the method. In fact, what we see here is a pretty-printed
representation of the Method object representing a particular Julia
method.

step 2 The first task of the algorithm is to get the input type of the
given method. This is possible through querying the sig field of
the method object.

Building on the example above, we can get the signature of the
length method as follows:� �

julia> m = @which length([1,2,3]);

julia> m.sig

Tuple{typeof(length), Array}� �
A signature of a method contains the special singleton function
type (typeof(...)) as the first component, and the rest is (easy to
convert to) the type of the input — an n-tuple. In this example,
the type of the input is 1-tuple, consisting of the existential array
type Array{T,N} where T where N abbreviated simply as Array2.

step 3 The input type can be either concrete, which, in Julia, means
that there can be no proper subtypes of that type, or abstract.
In either case, the choice on the current step will enter the loop
at least once, because for concrete input type, the check holds
once trivially (e.g. there is exactly one concrete subtype of the
concrete type Int — it is Int itself).

If the input type is abstract, we need a procedure enumerating
all concrete subtypes of it. An implementation for this procedure
is discussed below (Subsec. 5.2.2), but it suffices to treat is as a
black box for now.

In the case of the length method, the input type, Array, is an
existential type and hence abstract. Therefore, the enumeration
procedure should have yielded a concrete subtype of Array. As-
sume that the concrete type is Array{Float64,1}.

2 A user can always look under the abbreviation using the dump function.
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step 4 Running Julia’s type inference for a given method and a given
concrete input type is done by calling Julia’s standard code_typed

function. The only issue with the function is that it expects a
function object as a part of the input, not a method object. But
getting from a method to the corresponding function is possible
using the signature field discussed above, and, in particular, the
singleton function type contained in the first component of the
sig field: accessing the single function object using the function
type is possible via the instance field.

Running type inference for the length method and the concrete
input type Array{Float64,1} could be done as shown on Fig. 5.2.
The return value is an array of CodeInfo objects that represent
the type-annotated method bodies of all methods that a call with
the given input type could dispatch to (for a concrete input type
and no ambiguities in method definitions, the resulting array
always contains exactly one element). Method bodies are trans-
formed into a lower-level intermediate representation, similar to
the one discussed in Subsec. 2.2.1 and Chap. 4. In the running
example, the method body contains a single call to an intrinsic
Julia function that is known to return a value of type Int64.� �
julia> code_typed(m.sig.parameters[1].instance,

(Array{Float64, 1},),
optimize=false)

1-element Vector{Any}:
CodeInfo(

1 - %1 = Base.arraylen(a)::Int64
+-- return %1
) => Int64� �

Figure 5.2: Running Julia’s built-in type inferencer

step 5 Concreteness of the inferred return type is checked with the
standard Julia isconcretetype predicate. In the running example,
for the concrete input type Array{Float64,1}, the return type of
length is inferred to be Int64, which is a concrete type. Following
the second decision element on Fig. 5.1, we get back to the start
of the loop and try another concrete subtype of the input type,
if there is any.

There are two main auxiliary procedures that the algorithm relies
on: enumeration of concrete subtypes of a given input type and type
inference over a method with the given input type. The latter can
be fully outsourced to Julia itself, while the former requires separate
consideration.
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5.2.2 Enumerating Concrete Subtypes

5.2.2.1 Julia’s subtypes method

On step 3 of the algorithm (Subsec. 5.2.1), we need to generate a
concrete subtype of the input type. This task does not have a direct
implementation in Julia’s standard library. The closest counterpart
that Julia provides is the subtypes method to query declared subtypes
of a given nominal type. For example,� �

julia> subtypes(Signed)
6-element Vector{Any}:
BigInt
Int128
Int16
Int32
Int64
Int8� �

� �
julia> subtypes(AbstractSet)
5-element Vector{Any}:
Base.IdSet
Base.KeySet
BitSet
Set
Test.GenericSet� �

The challenge here is that Julia’s subtype relation is richer than the
nominal type hierarchy. For example, if a method declares the type of
its input as� �

Union{AbstractSet, AbstractRange}� �
then the method can be called with an argument of type Set{Int},
and, therefore, it should be possible to discover such a type following
the algorithm on Fig. 5.1. However, it is not possible with the subtype

method alone: from subtypes’ point of view, the union type above has
no subtypes:� �

julia> subtypes(Union{AbstractSet, AbstractRange})

Type[]� �
(the query returns an empty array of elements of the type Type). There-
fore, structural types such as unions, tuples, and existential types,
need a special treatment.

The subtypes method does not cover the whole subtyping relation
not only because it cannot work with structural types but also because
it is limited to direct declared subtypes. For example, in the subtype
chain Int <: Signed <:Integer, subtypes reports only Int <: Signed and
Signed <:Integer but not Int <: Integer. Thus, we have to build the
transitive closure manually.

In the following subsection, I show how to generalize the subtypes

method to a method I call direct_subtypes that produces direct sub-
types for a Julia type of any form. Then, the transitive closure men-
tioned above can be obtained by iterating direct_subtypes applications,
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starting from the signature of a method we are checking for type sta-
bility.

After generating all subtypes of a given type, it is possible to filter
for concrete subtypes using the built-in Julia predicate isconcretetype.
This completes the task of enumerating concrete subtypes and the
description of the algorithm as presented on Fig. 5.1.

5.2.2.2 Enumerating Direct Subtypes

My goal in this section is to define a general utility generating direct
subtypes of a given type, which I call direct_subtypes. This is done
by case analysis on the existing Julia kinds (i.e., types of types) and
expressed with multiple methods of the direct_subtypes function.
The implementation largely follows from the description of Julia’s
subtyping relation given in [Zappa Nardelli et al. 2018].

The direct_subtypes utility can be defined, for the most part, via
multiple dispatch using Julia’s kind system. The only special sort
of types that does not have a dedicated kind is the tuple type. In
particular, although tuple types fall under the Datatype kind, the
standard subtypes method cannot help with tuple types as much as
it can with user-defined datatypes. For example, both Integer and
Tuple{Integer,Integer} are datatypes, but subtypes returns an empty
array of types for the latter.

union types Unions in Julia have the kind Union and a form of
Union{A,B,C} with arbitrary number of arguments A, B, C. Direct
subtypes of Union{A,B,C} is the following list of types: [A,B,C].

existential types Existential types in Julia have the kind UnionAll

and a form of t where T, e.g. Vector{T} where T, commonly abbre-
viated as Vector. Every where-bound type variable has associated
upper and lower bounds with default values Any and Union{}

(the top and bottom types), respectively. Direct subtypes of an
existential type are all instantiations of its variable allowed by
the bounds. In particular, we need to compute all subtypes of
the upper bound, filter out those not satisfying the lower bound,
and use the resulting set of types to instatiate the variable with.

For example, consider the Vector{T} where T<:Signed type. All
subtypes (not only direct or concrete) of Signed are: BigInt,

Int128,Int16, Int32, Int64,Int8. Therefore, all direct subtypes
of the vector type in question are:
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� �
Vector{BigInt}

Vector{Int128}

Vector{Int16}

Vector{Int32}

Vector{Int64}

Vector{Int8}� �
datatypes In general, non-parametric nominal types defined using

the primitive (e.g. Int64) or struct (e.g. Pair) qualifiers, can
be processed using the subtypes method (see examples in the
previous section).These also include fully-instantiated parametric
types (e.g. AbstractSet{Int}).

tuple types Tuples play a key role in method dispatch because
method signatures and arguments are represented with tuple
types. As the subtypes method cannot work with tuples (for any
input tuple, it returns an empty array), tuple types are unfolded
according to the following rule:

• direct subtypes of the 0-tuple type is an empty set;

• direct subtypes of a 1-tuple type are 1-tuples of the direct
subtypes of its single type argument;

• direct subtypes of an n-tuple type are a Cartesian product
of direct subtypes of its first component and direct subtypes
of the last n− 1 components.

For example, for an abstract type A with exactly two de-
clared subtypes B and C, the set of direct subtypes of Tuple{
A,A} is� �

Tuple{B,B}

Tuple{B,C}

Tuple{C,B}

Tuple{C,C}� �

5.3 search space and approximation

The algorithm as presented on Fig. 5.1 is an instance of a tree search
algorithm: it traverses the subtype tree starting from a given node and
tries to find a leaf on the tree that violates a given property. The nodes
of the tree are discovered dynamically—using the direct_subtypes

utility. With the grammar of types and subtype relation as rich as
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Julia’s, the search may diverge. In this section, I show how to control
the search space of the algorithm.

5.3.1 The Problem: Underconstrained Types

There are several groups of abstract types that have “too many” sub-
types to explore and, therefore, lead to issues with the subtype tree
exploration; I call such types underconstrained. Most common groups
of underconstrained types are as follows.

1. Nominal types declared close to the top of the subtype lattice
have too many (even if finite) concrete subtypes to explore in a
reasonable time. The most prominent example is the top type
(Any) itself. The top type in Julia 1.8 standard library has 567

direct subtypes, most of which are abstract and, therefore, have a
number of direct subtypes of their own, etc., so it is not feasible
to track the whole tree during the search.

2. Existential types whose variable’s upper bound is an under-
constrained type. Especially large search space is produced by
existentials with Any as the upper bound (unbounded existen-
tials, for short). Note that out of the 567 direct subtypes of Any,
quite a few types are unbounded existentials (e.g. AbstractSet,
AbstractArray), which makes the enumeration of all subtypes of
Any infeasible.

3. The combination of underconstrained existential types and para-
metric types produces infinite subtrees because any recursive
instantiation of the parametric type under an underconstrained
existential will still be a subtype of the existential. These cannot
be explored in finite time, however long. For example, consider
the length method from before: its input type is an existential
type on top of the parametric Array type, which, among others,
has the following direct concrete subtypes:

• Array{Int,1}

• Array{Array{Int,1},1}

• Array{Array{Array{Int,1},1},1}

• etc.

Too large (sometimes infinite) search space is the reason why, in
general, the algorithm builds only an approximation of the answer to
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a type stability inference query. In the rest of the section, I describe
three concrete ways to control the search space to avoid looping and
excessive search time.

5.3.2 Fuel

The simplest heuristic to limit the number of nodes to explore on the
subtype tree is to put an arbitrary upper bound on that number—
the idea commonly referred to as fuel. The amount of fuel may be
determined empirically, for example, taking the maximum number of
types explored during a successful type stability check in a corpus of
code.

Fuel can be interpreted broadly. The approach currently used in my
stability inference algorithm, is to limit the number of types discovered
during the tree search. Alternatively, one could limit the number of
concrete types explored, or the number of applications of parametric
types during one search, etc. However, when picking the strategy to
account for the fuel, caution is needed. For example, counting the
number of concrete types, and, therefore, the number of actual checks,
may seem more appealing, but, in general, the algorithm may diverge
before getting to a single concrete type. An example of the issue may
be found through any on the corner cases listed in Subsec. 5.3.1, but the
issue is especially easy to see with the corner case 3, where a subset
of concrete subtypes is produced by an infinite chain of recursive
applications of a parametric type.

In the type stability inference algorithm, the fuel parameter is used
primarily to detect cases where the search space explodes. This effec-
tively allows for a constructive definition of underconstrained types
described informally in Subsec. 5.3.1: if the tree generation for the
given type runs out of fuel, the type is considered underconstrained,
and the enumeration of subtypes is terminated. In this case, the algo-
rithm can employ other techniques for approximating type stability,
as described below.

5.3.3 Sampling Concrete Types

The essence of the issue with diverging search is that we start at a too
high point in the subtype lattice and are unable to reach concrete types
at the bottom of the lattice. A natural idea to overcome the issue is to
start from low points in the lattice instead, and in particular—from
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concrete types. Since the number of concrete types is infinite (see, for
example, corner case 3 in Subsec. 5.3.1), in order to realize the idea,
one needs to collect a sample of concrete types. The sample can then
be stored as a database that is available at the type-stability inference
time.

Regarding the idea of starting from the bottom of the lattice, there
are two challenges we need to address.

1. Which concrete types to put in the database? We could use some fixed
universe of Julia types, such as all types defined in Julia packages.
This approach breaks in the presence of parametric types, which
require a type argument to become a valid type. This brings back
the issue described in corner case 3 of Subsec. 5.3.1.

As a strategy for collecting concrete Julia types, I propose an ap-
proach based on the type-stability tracing framework discussed
in Chap. 3. In particular, I run test suites of popular Julia pack-
ages and record which concrete types are used to instantiate
methods. This way, the sample contains a variety of concrete
types relevant to specific packages, including fully instantiated
parametric types.

2. At which moment start using the database? One obvious idea is,
when noticing that fuel runs out during enumeration, to termi-
nate the search and start sampling as if the search was never
started. In that case, the types coming from the database should
be checked for being in the subtype relation with the method’s
input type (can be done using Julia’s built-in <: predicate). The
issue is: if the database does not contain (many) such subtypes,
we still have the problem with not getting concrete types to
check type stability against.

In practice, the most frequent reason for diverging enumeration
of types is the Any type — the supertype of all types, which is
the default for unannotated method parameters and unbounded
existentials. Using this observation, I propose to mold enumer-
ation and sampling as follows. The algorithm switches from
the former to the latter when it hits Any. In particular, when
the enumeration procedure calls direct_subtypes on Any, the util-
ity returns the types from the database (up to a certain bound
if the database is too big). After that, the algorithm will pro-
ceed as usual without any other change. Eventually, either the
enumeration procedure runs out of fuel, or it finishes with a
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success. Overall, this approach seems to fit better with the idea
to serve both, unannotated method parameters and unbounded
existentials.

There is one technical obstacle to using a sample of types seen
elsewhere in the current Julia session. Recovering types from other
sessions requires an environment where the name of the type can be
successfully resolved. Concretely, to recreate a necessary environment
means installing some Julia packages. Note that the obstacle of recre-
ating environments for types does not come up with the top-down
search described earlier, because the subtypes method applied itera-
tively, as discussed in Subsec. 5.2.2, always only discovers only the
types visible in the current session.

The obstacle can be solved if the database bears enough of the
provenance information for every type. Such information makes using
the type possible, but it depends whether recreating a necessary envi-
ronment is desirable. For instance, if network is unavailable, installing
extra Julia packages may not be possible. In such cases, the algorithm
can filter and employ only the types defined in the currently loaded
packages as well as the standard library, which is always available in
Julia.

As an example of the sampling approach, I publish a database3 with
concrete Julia types used to instantiate methods during test suite runs
in the 10 popular packages listed in Table 3.2. The database contains
the necessary type provenance information and can be successfully
loaded by the tool.

5.3.4 Type Inference With Abstract Types

So far, we assumed that to determine type stability of a method, it
is necessary to run Julia’s type inferencer on that method with all
possible concrete input types. Indeed, this naturally follows from the
definition of type stability defined formally in Chap. 4. However, to
solve the problem of search space explosion, the assumption can be
revised.

A usual definition of type stability (e.g. the formal one I give in
Def. 4.4) has the form of an implication: if a condition (a type being
concrete) applies to the input type, then the same condition applies to
the type of the output. Clearly, relaxing the premise of the implication,

3 https://github.com/prl-julia/julia-type-stability-checker-data/blob/
0ef57a6/types-database/types.csv

https://github.com/prl-julia/julia-type-stability-checker-data/blob/0ef57a6/types-database/types.csv
https://github.com/prl-julia/julia-type-stability-checker-data/blob/0ef57a6/types-database/types.csv
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i.e. the part where we ought to provide a concrete input type, and
making no assumption about the input type instead, leads to a stricter
statement or, in other words, a subset of the Julia methods that would
normally be considered type stable.

Relaxing the definition of type stability as described makes for an
easier task and identifies a special group of methods I call type-constant
methods. Those methods hold two independent properties:

• the type of the input does not impact the type of the outut,

• the output type can be inferred as concrete.

Type-constant methods are a proper subset of all type-stable methods.
The idea of type-constant methods allows another solution for the

search space problem. In particular, before trying to solve the poten-
tially hard problem of inferring type stability using concrete input
types, the algorithm checks whether the given method is type constant
with a single call to the type inferencer.

In order to decide the easier task, the algorithm still needs to run
Julia’s type inferencer, and for that, some input type should be pro-
vided. The obvious candidate for such a type is the one taken directly
from the method signature. Such input type, even if abstract, also
makes sure that Julia will dispatch the same method that is currently
analyzed, and it is the most general (w.r.t. subtype lattice) such type.

Getting back to the running example in Subsec. 5.2.1 with the length

method, let us call Julia’s type inferencer, as shown on step 4 of
the algorithm (Fig. 5.2). But instead of the concrete type used in the
example, we supply the most general type for that method (i.e. the
type provided in the method signature) — the existential Array type:� �

julia> code_typed(m.sig.parameters[1].instance,

(Array,),

optimize=false)

1-element Vector{Any}:

CodeInfo(

1 - %1 = Base.arraylen(a)::Int64

+-- return %1

) => Int64� �
Hence, the type inferencer is able to infer the concrete Int64 type,
which is what we expect for the output type of a length method.
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5.4 parameters and outcomes of the algo-
rithm

After updates as described in the previous section, the algorithm
receives two parameters: the amount of fuel to use to traverse the
subtype lattice searching for concrete types, and whether to use a
type database for sampling (and if so, the database itself as one more
parameter).

Possible outcomes of the updated algorithm are as follows.

1. The method is type stable through one of the three possible
options.

• The method is type stable if running Juila’s type inference
with declared input types computes a concrete type of the
output (Subsec. 5.3.4).

• If the type database is not in use, then all known concrete
types acceptable by the method were used to run Juila’s
type inferencer, and every time the result type computed
was concrete.

• If the type database is in use, then a subset of all known
concrete types acceptable by the method were used to run
Juila’s type inferencer, and every time the result type com-
puted was concrete. The subset is defined by the enumera-
tion procedure, which fills in types from the database every
time it hits Any (Subsec. 5.3.4).

2. The method is definitely not type stable and a counterexample
is provided, i.e. a concrete type that makes the method return a
value of type that cannot be inferred as concrete ahead of time.

3. Cannot decide type stability because the algorithm ran out of
fuel while running the enumeration (no matter whether it was
enhanced with a type database or not).

5.5 evaluation

In Chap. 3, I describe a dynamic type stability analysis of a corpus of
open-source Julia packages. The analysis is based on executing test
suites of the packages and inspecting the resulting method instances
collected from the internal state of the virtual machine.
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To evaluate the algorithm proposed in the present chapter, I run
my implementation of the algorithm4 to statically infer type stability
of methods in the same 10 packages discussed in Chap. 3. The full
list of packages is given in Table 3.2, which also serves as a reference
point in the discussion below. It is not possible to directly compare
the results because the two analyses capture different sets of methods,
but some similarities are to be expected.

The numbers for methods grouped by the three possible outcomes
(Sec. 5.4) are provided in the Appendix B, and here we present a
graphical representation of those numbers —Fig. 5.3. The numbers are
computed by running the tool implementing the algorithm without a
type database (left column of every pair of columns on Fig. 5.3) and
with the database (right column) for each of the 10 packages. Every
package name on the figure has the number of methods inspected
below it.

Figure 5.3: Inferring Type Stability for the 10 popular Julia packages: without
(left bars) and with (right bars) sampling

On average over the 10 packages, the analysis identified 54% of
methods as type stable without sampling, and 69% of methods as
type stable with sampling. The last figure comes close to the average
72% of type-stable methods traced via dynamic analysis. As expected,

4 https://github.com/prl-julia/julia-type-stability-checker

https://github.com/prl-julia/julia-type-stability-checker
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our static approach is more conservative in granting the type stability
badge because it explores more possibilities for the inputs than what
actually occurs in test suites. These numbers also lead us to believe that
methods which make the algorithm run out of fuel in the sampling
mode are largely type unstable. At least, the sum of such methods and
definitely unstable methods (31%) is just over the number of unstable
methods identified by tracing in Chap. 3 (28%).

The package having the highest percentage of type-stable methods
remains the same as with the dynamic analysis — Genie. This is an
encouraging result, as sometimes static analysis tools report too many
false positive to be viable in practice. The same is not necessarily an
issue with our approach, as the present analysis of Genie shows: a
package that does not have type stability issues in practice is also
reported as such by the tool.

The least type-stable package, according to the dynamic analysis
is Knet, and it is also identifiable on Fig. 5.3. The only difference is
that on the figure most of the methods in Knet are marked as NoFuel
(80%) instead of Unstable (the NoFuel metrics corresponds to the third
of the three possible outcomes listed in Sec. 5.4). This aligns with the
observation above that, after sampling is turned on, NoFuel metrics
should, perhaps, be interpreted as Unstable.

Similarly to Knet, DifferentialEquations (called DiffEq for brevity on
the figure) holds a substantial number of methods marked NoFuel —
76% (and the remaining 24% are Stable). This is a significant difference
from the results of dynamic analysis where the package comes as 70%
stable. A probable reason for this is a considerably different sample of
methods analyzed: due to the structural peculiarities of the package,
which is organized as several subpackages, the current implementation
only processed a portion of methods (namely, those belonging to one
subpackage DiffEqBase). The methods analyzed here constitute about
1/5 of methods captured during dynamic analysis.

DifferentialEquations shows the only significant increase (more than
25 percentage points) in the number of methods not identified as
stable in comparison to the dynamic analysis. All other packages have
this number increased in less than 20 percentage points.

Sampling makes the largest difference for packages that have more
NoFuel-methods, which is to be expected. For example, 20 or more
percentage points increase in the number of stable methods due to
sampling is found in least type-stable packages: Knet, DifferentialEqua-
tions, Gen, and Flux. Unexpected is that finding counterexamples, i.e.
increasing the number of unstable methods, does not always strongly
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correlate with the number of NoFuel-methods. For example, adding
sampling for DifferentialEquations (76% NoFuel initially) gives an
increase in unstable methods by 3 percentage points, whereas sam-
pling for JuMP (53% NoFuel initially, just above the median value of
46%) gives an increase in unstable methods by 7 percentage points.
Adding sampling does produce non-neglegible number of counterex-
amples but, perhaps, could be improved using type databases created
specifically to reflect the use cases of a package under analysis.



6 R E L AT E D W O R K

Type stability is a consequence of Julia’s compilation strategy put
into practice. The approach Julia takes is new and simpler than other
approaches to efficient compilation of dynamic code.

Attempts to efficiently compile dynamically dispatched languages
go back nearly as far as dynamically dispatched languages them-
selves. Atkinson [1986] used a combination of run-time-checked user-
provided types and a simple type inference algorithm to inline meth-
ods. Chambers and Ungar [1989] pioneered the just-in-time model of
compilation in which methods are specialized based on run-time in-
formation. Hölzle and Ungar [1994] followed up with method inlining
optimization based on recently observed types at the call site. Rigo
[2004] specialized methods on invocation based on their arguments,
but this was limited to integers. Similarly, Cannon [2005] developed a
type-inferring just-in-time compiler for Python, but it was limited by
the precision of type inference. Logozzo and Venter [2010] extended
this approach with a more sophisticated abstract interpretation-based
inference system for JavaScript.

At the same time, trace-based compilers approached the problem
from another angle [Chang et al. 2007]. Instead of inferring from
method calls, these compilers had exact type information for variables
in straight-line fragments of the program called traces. Gal et al. [2009]
describes a trace-based compiler for JavaScript that avoids some pitfalls
of type stability, as traces can cross method boundaries. However, it is
more difficult to fix a program when tracing does not work well, for
the boundaries of traces are not apparent to the programmer.

Few of these approaches to compilation have been formalized. Guo
and Palsberg [2011] described the core of a trace-based compiler with
two optimizations, variable folding and dead branch/store elimination.
Myreen [2010] formalized self-modifying code for x86. Finally, Flück-
iger et al. [2018] formally described speculation and deoptimization
and proved correctness of some optimizations; Barriere et al. [2021]
extended and mechanized these results.

The Julia compiler uses standard techniques, but differs consider-
ably in how it applies them. Many production just-in-time compilers
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rely on static type information when it is available, as well as a combi-
nation of profiling and speculation [Duboscq et al. 2013; Würthinger
et al. 2012]. Speculation allows these compilers to perform virtual
dispatch more efficiently [Flückiger et al. 2020]. Profiling allows for
tuning optimizations to a specific workload [Xu et al. 2009; Ottoni
2018], eliminating overheads not required for cases observed during
execution. Julia, on the other hand, performs optimization only once
per method instance. This presents both advantages and issues. For
one, Julia’s performance is more predictable than that of other compil-
ers, as the warmup is simple [Barrett et al. 2017]. Overall, Julia is able
to achieve high performance with a simple compiler.



7 C O N C L U S I O N S

In this dissertation I describe a program property called type stability
and the ways it is employed in the Julia programming language. To
that end, I make several contributions to facilitate better understanding
of the language itself and, more generally, the use of run-time type
information in dynamic, just-in-time compiled languages.

First, in Chap. 3, I show that the type stability property is widely
exercised in open-source Julia packages. This finding may come as
a surprise given that there is no automated tool exists to check the
property. Perhaps, much of the Julia code is type stable because it is
the most natural way to express algorithms in the language. I show
that certain ubiqituos code patterns, e.g. type-constant functions or
generic transformations, naturally lead to type-stable code. On the
other hand, I point out certain code patterns, especially those coming
from traditional object-oriented languages, that produce type-unstable
code. These are relatively well known in the Julia community and
warned about in the language manual, which helps maintaining high
percentage of type-stable code overall. Most encouraging is that Julia
packages aimed at performance-critical application have explicit notes
about trying to abide by the property of type stability.

Second, my formal model of the Julia JIT in Chap. 4 helps to pinpoint
the relationship between type stability and runtime optimizations.
The Jules virtual machine recognizes code that I call type grounded
and that can only rely on type-stable APIs, and turns it into the
most optimized version that I call full devirtualization. In practice,
not every algorithm can be easily programmed in a type grounded
fashion, so the property may be too demanding on the first glance. Yet,
about half of the code analyzed in Chap. 3 is in fact type grounded.
Conceptually, the idea behind type groundedness is that it provides a
radical reference point that facilitates the argument for type stability.

Lastly, in Chap. 5, I build an approach to understanding type stabil-
ity in terms of the source language and without running the program.
The motivation for this task comes from the fact that the formal model
in Chap. 4 studies type stability on the level of an intermediate repre-
sentation inspired by Julia’s own, but it is unlikely to be an optimal
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model for a casual Julia programmer. The approach in Chap. 5 reuses
existing Julia tools like the type inferencer and implementation of
the subtyping relation. The idea of reusing the key Julia components
ensures that the analysis always agrees with what Julia’s optimizer
does at run time. The analysis can be run by a package author at the
development time or as a part of their continuous integration setup,
and does not cost the end-user any performance.

7.1 future work

evaluation on a large-scale application The evaluation of
the type stability approximation approach has been done on a small set
of popular Julia packages. It is hard to predict how a package will be
used, and, by extension, what type instabilities will matter in practice.
Therefore, a better aim for the evaluation may be a Julia application
that has a more clear cost promise to the user. Currently, I am working
with an industrial company that builds such an application, which
consists of about 200K lines of Julia code. The application has a clear set
of benchmarks and a constant monitoring of performance regressions.
This may be a fruitful setting for tailoring the approximation tool and
ideas behind it (for example, the way types database is assembled).

a tool for fixing type instabilities The approach and tool
described in Chap. 5 can serve as a bug catching tool if run on every
commit in a performance-oriented project to signal any regression in
type stability of the code. I think that the bug catching tool can be
turned into a bug fixing one. Indeed, there are several recipes in the
Julia manual that help to fix type instabilities but none of them were
implemented as a tool, to the best of my knowledge. A tool to fix
type instabilities may be a good extension for the current tool simply
signaling about those instabilities.

garbage code collection While not directly connected to type
stability, another problem following from Julia’s aggressive approach
to type specialization (besides sudden performance regressions due
to type instabilities) is code bloating. The formal model of the JIT in
Chap. 4 shows how the method table can grow indefinitely during
program execution. Although not an issue in the formal setting, it can
very well lead to suboptimal performance even in type-stable code. A
reasonable extension of the current work relating performance and
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type stability would be a study of performance implications of the
type specialization strategy.
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A T Y P E S TA B I L I T Y G R A P H S F R O M
E M P I R I C A L A N A LY S I S
( S U B S E C . 3 . 3 . 1 )

This appendix contains graphs similar to the ones described in Sub-
sec. 3.3.1 for all 10 packages discussed in Chap. 3. There are 6 graphs
per package: the top two show the relationship between the method
size and stability (left) or groundedness (right); the other four graphs
connect the two type-related properties with control-flow features: the
number of gotos and the number of returns in a method instance.

Note that the bottom four graphs for every package are different
from the top two in that they group method instances, not methods.
Therefore, the bottom four graphs have all data bins either at level
OY = 0 or 1, because we always know whether a method instance
is stable (grounded) or not. The change comes from the fact that the
control-flow features in question depend on compiled code and the
way it was optimized: e. g., an if true in a method can be optimized
away during compilation.
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package: differentialequations

Figure A.1: Stability (left, OY axis) and groundedness (right, OY) by method
size (OX)

Figure A.2: Stability (left, OY axis) and groundedness (right, OY) by number
of gotos in method instances (OX)

Figure A.3: Stability (left, OY axis) and groundedness (right, OY) by number
of returns in method instances (OX)
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package: flux

Figure A.4: Stability (left, OY axis) and groundedness (right, OY) by method
size (OX)

Figure A.5: Stability (left, OY axis) and groundedness (right, OY) by number
of gotos in method instances (OX)

Figure A.6: Stability (left, OY axis) and groundedness (right, OY) by number
of returns in method instances (OX)
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package: gadfly

Figure A.7: Stability (left, OY axis) and groundedness (right, OY) by method
size (OX)

Figure A.8: Stability (left, OY axis) and groundedness (right, OY) by number
of gotos in method instances (OX)

Figure A.9: Stability (left, OY axis) and groundedness (right, OY) by number
of returns in method instances (OX)
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package: gen

Figure A.10: Stability (left, OY axis) and groundedness (right, OY) by method
size (OX)

Figure A.11: Stability (left, OY axis) and groundedness (right, OY) by number
of gotos in method instances (OX)

Figure A.12: Stability (left, OY axis) and groundedness (right, OY) by number
of returns in method instances (OX)
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package: genie

Figure A.13: Stability (left, OY axis) and groundedness (right, OY) by method
size (OX)

Figure A.14: Stability (left, OY axis) and groundedness (right, OY) by number
of gotos in method instances (OX)

Figure A.15: Stability (left, OY axis) and groundedness (right, OY) by number
of returns in method instances (OX)
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package: ijulia

Figure A.16: Stability (left, OY axis) and groundedness (right, OY) by method
size (OX)

Figure A.17: Stability (left, OY axis) and groundedness (right, OY) by number
of gotos in method instances (OX)

Figure A.18: Stability (left, OY axis) and groundedness (right, OY) by number
of returns in method instances (OX)
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package: jump

Figure A.19: Stability (left, OY axis) and groundedness (right, OY) by method
size (OX)

Figure A.20: Stability (left, OY axis) and groundedness (right, OY) by number
of gotos in method instances (OX)

Figure A.21: Stability (left, OY axis) and groundedness (right, OY) by number
of returns in method instances (OX)
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package: knet

Figure A.22: Stability (left, OY axis) and groundedness (right, OY) by method
size (OX)

Figure A.23: Stability (left, OY axis) and groundedness (right, OY) by number
of gotos in method instances (OX)

Figure A.24: Stability (left, OY axis) and groundedness (right, OY) by number
of returns in method instances (OX)
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package: plots

Figure A.25: Stability (left, OY axis) and groundedness (right, OY) by method
size (OX)

Figure A.26: Stability (left, OY axis) and groundedness (right, OY) by number
of gotos in method instances (OX)

Figure A.27: Stability (left, OY axis) and groundedness (right, OY) by number
of returns in method instances (OX)
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package: pluto

Figure A.28: Stability (left, OY axis) and groundedness (right, OY) by method
size (OX)

Figure A.29: Stability (left, OY axis) and groundedness (right, OY) by number
of gotos in method instances (OX)

Figure A.30: Stability (left, OY axis) and groundedness (right, OY) by number
of returns in method instances (OX)



B DATA F O R E VA L U AT I O N O F T H E
T Y P E S TA B I L I T Y
A P P R O X I M AT I O N A LG O R I T H M
( S E C . 5 . 5 )

The tool implementing the algorithm from Chap. 5 has two technical
limitations, in particular:

• The tool relies on Julia’s type checker, which may fail on some
inputs for unclear reasons (probably a bug). This rarely happens:
for the whole corpus it failed on two methods.

• Generic methods in Julia, e.g.� �
function length(v::Vector{T}) where T

...

end� �
are represented internally in a different ways than usual methods,
e.g.� �

function length(v::Vector{T} where T)

...

end� �
(notice that the where clause is now inside the parenthesis). Cur-
rently, the tool is only suited to process the latter form, but not
the former. In our corpus, an average package contains 14% of
generic methods, which our tool currently cannot process. This
limitation will be lifted in a future version of the tool.

Table B.1 contains absolute numbers of the methods processed by
the tool. First four numeric columns: Methods, TyChkErr, Generic,
MethodsOK are related by the following formula:

MethodsOK = Methods − TyChkErr − Generic,

which acknowledges the limitations mentioned above. The rest of
columns are divided into two groups, three columns each. In a row of
each group the numbers sum up to the number from MethodsOK in
the same row.
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Table B.1: Absolute numbers for methods analyzed with the type stability
approximation algorithm
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Table B.2: Percentages for methods analyzed with the type stability ap-
proximation algorithm. The last two columns are expressed in
percentage points.
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