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Observations

e Mainstream adoption of concurrency and distributed
programming abstractions

Heavy burden on programmer to balance safety and performance

Well-known issues with deadlocks, data races, priority inversion, interaction
with external actions, etc.

Scalability impacted by the use of mutual-exclusion

4 Finer-grained locks require more care to prove correct
e Advent of multi-core processors

Each core can support multiple threads
Programmability remains an open question:

4 How much parallelism can a compiler safely extract?

e Can we simplify concurrent program structure without
sacrificing efficiency or scalability?

Lock-free data structures and algorithms

Software transactions (obstruction-free)
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Software Transactions

 Instead of strict synchronization semantics induced by lock-
based abstractions,

Define a relaxed synchronization model:
4 Decouples shared access from synchronization machinery

4 Allow concurrent access to shared data provided serialization invariants
are not violated.

Separate specification of program correctness from implementation of a
specific solution

4 Define a guarded region of code protected by a specific concurrency
control protocol.

4 Ideally, applications should be able to overspecify the scope of these
regions:

» The burden of how and when tasks can concurrently access shared
data within these regions is shifted from the application to the
implementation.
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e Safety

Race-freedom
No priority inversion
Guarantee serializable execution

e Improved performance

Access to shared data structures can take place concurrently provided
there is no violation of serializability

4 Imposes weaker constraints on implementations

Beneficial impact on scalability
e Software engineering

Facilitates new abstractions and methodologies

4 Can dissect aspects of transactional semantics and implementations for
specialized structures and mechanisms.
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e Background and Examples

e Case Study: Implementations

Transactional Monitors

e Semantics: A Transactional Object Calculus (optional)

e Case studies: Applications

Safe Futures

Checkpointing and message-passing
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Approaches

e Serial access to shared data using lock-based abstractions
Programmer responsible for correct and efficient placement of locks.
e Serializable access to shared data:

Provide two important properties:
4 Atomicity: effects of updates seen all-at-once or not-at-all.

4 Isolation: while executing within a shared region, effects of other threads
not witnessed.

Serial execution through locks is a conservative approximation of
serializability.

Optimistic transactions: allow threads to execute shared (guarded) regions
of code assuming serializability will hold.

4 When it fails, abort and retry.

Pessimistic transactions: associate locks with all shared data and acquire
when accessed, and release at end of transaction.

4 Deadlock on lock acquires, requires abort and retry.
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Basic Actions

* Start
monitor access within the dynamic extent of a transaction region
e Log
Record updates within a transaction in case an abort occurs
e Abort
Restore global state and retry
* Commit

Check serializability invariants
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Phases

e Optimistic:
Read phase: maintain log recording reads and writes to shared data.
Validation phase: compare transaction log with global state:
4 Abort if comparision reveals a serializability violation.

Commit phase: update shared data to the heap.
e Pessimistic:

Read phase: acquire locks on shared reads and writes.
4 Log original values to handle aborts.

4 Abort if a deadlock exists among multiple transactions that require
resources (i.e., locks) held by the other.

Commit phase: release held locks.

4 Updates always immediately performed to the global heap.
e The two approaches are not necessarily exclusive:

Consider pessimistic writes and optimistic reads.

4 Allows transactions to eagerly abort on conflicting writes.
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Foundational Mechanisms

e Logging —
versioning used to redirect transactional accesses

versioning to used to restore aborted transaction
e Dependency tracking —

discover violations of serializability
discover deadlocks on lock access

4 Granularity of conflict detect (word vs. object)
e Revocation —

undo effects of transactions violating serializability and re-execute them
undo effects of deadlock transactions
contention management:
4 When a transaction aborts, when should it run again?
» How should livelocks be prevented?
p» Obstruction-freedom
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Exclusive Monitors

10
I/ checking // savings void synchronized transfer (int sum)

Accountc; Account s; { c.withdraw(sum);

s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }

T,
transfer —_
total —_

T,
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Exclusive Monitors
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Exclusive Monitors
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I/ checking // savings void synchronized transfer (int sum)
Accountc; Account s; { c.withdraw(sum);

T

transfer

s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }
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10
I/ checking // savings void synchronized transfer (int sum)

Accountc; Account s; { c.withdraw(sum);

s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }

T,
transfer —_
total

rdl(c) rdl(s)
20 + 80

Ts

100

TiC06 %



Exclusive Monitors

10
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Exclusive Monitors

: 10
// checking // savings void synchronized transfer (int sum)

Nt S; { c.withdraw(sum);
s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }
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transfer
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Exclusive Monitors
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I/ checking // savings void synchronized transfer (int sum)
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Exclusive Monitors
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Exclusive Monitors

10
I/ checking // savings void synchronized transfer (int sum)

Accountc; Account s; { c.withdraw(sum);

s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }

T rd(c) rd(s)
1 wt(c) wi(s)
transfer | ; >
total | : >
T rd(c) rd(s)
2 20 + 80 = 100

TiC06 %
20



Transactional Monitors

e Monitors executed as optimistic transactions — relaxed
interleavings allowed

e Enforce serializable execution
e Effective when contended

e Both exclusive and transactional monitors can co-exist:;
they produce the same effects (serializability)
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Ensuring Serializability

Caromic)

I/ checking // savings void|synchronized|transfer (int sum)
Accountc;  Account s; { c.withdraw(sum);

s.deposit(sum); }

float|synchronized| total ()
{ return c.balance()+s.balance(); }

T,
transfer —_
total —_

T,
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Ensuring Serializability
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Ensuring Serializability

I/ checking // savings

Accountc; Account s;

10
void synchronized transfer (int sum)

{ c.withdraw(sum);
s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }
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Ensuring Serializability

10
I/ checking // savings void synchronized transfer (int sum)
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Ensuring Serializability

10
I/ checking // savings void synchronized transfer (int sum)
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Ensuring Serializability

10
I/ checking // savings void synchronized transfer (int sum)
Accountc; Account s; { c.withdraw(sum);
@ s.deposit(sum); }
.} float synchronized total ()
@ { return c.balance()+s.balance(); }
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Ensuring Serializability

10
I/ checking // savings void synchronized transfer (int sum)
Accountc; Account s; { c.withdraw(sum);
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Ensuring Serializability

// checking // savings
Accountc; Account s;
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void synchronized transfer (int sum)

{ c.withdraw(sum);
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Ensuring Serializability

10
I/ checking // savings void synchronized transfer (int sum)

Accountc; Account s; { c.withdraw(sum));
@ @ s.deposit(sum); }
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Ensuring Serializability

// checking // savings
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Ensuring Serializability

// checking // savings
Accountc; Account s;

10
void synchronized transfer (int sum)

{ c.withdraw(sum);
s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }
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Ensuring Serializability

// checking // savings
Accountc; Account s;

10
void synchronized transfer (int sum)

{ c.withdraw(sum);
s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }
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Ensuring Serializability

10
I/ checking // savings void synchronized transfer (int sum)

Accountc; Account s; { c.withdraw(sum);
s.deposit(sum); }

} } float synchronized total ()
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Ensuring Serializability
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Ensuring Serializability

: 10
I/ checking // savings void synchronized transfer (int sum)

Accountc; Account s; { c.withdraw(sum);
s.deposit(sum); }

} } float synchronized total ()
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Ensuring Serializability
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Ensuring Serializability

10
I/ checking // savings void synchronized transfer (int sum)

Accountc; Account s; { c.withdraw(sum);
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} } float synchronized total ()
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Ensuring Serializability

10
I/ checking // savings void synchronized transfer (int sum)
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Ensuring Serializability

: 10
I/ checking // savings void synchronized transfer (int sum)

Accountc; Account s; { c.withdraw(sum);
s.deposit(sum); }

} } float synchronized total ()
@ @ { return c.balance()+s.balance(); }
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Design and Implementation Choices

e Transactional memory (atomics) vs. transactional monitors:
Using atomics provides stronger safety guarantees

4 Serializability with respect to all concurrently executing transactions

Transactional monitors more closely mirror lock-based programming
methodology

e When do writes become visible to the global store?

Log writes locally, and update only on commit (redo)

Update globally, and revert on abort (undo)
e Should writers witness readers!?

Visible vs. invisible reads
Influences contention management

How aggressively should readers be aborted?

TiC'06 5
' 4] §



e Classical lock-based approaches to coordinating activities of
multiple threads:

Impose a heavy burden on programmer to balance
safety and performance.

Have well-known issues with deadlocks, data races,
priority inversion, interaction with external actions, etc.

Scalability impacted by the use of mutual-exclusion.
e But...
There is much legacy code (e.g., libraries) that use locks.

Well-known tuned implementations.
4 Thin locks.

TIC06 %
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e Software transactions:

Enforce atomicity and isolation on the regions they protect:

4 Atomicity: actions within a transaction appear to execute all-
at-once or not-at-all.

4 Isolation: effects of other threads are not witnhessed once a
transaction starts.

Conceptually simple programming model
e But...

More complicated implementation model.
4 Must track atomicity and isolation violations at runtime.

4 Revocation of effects when violations occur not always
possible.

4 Performance benefit only in the presence of contention.

TiC06 %
43



Reconcilation

e Hybrid Approach:

Enforce atomicity and isolation properties using locks when
contention is low or when transactional semantics is
undesirable or infeasible.

Enforce these properties using transactions when contention is
high and when transactional semantics is sensible.

_________ wWHigin€oticantion
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e Protocol choice must be transparent to applications.

Applications continue to use existing synchronization
primitives.

e Transparency does not come at the expense of correctness.

Program behavior must not depend on how a guarded
region is executed.

Must work in the presence of nested guarded regions.
e Performance.
No performance degradation when contention is low.

Performance improvement when contention is high.

TiC06 %
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Correctness

e When is it safe to use hybrid execution?

e Semantics

Define a two-tiered execution model:

4 First tier defines data visibility (memory model) and
interleaving

» Schedules
» Does not define a concurrency control protocol

4 Second tier defines safety properties on schedules
with respect to a specific concurrency control
protocol.

TiC06 %
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Semantics

Schedules

ACQ ¢ WRz RDz REL{ AC

Local memory Global memory

47
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e Impose constraints on schedules to derive specific
concurrency protocols.

e Mutual Exclusion: (M-safe schedules)

ACQ ¢ WRz ACQ ¢ RDz REL !

Multiple threads cannot concurrently execute
within the body of a guarded region.

Does not enforce atomicity.

TIC06 ¢
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Transactional Constraints

e [solation: (I-safe schedules)

ACQ /¢ ACQ ¢/ WRz RDz RELZ REL ¢

P z5 Vv HIERTES

A non-isolated schedule

Y 3
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Transactional Constraints

A non-atomic schedule

TiC'06 3
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e Any schedule which is both i-safe and a-safe can be permuted to
one which is m-safe without change in observable behavior.

TiC'06

Can treat synchronized blocks as closed nested
transactions in Java programs with i-safe and a-safe
schedules without modifying existing Java semantics.

Closed nesting: the effect of a nested synchronized block B
executed transactionally becomes visible to other
transactions only when B’s outermost transaction
commits.
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e Consider programs whose generated schedules are i-safe and
a-sdfe.

Execute synchronized blocks and methods
4 Transactionally, when contention is high.
4 Serially, when contention is low.

e Closed nested transaction model.

Performance challenge
4 Each monitor defines a locus of contention.

4 Non-trivial overhead to maintain meta-data to validate
transaction safety.

4 Consider optimizations to reduce this overhead.

p Delegate meta-data management from a nested

transaction to its parent.

TIC06 %
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Delegation

_ void synchronized transfer (int sum)
T1 synchronized (mon) { c.withdraw(sum):

{ acc.transfer(10) } s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }

mon
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Delegation

) void synchronized transfer (int sum)
T1 synchronized (mon) { c.withdraw(sum):

{ acc.transfer(10) } s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }

C S

mon M

cC_S
SERlT,
—_—
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Delegation

) void synchronized transfer (int sum)
T1 synchronized (mon) { c.withdraw(sum):

{ acc.transfer(10) } s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }
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WEEH T
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Delegation

_ void synchronized transfer (int sum)
T1 synchronized (mon) { c.withdraw(sum):

{ acc.transfer(10) } s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }

T2 acc.total()

C S

mon M

C S
WEEH T
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Delegation

) void synchronized transfer (int sum)
T1 synchronized (mon) { c.withdraw(sum):

{ acc.transfer(10) } s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }

T2 acc.total()

C S
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Delegation

) void synchronized transfer (int sum)
T1 synchronized (mon) { c.withdraw(sum):

{ acc.transfer(10) } s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }

T2 acc.total()

C S

mon M
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Delegation

_ void synchronized transfer (int sum)
T1 synchronized (mon) { c.withdraw(sum):

{ acc.transfer(10) } s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }

T2 acc.total()

mon w R
rd(c) rd(s)
wt(c) wi(s)
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Delegation

_ void synchronized transfer (int sum)
T1 synchronized (mon) { c.withdraw(sum):

{ acc.transfer(10) } s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }

T2 acc.total()
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rd(c) rd(s)
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Delegation

_ void synchronized transfer (int sum)
T1 synchronized (mon) { c.withdraw(sum):

{ acc.transfer(10) } s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }

T2 acc.total()

mon w [T
rd(c) rd(s)
wt(c) wi(s)

rdl(c) rdl(s)'
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Delegation

_ void synchronized transfer (int sum)
T1 synchronized (mon) { c.withdraw(sum):

{ acc.transfer(10) } s.deposit(sum); }

float synchronized total ()
{ return c.balance()+s.balance(); }

T2 acc.total()

mon w BT
rd(c) rd(s)
wt(c) wi(s)

rdl(c) rdl(s)'
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Delegation Summary

e Optimized version of closed nested transactions

e Setting a delegate — inexpensive
e Only delegate setting required in non-contended case

e Potential for lowering overhead related to nesting even if
monitors contended

TIC06 %
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Mutual Exclusion

* When should transactional execution switch to
mutual exclusion?

Native methods (e.g., I/O)
Explicit thread synchronization (wait/notify)
Absence of contention

* All parent monitors must be re-acquired in mutual
exclusion mode.

TiC06 %
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Implementation

e Optimistic protocol for reads

e Pessimistic protocol for writes
Prevent multiple writers to the same object
e Validation phase

Enforce i-safe and a-safe constraints

Discard copies if safety is violated
e Write-back

Lazily propagate updated copies to the shared heap.
e Implementation in Jikes RVM

Use read and write barriers to
4 Create versions
4 Redirect reads to the appropriate version

4 Track data dependencies using read/write hash maps o
TiC'06
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Sources of overhead

Object header expansion
4 meta-data necessary to enforce transaction safety
» forwarding pointers, delegates, hash codes, etc.
Code duplication
4 Two versions for each method

4 Still need (fast) read barriers even on non-transactional
paths

» Access latest version of an object
Triggering transactional execution
4 Lightweight heuristic to measure contention

» Trigger transactional execution when thin-lock is inflated
and more than one thread is waiting when locking thread

exits.

TIC06 %
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Barrier Optimizations

* Goal: omit barriers on loads of primitive values
* Problem: accesses through stale on-stack references

» Solution: update references on stack using modified GC
stack scanning procedure

At version creation
4 cager

At pre-specified memory“synchronization” points
4 monitor entry
4 access to volatile variables

4 wait/notify operations

TIC06 %
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Performance:

Uncontended Execution
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Summary

 Effective support for transactions involves efficient
implementation of a number of complex actions:
logging and copying data to restore program state
fast consistency checks to determine if serialization invariants are violated

revert thread control-flow to earlier program point in case of abort

 Interaction with other realistic language features add further
complications:
irrevocable actions (e.g, I/0O)
native method calls
interaction with other concurrency mechanisms (e.g., wait/notify, locks)

language memory model and execution semantics

e Can we selectively pick aspects of this implementation space
to address other interesting concurrency issues?

TiC06 %
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A Transactional Calculus

e TF] is a concurrent, imperative object calculus with dynamically
scoped transactions: onacid and commit

e TF| supports multi-threaded and nested transactions

P == 0| PP| el

L == classC{f;M}

M = mn(X){returne; }

e == x| this ||[v | e.f | em(8) ||e.f:=¢]|]

new C() ||spawn e | onacid | commit|| null
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Semantics

e Two-level operational semantics,

e Semantics parameterized by definition of core transactional
operations write, read, reflect, commit, spawn

e Labeled reduction relation T P =, I’ P/

WFr v u
rd v
Xt v
acC

CcO

sp

TiC'06

[ is a program state

write composed of a sequence
read of thread environments
new t. & associates a thread with
start transaction )

its transaction

commit transaction environment

spawn thread : , :
A transaction environment associates a

transaction label with a binding
environment or log
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Read/Write

E'.C(u) =read(v,E) fields(C)= (f)

(R-FIELD)
Ev.g; O Ely,
E'.C(V)=read(v,E) B'= w,rite(v — C() \i/’ ) (R-ASSIGN)
Bv.fs = v/ =—a [
P=P'|tle] Te-Ee P =P'|t]e]
F=t,Z.1" [l—salesit, =' 1)
(G-PLAIN)

CP=I'P
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Commit

Concurrent threads within a

. . 1
transaction S)’nCh ronize on
. 1l'

commit

/ 2 co

tl& <o
= co
P=P'|t[e] € lcomnit € P =P'|t[e] t = intranse(1,T)
I = commit(t, E,T)
= (G-Comm)
FP :>t/ r/ Pl
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Optimistic Semantics

Per-thread environments as sequences of transaction logs
e read adds the object read to the issuing thread's current transaction log
e write adds the new value

e reflect propagates changes from one thread environment to all other threads
in the same transaction

1 1'
Tl
1"\
t2
tl — 1l:[ v=C(v'), v=C(v'')] 1'":[ u=C(u) ]
t2 — 1:[ v=C(v'), v=C(v'")] 1" ':[ v=C(v'"'"') 1]

TIC06 ¢
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Commit copies the log of the current transaction into the directly enclosing

one
tl — 1:[ v=C(v') v=C(v'"') ] 1':[ u=C(u) u=C(u') ]
commit | @
tl — 1:[ v=C(v') v=C(v'') u=C(u) u=C(u') ]

Succeeds if all values read are still current in the enclosing
environment

TIC06 %
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Pessimistic Semantics

2 phase locking:

acquire a lock before reading and writing.

release before commit
Define a lock environment that maps a lock to the transaction label
sequence that specifies the transaction that currently holds it.

&=&. Lo fiandsis S = US

&=§. kg w— G findlast(z,£) =D(u) &' = acquirelock(z, &)
checklock(r,E) = true =8 ko & =8' kig n— BE. z— 4
regdiis. & = G, U@ wgile(s— @, H = G
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Serial Trace

e A program trace is serial if for all pairs of reductions steps
taken by a transaction L, steps occurring between them are
taken on behalf of L or transactions nested within

WI Vo, Vg WIVLV, WE VgV, ac Wrv,,v co rd v Wr v,V
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Soundness

The soundness theorem states that for any trace R, there is an
equivalent serial trace R’

SO , )
WI V,Vg W V,,V,

TiC'06

W Ve,V

W V,,V

1

2

acC

acC
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Dependencies

Control and data dependencies induce a partial order on actions
used to structure transaction traces

rq' t wlr| t xt t sp: t a(.:. t cc: t
rd t | t=t | I'<l
wrtl t=t | I'<l
xt t | t=t | I'<l
sptl t=t | I'<l
ac t | t=t' | I'<l
cotl <t | I'<t | I'<l | t=t'"| I'<lI
0, control

wr v'u ol rd v [ xt V' [
wr v | u=§'&|‘<| u=v' &lI'<l
v=v' &lI'<l v=Vv' &lI'<lI
rd v | v=v' &lI'<l v=v' &I'<l
xtv | v=v' &lI'<l v=v' &I'<l
Data ;
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e The key property for proving soundness is the permutation
lemma which states that two independent actions can be
permuted. Actions are independent if they have no data or
control dependency with one another.

SO , i Sl

WEV,V,  WE Vg,V

SO 7 , S

WF VoV, WFV,,V,

Must be proved for each transaction semantics.
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Case Study: Futures

If sequential program P is annotated with
futures to yield concurrent program Pg then the
observable behavior of P is equivalent to Pr

Logical serial order trivially satisfied when no side-effects
Problems arise with mutation of shared data

Consider futures APl in JDK 1.5

Like transactions, correct implementation of futures requires tracking
dependencies

But, constraints imposed are stronger: behavior must conform to a serial
execution, not a serializable one

Pairwise association of concurrent execution states

No issues of livelock or deadlock. It is always safe to revert to sequential
execution.

Target applications are those which decompose into speculative units (with little
to modest sharing)
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e Alternative concurrency model

No explicit threads
Concurrent program easily derived from its sequential counterpart

No non-determinism
o Utility
Concurrent program development and debugging

Convenient way to define arbitrary regions of speculative code

e Best used when (strong notions of) safety dominate
performance requirements
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83



Safety Properties

e An access to a location [ (either a read or write) performed
by a future should not witness a write to | performed by its
continuation.

e The last write to a location | performed by a future must
occur before the first access to | by the continuation.

e How do we maintain these properties?
version shared data
track shared data dependencies
revoke non-serial execution

e These properties must hold even in the presence of
exceptions, and irrevocable actions
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Using Futures

void transfer (int sum)

float sum = acc.total(); { c.withdraw(sum);
acc.transfer(10); s.deposit(sum); }
print(sum); float total ()

{ return c.balance()+s.balance(); }

TIC06 %
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Using Futures

void transfer (int sum)

Future f = F|acc.total()]; { c.withdraw(sum);

acc.transfer(10); s.deposit(sum); }
int(f. ;

print(f.get()) float total ()

{ return c.balance()+s.balance(); }
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Using Futures

void transfer (int sum)

Future f = F|acc.total()]; { c.withdraw(sum);

acc.transfer(10); s.deposit(sum); }
int(f. ;

print(f.get()) float total ()

{ return c.balance()+s.balance(); }

LOGICAL SERTAL ORDER:

total()
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Using Futures

void transfer (int sum)

Future f = F|acc.total()]; { c.withdraw(sum);

acc.transfer(10); s.deposit(sum); }
int(f. ;

print(f.get()) float total ()

{ return c.balance()+s.balance(); }

LOGICAL SERTAL ORDER:

total()
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Using Futures

void transfer (int sum)

Future f = F|acc.total()]; { c.withdraw(sum);

acc.transfer(10); s.deposit(sum); }
int(f. ;

print(f.get()) float total ()

{ return c.balance()+s.balance(); }

LOGICAL SERTAL ORDER:

total() transfer()
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Using Futures

void transfer (int sum)

Future f = F|acc.total()]; { c.withdraw(sum);

acc.transfer(10); s.deposit(sum); }
int(f. ;

print(f.get()) float total ()

{ return c.balance()+s.balance(); }

LOGICAL SERTAL ORDER:

total() transfer() get()
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Using Futures

void transfer (int sum)

Future f = F|acc.total()]; { c.withdraw(sum);

acc.transfer(10); s.deposit(sum); }
int(f. ;

print(f.get()) float total ()

{ return c.balance()+s.balance(); }

LOGICAL SERTAL ORDER:

total() transfer() get()
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Safe Futures

e Programmer annotates method calls

e Logical serial order enforced by the run-time
Futures and continuations encapsulated into optimistic transactions
Foundational mechanisms shared with transactional monitors

The notion of logical serial order stronger than serializability
e Consistency checks:

Data accesses hashed into read and write maps
Maps used by continuation to detect conflicts for accesses from its future

Validation at synchronization points (when a future is claimed)
e Log updates by maintaining versions:
Versions used by future to prevent seeing updates by its continuation

e Aborts:

Automatic roll-back when conflict detected
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92



Dependency Violations

Cy Ce
int 1 = o.bar; o.bar = 0;
o.foo = 0; int j = o.foo;
Cf Cc Cf CC
read(o) write(o)
write(o) read(o)
read(o) write(o)
write(o) read(o)
(a) Forward (b) Backward

Forward dependency violations can be handled by tracking data dependencies.

Backward dependency violations can be handled by versioning updates. Future
never sees a premature update by its continuation.
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Ensuring Safety

Accountc; Account s;

TF1 —_—

TiC'06

F1
<F2

<C{

Future f1 =
Future f2 =
acc.transfer(1
f1.get();
print(f2.get());

acc.transfer(10)];
acc.total()!;
0);
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Ensuring Safety

Accountc; Account s;

©

F1
(2

<C{

Future f1 = F|acc.transfer(10)];
Future f2 = -|acc.total()/;
acc.transfer(10);

f1.get();

print(f2.get());

rd(c)
wt(c)
TF1 —
rd(c) 20 + rd(s) 90 = 110
Teo ; —
rd(c) rd(s)
TC Wt:(C) wt}(s)
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Ensuring Safety

Accountc; Account s;

©

<F1 Future f1 = F[acc.transfer(10)];
F2| Future f2 = Flacc.total()]:

< acc.transfer
C{ f1.get();

print(f2.
rd(c)
wt(c)
TF1 —
rd(c) 20 + rd(s) 90 = 110
Teo ; —
rd(c) rd(s)
TC WtI(C) wt}(s)

SS
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Ensuring Safety

Accountc; Account s;

©

F1
(2

Future f1 = F|acc.transfer(10)];
Future f2 = -|acc.total()/;
acc.transfer(10);

f1.get();

print(f2.get());

<C{

rd(c)
wt(c)
TF1 /// —
rd(c)( 20 + rd(s) 90 = 110
Tk — —
rd(c) rd(s)
TC Wt:(C) wt}(s)
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Ensuring Safety

Accountc; Account s;

©

F1
(k2

<C{

Future f1 = F|acc.transfer(10)];
Future f2 = F|acc.total()];
acc.transfer(10);

f1.get();

print(f2.get());

rd(c)
wt(c)
TF1 /// —
rd(c)( 20 + rd(s) 90 = 110
Tk — —
rd(c) rd(s)
wt(c) wi(s)
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Ensuring Safety

Accountc; Account s;

©

<F1 Future f1 = F[acc.transfer(10)];
F2 | Future f2 = F|acc.total()];
< acc.transfer(10);
c/ | f1.get();
{ print(f2.get());

rd(c)

\?/-TH //Wt:(C):

1. /(
\%-TFZ rd:(c)l 20 + rd:(s)> 90 = 110
rd(c) rd(s)
wt(c) wi(s)
S;

TiC'06
99



Ensuring Safety

Accountc; Account s;

©

<F1 Future f1 = F[acc.transfer(10)];
F2 | Future f2 = F|acc.total()];
< acc.transfer(10);
c/ | f1.get();
{ print(f2.get());

c s rd(c)
\?/ TF1 / //Wt:(0)=
TFz rd:(c)( 20 + rd:(s)> 90 = 110
rd(c) rd(s)
-TC Wt:(C) wt}(s)

SZ
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Ensuring Safety

Accountc; Account s;

©

F1
(2

Future f1 = F|acc.transfer(10)];
Future f2 = -|acc.total()/;
acc.transfer(10);

f1.get();

print(f2.get());

<C{

Y

rd(c)
wt(c)

[

rd(c)| 20 + rd(s) 90 = 110
rd(c) dis)
wt(c) wi(s)
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Ensuring Safety

Accountc; Account s;

©

F1
(2

Future f1 = F|acc.transfer(10)];
Future f2 = -|acc.total()/;
acc.transfer(10);

f1.get();

print(f2.get());

<C{

Y

rd(c)
wt(c)

[

rd(c)| 20 +frd(s) 90 = 110
rd(c) dis)
wt(c) wi(s)
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Ensuring Safety

Accountc; Account s;

©

F1
(F2

Future f1 = F|acc.transfer(10)];
Future f2 = F|acc.total()];
acc.transfer(10);

f1.get();

print(f2.get());

<C{

Y

rd(c)
wt(c)

|
rd(c)| 20

TiC'06
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Ensuring Safety

Account c; Account S:

<F2

Future f1 = F|acc.transfer(10)];
Future f2 = -|acc.total()/;
acc.transfer(10);

f1 .get();

print(f2.get());

rd(c)

// WtI(C)
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Ensuring Safety

Account c; Account S:

<F2

Future f1 = F|acc.transfer(10)];
Future f2 = -|acc.total()/;
acc.transfer(10);

f1 .get();

print(f2.get());

rd(c)

// WtI(C)
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Our Prototype

e Based on IBM’s Jikes RVM

e Compiler-injected read and write barriers to intercept
shared data accesses

Eager update of references on stack:
4 Version creation

4 Pre-specified synchronization points

e Bytecode rewriting plus run-time support for automatic
roll-back

Modify runtime to roll-back without running user handlers
e Modification of object headers

Version access via forwarding pointers
e Experimental results

Roughly 50% efficiency for modest mutation rates (~ 30%)

TiC06 %
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Evaluation

* Selected Java Grande benchmarks

* Modified Multi-User OO7 benchmark
Standard OOY7 design database

4 Multi-level hierarchy of composite parts

4 Shared and private modules
Mixed-mode read/write traversals

* Configuration
/00MHz Pentium 3 (used up to 4 CPUs)
Average of 5 “hot” runs

TIC06 ¢
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Experimental Results: 4 processor smp

1
o)
g 0.8_— -
= |
g _
o 0.6f 1
\5 I I
o | |
Eoa [
A 1
I L
Q.
S 0.2r R
m L

series Sparse crypt mc
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[\

10
] 50 % shared writes
L1

% shared writes

00 % shared writes

Elapsed time (normalized)

S

100
Shared reads (%)

(a) 4% writes, 96% reads

[\

Evaluation

2

10
[ 50 % shared writes
L1

T
% shared writes

00 % shared writes

Elapsed time (normalized)

o

100
Shared reads (%)

(b) 8% writes, 92% reads

70
[ 50 % shared writes
L ]10

T
% shared writes

0 % shared writes

Elapsed time (normalized)

S

100
Shared reads (%)

(c) 16% writes, 84% reads

Only one future: measure base overheads.

[\

0%
[ 50 % shared writes
L1

% shared writes

00 % shared writes

Elapsed time (normalized)

S

100
Shared reads (%)

(d) 32% writes, 68% reads

Range from 8% (4% writes) to 15% (32% writes)
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Evaluation

[\
[\

3]
[S®]

[ ] d % shared writes
] 50 % shared writes
[ ] 100 % shared writes

[ ] d % shared writes
] 50 % shared writes
[ ] 100 % shared writes

[ ] d % shared writes
] 50 % shared writes
[ ] 100 % shared writes

[ ] d % shared writes
] 50 % shared writes
[ ] 100 % shared writes

Elapsed tlme_‘(normahzed)
Elapsed tlme_‘(normahzed)
Elapsed tlme_‘(normahzed)
Elapsed tlme_‘(normahzed)

é
%
p=
=
=
=
==
2=

0 100 0 100 0 100 0 50 100
Shared reads (% Shared reads (%) Shared reads (%) Shared reads (%)
(a) 4% writes, 96% reads (b) 8% writes, 92% reads (c) 16% writes, 84% reads (d) 32% writes, 68% reads

With 4 futures, performance gains range
from 55% to 25% over range of write ratios.
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Evaluation

0.2 : : : 0.2 : : : + 0.2 : : : +0.2 : : :

S [_] 0 % shared writes S L] 0 % shared writes S L] 0 % shared writes S [_] 0 % shared writes

= [ 50 % shared writes = [ 50 % shared writes = [0 50 % shared writes = [ 50 % shared writes

S [ ] 100 % shared writes S [ ] 100 % shared writes S [ ] 100 % shared writes S [ ] 100 % shared writes

o o= o= o=

= = 8 =

= = = = -

3} 3} 3} 3}

% % % %

0 0.1 1 0 0.1 1 0 0.1 ] 0 0.1 1

S S S S

o o T o o T

[oF [oF [oF [oF

A A A A

c c o c

= ] = g =

= H = b= =

S S S S

e e e e}

> > > >

&) | | ’_‘ | &) | | |7 &) O | | | &) O | |7 |
™9 50 100 S 50 10 0 50 100 0 50 100

Shared reads (%) Shared reads (%) Shared reads (%) Shared reads (%)
(a) 4% writes, 96% reads (b) 8% writes, 92% reads (c) 16% writes, 84% reads (d) 32% writes, 68% reads

Revocations become more pronounced as shared
write percentage increases

Similar structure for new versions created.
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Case Study: Modular Checkpointing

* Many faults in long-lived software systems are transient:

Temporary unavailability of a resource:

4 network timeout

4 error states in a component repaired by reboot.
Unreliability of a resource:

4 packet loss
Semantic violations:

4 serializability violations in a transactional system.

* How can such faults be transparently repaired?

Concurrent threads of control.
Visible effects

4 Communication along channels

4 Shared memory

TIC06 %
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e How can an exception handler ensure that global state is
consistent after it executes?

Consider thread communication within a handler scope

How does a handler revert thread state to one which is
consistent with views of other threads?

Failure to ensure consistency can lead to deadlock, or
erroneous results

e Difficult for applications to enforce consistency statically
because of non-determinism and implicit, dynamically-
defined thread dependencies

If a thread broadcasts some data, how can an
application efficiently determine the set of threads that
are affected by this data?

TiC06 %
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Checkpoints

* Checkpoints provide a means to globally revert a computation to
an earlier state.

* Transparent approaches: compiler or operating system
* Non-transparent: Library or application-directed
® Our idea:

Applications define thread-local program points where
checkpoint is feasible.

4 When a thread attempts to restore execution to a
previous checkpoint, control reverts to one of these points
for each thread.

4 The exact checkpoint chosen is calculated dynamically
based on lightweight monitoring of thread communication
events and effects.

TiC06 %
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Stabilizers

* Signatures
stable: (‘a -> ‘b)) -> (‘a -> ‘b)
stabilize: unit -> ‘a

e Declare monitored section of code

Track inter-thread actions including communication and shared
memory access

Defines a thread-local checkpoint
e Maintain a global dependency structure

Construct a global checkpoint from a collection of thread-local ones
based on (transitive) thread dependencies

e Serve as building blocks for

modular transient fault recovery for Concurrent ML
safe software-based speculation
open-nested multi-threaded software transactions

TiC06 ¢
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Comparison with Transactions

Transactions

v

Logging

Atomicity and Isolation

Aborts

Nesting

Concurrency control

On updates
Transaction-specific logs

Transaction-local
Lexically-delimted
Serializability violation

|diosyncratic

v

Spegulative multithreading X

116

Stabilizers

v

On stabilization

Thread-local checkpoints

Global

Dynamically computed

User-define

Uniform

X
v
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Request Response

4 N
\_ /;v;‘\ J
4 \

/7 AN

J

\_

Swerve is an open source highly concurrent web server written in Standard
ML.

Application logic complicated by need to handle transient timeout faults.

TiC06 %
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Observations

e Non-modular design:

Recovery from timeout failures requires an explicit protocol
distributed among three different modules.

e Alternative strategy:

Use stabilizers to abstract explicit notification process.
Have the Timeout manager call stabilize when a timeout occurs.
Wrap communication events in the modules within stable sections.

No need for explicit polling
e Implications:

Timeout recovery expressed without having to embed non-local
timeout logic within all threads.

4 Timeout handling and recovery localized within the Timeout
manager.

TIC06 %
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Example

let val ¢ = channel()
val c’ = channel()
fun g y = ...|recv(c) ... recv(c’)

\raise Timeout |

in handle Timeout => .. .|

in if

val _

then [raise Timeout

else

end handle Timeout => ...

in spawn(f(arg))
end

TiC'06
119

What happens if f raises
a timeout exception?

Must re-execute it,
erasing effects from the
earlier evaluation

Determining the set of
events that must be
restored depends on
dynamic scheduler
events.
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let val ¢ = channel()

Example

val c’ = channel() A timeout exception

fun g y = ... recv(c) ... recv(c’) :
o reverts the computation
raise Timeout to a state in which the

in handle Timeout => ...

fun £ x =|stable

in spawn(f (arg))
end

TiC'06

spawn of g, and its receipt
on channel ¢ have been

fn () => )
let val . = spawn(g(...))  discarded.
val _ = send(c,x)
in if
then raise Timeout
else

end [handle Timeout => stabilize()] ()

3
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Behavior

e Stable sections defined by programmer

» Safety violations explicit
Not limited to serializability violations

e Save continuations for control

e Version updates

Channel communication

Shared variables
e Abort semantics

Revert control to globally consistent state based on communication
events observed within a stable section.

Basis for dealing aborts in optimistic multi-threaded and open-
nested (speculative) transactions.

TIC06 %
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t1 t2
S1 O S3 (O Checkpoint
Send @ Stabilize
S2 \
Send \
v

Sections chosen for rollback depends upon communication
actions performed
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t1 t2
S1 O

(O Checkpoint

@ Stabilize
S3

Send \

S2 )
Send \

Sections chosen for rollback depends upon communication
actions performed

TiC'06 53
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Semantics

e Define a call-by-value functional core with threads and
synchronous channel communication.

e First attempt:

Grab entire checkpoint of program state.

4 Restore all threads to saved point.

e Core language:

P u= P||P | tle]3
e = x| 1] Axe
|  mkCh() | send(e,e) | recv(e) | spawn(e)
|  stable(e) | stable(e) | stabilize
0 € Stableld
v € Val = unit | Az.e | 1
a, € Op = {LR, SP,COMM,SS,ST,ES}
A € StableState= Process x StableMap E’E’P[e]
A € StableMap = Stableld ™2 StableState

TiC'06
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Global Checkpoint

maintain ordering of
stable sections

Vé € Dom(A), § >0 capture thread state
— (B2 [stable(Ax.e)(w),A)) <

A" = Al
A = A,(Esmz’n), Somim < 0 V6 € Dom(A’)F find least common ancestor
Egt’P[stable()\X.e)(v)],A LN E;’ [stable(e[v/x])], A[d’ KA]

t,P — Y 1 o ES t,P . . . .
E [stable(v)],A = E2 [v], A — {6} associate global checkpoint with

stable section

A(9) = (P, A)
E*F[stabilize], A == P', A’

N

restore to checkpoint saved for
current stable section

TiC'06 53
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Global Checkpoint

Thread | Thread 2

t2

; ;

Ki stable AIK2— @

5 v t2
K4 stable B: K3 \ @

: :
stable C: K Ke - . "
; Ksiks
exit B
TIC06 %
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Can we do better?

e Global checkpoints simple to describe, but ...

hard to implement: requires global coordination to capture
state

overly conservative: restored checkpoint may revert
computation unnecessarily

does not take communication among threads into
consideration

e Incremental construction:

restore thread state based on the actions witnessed by
threads

build a dependency graph that tracks communication events
and establishes a temporal ordering on thread-local actions

use graph reachability on this graph to determine thread-
local checkpoints.

TIC06 %
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Incremental Checkpoint

Thread | Thread 2
Ko K|
/
spawn stable A:K?
V v
sepd: K3 < )recelv:e: K4

v
stable B: Kjs

é send?Kg

receive: K7

TiC'06
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Incremental Checkpoint

Thread | Thread 2
Ko K|
/
spawn stable A:K?
V v
sepd: K3 < )recelv:e: K4

v
stable B: Kjs

é send?Ks

receive: K7 v
stabilize

Ticos > Garbage collections’




Characteristics

* Properties:

Safety: A stabilize action never yields an infeasible state.

¢
TiC'06 O(

130
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stabilization
can never
manufacture
new states s




Characteristics

* Properties:

Correspondence: Incremental checkpointing is more efficient
than global checkpointing.

stabilize

TiC'06



e Implemented in MLton

Insertion of read and write barriers

Compensations

hooks in the CML library to update the dependency graph
e Overheads to maintain checkpoints small, roughly 6%

eXene: a windowing toolkit

Swerve: a web server

Threads [ Channels| Events \S/Ci;;eei SI{]:S: Sifera(lrp,lhB) OveRruhr:;?Se %)
Triangle [ 205 79 |87 88 88 19 .59
N-Body | 240 99 224 224 273 29 8l
Pretty 801 340 950 602 840 74 6.23
Swerve | 10532 231 902 9339 |80293| 5.43 6.60
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Restoration Costs

Requests | Graph Channels Threads| Runtime
Size | Num | Cleared |Affected|(milli-seconds)
20 1130 85 42 470 5
40 2193 147 64 928 19
60 3231 207 84 1376 53
80 4251 256 93 1792 94
100 5027 296 95 2194 132

Swerve web server

Stabilization performed after a varying number of

concurrent requests.

TiC'06
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Instrumented Recovery

Benchmark Channels Threads Runtime
Num |Cleared| Total | Affected milli-
seconds
Swerve 38 4 896 8 3
eXene |58 27 1023 236 .9

Swerve: induce a timeout every |0 requests.
eXene: induce packet loss every |0 packets.

TIC06 %
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Open Questions

e Long-lived and first-class transactions

mixing implementation strategies safely and profitably

Consistency properties

e Open nesting

e Atomic data sets vs. atomic code regions

Compensations

e STM for multicore:

 Safe futures of arbitrary size and scope

making non-thread-safe code thread-safe

Interaction with threads

e Stabilizers

TiC'06

self-adjusting data structures (memoization)

program slicing
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Conclusions

Software transactional implementations are necessarily complex.

Address issues of versioning, rollback, and global consistency checks

Efficient implementations possible, but non-trivial

Can extract features of these implementations to address other interesting
concurrency problems:

safe speculative execution via futures

safe checkpointing

Much to be gained by exploring non-lock centric concurrency abstractions

See http://www.cs.purdue.edu/s3
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