
Hierarchically Structured Mobile Agents

and their Migration

Ichiro Satoh∗

Department of Information Sciences, Ochanomizu University
2-1-1 Otsuka Bunkyo-ku Tokyo 112-8610, Japan

Abstract

This paper presents a framework for mobile agents. The framework is unique among
other mobile agent systems in structuring mobile agents hierarchically. The framework
provides the notion of agent hierarchy, in which each mobile agent can be a container of
other mobile agents. We construct a prototype implementation of this framework. It is
built on the Java language and mobile agents are given as Java objects. The framework
helps us to construct a mobile agent application that is large in scale and complex.

1 Introduction

Component-based software development technology is being used widely [13] and allows a
distributed system to be easily constructed through the combination of existing subcompo-
nents. On the other hand, many mobile agent systems have recently explored, but most of
them do not provide any mechanism for structurally assembling one or more mobile agents
as one mobile agent. This is because each mobile agent is basically designed as an isolated
entity which always acts and migrates independently even though some systems provide the
notions of places and inter-agent communication, which can couple mobile agents loosely.
This is a serious limitation in the development of a large and complicated system based on
mobile agents.

Therefore, we introduce a new mobile agent model inspired by the concept of mobile
ambients studied by L.Cardelli and A.D.Gordon in [3]. Ambients are computational entities
like mobile agents, but are characterized in allowing the movement of a group of one or
more ambients, as opposed to the technique in existing mobile agents where single agents
or individual objects migrate between computers. Each ambient can nest other ambients
within itself and can migrate between ambients. The concept enables agents to be organized
hierarchically and dynamically. Like mobile ambients, our model allows each mobile agent
to be a container of other mobile agents inside itself, and to migrate to the other agents as
well as in other computers. The model enables us to combine one or more mobile agents as a

∗Email: ichiro@is.ocha.ac.jp

1

mobile agent, as component-based software development technology. It helps us to construct
a mobile agent application that is large in scale and complex.

This paper consists of the following sections. In Section 2, we present basic ideas of
our mobile agent model. Section 3 presents an implementation of the model, called Mo-
bileSpaces. Section 4 describes the current implementation status and present some exam-
ples of the model. Section 5 surveys related work in terms of mobile agent systems. In
Section 6, we give some concluding remarks.

2 Basic Framework

This section introduces basic ideas of our mobile agent model.

2.1 Hierarchically Structured Mobile Agents

Our mobile agents are computational entities like other mobile agents. Once they are in-
voked, they will autonomously decide which locations they will visit and what instructions
they will perform. When an agent migrates, not only the code of the agent but also its state
can be transferred to the destination. Moreover, our mobile agent is characterized by the
following concepts:

Agent Hierarchy: Each mobile agent can nest other mobile agents inside itself and has to
be contained by one agent. Mobile agents are organized in a tree structure.

Inter-agent Migration: Each mobile agent can migrate between mobile agents as a whole
with all its inner agents. That is, if a migrating agent includes other agents inside itself,
all its inner agents have to be moved by causing the movement of the agent.

Figure 1 shows an example of an inter-agent migration in an agent hierarchy. When an agent
contains other agents, we call the former agentparentand the latter agentschildrenhereafter.
Since this framework allows agents to be nested, a child agent can contain one or more agents
in the same way. We call the agents which are nested by an agent, thedescendentagents of
the agent, and in reverse we call the agents which are nesting an agent, theancestralagents
of the agent. The agent hierarchy enables us to combine one or more mobile agents as a
mobile agent, like in component-based software development technology [13]. It helps us to
construct a mobile agent application that is large in scale and complicated.

It is worth mentioning differences between our model and other mobile agents models.
The model is similar to the concept of mobile ambients. However, the concept is just a theo-
retical framework and thus must be changed and restricted in order to implement a practical
mobile agent system. Also, each ambient is allowed to migrate itself to only its parent and
its sibling agents. On the other hand, our model assumes that each agent can freely move
into any agents in the agent hierarchy, except for itself nor its descendants, as long as the
destination agent accepts the moving agent.

In Telescript [14]. the concept of places are introduced as collections of resources to
visiting agents. Agents can access these resources as they enter the places which offer the
resources. Similarly, in our model, each mobile agent is introduced as a collection of its

2

migrationstep 1

step 2

Agent A Agent B

Agent C

Agent D
Agent E

Agent A Agent B

Agent C

Agent D
Agent E

Figure 1: Agent Hierarchy and Inter-agent Migration

own resources and services for its child agents. That is, each parent agent is responsible
for providing its own resources for its child agents. Different services can be provided in
different agents. Therefore, when a mobile agent wants a service and resources, the agent
can acquire the service by migrating to the agent providing the service.

• Each agent has direct control of its descendent agents. That is, an agent can instruct its
descendent agents to move to other agents, serialize, and destroy them. Each agent can
issue certain events to its descendent agents in order to press them to do something.

• In contrast, each agent has no direct control on its ancestral agents. Instead, each agent
offers a collection of service methods for its children. A child agent can access its
parent agent through the collections of their service methods. It can access those of its
ancestral stationary agents, including the base agent, as well as its its parent agent.

Our system disallows any agent to access any services provided in their ancestral agents
except for their parent agents and stationary agents. This restriction is a key idea of our
mobile agent model and allows agents to properly capture computing resources. If an agent
is assumed to access its ancestral mobile agent as well as its parent one, the agent cannot
access any services provided by its grandparent agent any longer, as its parent agent moves
from the grandparent agent to a new location.

3 Implementation

We developed an implementation of the hierarchically structured mobile agents presented in
the previous section. It builds on the Java virtual machine and mobile agents are implemented
in the Java language. Moreover, we have already constructed various mobile agent applica-
tions on the implementation, for example workflow management systems, chat systems, and
distributed information search systems.1

1The distribution of the prototype implementation of the system is available from
http://islab.is.ocha.ac.jp , but some of its documents are still written in Japanese.

3

3.1 The Runtime System

Hereafter, we describe some of the features in which our mobile agent system is unique
among other systems below:

Agent Hierarchy Management

The runtime system maintains an agent hierarchy, which is implemented as a tree structure
where each node contains a mobile agent and its attributes. It alters the tree structure to
migrate agents in the agent hierarchy, and can be abstracted as a stationary agent at the root
node of the tree structure.

Agent migration in the same agent hierarchy can be viewed as just a transformation of
the tree structure of the hierarchy. For example, an inter-agent migration is performed as
follows: the system removes the subtree whose root node has the descendent agent from the
whole hierarchy and then adds the subtree to the node which contains the destination agent,
without altering the structure of the subtree. When an agent and its nested agents are moving,
they can still be running.

Agent Execution Management

Each agent can have one or more activities. The runtime system controls the activities of
all agents with the Java thread mechanism. When an agent is transferred, serialized, or de-
stroyed, the system stops and disposes of threads captured by the agent. Furthermore, the
system maintains the life-cycle of agents: initialization, execution, suspension, and termina-
tion. When the state of an agent is changed, the system issues certain events to the agent and
its descendent agents. These events can invoke specified methods defined in the agent.

Agent Migration Over Network

When an agent is transferred over network, it has to be marshaled into a bit-stream and
then unmarshalled from it later. The runtime system provides a mechanism for marshaling
and unmarshaling for the states of agents. When an agent is marshaled, the runtime system
propagates certain events to the agent and its descendent agents which are still running in
order to press to stop. Also, it can automatically stop and serialize them after a given time
period. The runtime system can transfer agents to the destination computer by means of
an application-layered protocol for agent transmission whose mechanism is extended of the
HTTP protocol over TCP/IP communication. However, in the current implementation of the
system, agent migration over network is implemented in mobile agents instead of the runtime
system. Therefore, we can easily change and adapt the mechanism of agent transmission.

Remark The current implementation of the system uses the Java object serialization pack-
age in order to marshal and unmarshal agents. The package does not support capturing the
stack frames and program counter of threads. Consequently, our system cannot serialize the
execution states of any thread objects. However, as discussed in [12], we believe that this
limitation is not serious, because it has not prevented the development of various distributed
applications based on mobile agents so far.

4

3.2 Mobile Agents

Every agent is an instance of a subclass of the base class for mobile agents, calledAgent .
The class consists of fundamental methods used to control the mobility and the life cycles of
a mobile agent.

Child Agent A

an event from the base
agent or an ancestor

event handler (listener)

method 1
method 2
method 3

state

service method 1

service method 2

callback

state

getService()

Child Agent B

Agent

agent
context

agent
program

Figure 2: MobileSpaces Mobile Agent

1: public class Agent {
2: // methods for registering listener objects to hook certain events
3: void addDefaultListener(DefaultEventListener listener){ ... }
4: void removeDefaultListener(DefaultEventListener listener){ ... }
5:
6: AgentURL getURL(){ ... }
7: Enumeration getChildren(){ ... }
8:
9: void getService(Message msg) throws NoSuchMethodException ... { ...}

10: void dispatchEvent(AgentEvent evt) throws NoSuchEventException ... {...}
11: void go(AgentURL dst) throws NoSuchAgentException ... { ...}
12:
13: }

Thego(AgentURL dst) method migrates itself and and its descendents to the destination
agent specified asdst . An agent can call methods given in the context of its parent agent
by calling thegetService() method. ThedispatchEvent(AgentEvent evt)
method propagates an event specified as its argument to its When an agent is transferred or
destroyed, our system does not automatically release all the resources, such as file, window,
and socket, which are captured by the agent. Before or after the state of an agent changes, the
system and its ancestral agents can propagate certain events to the agent, like event delegation
event model in Aglets [6]. Therefore, each agent can have one or more listener objects in
order to hook these events. We show a listener interface which defines fundamental methods
invoked when agents are created, destroyed, serialized, and migrated to another agent and
when visiting agents enter to and leave from them.

5

1: interface DefaultEventListener extends AgentEventListener {
2: // timing of invocation
3: void create(AgentURL url); // after creation at url
4: void destroy(); // before termination
5: void serialize(); // before serialization
6: void deserialize(); // after deserialization
7: void add(AgentURL child); // after accepted a child
8: void remove(AgentURL child); // before removed a child
9: void arrive(AgentURL dst); // after arrived at the destination

10: void leave(Agent dst); // before moving to the destination
11:
12: }

3.3 Performance

To evaluate the cost of agent migration, we examined a basic experiment of agent migration
in two cases: agent migration in an agent hierarchy and agent migration between different
computers. The former experiment is performed in a prototype implementation of the run-
time system. In the latter experiment, agent migration is supported by transmitter agents
allocated on two computers.

Table 1: the cost of agent migrations

time (in msec)
agent migration in an agent hierarchy 3
agent migration between two computers 60

These results have been measured with two computers (Pentium II-450MHz with 128MB
memory with MS-Windows98 and JDK 1.1.7) connected via 10BASE-T Ethernet. The first
result includes the cost to check whether the visiting agent is permitted to enter the destina-
tion agent or not. The second result is the sum of the marshalling, opening TCP connection,
transmission, and unmarshalling.

4 Related Work

Recently, there have been many mobile agent systems, for example Telescript [14], AgentTcl
[5], Aglets [6], Mole [12], MOA [7], Voyager [8], AgentSpace [10] and so on. Like ours,
most of them have been implemented in the Java language. However, to our knowledge,
most existing mobile agent systems do not allow one or more mobile agents to be organized
as a mobile agent, although some of the systems offer mechanisms for inter-agent commu-
nications in order to couple agents loosely. Several existing systems introduce the concepts
of places in addition to mobile agents. Mobile agents can move from place to place in order
to meet other agents and make use of the services provided by the places. However, places
are stationary entities instead of mobile ones. Mole introduces the notion of agent groups in
order to encourage coordination among mobile agents [2]. Mole’s agent groups can consist
of agents working together on a common task but are not mobile.

6

5 Conclusion

In this paper we have seen a way to design and implement a mobile agent system. The system
is characterized by the concepts of agent hierarchy and inter-agent migration. It allows one or
more mobile agents to be structurally and dynamically composed into a mobile agent. This
helps us to construct a mobile agent application that is large in scale and complex. Although
this paper addresses a model for mobile agents, we believe that the model is designed for
constructing a runtime system whose facilities can be dynamically extensible and adaptable
to its execution environments.2 Also, the model provides a powerful framework for mobile
agents running on mobile computers, because the model allows us to view the migration of
a mobile computer as that of a hierarchical mobile agent.

Finally, we would like to point out some further issues. Our mobile agent system pre-
sented in this paper is originally inspired by the concept of mobile ambients studied in [3],
but does not intend to implement the concept itself. We are interested in formalizing a new
theoretical framework for our mobile agent model based on process calculus approaches as
studied in [9, 11]. Although, security is essential in mobile agent computing, many secu-
rity features are left open for our future work, such as authentication, and authorization of
agents. Also, the current implementation lacks resource management. We are interested in
introducing a mechanism for resource management based on our agent hierarchy.

References

[1] K. Arnold and J. Gosling, The Java Programming Language, Addison-Wesley, 1996.

[2] J. Baumann and N. Radounklis, Agent Groups in Mobile Agent Systems, Conference on Dis-
tributed Applications and Interoperable Systems, 1997.

[3] L. Cardelli and A. D. Gordon, Mobile Ambients, Foundations of Software Science and Compu-
tational Structures, LNCS, Vol. 1378, pp. 140–155, 1998.

[4] General Magic, Inc. Introduction to the Odyssey, http://www.genmagic.com/agents, 1997.

[5] R. S. Gray, Agent Tcl: A Transportable Agent System, CIKM Workshop on Intelligent Infor-
mation Agents, 1995.

[6] B. D. Lange and M. Oshima, Programming and Deploying Java Mobile Agents with Aglets,
Addison-Wesley, 1998.

[7] D. S. Milojicic, W. LaForge, and D. Chauhan, Mobile Objects and Agents (MOA), USENIX
Conference on Object Oriented Technologies and Systems, April 1998.

[8] ObjectSpace Inc, ObjectSpace Voyager Technical Overview, ObjectSpace, Inc. 1997.

[9] I. Satoh and M. Tokoro., Time and Asynchrony in Interactions among Distributed Objects, Euro-
pean Conference on Object Oriented Programming, LNCS 952, pp. 331–350, Springer-Verlag,
1995.

2We leave the details of the extensible and adaptable runtime system for hierarchical mobile agents to
another paper.

7

[10] I. Satoh, AgentSpace, http://islab.is.ocha.ac.jp/agent/index.html, 1997.

[11] I. Satoh, A Mobile Agent-Based Framework for Active Networks, to appear in Proceedings of
IEEE Systems, Man, and Cybernetics Conference (SMC’99), October, 1999.

[12] M. Strasser and J. Baumann, and F. Hole,Mole: A Java Based Mobile Agent System, Proceed-
ings of ECOOP Workshop on Mobile Objects, 1996.

[13] C.Szyperski, Component Software, Addison-Wesley, 1998.

[14] J. E. White, Telescript Technology: Mobile Agents, General Magic, 1995.

8

