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Jan Vitek
Purdue University

Abstract Writing safe and correct concurrent programs is a notoriously
error-prone and difficult task. In real-time computing, the difficulties are
aggravated by stringent responsiveness requirements. This paper reports on
three experimental language features that aim to provide atomicity while
bounding latency. The context for our experiments is the real-time extension
of the Java programming language.

1.1 Introduction

Adding concurrency to any software system is challenging. It entails a
paradigm shift away from sequential reasoning. Programmers must reason
in terms of the possible interleavings of operations performed by the differ-
ent threads of their program. This shift affects all aspects of the software
lifecycle. During development, synchronization commands must be added to
prevent data races. During verification and analysis, more powerful tech-
niques must deployed to validate code. During testing, code coverage metrics
must be revisited. Lastly, debugging becomes more complex as bugs become
harder to reproduce. Aiming to simplify the task of writing correct concurrent
algorithms, Herlihy and Moss proposed the idea of transactional memory, an
alternative to lock-based mutual exclusion [8] that ensures atomicity and iso-
lation. Atomicity means that either all of a given transaction’s updates will
be visible or none will. Isolation means that a transaction’s data will not
be observed in an intermediate state. While transactional memory has been
studied extensively for general purpose computing, real-time systems have
their own set of constraints. In particular, providing bounds on the execution
time of any code fragment is key to being to ensure that a real-time task will
meet its deadline and that a set of tasks is schedulable.
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The tension between concurrency and real-time has been studied exten-
sively. Practitioners are trained to keep critical sections short and to enforce
strict programming protocols to avoid timing hazards. This requires a thor-
ough understanding of the program’s control flow. Unfortunately, the global
view of the program required by these approaches does not mesh with mod-
ern software engineering practices which emphasize component-based systems
and code reuse. The data abstraction and information hiding principles that
are key to reusability in object-oriented programming tend to obscure the
control flow of programs. Consider the Java code fragment:

synchronized ( obj ) { obj.f = tgt.get(); }

Ensuring that the critical section is short requires non-local knowledge. The
programmer must be able to tell which method is invoked in the call to get(),
this in turn depends on the class of the object referenced by variable tgt.
The question whether acquiring a lock on obj is sufficient is tricky too. It
depends on which shared memory location are accessed by get(). Real-time
scheduling theory refers to the time spent in a critical section as blocking time.
This is the time a, possibly higher-priority, thread may have to wait until it
can acquire the lock on obj and execute. For predictability the blocking time
has to be bounded (and preferably small). A transactional memory equivalent
of the above code, with appropriate language support, would be:

atomic { obj.f = tgt.get(); }

The difference with the lock-based code is that it is not necessary for the
programmer to specify a lock. Instead, it is up to the implementation to en-
sure atomicity and isolation of all of the operations performed by the critical
section. Much like in a database, if two atomic sections attempt to perform
conflicting changes to the memory, one of them will be aborted, its changes
undone, and rescheduled for execution. The software engineering benefits of
transactional memory are striking, especially in an object-oriented setting
where it is often difficult to know which locks should be acquired to protect
a particular sequence of memory operations and method invocations. The
main disadvantage lies in the need to reexcute aborted transactions which
entails maintaining a log of memory updates. Unless one can provide a hard
bound on the number of aborts and on all of the implementation overheads,
the approach may not be of use in a real-time context.

The notion of adding transactional facilities to a programming can be
traced back all the way to Lomet [13]. As mentioned above, Herlihy and
Moss introduced the concept of software transactional memory [8, 19], and
were among the many to provide implementations for Java and other lan-
guages [7, 6]. Bershad worked on short atomic sections [4, 3] for performing
compare-and-swaps without hardware support. Anderson et al. [1] described
lock free objects for real-time systems, but did not explore compiler support.
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Welc et al. investigated the interaction of preemption and transactions on a
multi-processor [22], but did not provide any real-time guarantees. Finally,
Rigneburg and Grossman have used similar techniques to the ones developed
here to add transactions to the Caml language on uniprocessors [16].

1.2 Preemptible Atomic Regions for Uniprocessor
Systems

The first concurrency control abstraction we will review is the preemptible
atomic region (PAR) introduced by Manson, Baker, Cunei, Jagannathan,
Prochazka, Xin and Vitek in [14]. This work was done within the Ovm [2]
project that implemented the first open source virtual machine for the Real-
Time Specification for Java (RTSJ) [5].

PARs are a restricted form of software transactional memory that pro-
vide an alternative to mutual exclusion monitors for uniprocessor priority-
preemptive real-time systems. A PAR consists of a sequence of instructions
guaranteed to execute atomically. If a task is executing in a PAR and a higher-
priority task is released by the scheduler, then the higher-priority task will
get to execute right away. It will preempt the lower priority task and in the
process, abort all memory operations performed within the atomic region.
Once the lower-priority task is scheduled again, the PAR is transparently
re-executed. The advantage of this approach is that high-priority tasks get
to execute quickly, no special priority inversion avoidance protocol is needed,
while atomicity and isolation of atomic regions is enforced.

Preemptible atomic regions differ from most transactional memory imple-
mentations in that tasks are aborted eagerly. This has the advantage forgoing
conflict detection, but, on the other hand, results in more roll-backs than
strictly necessary. Conflict detection is work that has to be performed on
every read or write, while preemption happens relatively unfrequently. We
believe that this was the right tradeoff.

We contrast lock-based code and PARs with an example, simplified code
taken from the Zen real-time ORB [11]. Figure 1.1(a) makes extensive use of
synchronization. Method exec() is synchronized to protect ThreadPoolLane
instances against concurrent access. The lock on line 3 protects the shared
queue. The Queue object relies on a private lock (line 6 and 8) to protect
itself from missuse by client code. Atomic regions are declared by annotating
a method as @PAR; they are active for the dynamic scope of the method, so
all methods invoked by a method declared @PAR are transitively atomic. In
Figure 1.1.b, we use two atomic sections: one for the exec() method (10)
and another for the enqueue() method (14). The first PAR is sufficient to
prevent all data races within exec(); it is therefore unnecessary to obtain a
lock on the queue. If enqueue() were only called from exec(), it would not
need to be declared atomic (but declaring atomic does not hurt, as nested
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PARs are treated as a single atomic region). This solution is simpler to un-
derstand, as it does not rely on multiple locking granularities. A single PAR
will protect all objects accessed within the dynamic extent of the annotated
method. Contrast this with the lock-based solution, where all potentially ex-
posed objects must be locked. Furthermore, the order of lock acquisition is
critical to prevent deadlocks. On the other hand, PARs cannot deadlock: they
do not block waiting for each other to finish.

The PAR-based mechanism avoids costs found in typical locking proto-
cols. When a contended lock is acquired, one or more allocations may need
to be performed. Additionally, whenever a lock is acquired or released, sev-
eral locking queues need to be maintained; these determine who is “next in
line” for the lock. In contrast, a PAR entrance only needs to store a book-
keeping pointer to the current thread. When a PAR exits, the only overhead
is the reset of the log; this consists of a single change to a pointer. Lock-based
implementations also tend to have greater context-switching overhead. Con-
sider the code in Figure 1.1.a with three threads: t1, t2 and a higher-priority
thread t3. Thread t1 can acquire the lock on sync and be preempted by
Thread t2, which then synchronizes on queue. Now, assume that Thread t3
attempts to execute exec(). This scenario can result in five context switches.
The first one occurs when t3 preempts t2. The second and third occur when
the system switches back to t2 so that it can release the lock on queue.
Finally, the fourth and fifth switches occur when the system schedules t1
so that it can release the lock on sync. Under the same conditions, the use
of PARs only requires one context switch. If t2 preempts t1 while it is in

class ThreadPoolLane {

1. synchronized void exec(Req t){
if (borrow(t)) {

3. synchronized(queue) {
4. queue.enqueue(t);

5. buffered++;

}
...

class Queue {

6. final Object sync=new Object();

7. void enqueue(Object d) {
QueueNode n=getNode();

n.value=d;

8. synchronized(sync) {
9. // enqueue the object

...

class ThreadPoolLane {

10. @PAR void exec(Req t){
11. if (borrow(t)) {
12. queue.enqueue(t);

13. buffered++;

}
...

class Queue {

14. @PAR void enqueue(Object d) {
15. QueueNode n=getNode();

16. n.value=d;

17. // enqueue the object

...

(a) With Monitors. (b) With Preemptible Atomic Regions.

Fig. 1.1 Example: A ThreadPoolLane from the Zen ORB. (Simplified)
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an atomic section, then t1 will be aborted, and any changes it might have
made will be undone. When t3 is scheduled, it needs only undo the changes
performed by t2 to make progress. This does not require a context switch,
as t3 has access to the log. It is worth pointing out that roll-backs are never
preempted.

PAR-based mechanisms incur two major costs that lock-based implemen-
tations do not. First, all writes to memory involve a log operation that records
the current contents of the location being written. Second, if another thread
preempts a thread that is executing a PAR, all changes performed by that
thread will have to be undone; the heap will be restored based on the values
stored in the log. Therefore, whenever writes are sparse, the overheads for a
lock-based solution will be higher than those of the PAR-based solution. In
our experience, aborts are cheap, because critical sections typically perform
few writes.

1.2.1 Real-time Guarantees

To ensure that a set of real-time tasks meet their deadlines, one must conduct
a response time analysis. The theory for dealing with mutual exclusion has
been developed and is well understood. We now consider how to plug in PARs
into schedulability equations. Assume a set of n periodic tasks scheduled
according to the rate monotonic scheme [9], which is widely used scheduling
technique for fixed priority preemptive real-time systems. Tasks share a set
of locks `1 . . . `k. At most one task can be executing at any instant. Each task
τi performs a job Ji. A job has period pi such that ∀i < n, pi < pi+1. There is
one critical section per job, and the critical section always ends before the job
finishes. For each job, Wi is the maximal execution time spent in a critical
section and Ui is the maximal time needed to perform an undo. Ri is the
worst case response time of a job Ji. Ci is the worst-case execution time of
job Ji. Tasks with higher priority π than τi are hp(i) = {j | πj > πi}, and
ones with lower priority are lp(i) = {j | πj < πi}. Given that a task τi suffers
interference from higher priority tasks and blocking from lower priority tasks,
the response time is computed as Ri = Ci +Bi +Ii, where Ii is the maximum
interference time and Bi the maximum blocking factor that Ji can experience
[10]. The schedulability theorem is the following.

Theorem 1. A set of n periodic tasks τi, 0 ≤ i < n is schedulable in RM, iff

∀i ≤ n, ∃Ri : Ri ≤ pi

Ri = Ci + max
j∈lp(i)

Uj +
∑

j∈hp(i)

⌈
Ri

pj

⌉
(Cj + Ui +Wi)
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The intuition behind Theorem 1 is as follows. The expression maxj∈lp(i) Uj

represents the worst case delay caused by rolling back a critical section exe-
cuted by any task with priority lower than τi. The worst case interference of
Ji with higher priority tasks, plus extra execution time needed to reexecute
some critical sections, are computed as follows. Given that

⌈
Ri

pj

⌉
is the max-

imal number of releases of a higher priority task τj that can interfere with a

task τi, we can compute the number of releases of τj in Ji as
∑

j∈hp(i)

⌈
Ri

pj

⌉
.

The most pessimistic approximation of how many rollbacks can occur is to
assume that every interference implies a rollback of a critical section in Ji.
Hence, every time a higher priority task τj preempts Ji, Cj is the worst case
execution time of τj during which Ji is preempted and thus not progressing,
and Ui+Wi is the worst case time necessary to undo and reexecute the critical
section of Ji preempted. As a critical section is undone by the higher priority
task,

∑
j∈hp(i)

⌈
Ri

pj

⌉
Ui is a part of Ji’s interference with higher priority tasks,

while
∑

j∈hp(i)

⌈
Ri

pj

⌉
Wi is an extra execution time. The worst case for undo

times is Ui = Wi; this occurs if all operations within a PAR are memory
writes.

Let us compare PAR with the original priority inheritance protocol (PIP)
by Sha et al. [18].

Theorem 2 (PIP Schedulability). A set of n periodic tasks τi, 0 ≤ i < n
is schedulable in RM, iff

∀i ≤ n,∃Ri : Ri ≤ pi

Ri = Ci +mi max
j∈lp(i)

Wj +
∑

j∈hp(i)

⌈
Ri

pj

⌉
Cj

where mi is the number of critical sections in Ji.

In PIP, the worst case delay of a job Ji caused by lower priority tasks
sharing locks with Ji is proportional to the number of critical sections in
Ji. Moreover, the worst case delay to enter to a single critical section is
bounded by the worst case execution time of the conflicting critical section.
In PAR, the worst case delay to enter a single critical section is bounded
by the number of updates to be undone. In addition, the overall delay of
Ji caused by lower priority tasks is not dependent on the number of critical
sections in Ji. The cost of PAR is that the overall throughput is reduced due
to the cost of undoing and reexecuting lower priority threads. While in all
the priority inheritance schemes the cost of sharing locks degrades response
times of higher priority threads through their blocking factor, in PAR the
cost is paid by the lower priority threads in their higher execution time and
interference.

In Java the number of threads (n) tends to be small, on the other hand
the number of critical sections (m) is typically large. Assuming Ui < Wi,
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the trade-off between the PIP and PAR formulas is a question of comparing
miWj with 2

∑
j∈hp(i)

⌈
Ri

pj

⌉
Wi .

1.2.2 Implementation sketch

As seen in Figure 1.1, PARs can be declared by annotating a method @PAR. In
our implementation, atomic methods are aborted every time a higher priority
thread is released. This approach reduces blocking time, when a high-priority
thread is released it only blocks for as long as it takes to abort one atomic
region, and we only need to maintain a single undo log. Atomic regions in-
troduce several costs. A single system wide log is preallocated with a user
defined size (default of 10KB). When control enters a PAR, it is necessary
to store a reference to the current thread. Within the PAR, each time the
application writes to memory, two additional writes are issued to the log:
the original value of the location, and the location itself. The commit cost is
limited to resetting the pointer into the log. The cost of undoing consists of
traversing the log in reverse, which has the effect of undoing all writes per-
formed within the critical section, and then throwing an internal exception to
rewind the stack. For example, consider a program with two zero-initialized
variables. If the instructions x=1; y=1; x=2 were executed, the log would
contain (addressOf(x):0, addressOf(y):0, addressOf(x):1). If an abort
took place, there would be a write of 1 to x, then a write of 0 to y, and fi-
nally a write of 0 to x; both variables would then contain their initial values.
The runtime cost of an abort is thus O(n), where n is the number of writes
performed by the transaction.

In traditional transactional systems, a conflict manager is required to deal
with issues such as deadlock and starvation prevention. PARs are not sub-
ject to these limitations. Conflict detection is only required when a thread
is ready to be released by the scheduler. Assume the scheduler is invoked
to switch from the currently executing thread t1 to a new higher priority
thread t2. First, the scheduler checks the status of t1. If it is in an atomic
region, the scheduler releases t2, which then executes the abort operation.
If t1 is in an atomic region that is already in the process of aborting, the
abort must complete before thread t2 is released. In either case, the pending
AbortedFault will be thrown when thread t1 is scheduled again.

The implementation proceeds by bytecode rewriting. We transform any
method f() with the PAR annotation into a new method named f$(). A
new f() method, as seen in Figure 1.2, is added to the class; all of the orig-
inal calls to f() will invoke this method instead of the original method. A
transaction starts with an invocation of start(); this method enters a PAR
and begins the logging process. The logged version of the original method
is then executed. Upon successful completion, commit() resets the log. This
method is enclosed in a finally clause to ensure that the transaction com-



8 Jan Vitek Purdue University

void f() {
RETRY: try {

try { PAR.start(); f$(); }
finally { PAR.commit(); }

} catch (AbortedFault ) { goto RETRY; }
}

Fig. 1.2 Code transformation for a method @PAR void f. The body of the original method

is moved into a new synthetic method named f$.

mits even if the method throws a Java exception. To deal with the conse-
quences of an abort, we provide the class AbortedFault. When an abort
occurs, the AbortedFault is thrown by the virtual machine. This exception
class is treated specially by the virtual machine in that it can not be caught
by normal catch clauses and sidesteps user defined finally clauses.

Rewriting extends down into the virtual machine; when a call is made
that requires VM assistance, the invoked virtual machine code is rewritten
as a PAR. Some calls can be rolled back. There are, effectively, four differ-
ent types of code that can be encountered in the Ovm runtime: (a) Calls
to Java methods that can be easily rolled back. This includes calls to allo-
cators and garbage collectors. (b) Calls to Native methods that cannot be
rolled back. This includes calls to system timers or to I/O methods. (c) Calls
to Native methods that can easily be replaced with Java implementations.
The System.arraycopy method, for example, calls the C function memcpy.
memcpy is a native call, and so cannot be logged; however, it is trivial to
write a Java implementation of this method. (d) Calls to Native methods
that do not mutate system state. These methods can be handled individu-
ally, as well. Operations that must not be undone are called non-retractable
operations. These include calls to I/O methods, as well as calls to user level
data structures that are not specific to the thread currently running (such as
timers or event counters), which must not be reset, as they are logically unre-
lated to the transaction. When encountered in a PAR, calls to such methods
cause a compiler warning and are transformed to unconditionally throw an
exceptions.

1.2.3 Experimental evaluation

We evaluated the response times of high-priority threads with a program that
executes a low and a high priority thread which access the same data struc-
ture, a HashMap from the java.util package. The low priority thread con-
tinually executes critical sections that perform a fixed number of read, insert
and delete operations on the HashMap. Periodically, the high-priority thread
executes a similar number of operations. In one configuration, the accesses
are protected by the default RTSJ priority inheritance lock implementation.
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Fig. 1.3 Response time of a high-priority thread in the HashMap Microbenchmark. The x-
axis indicates the number of periods (or frames) that have elapsed, and the y-axis indicates
the response time of the high-priority thread (in microseconds).



10 Jan Vitek Purdue University

In the other, the accesses are protected by a PAR. For a PAR-based HashMap,
this produced a high likelihood of aborts. In fact, an abort occurred every
time a high-priority thread is scheduled. These measurements were obtained
with Ovm running on a 300Mhz Embedded Planet PowerPC 8260 board
with 256MB SDRAM, 32 MB Flash, and Embedded Linux. Figure 1.3 shows
the results of the test. Two points are noteworthy. First, the latency for the
PAR-based HashMap is lower; this indicates that undoing the low priority
thread’s writes was faster than context switching to the other thread, finish-
ing its critical section, and context switching back. Second, the response time
of the PAR-based HashMap was more predictable; this is because it was not
necessary to execute a indeterminately long critical section before executing
the high-priority thread’s PAR.

1.3 Obstruction-free Communication with Atomic
Methods

The second abstraction we have experimented with is Atomic Methods in
the Reflex programming model [20] (this work was done with Jesper Honig
Spring, Filip Pizlo, Jean Privat and Rachid Guerraoui). Atomic methods were
introduced in the Reflex programming model for mixing highly-responsive
tasks with timing-oblivious Java programs. A Reflex program consists of a
graph of Reflex tasks connected according to some topology through a num-
ber of unidirectional communication channels. This relates directly to graph-
based modeling systems, such as Simulink and Ptolemy [12], that are used
to design real-time control systems, and to stream-based programming lan-
guages like StreamIt [21]. A Reflex graph is constructed as a Java program,

Public Heap 

  Java  
Thread 

  Java  
Object 

  Reflex Graph 

Time-Oblivious Code Time-Critical Code 

Fig. 1.4 Illustration of a Java application consisting of time-oblivious code (blue) and a
time-critical Reflex graph with three connected tasks.
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following standard Java programming conventions. Reflexes can run in isola-
tion or as part of a larger Java application. To communicate with ordinary
Java threads, Reflex provides special methods which will ensure that real-
time activities do not block for normal Java threads and ensures atomicity
of changes performed by plain Java. Figure 1.4 illustrates a Reflex program.

A Reflex acts as the basic computational unit in the graph, consisting
of user-defined persistent data structures, typed input and output channels
for communication between Reflexes, and user-specific logic implementing
the functional behavior of the task. In order to ensure low latency, each
Reflex lives in a partition of the virtual machine’s memory outside of the
control of the garbage collector. Furthermore, Reflexes are executed with a
priority higher than ordinary Java threads. This allows the Reflex scheduler
to safely preempt any Java thread, including the garbage collector. Memory
partitioning also prevents synchronization hazards, such as a task blocking
on a lock held by an ordinary Java thread, which in turn can be blocked by
the garbage collector. In the Reflex programming model, Reflexes have access
to disjoint memory partitions and developers can choose between a real-time
garabage collector and region-based allocation for memory managment within
Reflexes.

1.3.1 Atomic Methods

Reflexes prevent synchronous operations by replacing lock-based synchroniza-
tion with an obstruction-free communication. The principle behind atomic
methods is to let an ordinary Java thread invoke certain methods on the
time-critical task. Once inside the atomic method, the ordinary Java thread
can access the data it shares with the Reflex. These methods ensure that any
memory mutations made by the ordinary Java thread to objects allocated
within a Reflex’s stable memory will only be visible if the atomic method
runs to completion. Again, given the default allocation context, any tran-
sient objects allocated during the invocation of the atomic method will be
reclaimed when the method returns. If the ordinary Java thread is preempted
by the Reflex scheduler, all of the changes will be discarded and the atomic
method will be scheduled for re-execution. The semantics ensures that time-
critical tasks can run obstruction-free without blocking.

Atomic methods to be invoked by ordinary Java threads are required to
be declared on a subclass of the ReflexTask and must be annotated @atomic
as demonstrated with the write() method in Figure 1.5. Methods annotated
with @atomic are implicitly synchronized, preventing concurrent invocation
of the method by multiple ordinary Java threads.

For reasons of type-safety, parameters of atomic methods are limited to
types allowed in capsules (capsules are the special message objects that can
be sent across channels between Reflexes), i.e. primitives and primitive array
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public class PacketReader extends ReflexTask {

...

@atomic public void write(byte[] b) {...}

}

Fig. 1.5 Example of declaration of method on ReflexTask class to be invoked with trans-

actional semantics by ordinary Java threads.

types. Return types are even more restricted, atomic method may only re-
turn primitives. This further restriction is necessary to prevent returning a
transient object, which would lead to a dangling pointer, or a stable object,
which would breach isolation. If an atomic methods need to return more than
a single a primitive, it can only do it by side-effecting an argument (i.e. an
array).

1.3.2 Example

Figure 1.6 shows the PacketReader class that creates capsules representing
network packets from a raw stream of bytes. This class is part of a network in-
trusion detection application written as a Reflex graph. For our experiments,
we simulate the network with the Synthesizer class. The synthesizer runs
as an ordinary Java thread, and feeds the PacketReader task instance with
a raw stream of bytes to be analyzed. Communication between the synthe-
sizer and the PacketReader is done by invoking the write method on the
PacketReader. This method takes a reference to a buffer of data (primitive
byte array) allocated on the heap and parses it to create packets. The write
method is annotated @atomic to give it transactional semantics, thereby en-
suring that the task can safely preempt the synthesizer thread at any time.

1.3.3 Implementation sketch

To implement atomic methods, we exploit the preemptible atomic regions
facility of the Ovm virtual machine as presented in Section 2. Any method
annotated @atomic is treated specially by the Ovm compiler. More specifi-
cally, the compiler will privatize the call-graph of a transactional method, i.e.,
recursively generate a transactional variant of each method reachable from
the transactional method. This transactionalized variant of the call-graph is
invoked by the ordinary Java thread, whereas the non-transactional variant
is kept around as the Reflex task might itself invoke (from the execute()
method which is invoked periodically by the Reflex framework) some of the
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public class PacketReader extends ReflexTask {

private Buffer buffer = new Buffer(16384);

@atomic public void write(byte[] b) {

buffer.write(b);

}

private int readPacket(TCP_Hdr p) {

try {

buffer.startRead();

for (int i=0; i<Ether_Hdr.ETH_LEN; i++)

p.e_dst[i] = buffer.read_8();

...

return buffer.commitRead();

} catch (UnderrunEx e) { buffer.abortRead(); ... }

}

}

Fig. 1.6 An excerpt of the PacketReader task that reads packets received from the ordi-
nary Java thread and pushes them down in the graph. The write method, invoked by the

ordinary Java thread, is declared to have transactional semantics. The readPacket method

is invoked from the Reflexexcute method.

methods, and those should not be invoked with transactional semantics. We
have applied a subtle modification to the preemptible atomic region imple-
mentation. Rather than having a single global transaction log, a transactional
log is created per ReflexTask instance in the graph, assuming that it declares
atomic methods. This change ensures the encapsulation of each ReflexTask
instance, and enables concurrent invocation of different atomic methods on
different ReflexTask instances. The preemptible atomic regions use a roll-
back approach in which for each field write performed by an ordinary Java
thread on a stable object within the transactional method, the virtual ma-
chine inserts an entry in the transaction log and records the original value
and address of field. With this approach, a transaction abort boils down to
replaying the entries in the transaction log in reverse order. Running on a
uni-processor virtual machine, no conflict detection is needed. Rather, the
transaction aborts are simply performed eagerly at context switches. Specif-
ically, the transaction log is rolled back by the high-priority thread before it
invokes the execute method of the schedulable Reflex.

The Ovm garbage collector supports pinning for objects such that the
objects are not moved or removed during a collection, and will therefore al-
ways be in a consistent state when observed by referent objects from other
memory areas, including a Reflex task. Arguments to atomic methods are
heap-allocated objects and must be pinned when the ordinary Java thread in-
vokes a transactional method and unpinned again when the invocation exits.
We have modified the bytecode rewriter of the Ovm compiler to instrument
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the method bodies of the atomic methods to pin any reference type objects
passed in upon entry and unpin again upon exit.

1.3.3.1 Multicore Implementation.

One of the limitations of the Ovm implementation is that the virtual machine
is optimized for uni-processor systems. In order to validate applicability of
our approach we ported much of the functionality of Reflexes to the IBM
WebSphere Real-Time VM, a virtual machine with multi-processor support
and a RTSJ-implementation. The implementation of atomic methods in a
multiprocessor setting is significantly different. We use a roll-forward ap-
proach in which an atomic method defers all memory mutations to a local
log until commit time. Having reached commit time, it is mandatory to check
if the state of the Reflex has changed during the method invocation, and if
so abort the atomic method. The entries in the log can safely be discarded,
in constant time, as the mutations will not be applied. If the task state did
not change, the atomic method is permitted to commit its changes with the
Reflex scheduler briefly locked out for a time corresponding to O(n), where
n is the number of stable memory locations updated by the atomic method.
We rely on a combination of program transformations and minimal native
extensions to the VM to achieve this.

1.3.4 Real-time guarantees

The real-time guarantees for atomic methods are slightly different then those
of preemptible atomic regions. To start, there is a single real-time thread per
Reflex which can interact with possibly multiple plain Java threads. So, the
blocking time of the real-time thread is at most the time required to abort the
atomic method (i.e. time proportional to the log size). On the other hand, no
progress guarantee is given to the plain Java threads trying to communicate
with a Reflex. The programming model allows for unbounded aborts in the
worst case, though this has not occured in our experiments.

1.3.5 Experimental evaluation

We evaluate the impact of atomic methods on predictability using a synthetic
benchmark on an IBM blade server with 4 dual-core AMD Opteron 64 2.4
GHz processors and 12GB of physical memory running Linux 2.6.21.4. A
Reflex task is scheduled at a period of 100 µs, and when scheduled reads
the data available on its input buffer in circular fashion into its stable state.
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An ordinary Java thread runs continuously and feeds the task with data by
invoking an atomic method on the task every 20 ms. To evaluate the influence
of computational noise and garbage collection, another ordinary Java thread
runs concurrently, continuously allocating at the rate of 2MB per second.

Fig. 1.7 Frequencies of inter-arrival times of a single Reflex task with a period of 100

µs continuously interrupted by an ordinary Java thread invoking an atomic method. The

x-axis gives inter-arrival times in microseconds, the y-axis a logarithm of the frequency.
The graph shows few departures from the ideal 100 µs inter-arrival times.

Figure 1.7 shows a histogram of the frequencies of inter-arrival times of the
Reflex. The figure contains observations covering almost 600,000 periodic exe-
cutions. Out of 3,000 invocations of the atomic method, 516 of them aborted,
indicating that atomic methods were exercised. As can be seen, all observa-
tions of the inter-arrival time are centered around the scheduled period of
100 µs. Overall, there are only a few microseconds of jitter. The inter-arrival
times range from 57 to 144 µs.

1.4 Atomicity with Micro-transactions

The third real-time concurrency abstraction we have studied in [17, 15] is
a hardware realization of transactional memory called RTTM for Real-Time
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Transactional Memory (work done with Schoeberl, Brandner, Meawad, Iyer).
The main design goals for the RTTM were: (a) simple programming model
and (b) analyzable timing properties. Therefore, all design and architecture
decisions were driven by their impact on real-time guarantees. In contrast
to other transactional memory proposals RTTM does not aim for a high
average case throughput, but for time-predictability. RTTM supports small
atomic sections with a few read and write operations. Therefore, it is more
an extension of the CAS instruction to simplify the implementation of non-
blocking communication algorithms.

In our proposal each core is equipped with a small, fully associative buffer
to cache the changed data during the transaction. All writes go only into
the buffer. Read addresses are marked in a read set – a simplification that
uses only tag memories. The write buffer and tag memory for the read set
are organized for single word access. This organization ensures that no false
positive conflicts are detected. For the same reason the transaction buffer
has to be a fully associative cache with a FIFO replacement strategy. Fully
associative caches are expensive and therefore the size is limited. We assume
that real-time systems programmers are aware of the high cost of synchro-
nization and will use small atomic sections where a few words are read and
written. On a commit the buffer is written to the shared memory. During
the write burst on commit all other cores listen to the write addresses and
compare those with their own read set. If one of the write addresses matches
a read address the transaction is marked to be aborted. The atomicity of
the commit itself is enforced by a single global lock – the commit token. The
commit token can also be used on a buffer overflow. When a transaction over-
flows the write buffer or the tag memory for the read set the commit token
is grabbed and the transaction continues. The atomicity is now enforced by
the commit token. Grabbing the commit token before commit is intended as
a backup solution on buffer overflow. It effectively serializes the atomic sec-
tions. The same mechanism can also be used to protect I/O operations that
usually cannot be rolled back. On an I/O operation within a transaction the
core also grabs the commit token. Conflict detection happens only during a
commit when all n − 1 (on a n core multiprocessor) cores listen to the core
that commits the transaction and not during local read/writes thus saving
valuable CPU cycles. When a conflict is detected the transaction is aborted
and restarted.

1.4.1 Example

We have implemented dynamically growing singly linked wait-free queues
using different synchronization techniques. In our implementations, we use
the Java synchronized and the annotation @atomic for micro-transactions.
The implementation involves a ‘head’ node to keep track of the queue-empty
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condition. Both the head and the tail pointers point to the ‘head’ node at
the beginning and when the queue is empty.

class SLQ {
final static class Node {
final Object value;
volatile Node next;

}

volatile Node head = new Node(), tail = head;

void insert(Node n) {
tail.next = n; tail = n;

}

Object remove() {
if (head.next == null) return null;
head = head.next;
return head.value;

}
}

In the remove method, the removed node is retained as the special ‘head’
node until the next node is removed. This does not affect the number of
retries.

1.4.2 Real-time guarantees

The real-time behavior of such transactions is established by bounding the
number of retries r to n − 1 on a n core multiprocessor. Assuming periodic
threads, non-overlapping periods and execution deadline not exceeding the
period, the worst case execution time (WCET) of any thread t is given by
the equation

t = tna + (r + 1)tamax (1.1)

where t is the worst case execution time, tna is the execution time of the
non-atomic section of the thread and tamax is the maximum of the execution
times of the atomic sections of all the n threads in the system. Since r is
bounded, the WCET of any thread is bounded.
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1.5 Experimental evaluation

The experimentation environment is an FPGA programmed with a symmet-
ric shared-memory multi-processor hardware system with four JOP cores. As
hardware platform we us an Altera DE2-70 Development board consisting of
a Cyclone II EP2C70 FPGA. The Altera board contains 64 MB SDRAM,
2 MB SSRAM and an 8 MB Flash Memory and I/O interfaces such as USB
2.0, RS232, and a ByteBlasterMV port. Each JOP core has a core local 4 KB
instruction cache and 1 KB stack cache. The Cyclone FPGA was programmed
to simulate the afore-mentioned symmetric shared-memory multi-processor
environment.
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Fig. 1.8 SLQ Time The x-axis gives number of nodes and the y-axis gives the execution
time in milli-seconds.

Figure 1.8 plots the execution time to insert, move and remove a specified
number of nodes from the singly linked queues. The x-axis indicates the num-
ber of nodes used in the experiment, we chose a sample of the small number
of nodes followed by a linear increment starting from 1000. The bars indicate
the time taken to complete the experiment when different synchronization
methods are used. Time is measured from the instance when the insertion
of the first node is started till the removal of the last node is completed. It
can be noted that, as the number of nodes processed increase the average
execution time increases almost linearly due to an increase in the number of
locks, transactions and retries. The CAS numbers are simulation of hardware
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compare and swap as the architecture does not support such instructions.
Execution times in the case of TM is 17% lower compared to the CAS cases,
it is 2.5% higher than the LOCK case. The higher execution times of the TM
implementation relative to that of LOCK can be attributed to the small sizes
of the read/write sets and shorter atomic sections in singly linked queues.
For example, in a singly linked list, an insert operation involves the modi-
fication only of a pointer and the queue tail. As a result, locks are held for
a short period reducing overall waiting time. However, in the case of TM,
retries, conflict detection and other transactional memory overhead is high
as compared to the time lost in waiting for locks.

1.6 Conclusion

Correct and efficient design and implementation of concurrent programs is
absolutely vital, but tremendously difficult to achieve. In this paper, we have
reported on our experience with three concurrency control abstractions that
leverage transactional memory ideas to provide time predictable performance.
For uniprocessor systems, preemptible atomic regions provide a very good
compromise between performance and responsiveness. They are fast and have
simple semantics. They are arguably preferable to locks in most cases. If a
restricted programming model is acceptable, then the atomic methods that
are part of the Reflex programming model are a nice match that preserves
most of the benefits of PARs but can be used in a multi-processor setting.
Lastly, on a multi-core real-time system, a hardware implementation such as
the one we have proposed with RTTM can provide the appropriate timing
guarantee, but unfortunately our preliminary results suggest that there is
a decrease in throughput due to the complexity of the hardware. Overall,
we believe that transactional abstractions show promise to provide viable
alternatives to lock based synchronization in the context of real-time systems.
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