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Abstract. Fast dynamic compilers trade code quality for short com-
pilation time in order to balance application performance and startup
time. This paper investigates the interplay of two of the most effective
optimizations, register allocation and method inlining for such compil-
ers. We present a bytecode representation which supports offline global
register allocation, is suitable for fast code generation and verification,
and yet is backward compatible with standard Java bytecode.

1 Introduction

Programming environments which support dynamic loading of platform-indep-
endent code must provide supports for efficient execution and find a good balance
between responsiveness (shorter delays due to compilation) and performance
(optimized compilation). Thus, most commercial Java virtual machines (JVM)
include several execution engines. Typically, there is an interpreter or a fast com-
piler for initial executions of all code, and a profile-guided optimizing compiler
for performance-critical code.

Improving the quality of the code of a fast compiler has the following bene-
fits. It raises the performance of short-running and medium length applications
which exit before the expensive optimizing compiler fully kicks in. It also ben-
efits long-running applications with improved startup performance and respon-
siveness (due to less eager optimizing compilation). One way to achieve this is
to shift some of the burden to an offline compiler. The main question is what
optimizations are profitable when performed offline and are either guaranteed to
be safe or can be easily validated by a fast compiler.

We investigate the combination of offline analysis with online optimizations
for the two most important Java optimizations [11]: register allocation and
method inlining, targeted for a fast compiler. The first challenge we are faced
with is a choice of intermediate representation (IR). Java bytecode was designed
for compactness, portability and verifiability and not for encoding offline pro-
gram optimizations. We build on the previous work [15, 17, 16, 2, 8, 10, 9] and
propose a simplified form of the Java bytecode augmented with annotations
that support offline register allocation in an architecture independent way. We
call it SimpleIR (or SIR). A SIR program is valid Java bytecode and can thus be
verified and used in any JVM. We then evaluate offline register allocation heuris-
tics [2, 9] and propose novel heuristics. Another challenge is performing method
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inlining offline is not always effective because of separate compilation and archi-
tecture independence (e.g., dynamic class loading over network, dynamic byte-
code generation, platform-dependent (standard) library modules). Thus, we ask
the question: can we combine offline register allocation with online method in-
lining? The contributions of this paper are as follows:

– Backward-compatible IR for offline register allocation: We propose a sim-
plified form of Java bytecode with annotations which supports encoding offline reg-
ister allocation, fast code generation and verification, and backward compatibility.

– Evaluation of offline register allocation heuristics: We directly compare two
previously known register allocation heuristics and two new heuristics.

– Register allocation merging technique: which quickly and effectively com-
putes register allocation for inlined methods based on offline register allocation for
individual methods.

– Empirical evaluation: We have implemented our techniques in a compiler and
report on performance results and compilation times for different scenarios.

2 Intermediate Representations

Alternative architecture independent code representations have been explored in
the literature. They can be categorized into three groups according to their level
of abstraction and conceptual distance from the original format. The first cate-
gory is annotated bytecode using the existing features of Java bytecode format.
This approach is backward compatibile as any JVM can run the code by simply
ignoring the annotations. The work of Krintz et al. [10], Azevedo et al. [2], and
Pominville et al. [13] are good examples. The second category can be described
as optimization-oriented high-level representations. These representations do not
necessarily bear any resemblance to Java bytecodes. An example is SafeTSA [1]
which is a type safe static single assignment based representation. The last cat-
egory is that of fully optimized low-level architecture dependent representations
with certain safety annotations, such as the typed assembly language (TAL) [12].

2.1 An IR for Offline Register Allocation

We propose an IR for offline register allocation which is a simplified form of the
Java bytecode (called SIR). We motivate our design choices and contrasts them
with previous results.

Backward compatibility with Java. SIR is a subset of Java bytecode and
thus backwards compatibile. This is important: Any JVM can run SIR code
with the expected semantics. Existing tools can be used to analyze, compile, and
transform SIR code. This is in contrast to [1, 17] which proposes an incompatible
register-based bytecode or a SSA form. Offline register allocation results are
encoded in annotations following [2, 8–10].
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Local variables as virtual registers. We follow Shaylor [15] who suggested
mapping local variables in the Java bytecode to (virtual) registers. In contrast, [2,
8, 9] suggest using a separate annotation stream. Directly mapping locals to
registers has the advantage that no verification is needed. Other formats must
ensure that annotations are consistent. Any additional verification effort will
increase the (online) compilation time and thus reduce the usefulness of offline
optimizations.

Cumulative register allocation. We refer to local variables as virtual registers
since they are candidates for physical registers. We adopt a cumulative register
allocation strategy. This means that the allocation decision for K physical reg-
isters is computed on top of that for K − 1 registers by adding an additional
mapping from the Kth register to some locals that were previously not allocated
to registers. It produces a ’priority list’ of locals variables. Cumulative allocation
aims to support an arbitrary number of physical registers while trying to mini-
mize the degradation in allocation quality when the number of available registers
is unknown offline. [8] doesn’t discuss how registers are allocated. [10] simply en-
code the static counts of variable occurrences as hints. [15] limits allocation to
the first nine local variables.

Register tables We store our register allocation annotations in a register table
which associates local variables with their scores in the decreasing order of scores,
in the form {(l1, s1), (l2, s2), ...}. Scores indicate the desirability of allocating a
given variable to a physical register. In our implementation, these scores are
weighted reference counts of variables (count 10d in a loop of depth d). The fast
online compiler takes as many local variables as the available physical registers
on the target architecture from the top of the register table and assign them
to the physical registers. There is a separate table for each of integers, object
references, longs, floats and doubles. A register table bears some similarity to a
stack map that is used to store the types of local variables at different program
points for fast bytecode verification [14]. Register tables tend to be smaller than
the parallel register annotations of [2, 8, 9] (space overheads of more than 30%
have been reported).

Simplified control and data flow. In SIR, subroutines (the jsr and ret
instructions) of the Java bytecode are disallowed. Subroutines are notorious for
making code analysis, optimization and verification slower and more complex.
Furthermore, the operand stack must be empty at basic block boundaries. This
allows single-pass code generation. For example, if a loop head is only reachable
from the backward edge, a single-pass code generator (like ours) cannot know
the height of the evaluation stack without a second pass. SIR requires the evalu-
ation stack to be empty between core operations (such as arithmetic operations,
method calls, etc.) Operands must always be loaded from local variables and
result stored to a local variable. This essentially means that we treat bytecode
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as a three-address IR, following [15]. When a method is called, arguments reside
in the first part of the local variables array. For backwards compatibility, we
treat these locals specially. We do not consider them to be virtual registers and
exclude them from the register table. We insert a sequence of moves (loads and
stores) at the method entry to copy arguments to local variables. Furthermore,
we restrict local variable to hold only one type for the entire method. This sim-
plifies the mapping local variables to physical registers, If the same local was
use at different types, we would have to differentiate between types that can be
stored in general purpose registers and, e.g., one that must be stored floating
point registers.

Verification. It is easy to check if bytecode is SIR and can be performed in
a single pass. It is simply a matter of making sure that restricted instructions
(e.g., jsr, ret, swap) do not appear, that the local variables are not used to
hold more than one type and that they match the type of the register table, that
there is a store (or a pop) after each instruction that produces a value and that
the evaluation stack is empty at branch instructions. We do not verify the scores
in register tables because the correctness of the scores does not affect the safety
of the code. However, incorrect scores may influence the performance.

3 Offline Register Allocation

3.1 Cumulative Assignments

We formulate offline register allocation in terms of cumulative register assignment
where an assignment for K physical registers is reused for K + 1 registers by
adding an assignment for the (K +1)th register without changes for the first K.
There are two benefits of cumulative assignments: architecture independence as
any number of physical registers can be matched to the top K virtual registers.
Second, cumulative assignments are more space efficient than an alternative
approach where separate assignments for each possible value of K are stored
in the IR. Cumulative allocation can be viewed as a packing problem where an
ordered list of containers (virtual registers) and items (live ranges of data values)
must be packed into as few containers as possible and as densely toward the first
container as possible so that interfering items (data values whose live ranges
overlap) will not be put in the same container.

A fast compiler can use cumulative assignment as follows. If K physical regis-
ters are available, the top K virtual registers in the register table will be mapped
to physical registers. Several scratch registers have to be reserved for loading and
spilling the virtual registers that are not assigned to physical registers and for
micro operations hidden in the bytecode. The drawback of a cumulative register
assignment is that for any K, a cumulative assignment may not be optimal.

There are two potentially conflicting goals in cumulative allocation: minimize
the number of virtual registers in an assignment. Secondly maximize density in
terms of the packing problem (the sum of the score of the variables that are
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mov c, 1

add a, c, c

add b, a, 2

add d, b, 1

call m(d)

ret d

(a) Code

a

c

b

d

2/2 2/2

3/1 3/1

(b) Interference graph

K Assignment Score

1 (v0 7→c,d) 6

2 (v0 7→c,d), (v1 7→a) 8

3 (v0 7→c,d), (v1 7→a), (v2 7→b) 10

(c) Cumulative register assignment

K Assignment Score

1 (v0 7→c,d) 6

2 (v0 7→a,d), (v1 7→c, b) 10

(d) Traditional assignment

Fig. 1. An example of register allocation. (a) is the code. (b) is the interference
graph for the code. (c) is the (cumulative) offline register allocation result generated
by offline allocator IGC. (d) is the normal non-cumulative register allocation result
generated by traditional allocator GC.

mapped to physical registers). There may be a situation where obtaining the
highest density possible in the first virtual registers leads to needing an extra
register to assign to all variables. Conversely, minimizing the number of virtual
registers needed to assign to all variables may cause lower density in the first
virtual registers.

3.2 Example

Figure 1 illustrates cumulative allocation. The code is in register transfer form for
the example. The interference graph shows the presence of interference between
the variables by edges between nodes. The fraction on the side of each node
is the ratio of the score (weighted reference count) to the current degree (the
number of edges) of the node. Cumulative allocation results are in Figure 1 (c).
Each row represents the result with one additional register on top of the previous
row. Three virtual registers are needed in total. The allocation result for row K
includes the results for the rows 0 to K − 1. The ’score’ column shows the sum
of the scores (weighted reference counts) of the virtual registers assigned in each
row. We see that with one register (K = 1), variables c and d are assigned to
virtual register v0. The combined score for c and d is 6 because c and d appear
in the code six times in total. With two registers (K = 2), that assignment is
extended with v1 assigned to a and the combined score is, thus, 8. Finally, with
three registers (K = 3), all variables are assigned to virtual registers with the
combined score 10. Figure 1 (d) shows the result of non-cumulative allocation.
The differences are that in the non-cumulative case, the mappings for different
numbers of registers do not completely intersect, which means that one cannot
encode assignments for all possible number of K in one mapping. Second, the
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non-cumulative allocator only needs two registers to assign to all the variables
in this example.

4 Offline Register Allocation Heuristics

Offline register allocation heuristics assign virtual registers to live ranges of data,
called webs. The live ranges are not identical to variables since multiple defini-
tions of the same variable can be renamed and each separate live range of the
variable can be assigned to different virtual registers. A web is a transitive clo-
sure of def-use chains that share a definition or use point and is often used as
the targets of register allocation in order to avoid inserting unnecessary moves
between registers. A web makes a consecutive multi-entry multi-exit control flow
range which starts at the definition points and ends at the use points. We assign
virtual registers to webs in offline register allocation. The actual offline register
allocation consists of finding webs, computing the interference graph of the webs,
making an ordered list of the sets of non-interfering webs based on one of the
offline register allocation heuristics described later in this section, and renaming
the local variables in the original bytecode so that the webs in the same set
are assigned to the same local variable number in the order (local variable 1 is
assigned to the first web set in the list, local variable 2 is assigned to the second,
and so on, ignoring locals used to pass arguments).

Some of the heuristics described below are based on the optimistic alloca-
tor [4] which repeats allocation whenever a spill occurs and the interference graph
changes. This repetitive part is omitted in the the heuristics because spilling is
handled by the online compiler.

4.1 Linear packing (LP)

Webs are sorted into a list in non-increasing order of scores (weighted reference
counts). By linear-scanning over the list, we merge together the webs that are
consecutive in the list and do not interfere with each other. At the end, we obtain
a list of web sets where consecutive web sets interfere with each other. We sort
the list according to the combined scores of the web sets. The ith virtual register
is assigned to the ith web set in the list. This heuristic has a O(n log n) time
complexity where n is the number of webs (due to sorting).

4.2 Greedy packing (GP)

This heuristic is equivalent to that of Azevedo et al. [2] and Sites [18]. As with
LP, webs are sorted into a list in non-increasing order of scores. We iterate
the following process until all webs are picked: Keep picking the web with the
highest score in the list that does not interfere with the already picked webs
in this iteration, until there is no more such web left in the list. Each iteration
produces a set of webs. Eventually, we obtain a list of web sets. We sort the
list according to the combined scores of the web sets. The ith virtual register



7

is assigned to the ith web set in the list. This heuristic has a quadratic time
complexity in the number of webs.

4.3 Exact graph coloring (EGC)

This heuristic is based on the optimistic graph coloring allocator. We merge
webs by performing a binary search for the minimum number of virtual registers
needed to assign to all webs, using the optimistic graph coloring allocator. We
obtain a set of web sets, each of which is to be assigned to the same virtual
register. We sort the set into a list of web sets according to the combined scores
of the web sets. The ith register is assigned to the ith web set in the list. Even
with the binary search technique, this heuristic may have to run the underlying
graph coloring allocator many times and take a relatively long time. The heuristic
of Jones et al. [9] based on [6, 3] seems comparable to EGC.

4.4 Incremental graph coloring (IGC)

This heuristic is also based on the optimistic graph coloring allocator. We merge
webs by incrementally running the optimistic graph coloring allocator for only
one register at each iteration. After each iteration, we remove the allocated webs
out of the interference graph. We obtain a list of web sets in the end. We sort the
list according to the combined scores of the web sets. The ith register is assigned
to the ith web set in the list.

To compare the cumulative register allocation heuristics above with a tra-
ditional non-cumulative register allocation heuristic, we also include the non-
cumulative register allocator in the measurements, called GC.

5 Method Inlining and Register Table Merging

Register table merging (RTM) is a technique used to perform online method in-
lining by reusing offline register assignments for individual methods. It is similar
to the merge sort algorithm and described as follows. We have a register table
for each method computed offline. These tables contain virtual registers sorted
in the order of non-increasing scores. When we inline method B (callee) into
another method A (caller), we combine the register tables of A and B into a
single register table using the following algorithm.

First, we multiply the scores of the virtual registers in B’s register table
by 10depth where depth is the loop nesting depth of the inlining site in A. We
then repeat the following process until we reach the end of either A’s or B’s
register table: We pick the virtual register with the higher score between A’s top
register and B’s top register and append it to the register table of the combined
method. After the above loop, if there are some registers left either in A’s or B’s
register table, the remaining registers are appended to the combined table. The
combined register table is already sorted and the virtual registers are renamed.
We update the combined method body with the new register names to obtain
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the final combined method body. RTM has a time complexity of O(a+ b) where
a and b are the size of A’s and B’s register table, respectively. The algorithm is
described in Figure 2.

Figure 3 shows an example of RTM. Suppose that there is an inlining site
where a method (callee) is inlined in another method (caller). The inlining site
is in a nested loop (the loop depth is 2). The caller and the callee have the
register tables shown in Figure 3 (a) and (b), respectively. These register tables
are computed offline. The merging result is shown in Figure 3 (c). This table
shows the list of virtual registers of the combined method, their scores, and, the
mapping from the two register sets of the caller and the callee to the merged
register set of the combined method.

This merging algorithm, of course, does not in general give as good register
allocation results as redoing full-scale register allocation after method inlining.

Input:
a (virtual register array sorted by score for method A (caller))
b (virtual register array sorted by score for method B (callee))
depth (loop nest depth of the inlining site in A)

Output:
c (virtual registers for combined method)

map := make a hash map
ia := 0, ib := 0, ic := 0
while ia < a.length and ib < b.length

if a[ia].score ≥ b[ib].score * 10depth

c[ic] := make a new virtual register with score: a[ia].score
put (a[ia], c[ic]) into map
ia := ia + 1, ic := ic + 1

else

c[ic] := make a new virtual register with score: b[ib].score * 10depth

put (b[ib], c[ic]) into map
ia := ia + 1, ib := ib + 1

if ia < a.length
for i := ia to a.length-1

c[ic] := make a new virtual register
with score: a[i].score

put (a[ia], c[ic]) into map
ia := ia + 1, ic := ic + 1

if ib < b.length
for i := ib to b.length-1

c[ic] := make a new virtual register with score: b[i].score * 10depth

put (b[ib], c[ic]) into map
ib := ib + 1, ic := ic + 1

update virtual registers in the combined method body using map

Fig. 2. Inlining and Register Table Merging.
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regs v-registers score

1 v0 1001

2 v1 800

3 v2 753

4 v3 3

(a) Caller’s register table

regs v-registers score

1 v0’ 11

2 v1’ 10

3 v2’ 5

(b) Callee’s register table

regs v-registers score old v-reg

1 v0 1100 v0’

2 v1 1001 v0

3 v2 1000 v1’

4 v3 800 v1

5 v4 753 v2

6 v5 500 v2’

7 v6 3 v3

(c) Merged register table

Fig. 3. An example of register table merging. (a), (b), and (c) show the register
allocation result for a caller method, a callee method, the combined method after the
callee method is inlined in the caller method, respectively, provided that the inlining
site is in a nested loop.

However, our goal is to achieve non-optimal but acceptable level of allocation
quality for fast compilers in exchange for short online compilation time. We will
see below how this algorithm performs in comparison with results from doing a
full-scale register allocation after method inlining.

Performing some optimizations (e.g., constant propagation) after method
inlining in order to further optimize the combined method is optional because
we focus on fast compilers and additional data flow analysis and optimizations
would increase compilation time considerably for fast compilers.

6 Experimentations

We compare the four different compile scenarios shown in Figure 4. The first
is online allocation (referred to as ONR) where the register allocation is per-
formed without annotations. The second scenario is offline register allocation
(OFR) where an offline compiler annotates the program and a fast compiler per-
forms allocation using these annotations. The third scenario is online register
allocation with method inlining (ONRI) – as ONR except that the compiler inlines
methods before applying register allocation. The last scenario is offline register
allocation with method inlining (OFRI) which is the same as OFR except that
the fast compiler performs online method inlining with RTM. In addition, we
also consider the baseline scenario where the compiler does not perform any op-
timizations and generates code that literally emulates the evaluation stack and
the local variables as in a bytecode interpreter.

The objectives of the measurements are to evaluate the offline scenarios ver-
sus the online scenarios in terms of code size, performance, compilation time, and
to compare the four offline register allocation heuristics. We only consider com-
pilers that use only one intermediate representation (i.e., Java bytecode which
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(a) Online register allocation (ONR)

(b) Offline register allocation (OFR)

Source compiler
+

Offline register
allocator

register IR
JIT compiler

Code
generator

source

Source compiler

bytecode

JIT compiler

Code
generator

machine 
code

Register
allocator

source
machine 

code

Code
generator

(c) Online register allocation w. inlining (ONRI)

(d) Offline register allocation w. inlining (OFR)

Source compiler
+

Offline register
allocator

register IR
Code

generator

source

Source compiler

bytecode
Code

generator

machine 
code

Register
allocator

source
machine 

code

Code
generator

Inlining

Inlining +
register

table 
merging

Fig. 4. The four compile scenarios: in (a) and (c) register allocation (and method
inlining in (c)) is performed online by the fast compiler; in (b) and (d) register allocation
is performed offline, the online compiler uses the register assignments to generate code
(and inlining in (d)).

includes SIR) because we are focusing on fast compilers, rather than optimizing
compilers that can afford to build other intermediate representations.

The experimental environment is the following. We use the SimpleJIT com-
piler in the Ovm virtual machine framework [19] on a 1.33 Ghz PowerPC G4
processor with 2 GB of RAM, running Mac OS X.

6.1 Code size

We measure the space overhead of SIR versus bytecode. There are two sources of
space overhead, additional loads and stores and register tables. Figure 5 shows
the space overhead in terms of the class file size for each of the offline register al-
location heuristics. The overall space overhead is 18-20%. Previous work reports
overheads of 100% ([2]) and 31% ([9]).

6.2 Offline translation time

We measure the time for offline translator to convert Java bytecode into SIR.
This involves: (a) Eliminate subroutines (by duplicating the subroutine body
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(Kbytes) Total Ovm SPECjvm98

# classes 3,317 2,767 550

Original 8,854 7,291 1,563

LP 10,568(19.4%) 8,472(16.2%) 2,095(34.0%)

GP 10,434(17.8%) 8,374(14.9%) 2,059(31.7%)

EGC 10,435(17.9%) 8,375(14.9%) 2,060(31.8%)

IGC 10,423(17.7%) 8,366(14.8%) 2,056(31.5%)

Fig. 5. The code size overhead of SimpleIR

(sec) Total Ovm SPECjvm98

# classes 3,317 2,767 550

LP 629 395 234

GP 676 426 250

EGC 948 541 407

IGC 668 437 230

Fig. 6. The offline bytecode translation time

for each subroutine call site). (b) Insert loads and stores to make the evalua-
tion stack empty between core instructions and at basic block boundaries. (c)
Introduce extra local variables to let local variables have only one consistent
type for the entire method. (d) Perform several simple dataflow optimizations
such as constant propagation, copy propagation, and dead code elimination. (e)
Apply one of the offline register allocation heuristics (including liveness analysis
needed) (f) Compute register tables. (g) Write the converted code into class files.

Figure 6 shows the offline translation time for the four different offline alloca-
tion heuristics. EGC takes the longest translation time because it needs to iterate
the graph coloring heuristic to find the minimal number of virtual registers. LP is
the fastest overall due to its simplicity. The two other heuristics came relatively
close.

6.3 Performance

Next, we measure the execution time of the seven benchmarks of SPECjvm98 to
evaluate the steady-state performance of the generated code. The PowerPC G4
processor has 32 32-bit general purpose registers (GPR) and 32 64-bit floating
point registers (FPR). We use 15 GPRs for the register allocation of the integer
and reference type virtual registers (local variables) and 13 FPRs for the float
and double type virtual registers. We do not assign registers for long typed virtual
registers. The rest of the registers are used for argument and scratch uses. To
share a single set of physical registers (e.g., GPRs) for multiple virtual register
sets (e.g., integer and reference virtual registers), we merge two register tables
into one register table before assigning virtual registers to physical registers.
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Fig. 7. The normalized SPECjvm98 execution time (steady state performance) of the
two online scenarios and the eight offline scenarios.

The method inlining heuristics we use is the following. We inline all methods
(callees) that are private, static, or final, and whose bytecode size is less than or
equal to 27 bytes. The maximum inlining depth is 5. The maximum caller code
size is 240 bytes. We do not attempt to perform devirtualization or inlining of
non-final virtual methods.

The results for the two online scenarios (ONR and ONRI) and the eight offline
scenarios (OFR and OFRI for each of LP, GP, EGC, and IGC) are shown in Figure
7. They are the averages of nine runs. For the online scenarios, we used the
standard optimistic graph coloring allocator GC. The right-most bars show the
geometric means over the seven benchmarks. Method inlining contributes about
10% overall performance gain. As expected, with or without method inlining,
the online scenarios ONR and ONRI resulted in the best overall performance.
However, the difference between the online scenarios and the offline scenarios are
small. This leads to the two following observations. First, the quality difference
between the (online) traditional register allocation, which needs the fixed number
of registers, and the (offline) cumulative register allocation, which does not, turns
out small. Second, the quality difference between register allocation after inlining
(ONRI) and register allocation before inlining (OFRI), that is, the phase ordering
problem between register allocation and method inlining is minimized by RTM.

Comparing the four heuristics (new heuristics LP and IGC, and GP and EGC
from the previous work), we can derive the following observations. First, with-
out inlining, LP overall performed the best. This is surprising because of LP’s
simplicity. This may imply that, without inlining, we have a sufficient number
of physical registers for many methods (i.e., small methods) and the quality dif-
ferences among the heuristics do not stand out. This is actually supported by
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Fig. 8. The SPECjvm98 geometric means with varying numbers of allocated registers.

Figure 8, which shows the overall SPECjvm98 results with varying numbers of
registers used for allocation. Second, with inlining, IGC achieved the best overall
results. This implies that IGC tends to work better for large methods that are
produced after inlining. Third, unexpectedly, EGC did not work as well. However,
Figure 8 shows that EGC works well in some cases with fewer registers.

We also compare the four major scenarios: the baseline compilation, the
online register allocation (ONR and ONRI), the offline register allocation (OFR and
OFRI with IGC), and the optimizing compilation. The baseline compilation does
not perform any optimizing and the optimizing compilation performs the highest
level of optimizations. Figure 9 shows the results. The online or offline scenarios
achieve about 2.5 times lower performance than the optimizing scenario whereas
the baseline compilation is about 5 times lower.

6.4 Compilation time

We measure the online compilation time in an ahead-of-time compilation setting.
This is not what we advocate since a fast compiler is ideally invoked in a just-in-
time manner, but simply a mechanism we use to evaluate the compilation time
in this paper.

Figure 10 shows the compilation time results. The compilation times are in
milliseconds and shown with the relative lengths compared to the baseline compi-
lation time. The baseline compilation and the offline scenario compilations scans
the input bytecode literally once for code generation. The code generators are
written using Visitor Pattern (double dispatch) rather than a switch statement.
The offline scenarios in addition needs to parse the register table annotations
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Fig. 9. The normalized SPECjvm98 execution time (steady state performance) of the
baseline scenario, the two online scenarios, the two offline scenarios (IGC), and the
scenario with the optimizing compiler. The bars are normalized against the optimizing
scenario.

(msec) Total Ovm SPECjvm98

# of methods 9523 6761 2762

baseline 6880 (1.00) 4526 (1.00) 2354 (1.00)

ONR 71984(15.90) 27014(5.97) 44970(19.10)

ONRI 87153(19.25) 33768(7.46) 53385(22.67)

OFR(LP) 8242 (1.20) 4136 (0.91) 4106 (1.74)

OFRI(LP) 16082 (2.34) 8644 (1.91) 7438 (3.16)

OFR(GP) 8504 (1.24) 4553 (1.01) 3951 (1.68)

OFRI(GP) 15159 (2.20) 8202 (1.81) 6957 (2.96)

OFR(EGC) 8431 (1.23) 4233 (0.94) 4198 (1.78)

OFRI(EGC) 15567 (2.26) 8367 (1.85) 7200 (3.06)

OFR(IGC) 8288 (1.20) 4231 (0.93) 4057 (1.72)

OFRI(IGC) 15363 (2.23) 8162 (1.80) 7201 (3.06)

Fig. 10. The online compilation time

from the class files, merge the register tables (e.g., integer and reference ta-
bles) before code generation, and perform the light-weight code verification to
check that the input bytecode complies with SIR during code generation. With-
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out inlining, the four heuristics have the overall compilation overhead of about
20-25% from the baseline. The compilation overhead is higher for SPECjvm98
(72-78%) because there are some large methods whose register table tends to be
large. With inlining, the overall compilation time is about 2.2-2.34 times longer
than the baseline. SPECjvm98 needs up to 3.2 times longer compilation time
with inlining. The online scenario compilation time includes the time to perform
optional inlining (if ONRI), the traditional graph coloring allocation (GC), and
a single-pass code generation. The overall online scenario compilation time is
longer than the baseline scenario by a factor of 15.9 (19.3 with inlining). We
believe that the offline scenario compilations achieve high cost-performance con-
sidering the compilation time overhead and the performance gain, compared to
the baseline compilation.

7 Related Work

Sites [18] used a simple packing heuristic equivalent to GP on Pascal U-Code.
Gupta et al. [7] and Callahan et al. [5] proposed compositional graph coloring
register allocation heuristics. The interference graph of a procedure is decom-
posed into subgraphs. Subgraphs are colored separately and are combined into
a single graph. These two approaches are analogous to register table merging
in our work in the sense that subparts of programs are register-allocated sep-
arately and the allocation results are combined together. However, these two
approaches are different from our work because their approaches are for online
register allocation where the number of available colors is known at allocation
time.

8 Conclusions

We investigated the interplay of two of the most effective optimizations in object-
oriented programs: register allocation and inlining in a combination of offline and
online compilation, for fast dynamic compilers. With offline register allocation
heuristics, SIR, and RTM, we achieved performance very close to that of the
online allocation scenarios, with significantly shorter online compilation time.
Compared to the baseline compilation, the offline scenarios achieved good cost-
performance with about 80% (99% with inlining) better performance, 20% of
overall code size overhead and 25% (a factor of 2.3 with inlining) online compi-
lation overhead.
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