IBM Research

X10: Com at scale

Vijay Saraswat
July 24, 2006
IBM Research

© 2006 IBM Corporation

| IBM Research

220

oA
B
e

What?

= Context and overview

The X10 Programming Model

Programming in X10

Research topics

© 2006 IBM Corporation

IBM Research

Acknowledgments

= X10 Core Team Recent Publications
— Rajkishore Barik 1. "X10: An Object-Oriented Approach to Non-Uniform
— Chris Donawa Cluster Computing”, P. Charles, C. Donawa, K.
— Allan Kielstra Ebcioglu, C. Grothoff, A. Kielstra, C. von Praun, V.

— lgor Peshansky
_ Christoph von Praun Saraswat, V. Sarkar. OOPSLA conference, October

— Vijay Saraswat 2005.
— Vivek Sarkar 2. "Concurrent Clustered Programming"”, V. Saraswat,
— Tong Wen R. Jagadeesan. CONCUR conference, August

= X10 Tools 2005.
— Philippe Charles 3. "An Experiment in Measuring the Productivity of
— Julian Dolby Three Parallel Programming Languages”, K.
- E;:ek”T'::hrer Ebcioglu, V. Sarkar, T. E-Ghazawi, J. Urbanic. P-
_ Mandana Vaziri PHEC workshop, February 2006.

= Emeritus 4. "X10: an Experimental Language for High
— Kemal Ebcioglu Productivity Programming of Scalable Systems", K.
— Christian Grothoff Ebcioglu, V. Sarkar, V. Saraswat. P-PHEC

= Research colleagues workshop, February 2005.

— R. Bodik, G. Gao, R. Jagadeesan, J. ypcoming tutorials

Palsberg, R. Rabbah, J. Vitek

© 2006 IBM Corporation

_ The Challenge:

B . . B .

__ Parallelism scaling replaces frequency scaling as foundation for
B

___ increased performance = Profound impact on future software
e

B

Sy R e

R

. Multi-core chips Heterogeneous Parallelism Cluster Parallelism

Pkt

R

e
S SPE
]

o
SRR

HENEHEE

eelnyc";lll]I‘l T* .I-l Il .I-l .ﬂ-l Tl Tl Tl Tl Tl
EIB (up to 96B/cycle)

PPE 16Blcycle 16Blcycle (2x) | | |

<>

j=n

PPU mic BIC
wtexu| T [T
Bicyfip 16Bdycle
Dual FlexlO™
XDR™

64-bit Power Architecture with VMX

Our response:
Use X10 as a new language for parallel hardware that builds on
existing tools, compilers, runtimes, virtual machines and libraries

D01 I .

| IBM Research

%The X10 Programming Model

= Support for productivity = Support for scalability

— Axiom: Provide constructs to deal

— Axiom: Exploit proven OO benefits with non-uniformity of access.

(productivity, maintenance,

portability benefits). — Axiom: Build on asynchrony. (To

support efficient overlap of

— Axiom: Rule out large classes of computation and communication.)

errors by design (Type safe,

gna?r£°cr?’o§if§;,re°_'_’f§er safe, Lock — Axiom: Use scalable

synchronization constructs.

— Axiom: Support incremental . .
introduction of explicit place — Axiom: Permit programmer to
types/remote operations. specify aggregate operations.

— Axiom: Itegrate with static tools
(Eclipse) -- flag performance
problems, refactor code, detect
races.

— Axiom: Support automatic static
and dynamic optimization (CPO).

© 2006 IBM Corporation

| IBM Research

Partitoned

* Local se emote sectio Global
Local L.—» Remote Address
A ai?'it -~ o] object Space
& =T —T |Outbound Inbound [T T mE | (PGAS)
%f_j_ 5 | B = — | Activities Activities | f={ =
38 | B Globally
3= Asynchronous
VLY Ve ¥ [VY,
Place 0 Place (MaxPlaces-1)
Place = collection of resident Locality Rule Ordering Constraints (Memory Model)
activities & objects Any access to a mutable Locally Synchronous:
datum must be performed by a Guaranteed coherence for local heap =
Storage classes local activity =» remote data Sequential consistency
Immutable Data accesses can be performed by
PGAS creating remote activities Globally Asynchronous:
— Local Heap No ordering of inter-place activities =»
_ Remote Heap use explicit synchronization for coherence
Activity Local Few concepts, done right.

© 2006 IBM Corporation

| IBM Research

Sequential X10

v Classes and interfaces ? Not included
v" Fields, Methods, 7 Dynamic linking
Constructors ? User-definable class
v" Encapsulated state loaders
v" Single inheritance x Changes
v Multiple interfaces x Value types
v Nested/Inner/Anon classes x Aggregate data/operations
v Static typing x Space: Distribution
v Objects, GC x Time: Concurrency
v Statements x Changes planned
> v" Conditionals, x Generics
assignment,... x FP support

v" Exceptions (but relaxed)

Shared underlying philosophy: shared syntactic and semantic tradition, simple, small, easy
to use, efficient to implement, machine independent

© 2006 IBM Corporation

| IBM Research

© X10 v0.41 Cheat Sheet

Stm: DataType:

async [(Place)] [clocked ClockList] Stm ClassName | InterfaceName | ArrayType

when (SimpleExpr) Stm nullable DataType
finish Stm future DataType
Kind :

value | reference

next; c.resume() c.drop()
for(i: Region) Stm
foreach (i: Region) Stm
ateach (I: Distribution) Stm
Expr:
ArrayExpr

e i x10.lang has the following classes (among
ClassModifier : Kind others)

MethodModifier: atomic point, range, region, distribution, clock,

array

Some of these are supported by special syntax.
Forthcoming support: closures, generics, dependent types.

© 2006 IBM Corporation

| IBM Research

X10 v0.41 Cheat Sheet: Array support

ArrayExpr: Region:
new ArrayType (Formal) { Stm } Expr : Expr -- 1-D region
Distribution Expr -- Lifting [Range, ..., Range | -- Multidimensional Region
ArrayExpr [Region | -- Section Region &.& Region -- Intersection
ArrayExpr | Distribution -- Restriction Region || Region -- Union
ArrayExpr || ArrayExpr -- Union Region — Region -- Set difference
ArrayExpr.overlay(ArrayExpr) -- Update BuiltinRegion
ArrayExpr. scan([fun [, ArgList])
ArrayExpr. reduce([fun [, ArgList]) Dist:
= ArrayExpr.liit([fun [, ArgList]) Region -> Place -- Constant Distribution
Distribution | Place -- Restriction
ArrayType: Distribution | Region -- Restriction
Type [Kind] [] Distribution || Distribution -- Union
Type [Kind] [region(N)] Distribution — Distribution -- Set difference
Type [Kind] [Region | Distribution.overlay (Distribution)
Type [Kind] | Distribution | BuiltinDistribution

Language supports type safety, memory safety, place safety, clock safety.

© 2006 IBM Corporation

fonaoos

|
il
J1l

Puuu
il
i
mf!

| IBM Research

o

" Hello, World!

2

public class HelloWorld {
public static void main (String[] args) {

System.out.println ("Hello, world!");

public class HelloWorld2 ({
public static void main (String[] args) {
finish foreach (point [p] : [1:10])

System.out.println ("Hello, world from async " + p + "!");

10 | © 2006 IBM Corporation

| IBM Research

Value types : immutable instances

= Value class

— Can only extend value class public value complex {
or x10.lang.Object.

— Have only final fields

— Can only be extended by
value classes. double re) {

— May contain fields at this.im = im; this.re = re;
reference type. \
— May be implemented by

double im, re;

public complex (double im,

reference or copy. public complex add(complex a) ({
= Two values are equal if their return new complex (im+a.im,
corresponding fields are reta.re) ;
equal.

= nullable _ provided as a type
constructor.

© 2006 IBM Corporation

| IBM Research

_async, finish

|
il
1l

|
l

|

A
Ter
it
fll

async PlaceExpressionSingleListopt Statement

= async(P) S
— Parent activity creates a
new child activity at place
P, to execute statement S;
returns immediately.

— S may reference final
variables in enclosing
blocks.

double[D] A =...; // Global dist. array
finalintk = ...;
async (A.distribution[99]) {
/I Executed at A[99]’s place
atomic A[99] = k;
}

Statement ::= finish Statement

finish S

— Execute S, but wait until all
(transitively) spawned async’s
have terminated.

— Trap all exceptions thrown by
spawned activities, throw
aggregate exception when all
activities terminate.

finish ateach (point [i]:A) Ali] = i;
finish async (A.distribution[j]) A[j] = 2;
/I All A[i]=I will complete before A[j]=2

cf Cilk’s spawn, sync

© 2006 IBM Corporation

| IBM Research

atomic, when

;

]
b
iy

Statement ::= atomic Statement
MethodModifier ::= atomic

= Atomic blocks are

— Executed in a single step,
conceptually, while other
activities are suspended.

= An atomic block may not
— Block
— Access remote data.
— Create activities.
— Contain a conditional block.
= Essentially, body is a
bounded, sequential, non-
blocking activity
— Hence executing in a single
place.

Statement ::= WhenStatement
WhenStatement ::= when (Expression) Statement

= Conditional atomic blocks
— Activity suspends until a
state in which guard is
true; in that state it
executes body atomically.
= Body has same
restructions as
unconditional atomic block.
= await (e)=def=when (e) ;

= X10 does not assume retry
semantics for atomics.

X10 has only one synchronization construct: conditional atomic block.

© 2006 IBM Corporation

IBM Research

Atomic blocks simplify parallel programming

No explicit locking
— No need to worry about lock
management details: What to
lock, in what order to lock.

= No underlocking/overlocking
issues.

= No need for explicit
consistency management
— No need to carry mapping
between locks and data in
your head.

= System can manage locks and
consistency better than user

Enhanced performance

scalability

— X10 distinguishes intra-place
atomics from inter-place
atomics.

— Appropriate hardware design
(e.g. conflict detection) can
improve performance.

Enhanced analyzability

— First class programming
construct

Enhanced debuggability

— Easier to understand data races
with atomic blocks than with
critical sections/synchronization
blocks

© 2006 IBM Corporation

| IBM Research

Aside: Memory Model

= X10 v 0.41 specifies
sequential consistency per
place.

= We are considering a weaker
memory model.

= Built on the notion of atomic:

identify a step as the basic
building block.

= A process is a pomset of
steps closed under certain
transformations:

— Composition

— Decomposition
— Augmentation
— Linking

= There may be opportunity for

a weak notion of atomic:
decouple atomicity from
ordering.

© 2006 IBM Corporation

| IBM Research

- Bounded buffer

=
=
=

S

class OneBuffer ({
nulable Object datum = null;
public void send(Object v) {
when (datum == null) {
datum = v;

public Object receive() {
when (datum '= null) {
Object v = (Object) datum;
datum = null;
return v;

© 2006 IBM Corporation

| IBM Research

Atomic examples: future

class Latch implements future ({
boolean forced = false;
nullable boxed result = null;
nullable exception z = null;
atomic boolean set(nullable Object wval) {
return set(val, null); }
atomic boolean set(nullable Exception z) {
return set(null, z); }
atomic boolean set(nullable Object val,
nullable Exception z) {
if (forced) return false;
// these assignment happens only once.
this.result = val;
this.z = z;
this.forced = true;

return true; }

atomic boolean forced() {
return forced;
}
Object force() {
when (forced) {
if (z !'= null)
throw z;

return result;

© 2006 IBM Corporation

| IBM Research

Atomic examples: future

Jou]
il
il
J1l

I
Hiv

o

g

new

future (P) { e}

RunnableLatch () ({
public Latch run() ({
Latch L = new Latch();
async (P) {
Object X;
try {
finish X = e;
async (L) L.setValue(X);
} catch (exception Z) {

async (L) L.setValue(Z);

}

return 1;

}

}.run()

© 2006 IBM Corporation

| IBM Research

Atomic Blocks: SPECjbb Example #2

Java:

public class Stock extends Entity {...
private float ytd;
private short orderCount; ...
public synchronized void
incrementYTD(short ol_quantity) { ...
ytd += ol_quantity; ...}...
public synchronized void
incrementOrderCount() { ...
++orderCount; ...} ...
}

Layout of
a “Stock”
object

. NOTE: these two methods

4 cannot be executed
simultaneously because they
use the same lock

19

X10:

public class Stock extends Entity {...
private float ytd;
private short orderCount; ...
public atomic void
incrementYTD(short ol_quantity) { ...
ytd += ol_quantity; ...}...
public atomic void
incrementOrderCount() { ...
++orderCount; ...} ...

NOTE: with atomic
blocks, these two
methods can be
executed
simultaneously

© 2006 IBM Corporation

| IBM Research

. Atomic blocks: Barrier synchronization

ORIGINAL JAVA CODE

Main thread (see spec.jpbb.Company): ...
// Wait for all threads to start.
synchronized (company.initThreadsStateChange) ({
while (initThreadsCount != threadCount) {
try {
initThreadsStateChange.wait() ;
} catch (InterruptedException e) {..}

}

Il Tell everybody it’s time for warmups.

mode = RAMP UP;

synchronized (initThreadsCountMonitor) {
initThreadsCountMonitor.notifyAll () ;

}

Worker thread (see spec.jbb.TransactionManager): ...
synchronized (company.initThreadsCountMonitor) ({
synchronized
(company.initThreadsStateChange) {
company . initThreadsCount++;

company .initThreadsStateChange.notify() ;

}
try {

company .initThreadsCountMonitor.wait () ;
} catch (InterruptedException e) {..}

EQUIVALENT CODE WITH ATOMIC SECTIONS

Main thread: ...

// Wait for all threads to start.

when (company . initThreadsCount==thre
adCount) {
mode = RAMP UP;
initThreadsCountReached = true;

Worker thread: ...
atomic {
company.initThreadsCount++;

await (initThreadsCountReached) ;
//barrier synch.

© 2006 IBM Corporation

| IBM Research

|
il
1l

|

|

' il
Tit
it
jr

Determinate, dynamic barriers: clocks

Operations
clock ¢ = new clock();
c.resume();

- Signals completion of work by

activity in this clock phase.
next;

« Blocks until all clocks it is
registered on can advance.
Implicitly resumes all clocks.

c.drop();

« Unreqister activity with c.

No explicit operation to register a clock.

async(P)clocked(c,,...,c,)S

* (Clocked async): activity is
registered on the clocks (c,,...,c,)

Static Semantics

— An activity may operate only on
those clocks for which it is live.

— In finish S,S may not contain
any (top-level) clocked asyncs.

Dynamic Semantics

— A clock ¢ can advance only when
all its registered activities have
executed c.resume().

Supports over-sampling, hierarchical nesting.

© 2006 IBM Corporation

| IBM Research

Deadlock freedom

= Central theorem of X10: = Where is this useful?

— Arbitrary programs with — Whenever synchronization
async, atomic, finish (and pattern of a program is
clocks) are deadlock-free. independent of the data read

by the program
= Key intuition: — True for a large majority of

— atomic is deadlock-free. HPC codes.

— finish has a tree-like — (Usually not true of reactive
structure. programs.)

— clocks are made to satisfy
conditions which ensure tree-
like structure.

— Hence no cycles in wait-for
graph.

© 2006 IBM Corporation

| IBM Research

Clocked final

= Clocks permit an elegant form of

determinate, synchronous
programming.

= Introduce a data annotation on
variables.
— clocked(c) T £ = ...;
— fis thought of as being “clocked
final” — it takes on a single value
in each phase of the clock,

= Introduce a new statement:
— next £ = e;

= Statically checked properties:

— Variable read and written only by
activities clocked on c.

— For each activity registered on c,
there are no assignments to f.

— next f = e; isexecuted by
evaluating e and assigning value
to shadow variable for f.

When ¢ advances, each variable
clocked on c is given the value
of its shadow variable before
activities advance.

If activities communicate only via (clocked) final variables, program is determinate.

© 2006 IBM Corporation

| IBM Research

Synchronous Kahn networks are CF (and DD-free)

= This idea may be generalized clock ¢ = new clock();

to arbitrary mutable clocked(c) int x =1, y=1;
variables.

— Determinate imperative
programming.

async while (true) ({

next x = y,; next;

= Each variable has an implicit }
clock. async while (true) {
= Each variable has a stream of

next y = x+y, next;
values.

= Each activity maintains its
own index into stream.

= An activity performs
reads/writes per its index

(and advances index). Guaranteed determinate, though
* Reads block. programs may deadlock (cf
asynchronous Kahn networks.)

© 2006 IBM Corporation

IBM Research

Current Status

© 2006 IBM Corporation

B

e

| IBM Research

Single Node SMP X10 Implementation

acuvines AT it Tl Aot u:gt;’;.auﬁz‘:::::::‘u::%‘mmm:.mm‘mmzmmm‘mmmmm:ﬂmm:.mmm‘m:?
:> % :'> activities DOMO ﬁ Code % X1 0
. A : Generation -
I Static I Templat i Front
1 E Gr: ~,Activity Gan OHAMﬂer ! emplates E End
- its stack,place Jdocz il
o = e s o i :
! = Annotated T, -
; i arget 1
i i <:| i AST Java i
o d o B o . 1 o . H
A T X10 r Analysis passes = > Java code emitter i I
Ssdeniss 7 g : miq_,g g ysis p ; Java compiler :
L : a
% 1 Common components w/ SAFARI H 1
e s T s 8 1 o A B T 8 1 8 B i E 8 1 s B 8 s D0 1 G 6 B e 8 D D 8 B0 s e G o B e D o am e |
. X10 classfiles
o (Java classfiles with
T special annotations for
Mo X10 analysis info)
‘\“"n‘ i
i e mem m s ameme S S s Meamr e S eSS mE = e
VT = o T ' X10
1 ! .
: ; % % it %ﬁ% it i Runtime
1 [o - !
0= 0= |
i ety et I
4" Place 0 Place 1 X10 libraries E
ol
W n o
vvvvvvvvvv = n
H o E Java Concurrency Utilities (JCU) STM library | ;
% : o H |
J'g‘r L e e o 1 o B n e e R e o S B e e 1 D
H o EEESn ma S S B aES A SR S | S S RS RESS SE S S RS asEes Sa = = e
: e 1 .
o ; High Performance JRE | | Portable Standard | ' Java
! JCU thread pool ! Fortran, ; (IBM J9 VM Java 5Runtime || Runtime
; ead poo #,w"r C/C++ «+—» + Testarossa JIT Environment :
i DLL’s ! Compiler (Runs on ;
3%, I modified for X10 multiple ;
I on PPC/AIX) Platforms) ;
; !
IS | D 0C PCIECS0 CN S | D B0 OCINCS0 SO O D 05 0CoICS0 S0 o S oD ocsacsa |

© 2006 IBM Corporation

| IBM Research

Current Status 07/2006

09/03

Operational X10 implementation (since 02/2005)

PERCS
Kickoff

02/04

X10

Kickoff
Code
07/04 X10
X10 Templates Multithreaded
S.pec AST AST Java code
Draft —> Parser — | Analysis passes —— | Code emitter |———P JVM «———
X10
source i
X10
Prototype) Program
#1 Structure Code metrics output
New fi r
07/05 * Translator based on *Parser: ~45/14K* ew features
X10 Polyglot (Java compiler .
AT yglot (PIler Translator: ~112/9K Dependent types
Study Y framework) (places, arrays)
. *‘RTS: ~190/10K - revised for JUC
12/05 » X10 extensions are - Better codegen.
modular. *Polyglot base: ~517/80K o
)Ff:gtotype 4 ¥ * Implicit syntax support.
» Uses Jikes parser *Approx 280 test cases. . More functionalitv for
generator. y

09/06 (* classes+interfaces/LOC) points, arrays.

Open Source Release

© 2006 IBM Corporation

| IBM Research

oA
G

R
=Y
e

p
B

- X10DT: Enhancing productivity

e .
X10 Launch = T - Source editor w/ syntax
B Fle Edit Sou Mavigate Search Eroject XI0 Run Window Help Toiedsiiadbid o 9
Configuration . ting, auto indentin
: (5 -Zd)®|%-0-a- | Baa- &9 S5 |H-5- ghighting, S
: 3 12 Package Bxplorer 52 % T O @sphte | @ Testxtt | B Testdlentxid utlne 52 =0 some content assist
Q| BR T import jgfuril.¥; A || 5@ JeFcrypteenchsizen
B Test @ boolean run()
e & viarest public class JGFCryprBenchSized { o void main(String[])
R et @ boxedBoolsan
=1 [(deFault package) public boolean runi} { w & val : beclean
o 3] AmayLjava
1) JoFCryptEenchSizeAjava JGFInstrumentor.printHeader (2, 0]
e 1) SparseMatmutallialuesClean i
o A0 Test dava JGFCryptEench ch = new JGFCryptBench(]:
1) Testclent gava b, IGFrun{o) ;
A0 Testerjava return true;
4] valuel.java
Atraylx10 i
¥ 3 IGFCryptBenchbized, <10 e
SparsetatmulialiialuesClean x10 + main method
Test.x10 ay
TestClient 10
i Iesersio ST — . .
=), JRE System Library 21 5.0] final boxedhoolean bonew boxedBoolean() s Outline View populated W/
) ECLIPSE_HOMEfpluginsx 10.runtime_t try ¢)
classpah finish asyne b.val=(new JGFCryptBenchSized(]).run():
s) caten e | X10 types, members, loops
o & ioTesz e.printStackTrase () i
b.val=false;
¥
Systen.out.printlini'++++++ "+(b.val?'Test succeeded.':"Test failed."]);
x10. lang. Runt ime . setExitCode (b.val?20:1) ;
¥ ¥
static class boxedBoolean {
bhoolean val=false:
¥ L |
nans ’ 8
3 2l Problems 3% Javaduc‘Dedavatmn‘Evmv Lm]‘P\ugr\nReg\stry‘Cnnsu\e‘J\k&sPG Console Y =0
&) Oerrors, 13 warnings, O infos (Fiter matched 13 of 19 items)
e | Description Resource | In Folder | tocation | A
'gf o & The import x10.lang is never used JGFCryptBenchSizeA java R10Testfsrc line: 1 .
& Thelocal variable d_nz s never read SparseMatmultAlValussClean.java X L0Testjsrc e 242 x10 | m t 1B Id -
& The local varisble d_nthreads is never read SparseMatmultalvaluesclean.javs X10Testfsrc lnez4s ncre en a u' er,
& The local variable iis never read SparseMatmultAlValusstlsanjava #10Testfsrc line 262 P bl V' I t d
i & heloed vl et 08 e a 0Tosiat oz L roblems View populate
g < & The local varisble i is never read SparseMatmultAlVsluesClean.java X10Test/src line 302 I X1 0 'I
: & Tho ocal verabe s never read SperseamukliducsClooniova Ki0Testfsrc o627 W, compilier messages
o & The import x10.lang is never used Test.java X10Testfsrc Tine 1
] I] 2| & The local varicble i is never read Test.java L0Testfsrc
e ‘ rikable ‘ Smart Insert ‘ 22:1 ‘
< B
. -
Ha%
s = Code editing = Data visualization
:: 4 n

Refactoring

i = Code visualization

= Debugging

= Static performance analysis

Vision: State-of-the-art IDE for a modern OO language for HPC

© 2006 IBM Corporation

| IBM Research

X10 Applications/Benchmarks

= Java Grande Forum = NAS PB

— OOPSLA Onwards! 2005 — CG, MG (IBM)
(IBM) — CG, FT, EP (Padua et al,

— Showed substantial (SLOC) UIUC)
benefit in serial -> parallel -> — Cannon, LU variant (UIUC)
distributed transition for X10
vs Java (qua C-like = AMR (port from Titanium)
language). — In progress, IBM

= SSCA
= SpecJBB
— SSCA#1 (PSC study) — In progress, Purdue

— SSCA#2 (Bader et al,
UNM/GT)

— SSCA#3 (Rabbah, MIT)

= Sweep3d
— Jim Browne (UT Austin)

Measures: SLOC as a “stand in” + process measures.

© 2006 IBM Corporation

IBM Research

Arrays

© 2006 IBM Corporation

| IBM Research

Region

— a (multi-dimensional) set of
indices

Distribution

— A mapping from indices to
places

High level algebraic operations are

provided on regions and

distributions

region R =0:100;

region R1 =[0:100, 0:200];
region Rinner = [1:99, 1:199];

Il a local distribution

dist D1=R-> here;

Il a blocked distribution

dist D = block(R);

Il union of two distributions
dist D = (0:1) -> PO || (2:N) -> P1;
dist DBoundary = D — RInner;

Based on ZPL

© 2006 IBM Corporation

| IBM Research

Arrays may be
— Multidimensional
— Distributed
— Value types

— Initialized in parallel:
int [D] A= new int[D]

(point [i,j]) {return N*i+j;};

Array section
— A[RInner]

High level parallel array, reduction and
span operators

— Highly parallel library
implementation

— A-B (array subtraction)
— A.reduce(intArray.add,0)
— A.sum()

© 2006 IBM Corporation

| IBM Research

= Ateach, foreach

= ateach (pointp:A)S
— Creates |region(A)| async
statements
— Instance p of statement S
is executed at the place
where Alp] is located
= foreach (pointp: R) S
— Creates |R| async
statements in parallel at
current place

ensured using finish.

= Termination of all activities can be

ateach (FormalParam: Expression) Statement
foreach (FormalParam: Expression) Statement

public boolean run() {
dist D = dist.factory.block(TABLE_SIZE);
long[.] table = new long[D] (point [i]) { return i; }
long[.] RanStarts = new long[distribution.factory.unique()]
(point [i]) { return starts(i);};
long[.] SmallTable = new long value[TABLE_SIZE]
(point [i]){return i*S_TABLE_INIT;};
finish ateach (point [i] : RanStarts) {
long ran = nextRandom(RanStarts[i]);
for (int count: 1:N_UPDATES_PER_PLACE) {
int J = f(ran);
long K = SmallTable[g(ran)];
async atomic table[J] *= K;
ran = nextRandom(ran);

N
return table.sum() == EXPECTED_RESULT;

}

© 2006 IBM Corporation

| IBM Research

" JGF Monte Carlo benchmark --

Sequential

double[] expectedReturnRate =

new double[nRunsMCJ; - A tasks array (of size

... nRunsMC) is initialized
final TolnitAllTasks t = (TolnitAllTasks) initAllTasks; withToTask instances at
for (point [i] : expectedReturnRate) { each index.

PriceStock ps = new PriceStock(); = Task:

ps.setlnitAllTasks(t); = Simulate stock

ps.setTask(tasks]i]); trajectory,

ps.run(); = Compute expected

rate of return and
expectedReturnRateli] = volatility,

ToResult r = (ToResult) ps.getResult();

r.get_expectedReturnRate(); n Report average

volatility[i] = r.get_volatility(); expected rate of
return and volatility.

© 2006 IBM Corporation

| IBM Research

= | JGF Monte Carlo benchmark -- Parallel

dist D = [0:(nRunsMC-1)] -> here;

doublel[.] expectedReturnRate = new double[D]; - A tasks array (of size

... nRunsMC) is initialized
final TolnitAllTasks t = (TolnitAllTasks) initAllTasks; withToTask instances at
finish foreach (point [i] : expectedReturnRate) { each index.

PriceStock ps = new PriceStock(); = Task:

ps.setlnitAllTasks(t); = Simulate stock

ps.setTask(tasks]i]); trajectory,

ps.run(); = Compute expected

rate of return and
expectedReturnRateli] = volatility,

ToResult r = (ToResult) ps.getResult();

r.get_expectedReturnRate(); n Report average

volatility[i] = r.get_volatility(); expected rate of
return and volatility.

© 2006 IBM Corporation

| IBM Research

: JGF Monte Carlo benchmark -- Distributed

dist D = dist.factory.block([0:(nRunsMC-1)]);

doublel[.] expectedReturnRate = new double[D]; - A tasks array (of size

... nRunsMC) is initialized
final TolnitAllTasks t = (TolnitAllTasks) initAllTasks; withToTask instances at
finish ateach (point [i] : expectedReturnRate) { each index.

PriceStock ps = new PriceStock(); = Task:

ps.setlnitAllTasks(t); = Simulate stock

ps.setTask(tasks]i]); trajectory,

ps.run(); = Compute expected

rate of return and
expectedReturnRateli] = volatility,

ToResult r = (ToResult) ps.getResult();

r.get_expectedReturnRate(); n Report average

volatility[i] = r.get_volatility(); expected rate of
return and volatility.

© 2006 IBM Corporation

|
il
J1l

Jou]
il
Md

h
Hie

| IBM Research

RandomAccess

public boolean run() {
dist D = dist.factory.block (TABLE SIZE) ;
long[.] table = new long[D] (point [i]) { return i;

long[.] RanStarts = new long[diff.factory.unique()]

(point [i]) { return starts(i);};

long[.] SmallTable = new long value[TABLE SIZE]

(point [i]) {return i*S TABLE INIT;};
finish ateach (point [i] : RanStarts) {

long ran = nextRandom(RanStarts[i

for (int count: 1:N_UPDATES_ PER PLACE) ({

int J = £(ran);

long K = SmallTable[g(ran)];
async atomic table[J] “*= K;

ran = nextRandom(ran) ;

}
return table.sum() == EXPECTED RESULT;
}

| © 2006 IBM Corporation

_mmu..~

ik m"r

[l ,_

fun]

© 2006 IBM Corporation

IBM Research

IBM Research

Advanced topics

© 2006 IBM Corporation

]

|

| IBM Research

Dependent types

!IH
pl|

= Class or interface that is a

function of values. public class List(int(: n >=0) n) {
this (:n>0) Object value;

= Programmer specifies this(:n>0) List(n-1) tail;

properties of a type — public
final instance fields.

List(t.n+l) (Object o, List t) {
n=t.n+l; tail=t;value=o;}
List(0) () { n=20; }

. this (0) List(l.n) a(List 1) {
= Programmer may specify

refinement types as
predicates on properties

return 1; }
this(:n>0) List(n+l.n) a(List 1) {

return new List(value, tail.append(l))

— T(vq,-.,V, : C) }

— all instances of t with the List(n+l.n) append(List 1) {
values f==v, satisfying c. return n==0?

— ¢ is a boolean expression this(0) .a(l) : this(:n>0) .a(l);
over predefined predicates. }

© 2006 IBM Corporation

fuuf|
il
il

A
fit
i

1]

| IBM Research

Place types

u!i“

= Every X10 reference inherits s Tree (beolean 11) {

nullable<Tree>(:this.1ll =>
the property (place loc) from 18 toenere) es legts

X10RefCIass- nullable<Tree> right;
int node;
= The following types are Tree(1) (£inal boolean 1,
permitted; nullable<Tree>(:1 =>
. FOO@? = Foo (1l&loc==here))@? left,

nullable<Tree> right,
— Foo = Foo(: loc == here) int 5 ¢

— FOO@X -> FOO(Z loc == X.|OC) 11=1; this.left=left; this.right=right;

node=s;

}

= Place types are checked by
place-shifting operators
(async, future).

| © 2006 IBM Corporation

| IBM Research

Region and distribution types

abstract value class point (nat rank) {

type nat = int(: self >= 0) ;

abstract static value class factory ({ class point(nat rank) { ...}

abstract point (val.length) point(final int[] val); Cr2SS region(nat rank, boolean rect,

abstract point(l) point(int vl); boolean lowZero) { ..}

abstract point(2) point(int vl, int v2); class dist(nat rank, boolean rect,

-}

boolean lowZero,
region (rank,rect,lowZero) region,
boolean local, boolean safe) { .. }

point(rank) (nat rank) { this.rank = rank; }

abstract int get(nat(: i <= n) n); class Array<T>(nat rank, boolean rect,

abstract boolean onUpperBoundary (region r, boolean lowZero,

nat(:i <= r.rank) i); region (rank,rect,lowZero) region,

abstract public boolean onlLowerBoundary (region r, boolean local, boolean safe,

nat(:i <= r.rank) i); boolean (:self==(this.rank==1) &recté&lowZero&local)

abstract boolean gt(point(rank) p); rail,

dist(rank, rect, lowZero, region,local,safe) dist

) { ...}

abstract boolean 1lt(point(rank) p);
abstract point(rank) mul (point(rank) p);

Dependent types statically express many important relationships between data.

© 2006 IBM Corporation

| IBM Research

Implicit syntax

= Use conventional syntax for = Invoke a method
operations on values of synchronously on values of
remote type: remote type

" x.f = e //write x.f of type T " e.m(el,..,en);

>
efinal T v = e;

finish (x.1oc) { final T v = e;
n nc(x..10cC
Tnish asy final T1 vl

el;
x.f=v;

final Tn vn = en;

finish async (v.loc
= .= .x.f .//read x.f of type T Y () 4

>

future<T>(x.loc) {x.f}.force()

Similarly for array reads and
writes.

v.m(vl,.. ,vn);

= Similarly for methods
returning values.

© 2006 IBM Corporation

| IBM Research

Tiled regions

= Tiled region (TR) is a
region or an array (indexed
by a region) of tiled
regions.

region(2) R = [1:N*K];
region(l:rect)[] S =

new region[[1:K]]

(point [i]){[(i-1)*N+1:I*N]};

region[] S1 = new region|]
{[1:N],[N+1:2%N]};
. = Examples:
— Blocked, cyclic, block
cyclic
— Arbitrary, irregular cutsets

= Tiled region is a tree with

leaves labeled with regions.
— TR depth = depth of tree

— TR uniform = all leaves at
same depth

— Tile = region labeling a leaf

— Orthogonal TR = tiles do not
overlap

— Convex TR = each tile is
convex.

= A tiled region provides

natural structure for
distribution.

User defined distributions

© 2006 IBM Corporation

| IBM Research

Future Plans

= X10 APl in C, Java

— X10 Core Library
* asyncs, future, finish,
atomic, clocks, remote
references

— X10 Global Structures Library
« Arrays, points, regions,
distributions

= Optimized SMP imp
— Locality-aware
— Good single-thread perf.
— Efficient inter-language calls

= Annotations

— Externalized AST
representation for source to
source transformations.

— Meta-language for
programmers to specify their
own annotations and
transformations

= SAFARI
— Support for annotations.
— Support for refactorings

= Application development

© 2006 IBM Corporation

IBM Research

Productivity

: Our view!
HPC Landscape: 20K view .
MPI + C/Fortran C.OMP ZPL | CAF | UPC Ti X10 | HPL
20107

Convenient? X+ v V2 | V- | V= | V- | V2| v+
Global view? X X v v vV | Vv | V| V+
Object-oriented? X X X X X vV | vV | v+
Strong-typing? V? X v? | V? X vV | v+ | v+
Exceptions? X X X X X vV | v+ | v+
Managed Runtime? X X X X X | V- | v+ | v+
Perf Transparency v v v v vV | vV | V2| V+
Perf Portability v X v vV | V2| V|V Vs
Perf Scalability v X v v vV | V2| V2| Vs
Data-structures? X v X X vV | V| V+ | v+
Explicit parallelism? v v X v vV | vV | V+ | V+
Task parallelism? X v X X | X | v+ | v+
Fork-join parallelism? v v+ | v+

© 2006 IBM Corporation

