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Observations
• Mainstream adoption of concurrency and distributed 

programming abstractions

! Heavy burden on programmer to balance safety and performance

! Well-known issues with deadlocks, data races, priority inversion, interaction 
with external actions, etc.

! Scalability impacted by the use of mutual-exclusion

" Finer-grained locks require more care to prove correct

• Advent of multi-core processors 

! Each core can support multiple threads

! Programmability remains an open question:

" How much parallelism can a compiler safely extract?

• Can we simplify concurrent program structure without 
sacrificing efficiency or scalability?

! Lock-free data structures and algorithms

! Software transactions (obstruction-free)
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Software Transactions

• Instead of strict synchronization semantics induced by lock-
based abstractions, 

!Define a relaxed synchronization model:

" Decouples shared access from synchronization machinery

" Allow concurrent access to shared data provided serialization invariants 
are not violated.

!Separate specification of program correctness from implementation of a 
specific solution

" Define a guarded region of code protected by a specific concurrency 
control protocol.

" Ideally, applications should be able to overspecify the scope of these 
regions:

! The burden of how and when tasks can concurrently access shared 
data within these regions is shifted from the application to the 
implementation.
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Goals

• Safety

! Race-freedom

! No priority inversion

! Guarantee serializable execution

• Improved performance

! Access to shared data structures can take place concurrently provided 
there is no violation of serializability

" Imposes weaker constraints on implementations

! Beneficial impact on scalability

• Software engineering

! Facilitates new abstractions and methodologies

" Can dissect aspects of transactional semantics and implementations for 
specialized structures and mechanisms.
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Outline

• Background and Examples

• Case Study: Implementations

! Transactional Monitors

• Semantics: A Transactional Object Calculus (optional)

• Case studies: Applications

! Safe Futures

! Checkpointing and message-passing
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Approaches

• Serial access to shared data using lock-based abstractions

! Programmer responsible for correct and efficient placement of locks.

• Serializable access to shared data:

! Provide two important properties:

"  Atomicity: effects of updates seen all-at-once or not-at-all.

"  Isolation:  while executing within a shared region, effects of other threads 
not witnessed.

! Serial execution through locks is a conservative approximation of 
serializability.

! Optimistic transactions:  allow threads to execute shared (guarded) regions 
of code assuming serializability will hold.

"  When it fails, abort and retry.

!Pessimistic transactions: associate locks with all shared data and acquire 
when accessed, and release at end of transaction.

" Deadlock on lock acquires, requires abort and retry.
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Basic Actions

• Start  

!monitor access within the dynamic extent of a transaction region

• Log

!Record updates within a transaction in case an abort occurs

• Abort

!Restore global state and retry

• Commit 

!Check serializability invariants
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Phases
• Optimistic:

! Read phase:  maintain log recording reads and writes to shared data.

! Validation phase: compare transaction log with global state:

" Abort if comparision reveals a serializability violation.

! Commit phase: update shared data to the heap.

• Pessimistic:

! Read phase: acquire locks on shared reads and writes.

" Log original values to handle aborts.

"  Abort if a deadlock exists among multiple transactions that require 
resources (i.e., locks) held by the other.

! Commit phase: release held locks.  

" Updates always immediately performed to the global heap.

• The two approaches are not necessarily exclusive:

! Consider pessimistic writes and optimistic reads.

" Allows transactions to eagerly abort on conflicting writes.
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Foundational Mechanisms

9

• Logging – 

!versioning used to redirect transactional accesses 

!versioning to used to restore aborted transaction 

• Dependency tracking – 

! discover violations of serializability 

! discover deadlocks on lock access 

" Granularity of conflict detect (word vs. object)

• Revocation – 

! undo effects of transactions violating serializability and re-execute them  

! undo effects of deadlock transactions 

! contention management:

" When a transaction aborts, when should it run again?

! How should livelocks be prevented?

! Obstruction-freedom
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Exclusive Monitors

void synchronized transfer (int sum)
 {  c.withdraw(sum);
    s.deposit(sum);  }

float synchronized total ()
  {  return c.balance()+s.balance();  }

T1

T2

transfer

total

10

20 80

// checking   // savings
Account c;     Account s;  
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Transactional Monitors

• Monitors executed as optimistic transactions – relaxed 
interleavings allowed

• Enforce serializable execution

• Effective when contended

• Both exclusive and transactional monitors can co-exist: 
they produce the same effects (serializability)
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Ensuring Serializability

// checking   // savings
Account c;     Account s;  

void synchronized transfer (int sum)
 {  c.withdraw(sum);
    s.deposit(sum);  }

float synchronized total ()
  {  return c.balance()+s.balance();  }

T2

T1
transfer

total

20 80

10

atomic
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Design and Implementation Choices

• Transactional memory (atomics) vs. transactional monitors:

! Using atomics provides stronger safety guarantees 

" Serializability with respect to all concurrently executing transactions

! Transactional monitors more closely mirror lock-based programming 
methodology

• When do writes become visible to the global store?

! Log writes locally, and update only on commit (redo)

! Update globally, and revert on abort (undo)

• Should writers witness readers?

! Visible vs. invisible reads

! Influences contention management

! How aggressively should readers be aborted?

41



TiC’06

Observations

• Classical lock-based approaches to coordinating activities of 
multiple threads:

! Impose a heavy burden on programmer to balance 
safety and  performance.

! Have well-known issues with deadlocks, data races, 
priority inversion, interaction with external actions, etc.

! Scalability impacted by the use of mutual-exclusion.

• But ...

! There is much legacy code (e.g., libraries) that use locks.

! Well-known tuned implementations.

" Thin locks.
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Observations
• Software transactions:

!Enforce atomicity and isolation on the regions they protect:

" Atomicity:  actions within a transaction appear to execute all-
at-once or not-at-all.

" Isolation: effects of other threads are not witnessed once a 
transaction starts.

!Conceptually simple programming model

• But ...

! More complicated implementation model.

"Must track atomicity and isolation violations at runtime.

" Revocation of effects when violations occur not always 
possible.

" Performance benefit only in the presence of contention.
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Locks

Low contention

Transactions

High Contention

Reconcilation
• Hybrid Approach:

! Enforce atomicity and isolation properties using locks when 
contention is low or when transactional semantics is 
undesirable or infeasible.

!Enforce these properties using transactions when contention is 
high and when transactional semantics is sensible.

44
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Goals

• Protocol choice must be transparent to applications.

!Applications continue to use existing synchronization 
primitives.

• Transparency does not come at the expense of correctness.

! Program behavior must not depend on how a guarded 
region is executed.

!Must work in the presence of nested guarded regions.

• Performance.

!No performance degradation when contention is low.

!Performance improvement when contention is high.
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Correctness

• When is it safe to use hybrid execution?

• Semantics

!Define a two-tiered execution model:

" First tier defines data visibility (memory model) and 
interleaving

! Schedules

!Does not define a concurrency control protocol

" Second tier defines safety properties on schedules 
with respect to a specific concurrency control 
protocol.
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Semantics

47

Schedules

WR z RELℓACQ ℓ ACQ ℓ RD z

ℓ: z ! ...

Global memory

ACQ ℓ’

ℓ’: 

Local memory

T1

T2

T3

T4

z ! ...

z ! ...
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Constraints

• Impose constraints on schedules to derive specific 
concurrency protocols.

• Mutual Exclusion:  (M-safe schedules)

48

WR z RELℓACQ ℓ ACQ ℓ RD z ACQ ℓ

Multiple threads cannot concurrently execute 
within the body of a guarded region.

Does not enforce atomicity.
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Transactional Constraints
• Isolation: (I-safe schedules)

49

WR zACQ ℓ ACQ ℓ RD z REL ℓRELℓ REL ℓ

ℓ: z ! v

A non-isolated schedule

ℓ: z ! v’
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Transactional Constraints

• Atomicity: (A-safe schedules)

50

RELℓ’ACQ ℓ ACQ ℓ’ RELℓ

ACQ ℓ’

A non-atomic schedule
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Safety

• Any schedule which is both i-safe and a-safe can be permuted to 
one which is m-safe without change in observable behavior.

! Can treat synchronized blocks as closed nested 
transactions in Java programs with i-safe and a-safe 
schedules without modifying existing Java semantics.

! Closed nesting: the effect of a nested synchronized block B 
executed transactionally becomes visible to other 
transactions only when B’s outermost transaction 
commits.
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Design
• Consider programs whose generated schedules are i-safe and 

a-safe.

! Execute synchronized blocks and methods

" Transactionally, when contention is high.

" Serially, when contention is low.

• Closed nested transaction model.

!Performance challenge

" Each monitor defines a locus of contention.

"Non-trivial overhead to maintain meta-data to validate 
transaction safety.

"Consider optimizations to reduce this overhead.

!Delegate meta-data management from a nested 
transaction to its parent.
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void synchronized transfer (int sum)
 {  c.withdraw(sum);
    s.deposit(sum);  }

float synchronized total ()
  {  return c.balance()+s.balance();  }

Delegation

synchronized (mon)
 { acc.transfer(10) }

T1

mon

T1
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W

W

Delegation

synchronized (mon)
 { acc.transfer(10) }

T1

mon

acc.total()T2

rd(c)
wt(c) wt(s)

rd(s)

rd(c) rd(s)

c s

c s

c s
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void synchronized transfer (int sum)
 {  c.withdraw(sum);
    s.deposit(sum);  }

float synchronized total ()
  {  return c.balance()+s.balance();  }

T2

T1

R
W

R
W

W

Delegation

synchronized (mon)
 { acc.transfer(10) }

T1

mon

acc.total()T2

rd(c)
wt(c) wt(s)

rd(s)

rd(c) rd(s)

c s

c s

c s
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Delegation Summary

• Optimized version of closed nested transactions

• Setting a delegate – inexpensive

• Only delegate setting required in non-contended case

• Potential for lowering overhead related to nesting even if 
monitors contended
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Mutual Exclusion 

• When should transactional execution switch to 
mutual exclusion?

!Native methods (e.g., I/O)

!Explicit thread synchronization (wait/notify)

!Absence of contention

• All parent monitors must be re-acquired in mutual 
exclusion mode.
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Implementation
• Optimistic protocol for reads 

• Pessimistic protocol for writes 

!Prevent multiple writers to the same object

•  Validation phase

!Enforce i-safe and a-safe constraints

!Discard copies if safety is violated

• Write-back

!Lazily propagate updated copies to the shared heap.

• Implementation in Jikes RVM

!Use read and write barriers to

" Create versions

" Redirect reads to the appropriate version

" Track data dependencies using read/write hash maps
65
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Overheads
Sources of overhead

!Object header expansion

" meta-data necessary to enforce transaction safety

! forwarding pointers, delegates, hash codes, etc.

!Code duplication

" Two versions for each method

" Still need (fast) read barriers even on non-transactional 
paths

! Access latest version of an object

!Triggering transactional execution

" Lightweight heuristic to measure contention

! Trigger transactional execution when thin-lock is inflated 
and more than one thread is waiting when locking thread 
exits.
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Barrier Optimizations

• Goal: omit barriers on loads of primitive values

• Problem: accesses through stale on-stack references

• Solution: update references on stack using modified GC 
stack scanning procedure

!At version creation

" eager

!At pre-specified memory“synchronization” points

"monitor entry

" access to volatile variables

"wait/notify operations
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Performance:

 Uncontended Execution
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166 A. Welc, A.L. Hosking, and S. Jagannathan

when monitors are uncontended. We also use an extended version of the OO7 object
database benchmark [10], to expose the range of performance when executing under dif-
ferent levels of monitor contention. We measure the behavior when all monitors are ex-
ecuted transactionally and when using the hybrid scheme that executes monitors trans-
actionally only when sufficient monitor contention is detected. Our measurements were
taken on an eight-way 700MHz Intel Pentium III symmetric multi-processor (SMP)
with 2GB of RAM running Linux kernel version 2.4.20-31.9smp (RedHat 9.0). Our im-
plementation uses version 2.3.4+CVS (with 2005/12/08 15:01:10 UTC timestamp) of
Jikes RVM for all the configurations used to take the measurements (mutual-exclusion-
only, transactions-only and hybrid). We ran each benchmark configuration in its own
invocation of the virtual machine, repeating the benchmark six times in each invoca-
tion, and discarding the results of the first iteration, in which the benchmark classes are
loaded and compiled, to eliminate the overheads of compilation.

6.1 Uncontended Execution

A summary of our performance evaluation results when monitors are uncontended is
presented in Figure 5. Our current prototype implementation is restricted to running
bytecodes compiled with debugging information for local variables; this information is
needed by the bytecode rewriter for generating code to store and restore local state in
case of abort. Therefore, we can only obtain results for those SPECjvm98 benchmarks
for which source code is available.

In Figure 5(a) we report total summary overheads for a configuration that supports
hybrid-mode execution. The overheads are reported as a percentage with respect to a
“clean” build of the “vanilla” unmodified Jikes RVM. The average overhead is on the
order of 7%, with a large portion of the performance degradation attributed to execution
of the compiler-inserted barriers, as described below. Figure 5(b) reveals how different
mechanisms for transactional execution affect performance in the uncontended case.
The bottom of every bar represents the effect of extending the header of every object
by one word (as needed to support transaction-related meta-data). The middle of every
bar represents the cost of all other system modifications, excluding compiler-inserted
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Barriers are primary source of 
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7% average but large variance

Costs can be significantly 
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Fig. 6. Normalized execution times for the OO7 benchmark

When there is a suitable level of monitor contention, and when the number of writes
is moderate, transactional execution significantly outperforms mutual exclusion by up
to three times. The performance of the transactions-only scheme degrades as the num-
ber of writes increases (and so does the number of generated hash-codes) since the
number of bitmap collisions increases, leading to a large number of aborts even at low
contention (Figure 7(b)). Extending the size of the maps used to detect serializability
violations would certainly remedy the problem, at least in part. However, we cannot use
maps of an arbitrary size. This could unfavorably affect memory overheads (especially
compared to mutual-exclusion locks) but more importantly we have determined that the
time to process potentially multiple maps at the end of the outermost transaction must
be bounded. Otherwise, the time spent to process them becomes a source of significant
delay (currently each map contains over 16,000 slots). The increased number of aborts
certainly has a very significant impact on the difference in performance between the
transactions-only and hybrid schemes. The overheads of the transactions-only scheme
cannot however be attributed only to the increased abort rate – observe that the shape of
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007, a tunable concurrent database benchmark
! 64 threads, 8 processors
Hybrid execution more resilient to write-biased workloads
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When there is a suitable level of monitor contention, and when the number of writes
is moderate, transactional execution significantly outperforms mutual exclusion by up
to three times. The performance of the transactions-only scheme degrades as the num-
ber of writes increases (and so does the number of generated hash-codes) since the
number of bitmap collisions increases, leading to a large number of aborts even at low
contention (Figure 7(b)). Extending the size of the maps used to detect serializability
violations would certainly remedy the problem, at least in part. However, we cannot use
maps of an arbitrary size. This could unfavorably affect memory overheads (especially
compared to mutual-exclusion locks) but more importantly we have determined that the
time to process potentially multiple maps at the end of the outermost transaction must
be bounded. Otherwise, the time spent to process them becomes a source of significant
delay (currently each map contains over 16,000 slots). The increased number of aborts
certainly has a very significant impact on the difference in performance between the
transactions-only and hybrid schemes. The overheads of the transactions-only scheme
cannot however be attributed only to the increased abort rate – observe that the shape of
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Summary

• Effective support for transactions involves efficient 
implementation of a number of complex actions:

! logging and copying data to restore program state

! fast consistency checks to determine if serialization invariants are violated

! revert thread control-flow to earlier program point in case of abort

• Interaction with other realistic language features add further 
complications:

! irrevocable actions (e.g, I/O)

! native method calls

! interaction with other concurrency mechanisms (e.g., wait/notify, locks)

! language memory model and execution semantics

• Can we selectively pick aspects of this implementation space 
to address other interesting concurrency issues?
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A Transactional Calculus
• TFJ is a concurrent, imperative object calculus with dynamically 

scoped transactions: onacid and commit 

• TFJ supports multi-threaded and nested transactionsTFJ Syntax

P ::= 0 | P|P | t[e ]

L ::= class C { f; M }

M ::= m(x){returne; }

e ::= x | this | v | e.f | e.m(e) | e.f := e |

new C() | spawn e | onacid | commit | null

7
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• Two-level operational semantics,

• Semantics parameterized by definition of core  transactional 
operations write, read, reflect, commit, spawn

• Labeled reduction relation

wr v u    write
rd  v       read
xt  v       new
ac     "     start transaction
co          commit transaction
sp          spawn thread

Semantics

Global Reduction

Relation ! P
"

=⇒t !
′ P′ defines reduction over entire program

Program state ! is a sequence of thread environments t,E

Pair t,E associate a thread to its environment

Action label " is a computational core labels or in {sp,ac,co,ki}.

l ranges over transaction names; sequences of transaction names

represent nesting structure; label l identifies the transaction which

performed an action

"
=⇒t ∗ denotes the reflexive and transitive closure

16
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indicate sequencing of expressions e1 and e2. The value of a sequence is always the value
of the last expression.

An expression e can be either a variable x, the this pseudo variable, a field access e.f,
a method invocation e.m(e), an object construction newC(), a thread creation spawn e,
an onacid command or a commit. The latter three operations are unique to TFJ. The
expression spawn e creates a new thread of control to evaluate e. The evaluation of e
takes place in the same environment as the thread executing spawn e. A new transaction
is started by executing onacid. The dynamic context of onacid is delimited by commit.
Effects performed within the context of onacid are not visible outside the transaction
until a commit occurs. Transactions may be nested. When the commit of an inner transac-
tion occurs, its effects are propagated to its parent. Threads may be spawned within the
context of a transaction. The local state of the transaction is visible to all threads which
execute within it. Transactions may also execute concurrently. For example, in spawn e,
e may be an expression that includes onacid and commit; the transaction created by
onacid executes concurrently with the thread executing the spawn operation.

Note that the language does not provide an explicit abort operation. Transactions may
abort implicitly because serialization invariants are violated. Our semantics expresses
implicit aborts both in the definition of commit and in the treatment of read and write
operations that would otherwise expose violations of necessary serializability invariants.
Implicit aborts are tantamount to stuck states.

4.2 Reduction

The dynamic semantics of our language shown in Figs. 5 and 6 is given by a two-level
set of rewrite rules. The computational core of the language is defined by a reduction
relation of the form E e

α−→ E ′ e′. Here E is a sequence of transaction environments, e is
an expression and the action label α determines which reduction was picked. Each trans-
action environment consists of a transaction label, and a binding environment that maps
references to objects (v #→ C(r)), Action labels for the computational core are selected
from the set {rd,wr, x t}, respectively denoting read, write and extend. In addition to
specifying the action on whose behalf a particular reduction is taken, we also specify the
action’s effects; for example, we write wr vv′to denote an action with label wr which has
effect on locations v and v′. A read action effects the location being read, a write action
has an effect on both the location being written and the location whose value it reads,
and an extend operation has an effect on the newly created location.

A second reduction relation α=⇒t defines operations over the entire program and has the
form Γ P

α=⇒t Γ ′ P ′ where Γ is a program state composed of a sequence of thread envi-
ronments t, E where each t, E pair represent the association of a thread to its transaction
environments. The action label α can be one of the computational core labels or one of
{sp, ac, co, k i} for, respectively, spawn, onacid, commit, and kill. As with core actions,
the actions corresponding to these labels have an effect on the global state; these effects
are given in brackets. Thus, a spawn action has the effect of creating a new thread with
label t; an onacid action creates a new transaction with label l; a commit operation
has an effect on the current transaction; and, a kill action has an effect on the current
thread.

is a program state 
composed of a sequence 
of thread environments

indicate sequencing of expressions e1 and e2. The value of a sequence is always the value
of the last expression.

An expression e can be either a variable x, the this pseudo variable, a field access e.f,
a method invocation e.m(e), an object construction newC(), a thread creation spawn e,
an onacid command or a commit. The latter three operations are unique to TFJ. The
expression spawn e creates a new thread of control to evaluate e. The evaluation of e
takes place in the same environment as the thread executing spawn e. A new transaction
is started by executing onacid. The dynamic context of onacid is delimited by commit.
Effects performed within the context of onacid are not visible outside the transaction
until a commit occurs. Transactions may be nested. When the commit of an inner transac-
tion occurs, its effects are propagated to its parent. Threads may be spawned within the
context of a transaction. The local state of the transaction is visible to all threads which
execute within it. Transactions may also execute concurrently. For example, in spawn e,
e may be an expression that includes onacid and commit; the transaction created by
onacid executes concurrently with the thread executing the spawn operation.

Note that the language does not provide an explicit abort operation. Transactions may
abort implicitly because serialization invariants are violated. Our semantics expresses
implicit aborts both in the definition of commit and in the treatment of read and write
operations that would otherwise expose violations of necessary serializability invariants.
Implicit aborts are tantamount to stuck states.

4.2 Reduction

The dynamic semantics of our language shown in Figs. 5 and 6 is given by a two-level
set of rewrite rules. The computational core of the language is defined by a reduction
relation of the form E e

α−→ E ′ e′. Here E is a sequence of transaction environments, e is
an expression and the action label α determines which reduction was picked. Each trans-
action environment consists of a transaction label, and a binding environment that maps
references to objects (v #→ C(r)), Action labels for the computational core are selected
from the set {rd,wr, x t}, respectively denoting read, write and extend. In addition to
specifying the action on whose behalf a particular reduction is taken, we also specify the
action’s effects; for example, we write wr vv′to denote an action with label wr which has
effect on locations v and v′. A read action effects the location being read, a write action
has an effect on both the location being written and the location whose value it reads,
and an extend operation has an effect on the newly created location.

A second reduction relation α=⇒t defines operations over the entire program and has the
form Γ P

α=⇒t Γ ′ P ′ where Γ is a program state composed of a sequence of thread envi-
ronments t, E where each t, E pair represent the association of a thread to its transaction
environments. The action label α can be one of the computational core labels or one of
{sp, ac, co, k i} for, respectively, spawn, onacid, commit, and kill. As with core actions,
the actions corresponding to these labels have an effect on the global state; these effects
are given in brackets. Thus, a spawn action has the effect of creating a new thread with
label t; an onacid action creates a new transaction with label l; a commit operation
has an effect on the current transaction; and, a kill action has an effect on the current
thread.

associates a thread with 
its transaction 
environment

A transaction environment associates a 
transaction label with a binding 
environment or log 
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Read/Write

Global Rules

P= P′′ | t[e ] E e
!

−→ E ′ e′ P′ = P′′ | t[e′ ]

"= t,E . "′′ "′ = reflect(t, E ′,"′′) !(t,") = l

" P
!

=⇒t "′ P′
(G-PLAIN)

P= P′′ | t[e ] e ⇓spawn e′,e′′ P′ = P′′ | t[e′ ] | t′[e′′ ]

t′ fresh "′ = spawn(t,t′,") !(t,") = l

" P
sp t′
=⇒t "′ P′

(G-SPAWN)

P= P′′ | t[e ] e ⇓onacid e′ P′ = P′′ | t[e′ ]

l fresh "′ = start(l,t,") !(t,") = l

" P
ac

=⇒t "′ P′
(G-TRANS)

12

Local Rules

E ′,C(u) = read(v,E) fields(C) = (f)

E v.fi
rd v
−→ E ′ ui

(R-FIELD)

E ′,C(v) = read(v,E) E ′′ = write(v $→ C(v)↓v
′

i ,E ′)

E v.fi := v′
wr vv′
−→ E ′′ v′

(R-ASSIGN)

E ′,C(u) = read(v,E) mbody(m, C0) = (x, e)

E v.m(v)
rd v
−→ E ′ [v/x,v/this]e

(R-INVK)

v fresh E ′ = extend(v $→ C(null),E)

E new C()
xt v
−→ E ′ v

(R-NEW)

The computational rules for a thread.

11
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Commit
Concurrent threads within a 
transaction synchronize on 
commit

t2

t1

t3

l'

l

co

co

co

ac

Global Rules (2)

P= P′′ | t[e ] e ⇓commit e′ P
′ = P′′ | t[e′ ] t = intranse(l,!)

!= t0 E . !′′ !′ = commit(t,E ,!) !(t′,!) = l

! P
co

=⇒t′ !
′ P′

(G-COMM)

P= P′ | t[v ] != t,E . !′ !(t,!) = l

! P
ki

=⇒t !′ P′
(G-THKILL)

Global rules express the properties of whole (multi-threaded)

program.

13
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Optimistic Semantics

Per-thread environments as sequences of transaction logs

• read adds the object read to the issuing thread's current transaction log

• write adds the new value

• reflect propagates changes from one thread environment to all other threads 
in the same transaction

t1

t2
l''

l l'

t1 –– l:[ v=C(v'), v=C(v'')]   l':[ u=C(u) ]

t2 –– l:[ v=C(v'), v=C(v'')]   l'':[ v=C(v'') ]
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Commit
Commit copies the log of the current transaction into the directly enclosing 
one

t1 –– l:[ v=C(v') v=C(v'') ]   l':[ u=C(u) u=C(u') ]

t1 –– l:[ v=C(v') v=C(v'') u=C(u) u=C(u') ]

commit l'

Succeeds if all values read are still current in the enclosing 
environment
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Pessimistic Semantics

77

access to an object provided the object is currently locked by l or prefix of l. To support
locking, we define a unique transaction label lL bound to a lock environment ρL; ρL(r)
maps r to the transaction label sequence which identifies the transaction that currently
has exclusive access to r. If l = l1.l2 . . . ln is such a sequence, then any thread t exe-
cuting within lp where n ≤ p can acquire a lock for r. Lock ownership is changed either
because (a) the transaction in which a read or write action occurs is a prefix of the
transaction which currently owns the lock, or (b) the lock is currently owned by a child
transaction which is about to commit, and lock ownership must be transferred to the
parent transaction. Unlike the versioning semantics presented earlier, commit actions al-
ways succeed since the manner in which locks are acquired ensure that no serializability
violations ensue. As a consequence, there is no explicit notion of abort in this defini-
tion. Once a lock is acquired, the transaction has exclusive ownership until it commits,
or a child attempts to access the object. Transactions implicitly abort if it reaches a
stuck state; in this case, a deadlock would be modeled by a global state in which every
thread is stuck, executing within a transaction that requires a lock held by another. The
modifications necessary to support two-phase locking are shown in Fig. 8.

7 Soundness

Proving the soundness of a particular transactional facility requires relating it to de-
sired serialization characteristics that dictate a transaction’s ACID properties. For any
abort-free program trace there must be a corresponding trace in which the transactions

E = lL : ρL . E ′

last(r, ρL) = l
′

l
′
! "(E)

checklock(r, E) = true

E = lL : ρL . E ′ last(r, ρL) = l
′

l
′
! "(E) E ′′ = lL : (ρL.r !→ "(E)) . E ′

acquirelock(r, E) = E ′′

E = E ′ . l:ρ findlast(r, E) = C(r)

E ′′ = E ′ . l:(ρ . r !→ C(r))

checklock(r, E) = true

read(r, E) = E ′′, C(r)

findlast(r, E) = D(u) E ′ = acquirelock(r, E)

E ′′ = E ′ . l:ρ E ′′′ = E ′′ . l:(ρ . r !→ D(u) . r !→ C(r))

write(r !→ C(r), E) = E ′′′

commit(〈〉, 〈〉, Γ ) = Γ

E = lL:ρL . E ′ ρ′
L = release("(E), ρL)

E ′′ = lL:ρ′
L . E ′ reflect(t, E , Γ ) = Γ ′

commit(t, E , Γ ′) = Γ ′′

commit(tt, EE , Γ ) = Γ ′

E ′ . l : ρ = acquirelock(r, E)

E ′′ = E ′ . l:(ρ . r !→ C(r))

extend(r !→ C(r), E) = E ′′′′

ρL = ρ′
L:r !→ ll

ρ′′
L = release(ll, ρ′

L) . r !→ l

release(ll, ρL) = ρ′′
L

ρL = ρ′
L:r !→ l′ ll %= l′

ρ′′
L = release(ll, ρ′

L) . r !→ l′

release(ll, ρL) = ρ′′
L

Fig. 8. Lock-based commitment semantics

2 phase locking: 
! acquire a lock before reading and writing. 
! release before commit
Define a lock environment that maps a lock to the transaction label 
sequence that specifies the transaction that currently holds it.
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Serial Trace

• A program trace is serial if for all pairs of reductions steps 
taken by a transaction L,  steps occurring between them are 
taken on behalf  of L or transactions nested within L
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Soundness
The soundness theorem states that for any trace R, there is an 
equivalent serial trace R'
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Dependencies
Control and data dependencies induce a partial order on actions 
used to structure transaction traces

rd t' 

l'

wr t' 

l'

xt t' 

l'

sp t' 

l'

ac t' 

l'

co t' 

l'

rd  t  l t = t' l' < l

wr  t  l t = t' l' < l

xt  t  l t = t' l' < l

sp  t  l t = t' l' < l

ac  t  l t = t' l' < l

co  t  l l' < l l' < l l' < l t = t' l' < l

wr  v' u'   l' rd  v'   l' xt  v'  l'

wr  v u  l

(wr vv′, t, l) or (wr v′v, t, l), and A2 is either (wr vv′′, t′, l
′

) or (x t v, t′, l
′

),
with l′ ! l.

The key property for our soundness result is the permutation lemma which
describes the conditions under which two reduction steps can be permuted. Let
A and A′ be a pair of actions which are not related under a control or data

dependency. We write A
d
" A′ and A

c
" A′ to mean action A has, respectively,

no c-dependence or d-dependence on A′.

Definition 4 (Independence). Actions A and A′ are independent if A
c
" A′

and A
d
" A′.

Lemma 1 (Permute). Assume that Γ and Γ ′′ are well-defined, and let R be

the two-step sequence of reductions P Γ
α

=⇒t P0 Γ0
α′

=⇒t′ P ′ Γ ′. If A and A′ are

independent then there exists a two-step sequence R′ such that R′ is P Γ
α′

=⇒t′

P1 Γ1
α

=⇒t P ′ Γ ′.

Definition 5 (Program Trace). Let R be the sequence of reductions P0 Γ0
α0=⇒t0

. . . Pn Γn
αn=⇒tn

Pn+1 Γn+1. The trace of the reduction sequence R, written tr(R),
is (α0, t0, l0) . . . (αn, tn, l0) assuming that li = #(ti, Γi) for 0 ≤ i ≤ n.

A program trace is serial if for all pairs of reduction steps with the same trans-
action label (l), all reductions occurring between the two steps are taken on
behalf of that very transaction or nested transactions (l ! l

′

).

Definition 6 (Serial Trace). A program trace, tr(R) = (α0, t0, l0) . . . (αn, tn, ln)
is serial iff ∀ i, j, k such that 0 ≤ i ≤ j ≤ k ≤ n and li = lk we have li ! lj.

We can now formulate the soundness theorem which states that any sequence
of reductions which ends in a good state can be reordered so that its program
trace is serial.

Theorem 1 (Soundness). Let R be a sequence of reductions P0 Γ0
α0=⇒t0 . . .

Pn Γn
αn=⇒tn

Pn+1 Γn+1. If Γn+1 is well-defined, then there exists a sequence R′

such that R′ is P0 Γ0

α′

0=⇒t′
0

. . . P ′

n Γ ′

n

α′

n=⇒t′
n

Pn+1 Γn+1 and tr(R′) is serial.

6 Related Work

The association of transactions with programming control structures has prove-
nance in systems such as Argus [17, 15, 18], Camelot [10] Avalon/C++ [9] and

u = v'  & l' < l

v = v'  & l' < l

u = v'  & l' < l

v = v'  & l' < l

rd  v   l v = v'  & l' < l v = v'  & l' < l

xt  v   l v = v'  & l' < l v = v'  & l' < l

Control Data
80
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Permutation
• The key property for proving soundness is the permutation 

lemma which states that two independent actions can be 
permuted.   Actions are independent if they have no data or 
control dependency with one another.

wr v
3
,v

2

l
1

wr v
1
,v

2

l
2S0 S1

wr v
3
,v

2

l
1

wr v
1
,v

2

l
2S0 S1

Must be proved for each transaction semantics.
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Case Study: Futures 
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• Logical serial order trivially satisfied when no side-effects

• Problems arise with mutation of shared data

• Consider futures API in JDK 1.5

• Like transactions, correct implementation of futures requires tracking 
dependencies

! But, constraints imposed are stronger: behavior must conform to a serial 
execution, not a serializable one

! Pairwise association of concurrent execution states

! No issues of livelock or deadlock.  It is always safe to revert to sequential 
execution.

• Target applications are those which decompose into speculative units (with little 
to modest sharing) 

If sequential program P is annotated with 
futures to yield concurrent program PF, then the 

observable behavior of P is equivalent to PF
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Rationale

• Alternative concurrency model

! No explicit threads

! Concurrent program easily derived from its sequential counterpart

! No non-determinism

• Utility

! Concurrent program development and debugging

! Convenient way to define arbitrary regions of speculative code

• Best used when (strong notions of) safety dominate 
performance requirements

83
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Safety Properties

• An access to a location l (either a read or write) performed 
by a future should not witness a write to l performed by its 
continuation.

• The last write to a location l performed by a future must 
occur before the first access to l by the continuation.

• How do we maintain these properties?

!version shared data 

!track shared data dependencies

!revoke non-serial execution

•  These properties must hold even in the presence of 
exceptions, and irrevocable actions

84
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Using Futures

void transfer (int sum)
 {  c.withdraw(sum);
    s.deposit(sum);  }

float total ()
  {  return c.balance()+s.balance();  }

float sum = acc.total();
acc.transfer(10);
print(sum);
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Using Futures

void transfer (int sum)
 {  c.withdraw(sum);
    s.deposit(sum);  }

float total ()
  {  return c.balance()+s.balance();  }

Future f = F[acc.total()];
acc.transfer(10);
print(f.get());
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Using Futures

void transfer (int sum)
 {  c.withdraw(sum);
    s.deposit(sum);  }

float total ()
  {  return c.balance()+s.balance();  }

Future f = F[acc.total()];
acc.transfer(10);
print(f.get());

LOGICAL SERIAL ORDER:

total()
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Using Futures

void transfer (int sum)
 {  c.withdraw(sum);
    s.deposit(sum);  }

float total ()
  {  return c.balance()+s.balance();  }

Future f = F[acc.total()];
acc.transfer(10);
print(f.get());

total()

FUTURE

LOGICAL SERIAL ORDER:
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Using Futures

void transfer (int sum)
 {  c.withdraw(sum);
    s.deposit(sum);  }

float total ()
  {  return c.balance()+s.balance();  }

Future f = F[acc.total()];
acc.transfer(10);
print(f.get());

total()

FUTURE

LOGICAL SERIAL ORDER:

transfer()
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Using Futures

void transfer (int sum)
 {  c.withdraw(sum);
    s.deposit(sum);  }

float total ()
  {  return c.balance()+s.balance();  }

Future f = F[acc.total()];
acc.transfer(10);
print(f.get());

total()

FUTURE

LOGICAL SERIAL ORDER:

transfer() get()
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Using Futures

void transfer (int sum)
 {  c.withdraw(sum);
    s.deposit(sum);  }

float total ()
  {  return c.balance()+s.balance();  }

Future f = F[acc.total()];
acc.transfer(10);
print(f.get());

total() transfer() get()

FUTURE CONTINUATION

LOGICAL SERIAL ORDER:
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Safe Futures
• Programmer annotates method calls

• Logical serial order enforced by the run-time
!Futures and continuations encapsulated into optimistic transactions

!Foundational mechanisms shared with transactional monitors

!The notion of logical serial order stronger than serializability

• Consistency checks:

!Data accesses hashed into read and write maps

!Maps used by continuation to detect conflicts for accesses from its future

!Validation at synchronization points (when a future is claimed)

• Log updates by maintaining versions:

!Versions used by future to prevent seeing updates by its continuation

• Aborts:

!Automatic roll-back when conflict detected
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Dependency Violations
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The scenario described above is illustrated in Figure 6 (wavy
lines represent threads and boxes represent execution contexts).
Initially, a primordial context (Cp) is created and bound to Tmain,
the thread evaluating the main method (Figure 6(a)). When a fu-
ture is scheduled for execution (ie, its run method is invoked), two
more contexts are created (Figure 6(b)): context C f to evaluate the
future (C f is bound to Tf , a new thread used to execute the code
encapsulated within the future), and contextCc to evaluate the con-
tinuation of the future (Cc is bound to the same thread as the primor-
dial context Cp, in this case Tmain). The execution of the program
proceeds concurrently until the get method is invoked (the result
computed by the future is then claimed) and then goes back to exe-
cuting entirely within Tmain, the main thread of computation. Note
that at this point both contexts C f and Cc as well as thread Tf are
discarded (Figure 6(c)) and can be cached for later re-use.

4.2 Preserving serial semantics
When two or more execution contexts execute concurrently, their

operations may be arbitrarily interleaved and thus the semblance of
serial execution may be violated. Consider two execution contexts:
one representing a future (C f ) and one representing a continuation
of this future (Cc). Under a (logical) serial order of execution, C f

precedes Cc. If C f and Cc execute concurrently, this order may be
violated in one of two ways:

• Cc does not observe the effect of an operation performed by
C f (eg, a read inCc does not see modification of shared data
by C f ), even though it would have observed this effect if C f

and Cc were executed serially. We call this a forward depen-
dency violation.1

• C f does observe the effect of an operation performed by Cc
that could never occur if C f and Cc were executed serially
because C f would execute fully before Cc. We call this a
backward dependency violation.

An example of schedules demonstrating both forward and back-
ward dependency violations between C f and Cc, along with code
snippets representing execution contexts appear in Figure 7. In Fig-
ure 7(a) the continuation represented by context Cc should see the
result of the write to o.foo performed by the future represented
by context C f . In Figure 7(b) the future represented by context C f

should not see the result of the write to o.bar performed by the
continuation represented by context Cc. Note that the notion of a
dependency violation capture the same properties as the schedule
safety rules from Section 3.1 (forward dependency violations are
captured by the csafe rule and backward dependency violations are
captured by the fsafe rule).
We prevent forward dependency violations by tracking all data

accesses performed within execution contexts. We use per-context
read and write bit-maps to record accesses to shared state. Each
item of shared state (ie, object, array, or static variable) hashes to a
bit in each map. How we use these bit-maps to detect violations is
described below.
In the case of a forward dependency violation, the execution con-

text responsible for the violation is revoked automatically (with-
out programmer intervention) and restarted. Backward data depen-
dency violations are prevented by versioning items of shared state.
We preserve a copy-on-write invariant to ensure that each execution
context updates its own private versions of shared items, preventing

1Forward in the sense that an operation from the “logical future”
causes the violation.

C f

int i = o.bar;
o.foo = 0;

Cc

o.bar = 0;
int j = o.foo;

C f Cc

read(o)
write(o)
read(o)

write(o)
(a) Forward

C f Cc

write(o)
read(o)
write(o)

read(o)
(b) Backward

Figure 7: Dependency violations

it from seeing updates performed by execution contexts in its logi-
cal future. A detailed description of these mechanisms is presented
below.
With the copy-on-write invariant we must make sure that subse-

quent reads occur to the copy and not to the original. To achieve
this, we simply scan the copying context’s thread stack whenever
an item of shared state is copied, patching any references to the
original version to refer instead to the copy – this is called forward-
ing. Whenever a reference is loaded from the heap we ensure that it
is forwarded to the appropriate version. Thus, a context can never
use a reference to the wrong version.

4.3 Tracking data accesses
We track data accesses using compiler-inserted read and write

barriers: code snippets responsible for maintaining the meta-data
required to detect dependency violations, and inserted by the com-
piler at the point where shared data access operations occur. The
meta-data consists of the two bit-maps associated with each exe-
cution context: one for reads (ie, the read-map) and one for writes
(ie, the write-map). Whenever a read operation is performed on an
item of shared state (ie, object, array, or static variable), its hashed
bit is set in the read-map. Hashes for objects and arrays are their
natural hash value, while for a static variable it is its address (these
addresses are constants established when the class containing the
static variable is loaded). The same read-map is used for all shared
items. Write-maps are similarly maintained within write barriers,
though write barriers must always ensure that a new version is cre-
ated on first write by a context to a given item.
Since reads significantly outnumber writes in most Java pro-

grams, reducing the number of read barriers is critical to achieving
reasonable performance. Our implementation therefore trades off
accuracy for efficiency in detecting dependency violations. Instead
of placing barriers on all read accesses to shared items (eg, reading
an integer field from an object), we assume that once a reference
is read from the heap, the context reading it will eventually read
from the object targeted by that reference. Thus, the read barrier
is placed only on loads of references from the heap (eg, getfield
or arrayload bytecodes in which the type of the field or element
is a reference). In other words, we “pre-read” all objects to which
a context holds references (when a context is initialized this means
we must apply the pre-read barrier to all references in the current
activation record). The pre-read optimization is applied only for
objects and arrays to eliminate read barriers on them. All other
accesses, including reads from static variables, and all writes to
shared items incur the appropriate barrier.
Note that bit-maps are maintained only if there is more than one

active context present in the system (ie, there is potential for con-
currency and thus logical serial order violations). That is, barriers
are responsible only for fetching the most recent version of an item

Forward dependency violations can be handled by tracking data dependencies.

Backward dependency violations can be handled by versioning updates.  Future 
never sees a premature update by its continuation.
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Ensuring Safety

Future f1 = F[acc.transfer(10)]; 
Future f2 = F[acc.total()];
acc.transfer(10);
f1.get();
print(f2.get());

TF2

TF1

TC

F1

F2

C

Account c;     Account s;  

20 80
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Ensuring Safety

Future f1 = F[acc.transfer(10)]; 
Future f2 = F[acc.total()];
acc.transfer(10);
f1.get();
print(f2.get());

TF2

TF1

rd(c)
wt(c)

rd(c)

TC

F1

F2

C

Account c;     Account s;  

90

rd(c) rd(s)

rd(c)
wt(c) wt(s)

rd(s)

20             +

0

90       =   110      
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Ensuring Safety

Future f1 = F[acc.transfer(10)]; 
Future f2 = F[acc.total()];
acc.transfer(10);
f1.get();
print(f2.get());

TF2

TF1

rd(c)
wt(c)

rd(c)

TC

F1

F2

C

Account c;     Account s;  

90

rd(c) rd(s)
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Ensuring Safety

Future f1 = F[acc.transfer(10)]; 
Future f2 = F[acc.total()];
acc.transfer(10);
f1.get();
print(f2.get());
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Ensuring Safety

Future f1 = F[acc.transfer(10)]; 
Future f2 = F[acc.total()];
acc.transfer(10);
f1.get();
print(f2.get());
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Forward
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Ensuring Safety

Future f1 = F[acc.transfer(10)]; 
Future f2 = F[acc.total()];
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f1.get();
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Ensuring Safety
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Ensuring Safety
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Ensuring Safety

Future f1 = F[acc.transfer(10)]; 
Future f2 = F[acc.total()];
acc.transfer(10);
f1.get();
print(f2.get());

TF2

TF1

rd(c)
wt(c)

rd(c)

TC

F1

F2

C

Account c;     Account s;  

90

rd(c) rd(s)

rd(c)
wt(c) wt(s)

rd(s)

20             +

0

90       =   110      

R
W

R
W

R
W

c s

c s

c s



TiC’06
103

Ensuring Safety
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Ensuring Safety
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Ensuring Safety
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• Based on IBM’s Jikes RVM

• Compiler-injected read and write barriers to intercept 
shared data accesses

! Eager update of references on stack:

" Version creation

" Pre-specified synchronization points

• Bytecode rewriting plus run-time support for automatic 
roll-back

!Modify runtime to roll-back without running user handlers

• Modification of object headers

!Version access via forwarding pointers

• Experimental results

!Roughly 50% efficiency for modest mutation rates (~ 30%)

Our Prototype
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Evaluation

• Selected Java Grande benchmarks

• Modified Multi-User OO7 benchmark
!Standard OO7 design database

" Multi-level hierarchy of composite parts

" Shared and private modules

!Mixed-mode read/write traversals

• Configuration
!700MHz Pentium 3 (used up to 4 CPUs)

!Average of 5 “hot” runs
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Experimental Results: 4 processor SMP
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for (i = 1; i <= I; i++)
for (m = 1; m <= M; m++)

traversals(m, p);

(a) Sequential OO7 benchmark

for (i = 1; i <= I; i++) {
for (m = 1; m <= M; m++)

f[m] = future(traversals(m, p));
for (m = 1; m <= M; m++)

f[m].get();
}

(b) Parallel OO7 benchmark

Figure 9: Top-level loop of the OO7 benchmark
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Figure 10: Java Grande: Elapsed time (normalized)

tions, each benchmark iteration comprisesM futures, each of which
performs a set of traversals operating on a distinct private module
m, module M+1 is used as the shared module, and the parameter
p controls the mix of operations performed by the traversals.
We seed the traversals with the same random seed in both the

sequential and futures-enabled executions of the benchmark, such
that both versions perform identical workloads.

5.3 Results

We present results for the Java Grande benchmarks first, to in-
dicate the behavior of futures under ideal circumstances. OO7 is
more demanding, but also more tuneable, revealing the underlying
performance characteristics of our implementation.

5.3.1 Java Grande results

Figure 10 reports the elapsed time for execution of the future-
enabled versions of the Java Grande benchmarks, normalized against
the average elapsed time for execution of the unmodified sequen-
tial benchmarks running on the unmodified Jikes RVM. Times are
arithmetic means of the 5 hot runs of each benchmark, with 90%
confidence intervals revealing minimal variability. Recall that we
parallelize the benchmarks using four futures. Thus, observe that
speedups range from perfect (or even slightly super-linear – 4× for
series), to a little less than 2× speedup for crypt. We believe
that the reason for the super-linear speedup for series is due to
improved locality as a result of the array partitioning.

5.3.2 OO7 results

We report results for two basic versions of OO7, one for a database

containing only 2 (M = 1) modules and one for a database com-
prising 5 (M = 4) modules. Again, we compare the future-enabled
parallel versions against the sequential version of the benchmark.
We vary the ratio of writes to reads performed within each set of
traversals as 4%, 8%, 16% and 32% writes (96%, 92%, 84%, and
68% reads, respectively), in an attempt to model workloads with
mutation rates ranging from low to moderate. We also vary the ra-
tio of shared/private accesses for each mix of reads/writes as 0%,
50% and 100%. Thus, for 4% writes, 50% shared, a set of 100
traversals will on average perform 2 read-write traversals to shared
data, 2 read-write traversals to private data, 48 read-only traversals
on shared data, and 48 read-only traversals on private data.
With just 2 (M= 1) modules, both the original and future-enabled

versions are inherently sequential, since the degree of future-enabled
parallelism is equal toM for a database containingM+1 modules.
Moreover, because only one future is ever active revocation can-
not occur. Thus, the comparison for M = 1 yields a measure of
the fundamental overheads in our system for creating and claim-
ing futures (and indirectly the effectiveness of our context-caching
mechanisms), for the read and write barriers used to track accesses,
and for versioning. The elapsed time results, normalized against
the sequential version running on the unmodified Jikes RVM, are
presented in Figure 11. These reveal a per-future performance hit
of 8-12% for 4% writes. As write ratios increase, we see overheads
of 15-20% for 32% the write ratio. Figure 12 graphs the number of
versions created per benchmark iteration, showing that the number
of versions created increases with sharing and the write ratio.
Of course, for more futures, this performance hit may come to

dominate. Some of the overhead results from the lack of efficient
support in Jikes RVM for caching of thread state (eg, stacks) from
one thread activation to another. Thus, spawning a future is rel-
atively expensive. Our context caching mechanisms ameliorate
some of the overhead, but there is much more that could be done
along the lines of Mul-T [30, 33]. Still, our overheads are low
enough to justify the use of safe futures for a range of applications,
as the Java Grande results already illustrate.
Adding concurrency yields opportunity for parallelism, as illus-

trated in the results for OO7 using four futures, shown in Figure 13.
With four futures executing concurrently there is the possibility of
revocation, which we graph in Figure 14. Without sharing there are
no revocations. Thus for the unshared executions we see uniform
gains of 52-56% across the range of write ratios, as expected. The
performance gains vary depending on the configuration; even at
32% write ratio with 100% sharing we still observe a performance
benefit of about 25% (Figure 13(d)). In all configurations, the re-
vocations seem to impact performance significantly, since their rise
is correlated with increased sharing, as well as write ratio (see Fig-
ure 14). The increase in versions created (Figure 15) also affects ex-
ecution times – as write ratios increase, elapsed times in Figure 13
also increase slightly even for configurations where no revocations
are observed.
The cost of creating versions constitutes part of the “base” over-

head common across all configurations, though clearly non-existent
in the sequential version of the benchmark. Another large base
overhead results from executing large numbers of read barriers.
We observe on average 63 million read barriers (30 million for ob-
jects, 18 million for arrays and 15 million for static variables) per
benchmark iteration (these numbers remain much the same across
all configurations). This indicates that our initial decision to min-
imize the number of barriers by inserting them only at reference
loads was prescient. We also observe a large number of write bar-
riers – 16 million on average per benchmark iteration (6.5 million
for objects, 9.5 million for arrays, and a negligible number for static
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Figure 11: OO7 with 1 future: Average elapsed time per iteration (normalized)
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Figure 12: OO7 with 1 future: Versions created per iteration

variables). The number of write barriers for objects increases as the
number of writes to shared objects grows across different configu-
rations. We are particularly penalized by the number of static vari-
able accesses for this implementation of OO7, which uses them to
capture the traversal parameters. In general, static analyses such as
escape analysis also have much grist for the mill here, in optimiz-
ing away unnecessary barriers [12, 6, 7]. We note, however, that
for OO7 such analyses are unlikely to have much impact, because
all futures operate over a single recursively-defined data structure.
Nonetheless, even without the benefit of advanced compiler opti-
mizations, the performance of our implementation using just run-
time optimizations is encouraging.

6. RELATED WORK

Concurrent programming using threads that operate over shared
state can be difficult and error-prone. Besides the algorithmic is-
sues involved in structuring programs to exploit multiple threads of
control, access to shared state must be protected to ensure safety.
Typically, such protection is expressed using synchronization mech-
anisms such as locks or abstractions like monitors, built on locks,
that allow reasoning about control within the protected region in
terms of serial execution of the threads that access it. Unfortu-
nately, this programming model is highly invasive: since there is of-
ten little coupling between threads and the data they access, safety
demands often dictate that any object be protected which poten-
tially might be shared. Notwithstanding the negative impact on
performance, restructuring programs to guarantee safety can lead
to increased program complexity. On the other hand, underspeci-
fying synchronization can lead to critical safety violations such as
race conditions. In some cases, compiler optimizations can elide

unwanted synchronization [1, 2, 7, 42] to alleviate performance
issues. When synchronization is underspecified, tools can be em-
ployed to detect potential data races that may result. These tools
can be expressed using type systems [17, 8], such as ownership
types [14] to verify the absence of data races and deadlock. Other
tools such as Eraser [39] employ dynamic techniques to check for
races in programs [34, 32, 43]. There have also been attempts to
leverage static analyses to reduce overheads and increase precision
of purely dynamic implementations [13, 44].
Our main contribution in this paper is a semantics and implemen-

tation of safe futures [21], a simple easily-understood abstraction
for injecting concurrency into sequential programs. Unsafe futures
when incorporated into programs that make heavy use of impera-
tive features, can exhibit behavior inconsistent with their original
intent. To ensure that annotating a program with futures does not
violate expected data dependencies and thus unexpectedly change
program behavior, we define a compiler and run-time infrastruc-
ture that employs object versioning and task revocation techniques
to identify safety violations and remedy program executions when
such violations are detected.
In this vein, our motivation is similar to recent proposals that

have argued in favor of higher-level abstractions that enforce desir-
able properties on concurrent programs such as atomicity [19, 18,
22] or transaction-based isolation [23, 40, 45] without requiring
the low-level (and thus potentially error-prone) operational reason-
ing demanded by locks. Other approaches include lock-free data
structures [37, 26] and transactional memory [25]. These efforts
share goals similar to ours insofar as they attempt to provide al-
ternatives to lock-based abstractions for concurrent programming
that preserve desirable safety properties, although the techniques

Only one future: measure base overheads.
         Range from 8% (4% writes) to 15% (32% writes) 
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Figure 13: OO7 with 4 futures: Average elapsed time per iteration (normalized)
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Figure 14: OO7 with 4 futures: revocations per iteration
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Figure 15: OO7 with 4 futures: Versions created per iteration

employed are different in substantial and obvious ways.
The semantics of futures [15, 16] and their implementation [30,

33] have been well-studied in the context of functional languages
like Scheme [29]. Abstractions similar to futures (eg, promises [31])
have also been proposed for statically-typed imperative languages,
but we are unaware of any previous effort that ensures their injec-
tion into a sequential stateful program is transparent with respect to
preservation of data dependencies that exist in the original.
More recently, Pratikakis et al [36] present a static analysis to

allow Java programs to use futures without requiring wholesale
changes to the program to satisfy type restrictions. Their analy-
sis tracks how a future flows through a program, and injects coer-
cions that perform a claim operation on the future at points where
the value yielded by the future, rather than the future itself, is re-
quired. The analysis uses qualifier inference to track how futures

are used. Our goals are similar in spirit to this work in that both
attempt to treat futures as a transparent concurrency mechanism.
However, these two efforts are unrelated in their focus. Unlike our
design and implementation, Pratikakis et al make no guarantees
that the evaluation of a future does not introduce behavior incon-
sistent with the sequential program from which it was derived. By
the same token, our notion of transparent execution does not extend
automatically to injecting claims where necessary: a program that
fails to claim a future when required may still lead to transparency
violations of the kind described by Pratikakis et al in our imple-
mentation. We believe both forms of transparency are important.
Although we expect that futures are primarily useful for spawning
concurrent tasks that exhibit relatively little to modest sharing, it is
nonetheless critical that safety violations be detected when they do
occur.

With 4 futures, performance gains range 
from 55% to 25% over range of write ratios.
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Figure 13: OO7 with 4 futures: Average elapsed time per iteration (normalized)
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Figure 15: OO7 with 4 futures: Versions created per iteration

employed are different in substantial and obvious ways.
The semantics of futures [15, 16] and their implementation [30,

33] have been well-studied in the context of functional languages
like Scheme [29]. Abstractions similar to futures (eg, promises [31])
have also been proposed for statically-typed imperative languages,
but we are unaware of any previous effort that ensures their injec-
tion into a sequential stateful program is transparent with respect to
preservation of data dependencies that exist in the original.
More recently, Pratikakis et al [36] present a static analysis to

allow Java programs to use futures without requiring wholesale
changes to the program to satisfy type restrictions. Their analy-
sis tracks how a future flows through a program, and injects coer-
cions that perform a claim operation on the future at points where
the value yielded by the future, rather than the future itself, is re-
quired. The analysis uses qualifier inference to track how futures

are used. Our goals are similar in spirit to this work in that both
attempt to treat futures as a transparent concurrency mechanism.
However, these two efforts are unrelated in their focus. Unlike our
design and implementation, Pratikakis et al make no guarantees
that the evaluation of a future does not introduce behavior incon-
sistent with the sequential program from which it was derived. By
the same token, our notion of transparent execution does not extend
automatically to injecting claims where necessary: a program that
fails to claim a future when required may still lead to transparency
violations of the kind described by Pratikakis et al in our imple-
mentation. We believe both forms of transparency are important.
Although we expect that futures are primarily useful for spawning
concurrent tasks that exhibit relatively little to modest sharing, it is
nonetheless critical that safety violations be detected when they do
occur.

Revocations become more pronounced as shared 
write percentage increases

Similar structure for new versions created.
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Case Study: Modular Checkpointing
• Many faults in long-lived software systems are transient:

!Temporary unavailability of a resource:

" network timeout

" error states in a component repaired by reboot.

!Unreliability of a resource:

" packet loss

!Semantic violations:

" serializability violations in a transactional system.

• How can such faults be transparently repaired?

!Concurrent threads of control.

!Visible effects

" Communication along channels

" Shared memory

" External actions (I/O, etc.)
112
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Robustness

• How can an exception handler ensure that global state is 
consistent after it executes?

! Consider thread communication within a handler scope

! How does a handler revert thread state to one which is 
consistent with views of other threads? 

! Failure to ensure consistency can lead to deadlock, or 
erroneous results

• Difficult for applications to enforce consistency statically 
because of non-determinism and implicit, dynamically-
defined thread dependencies

! If a thread broadcasts some data, how can an 
application efficiently determine the set of threads that 
are affected by this data? 

113
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Checkpoints

• Checkpoints provide a means to globally revert a computation to 
an earlier state.

• Transparent approaches: compiler or operating system

• Non-transparent: Library or application-directed

• Our idea:  

!  Applications define thread-local program points where 
checkpoint is feasible.

"  When a thread attempts to restore execution to a 
previous checkpoint, control reverts to one of these points 
for each thread.

" The exact checkpoint chosen is calculated dynamically 
based on lightweight monitoring of thread communication 
events and effects.

114
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Stabilizers
• Signatures

! stable: (‘a -> ‘b) -> (‘a -> ‘b)

! stabilize: unit -> ‘a

• Declare monitored section of code

! Track inter-thread actions including communication and shared 
memory access

! Defines a thread-local checkpoint

• Maintain a global dependency structure 

!Construct a global checkpoint from a collection of thread-local ones 
based on (transitive) thread dependencies

• Serve as building blocks for 

! modular transient fault recovery for Concurrent ML 

! safe software-based speculation

! open-nested multi-threaded software transactions

115
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Comparison with Transactions
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Transactions Stabilizers

Atomicity and Isolation On updates
Transaction-specific logs

On stabilization
Thread-local checkpoints

Aborts Transaction-local
Lexically-delimted
Serializability violation

Global
Dynamically computed
User-define

Logging ! "

Nesting Idiosyncratic Uniform

Concurrency control ! "

Speculative multithreading " !
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is Swerve, a webserver written in CML whose major modules
communicate with one other using message-passing channel com-
munication; it makes no use of eXene. All the benchmarks create
various CML threads to handle various events; communication
occurs mainly through a combination of message-passing on chan-
nels, with occasional updates to shared data.
For these benchmarks, stabilizers exhibit a runtime slow down

of approximately 6% over a CML program in which monitoring is
not performed (see Table 1). The cost of using stabilizers is only
dependent on the number of inter-thread actions and shared data
dependencies that are logged. These overheads are well amortized
over program execution. Memory overheads to maintain the com-
munication graph are larger, although in absolute terms, they are
quite small.
Because we capture continuations prior to executing commu-

nication events and entering stable sections, part of the memory
cost is influenced by representation choices made by the underlying
compiler. Our mechanism would benefit further from a lightweight
low-overhead representation of continuations [26, 3]. Benchmarks
such as Swerve that create over 10K threads, and employ non-
trivial communication patterns, require only 5MB to store the com-
munication graph, a roughly 4% overhead over the memory con-
sumption of the original program.

Graph Channels Threads Runtime
Reqs Size Num Cleared Affected (seconds)

20 1130 85 42 470 0.005
40 2193 147 64 928 0.019
60 3231 207 84 1376 0.053
80 4251 256 93 1792 0.094
100 5027 296 95 2194 0.132

Table 2. Restoration of the entire webserver.

Channels Threads Runtime
Benchmark Num Cleared Total Affected (seconds)

Swerve 38 4 896 8 .003
eXene 158 27 1023 236 .019

Table 3. Instrumented recovery.

To measure the cost of calculating and restoring a globally
consistent checkpoint, we performed three experiments. The first
was a simple unrolling of Swerve shown in Fig. 2, where a call
to stabilize was inserted during the processing of a varying
number of concurrent web requests. This measurement illustrates
the costs of restoring to a consistent global state that can potentially
affect a large number of threads. We expect large checkpoints to be
rare, but we note that restoration of such checkpoints is nonetheless
quite fast. The graph size is presented as the total number of nodes.
Channels can be affected by an unrolling in two different ways: a
channel may contain a value sent on it by a communicating thread
but which has not been consumed by a receiver, or a channel may
connect two threads which have successfully exchanged a value. In
the first case we must clear the channel of the value if the thread
which placed the value on the channel is unrolled; in the later case
no direct processing on the channel is required. We present the total
number of affected channels and those which must cleared.

7.3 Injecting Stabilizers

To show the cost of using stabilizers in practice, we extended
Swerve and eXene and replaced some of their error handling
mechanisms with stabilizers (see Table 3). For Swerve, the imple-
mentation details were given in Section 3). We manually injected a

!"#$%&

Figure 10. An eXene scroll bar widget spawns several indepen-
dent threads, including a control thread that communicates with
other eXene components.

timeout every ten requests, stabilized the program, and re-requested
the page.
For eXene, we augmented a scrollbar widget, which is used by

the pretty printer. In eXene the state of a widget is defined by the
state of its communicating threads, and no state is stored in shared
data. The scroll bar widget is composed of three threads which
communicate over a set of channels. The widget’s processing is
split between two helper threads and one main controller thread.
Any error handled by the controller thread must be communicated
to the helper threads and vice versa. The interactions of the scroll
bar widget and the rest of eXene is depicted in Figure 10. The
dotted box represents a stable section encompassing the processing
of the widget. Wemanually inject the loss of packets to the X server,
stabilize the widget, and wait for new interaction events. The loss of
packets is injected by simply dropping every tenth packet which is
received from the X server. If eXene ever loses an X server packet,
its default behavior is to terminate execution since there is no easy
mechanism available to restore the state of the widget to a globally
consistent point. Using stabilizers, however, packet loss exceptions
can be safely handled by the widget. By stabilizing the widget, we
return it to a state prior to the failed request. Subsequent requests
will redraw the widget as we would expect; thus, stabilizers permit
the scroll bar widget to recover from a lost packet without pervasive
modification to the underlying eXene implementation.

8. Related Work

Being able to checkpoint and rollback parts or the entirety of an ex-
ecution has been the focus of notable research in the database [11]
as well as parallel and distributed computing communities [13, 20,
22]. Reverting to previous state provides a measure of fault tol-
erance for long-running applications [27]. Classically, checkpoints
have been used to provide fault tolerance for long-running, critical
executions, for example in scientific computing [2] but have been
typically regarded as heavyweight entities to construct and main-
tain.
Existing checkpoint approaches can be classified into four broad

categories: (a) schemes that require applications to provide their
own specialized checkpoint and recovery mechanisms [5, 6]; (b)
schemes in which the compiler determines where checkpoints can
be safely inserted [4]; (c) checkpoint strategies that require oper-
ating system or hardware monitoring of thread state [9, 19, 22];
and (d) library implementations that capture and restore state [12].
Checkpointing functionality provided by an application or a li-
brary relies on the programmer to define meaningful checkpoints.
For many multi-threaded applications, determining these points is
non-trivial because it requires reasoning about global, rather than
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brary relies on the programmer to define meaningful checkpoints.
For many multi-threaded applications, determining these points is
non-trivial because it requires reasoning about global, rather than
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is Swerve, a webserver written in CML whose major modules
communicate with one other using message-passing channel com-
munication; it makes no use of eXene. All the benchmarks create
various CML threads to handle various events; communication
occurs mainly through a combination of message-passing on chan-
nels, with occasional updates to shared data.
For these benchmarks, stabilizers exhibit a runtime slow down

of approximately 6% over a CML program in which monitoring is
not performed (see Table 1). The cost of using stabilizers is only
dependent on the number of inter-thread actions and shared data
dependencies that are logged. These overheads are well amortized
over program execution. Memory overheads to maintain the com-
munication graph are larger, although in absolute terms, they are
quite small.
Because we capture continuations prior to executing commu-

nication events and entering stable sections, part of the memory
cost is influenced by representation choices made by the underlying
compiler. Our mechanism would benefit further from a lightweight
low-overhead representation of continuations [26, 3]. Benchmarks
such as Swerve that create over 10K threads, and employ non-
trivial communication patterns, require only 5MB to store the com-
munication graph, a roughly 4% overhead over the memory con-
sumption of the original program.

Graph Channels Threads Runtime
Reqs Size Num Cleared Affected (seconds)

20 1130 85 42 470 0.005
40 2193 147 64 928 0.019
60 3231 207 84 1376 0.053
80 4251 256 93 1792 0.094
100 5027 296 95 2194 0.132

Table 2. Restoration of the entire webserver.

Channels Threads Runtime
Benchmark Num Cleared Total Affected (seconds)

Swerve 38 4 896 8 .003
eXene 158 27 1023 236 .019

Table 3. Instrumented recovery.

To measure the cost of calculating and restoring a globally
consistent checkpoint, we performed three experiments. The first
was a simple unrolling of Swerve shown in Fig. 2, where a call
to stabilize was inserted during the processing of a varying
number of concurrent web requests. This measurement illustrates
the costs of restoring to a consistent global state that can potentially
affect a large number of threads. We expect large checkpoints to be
rare, but we note that restoration of such checkpoints is nonetheless
quite fast. The graph size is presented as the total number of nodes.
Channels can be affected by an unrolling in two different ways: a
channel may contain a value sent on it by a communicating thread
but which has not been consumed by a receiver, or a channel may
connect two threads which have successfully exchanged a value. In
the first case we must clear the channel of the value if the thread
which placed the value on the channel is unrolled; in the later case
no direct processing on the channel is required. We present the total
number of affected channels and those which must cleared.

7.3 Injecting Stabilizers

To show the cost of using stabilizers in practice, we extended
Swerve and eXene and replaced some of their error handling
mechanisms with stabilizers (see Table 3). For Swerve, the imple-
mentation details were given in Section 3). We manually injected a
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Figure 10. An eXene scroll bar widget spawns several indepen-
dent threads, including a control thread that communicates with
other eXene components.

timeout every ten requests, stabilized the program, and re-requested
the page.
For eXene, we augmented a scrollbar widget, which is used by

the pretty printer. In eXene the state of a widget is defined by the
state of its communicating threads, and no state is stored in shared
data. The scroll bar widget is composed of three threads which
communicate over a set of channels. The widget’s processing is
split between two helper threads and one main controller thread.
Any error handled by the controller thread must be communicated
to the helper threads and vice versa. The interactions of the scroll
bar widget and the rest of eXene is depicted in Figure 10. The
dotted box represents a stable section encompassing the processing
of the widget. Wemanually inject the loss of packets to the X server,
stabilize the widget, and wait for new interaction events. The loss of
packets is injected by simply dropping every tenth packet which is
received from the X server. If eXene ever loses an X server packet,
its default behavior is to terminate execution since there is no easy
mechanism available to restore the state of the widget to a globally
consistent point. Using stabilizers, however, packet loss exceptions
can be safely handled by the widget. By stabilizing the widget, we
return it to a state prior to the failed request. Subsequent requests
will redraw the widget as we would expect; thus, stabilizers permit
the scroll bar widget to recover from a lost packet without pervasive
modification to the underlying eXene implementation.

8. Related Work

Being able to checkpoint and rollback parts or the entirety of an ex-
ecution has been the focus of notable research in the database [11]
as well as parallel and distributed computing communities [13, 20,
22]. Reverting to previous state provides a measure of fault tol-
erance for long-running applications [27]. Classically, checkpoints
have been used to provide fault tolerance for long-running, critical
executions, for example in scientific computing [2] but have been
typically regarded as heavyweight entities to construct and main-
tain.
Existing checkpoint approaches can be classified into four broad

categories: (a) schemes that require applications to provide their
own specialized checkpoint and recovery mechanisms [5, 6]; (b)
schemes in which the compiler determines where checkpoints can
be safely inserted [4]; (c) checkpoint strategies that require oper-
ating system or hardware monitoring of thread state [9, 19, 22];
and (d) library implementations that capture and restore state [12].
Checkpointing functionality provided by an application or a li-
brary relies on the programmer to define meaningful checkpoints.
For many multi-threaded applications, determining these points is
non-trivial because it requires reasoning about global, rather than
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Observations

• Non-modular design:

!Recovery from timeout failures requires an explicit protocol 
distributed among three different modules.

• Alternative strategy:

!Use stabilizers to abstract explicit notification process.

!Have the Timeout manager call stabilize when a timeout occurs.

!Wrap communication events in the modules within stable sections.

!No need for explicit polling

• Implications:

!Timeout recovery expressed without having to embed non-local 
timeout logic within all threads.

" Timeout handling and recovery localized within the Timeout 
manager.
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What happens if f raises 
a timeout exception?

Must re-execute it, 
erasing effects from the 
earlier evaluation

Determining the set of 
events that must be 
restored depends on 
dynamic scheduler 
events.

For many multi-threaded applications, determining these points is
non-trivial because it requires reasoning about global, rather than
thread-local, invariants. Compiler and operating-system injected
checkpoints are transparent to the programmer. However, trans-
parency comes at a notable cost: checkpoints may not be semanti-
cally meaningful or efficient to construct. If all application threads
run within the same process, saving and restoring checkpoints may
be expensive since only a small number of threads may be affected
as a result of a rollback. If application threads run in separate pro-
cesses, each process may get checkpointed at different intervals,
violating the need to preserve global state. Furthermore, concur-
rent programs exacerbate the question of where and how to in-
ject sensible checkpoints because thread interaction is often non-
deterministic. In a multi-threaded program, an injected checkpoint
may capture different global state each time the same piece of code
is executed.

1.1 Stabilizers

To alleviate the burden of defining and restoring safe checkpoints
in multi-threaded programs, we propose a new language abstraction
for dynamic, composable, on-the-fly checkpointing called stabiliz-
ers. Stabilizers encapsulate two operations. The first initiates mon-
itoring of code for communication and thread creation events, and
establishes thread-local checkpoints when monitored code is eval-
uated. The other reverts control and state to a safe global check-
point. The checkpoints defined by stabilizers are composable: a
monitored procedure can freely create and return other monitored
procedures. Stabilizers can be arbitrarily nested, and work in the
presence of a dynamically-varying number of threads.
Our checkpointing mechanism is a middle ground between the

transparency afforded by operating systems or compilers, and the
precision afforded by user-injected checkpoints. In our approach,
applications are required to identify meaningful per-thread program
points where a checkpoint may be saved; when a rollback opera-
tion occurs, control reverts to one of these saved checkpoints for
each thread. The exact set of checkpoints chosen is determined by
safety conditions that ensure that a globally consistent state is pre-
served. Our approach guarantees that when a thread is rolled-back
to a checkpointed state C, other threads with which it has com-
municated prior to its last rollback are in states consistent with C.
No action is taken for threads that have not been influenced by its
effects.
To calculate how to revert threads to safe checkpoints, the run-

time system keeps track of thread states and traces communication
events among threads. When a spawn, communication, or shared
data access operation occurs, information is recorded in a runtime
data structure about the operation as well as the thread’s continua-
tion prior to the event.
When a rollback action occurs, the runtime-maintained data

structure is consulted to determine the proper checkpoint for all
threads that maintains global consistency. A rollback is sensible
only if re-execution results in a different execution path than the one
that caused the rollback to occur initially. Thus, our solution criti-
cally relies on non-deterministic behavior: to ensure that rollbacks
do not simply lead to infinite looping, subsequent re-execution of
threads should lead to different thread interactions and behavior.
For most multi-threaded programs, this requirement is not par-
ticularly onerous. However, to allow applications further control
over the state in which a checkpoint resumes, stabilizers also come
equipped with a simple compensation mechanism [7] that maybe
executed before control is reverted to the checkpointed state. Com-
pensations also allow stabilizers to work in the presence of non-
restorable actions such as I/O.

1.2 Contributions

This paper makes three contributions:

1. The design and semantics of stabilizers, a new language ab-
straction for defining and restoring meaningful checkpoints in
concurrent programs in which threads communicate through
both message-passing and shared memory. To the best of our
knowledge, stabilizers are the first language-centric design of
a checkpointing facility for concurrent programs with dynamic
thread creation, and selective communication [31] that provides
global consistency and safety guarantees when checkpointed
state is restored.

2. A lightweight dynamic monitoring algorithm faithful to the se-
mantics that constructs efficient checkpoints based on the con-
text in which a restore action is performed. Efficiency is defined
with respect to the amount of rollback required to ensure that
all threads resume execution after a checkpoint is restored in a
consistent global state.

3. A detailed evaluation study in SML that quantifies the cost of
using stabilizers on various open-source server-style applica-
tions. Our results reveal that the cost of defining and monitor-
ing thread state is small, typically adding roughly no more than
6% overhead to overall execution time. Memory overheads are
equally modest.

The remainder of the paper is structured as follows. In Section 2,
we provide a motivating example that highlights the issues asso-
ciated with safely checkpointing computation in concurrent pro-
grams. Section 3 describes the stabilizer abstraction. An opera-
tional semantics is given in Section 4. A strategy for incremental
construction of checkpoint information is given in Section 5. Imple-
mentation details are provided in Section 6. A detailed evaluation
on the costs and overheads of using stabilizers is given in Section 7,
related work is presented in Section 8, and conclusions are given in
Section 9.

2. Motivating Example

To motivate the use of stabilizers, consider the program fragment
shown below. The program spawns a new asynchronous thread of
control to compute the application of f to argument arg . Function
f in turn spawns a thread to compute the application of g to argu-
ment arg’ , and sends data on a channel c that may potentially
be read by g . In addition, g also reads data from channel c’ that
is not accessed by f . Assume channels are synchronous, and thus
sends and receives block if there is no matching recipient or sender
(resp). In the example, both f and g can raise a Timeout excep-
tion. The desired behavior when a timeout occurs is to re-execute
the procedure that raises the exception, ensuring that none of the
procedure’s earlier effects remain visible when it is reapplied. Or-
dinarily, an exception handler will not be able to restore the global
program state such that the procedure can be re-executed safely.

let val c = channel()
val c’ = channel()
fun g y = ... recv(c) ... recv(c’)

...
raise Timeout
...
in handle Timeout => ...

fun f x = let val = spawn(g(...))
val = send(c,x)
...

in if ...
then raise Timeout
else ...

end handle Timeout => ...
in spawn(f(arg))
end
For example, notice that f not only spawns a new thread, but

also communicates data along channel c . Simply re-executing f

2 2005/11/11
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multi-threaded applications, determining these points is non-trivial
because it requires reasoning about global, rather than thread-local,
invariants. Compiler and operating-system injected checkpoints are
transparent to the programmer. However, transparency comes at a
notable cost: checkpoints may not be semantically meaningful or
efficient to construct. If all application threads run within the same
process, saving and restoring checkpoints may be expensive since
only a small number of threads may be affected as a result of a
rollback. If application threads run in separate processes, each pro-
cess may get checkpointed at different intervals, violating the need
to preserve global state. Furthermore, concurrent programs exacer-
bate the question of where and how to inject sensible checkpoints
because thread interaction is often non-deterministic. In a multi-
threaded program, an injected checkpoint may capture different
global state each time the same piece of code is executed.

1.1 Stabilizers

To alleviate the burden of defining and restoring safe checkpoints
in multi-threaded programs, we propose a new language abstraction
for dynamic, composable, on-the-fly checkpointing called stabiliz-
ers. Stabilizers encapsulate two operations. The first initiates mon-
itoring of code for communication and thread creation events, and
establishes thread-local checkpoints when monitored code is eval-
uated. The other reverts control and state to a safe global check-
point. The checkpoints defined by stabilizers are composable: a
monitored procedure can freely create and return other monitored
procedures. Stabilizers can be arbitrarily nested, and work in the
presence of a dynamically-varying number of threads.
Our checkpointing mechanism is a middle ground between the

transparency afforded by operating systems or compilers, and the
precision afforded by user-injected checkpoints. In our approach,
applications are required to identify meaningful per-thread program
points where a checkpoint may be saved; when a rollback opera-
tion occurs, control reverts to one of these saved checkpoints for
each thread. The exact set of checkpoints chosen is determined by
safety conditions that ensure that a globally consistent state is pre-
served. Our approach guarantees that when a thread is rolled-back
to a checkpointed state C, other threads with which it has com-
municated prior to its last rollback are in states consistent with C.
No action is taken for threads that have not been influenced by its
effects.
To calculate how to revert threads to safe checkpoints, the run-

time system keeps track of thread states and traces communication
events among threads. When a spawn, communication, or shared
data access operation occurs, information is recorded in a runtime
data structure about the operation as well as the thread’s continua-
tion prior to the event.
When a rollback action occurs, the runtime-maintained data

structure is consulted to determine the proper checkpoint for all
threads that maintains global consistency. A rollback is sensible
only if re-execution results in a different execution path than the one
that caused the rollback to occur initially. Thus, our solution criti-
cally relies on non-deterministic behavior: to ensure that rollbacks
do not simply lead to infinite looping, subsequent re-execution of
threads should lead to different thread interactions and behavior.
For most multi-threaded programs, this requirement is not par-
ticularly onerous. However, to allow applications further control
over the state in which a checkpoint resumes, stabilizers also come
equipped with a simple compensation mechanism [?] that maybe
executed before control is reverted to the checkpointed state. Com-
pensations also allow stabilizers to work in the presence of non-
restorable actions such as I/O.

1.2 Contributions

This paper makes three contributions:

1. The design and semantics of stabilizers, a new language ab-
straction for defining and restoring meaningful checkpoints in
concurrent programs in which threads communicate through
both message-passing and shared memory. To the best of our
knowledge, stabilizers are the first language-centric design of
a checkpointing facility for concurrent programs with dynamic
thread creation, and selective communication [?] that provides
global consistency and safety guarantees when checkpointed
state is restored.

2. A lightweight dynamic monitoring algorithm faithful to the se-
mantics that constructs efficient checkpoints based on the con-
text in which a restore action is performed. Efficiency is defined
with respect to the amount of rollback required to ensure that
all threads resume execution after a checkpoint is restored in a
consistent global state.

3. A detailed evaluation study in SML that quantifies the cost of
using stabilizers on various open-source server-style applica-
tions. Our results reveal that the cost of defining and monitor-
ing thread state is small, typically adding roughly no more than
6% overhead to overall execution time. Memory overheads are
equally modest.

The remainder of the paper is structured as follows. In Sec-
tion ??, we provide a motivating example that highlights the is-
sues associated with safely checkpointing computation in concur-
rent programs. Section ?? describes the stabilizer abstraction. An
operational semantics is given in Section ??. A strategy for in-
cremental construction of checkpoint information is given in Sec-
tion ??. Implementation details are provided in Section ??. A de-
tailed evaluation on the costs and overheads of using stabilizers is
given in Section ??, related work is presented in Section ??, and
conclusions are given in Section ??.

2. Motivating Example

To motivate the use of stabilizers, consider the program fragment
shown below. The program spawns a new asynchronous thread of
control to compute the application of f to argument arg . Function
f in turn spawns a thread to compute the application of g to argu-
ment arg’ , and sends data on a channel c that may potentially
be read by g . In addition, g also reads data from channel c’ that
is not accessed by f . Assume channels are synchronous, and thus
sends and receives block if there is no matching recipient or sender
(resp). In the example, both f and g can raise a Timeout excep-
tion. The desired behavior when a timeout occurs is to re-execute
the procedure that raises the exception, ensuring that none of the
procedure’s earlier effects remain visible when it is reapplied. Or-
dinarily, an exception handler will not be able to restore the global
program state such that the procedure can be re-executed safely.

let val c = channel()
val c’ = channel()
fun g y = ... recv(c) ... recv(c’)

...
raise Timeout
...
in handle Timeout => ...

fun f x = stable fn () =>
let val = spawn(g(...))

val = send(c,x)
...

in if ...
then raise Timeout
else ...

end handle Timeout => stabilize()
in spawn(f(arg))
end

2 2006/1/14

A timeout exception 
reverts the computation 
to a state in which the 
spawn of g, and its receipt 
on channel c have been 
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Behavior

• Stable sections defined by programmer

• Safety violations explicit

! Not limited to serializability violations

• Save continuations for control

• Version updates

! Channel communication

! Shared variables

• Abort semantics 

! Revert control to globally consistent state based on communication 
events observed within a stable section.

! Basis for dealing aborts in optimistic multi-threaded and open-
nested (speculative) transactions.
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(a) (b)

Figure 2. Interactions of Stable Sections.

3. Programming Model

To dynamically calculate consistent checkpoints, we introduce a new abstraction called stabilizers. Stabilizers

are expressed using new primitives, stable and stabilize, with the following signatures:

stable : (’a -> ’b) -> ’a -> ’b

stabilize : unit -> unit

A stable section is a monitored section of code whose effects are guaranteed to be reverted as a single unit if

a stabilize operation were executed within its dynamic context. The primitive stable is used to define stable

sections. The evaluation of stable f for function f yields a new function f’ identical to f except that interesting

communication and spawn events are monitored and grouped; in addition, the continuation in which the stable

operation was executed is saved as part of the checkpoint state.

The second primitive, stabilize reverts execution to a dynamically calculated checkpoint; this checkpoint

will always correspond to a program state that existed immediately prior to execution of a stable section,

communication event, or thread spawn point. Unlike classical exceptions, the result of invoking stabilize

does not guarantee that control reverts to the checkpoint corresponding to the dynamically-closest stable section,

communication event, or spawn point. The choice of where control must revert depends upon the actions

undertaken by the thread within the stable section in which the stabilize call was triggered, or the event

prior to the stabilize call if it occurs outside a stable section.

Matching inter-thread events are unrolled as pairs. If a send is unrolled, the matching receive must also be

unrolled. If a thread spawned another thread within a stable section in which a stabilize action occurs, this

new thread (and all its actions) must also be discarded. A thread is stable with respect to a statement s, if there
is no thread affected by s (i.e., all threads are in a point within their execution prior to the execution of the
statement and its transitive effects).

For example, consider thread t1 that enters a stable section S1 and initiates a communication event with

thread t2 (see Fig. 2(a)). Suppose t1 subsequently enters another stable section S2, and again establishes a

communication with thread t2. Suppose further that t2 receives these events within its own stable section S3. The

program states immediately prior to S1 and S2 represent feasible checkpoints as determined by the programmer,

depicted as white circles in the example. If a rollback is initiated within S2, then a consistent global state would

require that t2 revert back to the checkpoint associated with the start of S3 since it has received a communication

from t1 initiated within S2. However, discarding the actions within S3 now obligates t1 to resume execution at
the start of S1 since it initiated a communication event within S1 to t2 (executing within S3). Such situations

can also arise without the presence of nested stable sections. Consider the example in Fig. 2(b). Once again, the

program is obligated to revert to S1 in t1, since the stable section S3 spans communication events from both S1

and S2.
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Figure 2. Interactions of Stable Sections.

3. Programming Model

To dynamically calculate consistent checkpoints, we introduce a new abstraction called stabilizers. Stabilizers

are expressed using new primitives, stable and stabilize, with the following signatures:

stable : (’a -> ’b) -> ’a -> ’b

stabilize : unit -> unit

A stable section is a monitored section of code whose effects are guaranteed to be reverted as a single unit if

a stabilize operation were executed within its dynamic context. The primitive stable is used to define stable

sections. The evaluation of stable f for function f yields a new function f’ identical to f except that interesting

communication and spawn events are monitored and grouped; in addition, the continuation in which the stable

operation was executed is saved as part of the checkpoint state.

The second primitive, stabilize reverts execution to a dynamically calculated checkpoint; this checkpoint

will always correspond to a program state that existed immediately prior to execution of a stable section,

communication event, or thread spawn point. Unlike classical exceptions, the result of invoking stabilize

does not guarantee that control reverts to the checkpoint corresponding to the dynamically-closest stable section,

communication event, or spawn point. The choice of where control must revert depends upon the actions

undertaken by the thread within the stable section in which the stabilize call was triggered, or the event

prior to the stabilize call if it occurs outside a stable section.

Matching inter-thread events are unrolled as pairs. If a send is unrolled, the matching receive must also be

unrolled. If a thread spawned another thread within a stable section in which a stabilize action occurs, this

new thread (and all its actions) must also be discarded. A thread is stable with respect to a statement s, if there
is no thread affected by s (i.e., all threads are in a point within their execution prior to the execution of the
statement and its transitive effects).

For example, consider thread t1 that enters a stable section S1 and initiates a communication event with

thread t2 (see Fig. 2(a)). Suppose t1 subsequently enters another stable section S2, and again establishes a

communication with thread t2. Suppose further that t2 receives these events within its own stable section S3. The

program states immediately prior to S1 and S2 represent feasible checkpoints as determined by the programmer,

depicted as white circles in the example. If a rollback is initiated within S2, then a consistent global state would

require that t2 revert back to the checkpoint associated with the start of S3 since it has received a communication

from t1 initiated within S2. However, discarding the actions within S3 now obligates t1 to resume execution at
the start of S1 since it initiated a communication event within S1 to t2 (executing within S3). Such situations

can also arise without the presence of nested stable sections. Consider the example in Fig. 2(b). Once again, the

program is obligated to revert to S1 in t1, since the stable section S3 spans communication events from both S1

and S2.
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Semantics
• Define a call-by-value functional core with threads and 

synchronous channel communication.

• First attempt:

! Grab entire checkpoint of program state.

"  Restore all threads to saved point.

• Core language:
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SYNTAX:

P ::= P‖P | t[e]
δ

e ::= x | l | λ x.e
| mkCh() | send(e, e) | recv(e) | spawn(e)
| stable(e) | stable(e) | stabilize

EVALUATION CONTEXTS:

E ::= • | E (e) | v(E ) |

send(E , e) | send(l,E ) |

recv(E ) | stable(E ) | stable(E )

E t,P

δ
[e] ::= P‖t[E [e]]

δ

e → e′

E t,P

δ
[e], ∆

LR
=⇒ E t,P

δ
[e′], ∆

PROGRAM STATES:

P ∈ Process
t ∈ Tid
x ∈ Var
l ∈ Channel
δ ∈ StableId
v ∈ Val = unit | λ x.e | l

α, β ∈ Op = {LR, SP,COMM,SS,ST,ES}
Λ ∈ StableState= Process × StableMap

∆ ∈ StableMap = StableId
fin
→ StableState

LOCAL EVALUATION RULES:

λ x.e(v) → e[v/x]

mkCh() → l, l fresh

GLOBAL EVALUATION RULES:

t′fresh

E t,P

δ
[spawn(e)], ∆

SP
=⇒ P‖t[E [unit]]

δ
‖t′[e]φ, ∆

t′fresh
P = P ′‖t[E [send(l, v)]]

δ
‖t′[E ′[recv(l)]]

δ′

P, ∆
COMM
=⇒ P ′‖t[E [unit]]

δ
‖t′[E ′[v]]

δ′
, ∆

∀δ ∈ Dom(∆), δ′ ≥ δ
∆′ = ∆[δ′ (→ (E t,P

δ
[stable(λ x.e)(v)], ∆)]

Λ = ∆′(δmin), δmin ≤ δ ∀δ ∈ Dom(∆′)

E t,P

δ
[stable(λ x.e)(v)], ∆

SS
=⇒ E t,P

δ.δ
[stable(e[v/x])], ∆[δ′ (→ Λ]

E t,P

δ.δ
[stable(v)], ∆

ES
=⇒ E t,P

δ
[v], ∆ − {δ}

∆(δ) = (P ′, ∆′)

E t,P

δ.δ
[stabilize], ∆

ST
=⇒ P ′, ∆′

Figure 6. A core call-by-value language for stabilizers.

context of stable section δ; since stable sections can be nested,
the notation generalizes to sequences of stable section identifiers
with sequence order reflecting nesting relationships. Our semantics
is defined up to congruence of threads (P‖P′ ≡ P′‖P). We write
P, {t[e]} to denote the set of threads that do not include a thread
with identifier t, and P ⊕ {t[e]} to denote the set of threads that
contain a thread executing expression e with identifier t.
We use evaluation contexts to specify order of evaluation within

a thread, and to prevent premature evaluation of the expression
encapsulated within a spawn expression. We define a thread context
E t,P

δ
[e] to denote an expression e available for execution by thread

t ∈ P within context E; the sequence δ indicates the ordered
sequence of nested stable sections within which the expression
evaluates.
Local reductions within a thread are specified by an auxiliary

relation, e → e′ that evaluates expression e within some thread
to a new expression e′. The local evaluation rules are standard:
holes in evaluation contexts can be replaced by the value of the
expression substituted for the hole, function application substitutes
the value of the actual parameter for the formal in the function body,
and channel creation results in the creation of a new location that
acts as a container for message transmission and receipt.
Program evaluation is specified by a global reduction relation,

P, ∆,
α

=⇒ P ′, ∆′, that maps a program state to a new program
state. A program state consists of a collection of evaluating threads
(P ) and a stable map (∆) that defines a finite function associating
stable section identifiers to states. We tag each evaluation step with

an action that defines the effects induced by evaluating the expres-

sion. We write
α

=⇒
∗

to denote the reflexive, transitive closure of
this relation. The actions of interest are those that involve commu-
nication events, or manipulate stable sections. We use labels LR to
denote local reduction actions, SP to denote thread creation, COMM
to denote thread communication, SS to indicate the start of a stable
section, ST to indicate a stabilize operation, and ES to denote the
exit from a stable section.
There are five global evaluation rules. The first describes

changes to the global state when a thread to evaluate expression
e is created; the new thread evaluates e in a context without any
stable identifier. The second describes how a communication event
synchronously pairs a sender attempting to transmit a value along a
specific channel in one thread with a receiver waiting on the same
channel in another thread.
The remaining three, and most interesting, global evaluation

rules are ones involving stable sections. When a stable section is
newly entered, a new stable section identifier is generated; these
identifiers are related under a total order that allows the semantics
to express properties about lifetimes and scopes of such sections.
The newly created identifier is mapped to the current global state
and this mapping is recorded in the stable map. This state represents
a possible checkpoint. The actual checkpoint for this identifier is
computed as the state in the stable map that is mapped by the
least stable identifier. This identifier represents the oldest active
checkpointed state. This state is either the state just checkpointed,
in the case when the stable map is empty, or represents some
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SYNTAX:

P ::= P‖P | t[e]
δ

e ::= x | l | λ x.e
| mkCh() | send(e, e) | recv(e) | spawn(e)
| stable(e) | stable(e) | stabilize

EVALUATION CONTEXTS:

E ::= • | E (e) | v(E ) |

send(E , e) | send(l,E ) |

recv(E ) | stable(E ) | stable(E )

E t,P

δ
[e] ::= P‖t[E [e]]

δ

e → e′

E t,P

δ
[e], ∆

LR
=⇒ E t,P

δ
[e′], ∆

PROGRAM STATES:

P ∈ Process
t ∈ Tid
x ∈ Var
l ∈ Channel
δ ∈ StableId
v ∈ Val = unit | λ x.e | l

α, β ∈ Op = {LR, SP,COMM,SS,ST,ES}
Λ ∈ StableState= Process × StableMap

∆ ∈ StableMap = StableId
fin
→ StableState

LOCAL EVALUATION RULES:

λ x.e(v) → e[v/x]

mkCh() → l, l fresh

GLOBAL EVALUATION RULES:

t′fresh

E t,P

δ
[spawn(e)], ∆

SP
=⇒ P‖t[E [unit]]

δ
‖t′[e]φ, ∆

t′fresh
P = P ′‖t[E [send(l, v)]]

δ
‖t′[E ′[recv(l)]]

δ′

P, ∆
COMM
=⇒ P ′‖t[E [unit]]

δ
‖t′[E ′[v]]

δ′
, ∆

∀δ ∈ Dom(∆), δ′ ≥ δ
∆′ = ∆[δ′ (→ (E t,P

δ
[stable(λ x.e)(v)], ∆)]

Λ = ∆′(δmin), δmin ≤ δ ∀δ ∈ Dom(∆′)

E t,P

δ
[stable(λ x.e)(v)], ∆

SS
=⇒ E t,P

δ.δ
[stable(e[v/x])], ∆[δ′ (→ Λ]

E t,P

δ.δ
[stable(v)], ∆

ES
=⇒ E t,P

δ
[v], ∆ − {δ}

∆(δ) = (P ′, ∆′)

E t,P

δ.δ
[stabilize], ∆

ST
=⇒ P ′, ∆′

Figure 6. A core call-by-value language for stabilizers.

context of stable section δ; since stable sections can be nested,
the notation generalizes to sequences of stable section identifiers
with sequence order reflecting nesting relationships. Our semantics
is defined up to congruence of threads (P‖P′ ≡ P′‖P). We write
P, {t[e]} to denote the set of threads that do not include a thread
with identifier t, and P ⊕ {t[e]} to denote the set of threads that
contain a thread executing expression e with identifier t.
We use evaluation contexts to specify order of evaluation within

a thread, and to prevent premature evaluation of the expression
encapsulated within a spawn expression. We define a thread context
E t,P

δ
[e] to denote an expression e available for execution by thread

t ∈ P within context E; the sequence δ indicates the ordered
sequence of nested stable sections within which the expression
evaluates.
Local reductions within a thread are specified by an auxiliary

relation, e → e′ that evaluates expression e within some thread
to a new expression e′. The local evaluation rules are standard:
holes in evaluation contexts can be replaced by the value of the
expression substituted for the hole, function application substitutes
the value of the actual parameter for the formal in the function body,
and channel creation results in the creation of a new location that
acts as a container for message transmission and receipt.
Program evaluation is specified by a global reduction relation,

P, ∆,
α

=⇒ P ′, ∆′, that maps a program state to a new program
state. A program state consists of a collection of evaluating threads
(P ) and a stable map (∆) that defines a finite function associating
stable section identifiers to states. We tag each evaluation step with

an action that defines the effects induced by evaluating the expres-

sion. We write
α

=⇒
∗

to denote the reflexive, transitive closure of
this relation. The actions of interest are those that involve commu-
nication events, or manipulate stable sections. We use labels LR to
denote local reduction actions, SP to denote thread creation, COMM
to denote thread communication, SS to indicate the start of a stable
section, ST to indicate a stabilize operation, and ES to denote the
exit from a stable section.
There are five global evaluation rules. The first describes

changes to the global state when a thread to evaluate expression
e is created; the new thread evaluates e in a context without any
stable identifier. The second describes how a communication event
synchronously pairs a sender attempting to transmit a value along a
specific channel in one thread with a receiver waiting on the same
channel in another thread.
The remaining three, and most interesting, global evaluation

rules are ones involving stable sections. When a stable section is
newly entered, a new stable section identifier is generated; these
identifiers are related under a total order that allows the semantics
to express properties about lifetimes and scopes of such sections.
The newly created identifier is mapped to the current global state
and this mapping is recorded in the stable map. This state represents
a possible checkpoint. The actual checkpoint for this identifier is
computed as the state in the stable map that is mapped by the
least stable identifier. This identifier represents the oldest active
checkpointed state. This state is either the state just checkpointed,
in the case when the stable map is empty, or represents some

5 2006/4/7

SYNTAX:

P ::= P‖P | t[e]
δ

e ::= x | l | λ x.e
| mkCh() | send(e, e) | recv(e) | spawn(e)
| stable(e) | stable(e) | stabilize

EVALUATION CONTEXTS:

E ::= • | E (e) | v(E ) |

send(E , e) | send(l,E ) |

recv(E ) | stable(E ) | stable(E )

E t,P

δ
[e] ::= P‖t[E [e]]

δ

e → e′

E t,P
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[e], ∆
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[e′], ∆

PROGRAM STATES:

P ∈ Process
t ∈ Tid
x ∈ Var
l ∈ Channel
δ ∈ StableId
v ∈ Val = unit | λ x.e | l

α, β ∈ Op = {LR, SP,COMM,SS,ST,ES}
Λ ∈ StableState= Process × StableMap

∆ ∈ StableMap = StableId
fin
→ StableState

LOCAL EVALUATION RULES:

λ x.e(v) → e[v/x]

mkCh() → l, l fresh

GLOBAL EVALUATION RULES:

t′fresh

E t,P

δ
[spawn(e)], ∆

SP
=⇒ P‖t[E [unit]]
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‖t′[e]φ, ∆

t′fresh
P = P ′‖t[E [send(l, v)]]
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δ
‖t′[E ′[v]]
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∀δ ∈ Dom(∆), δ′ ≥ δ
∆′ = ∆[δ′ (→ (E t,P
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context of stable section δ; since stable sections can be nested,
the notation generalizes to sequences of stable section identifiers
with sequence order reflecting nesting relationships. Our semantics
is defined up to congruence of threads (P‖P′ ≡ P′‖P). We write
P, {t[e]} to denote the set of threads that do not include a thread
with identifier t, and P ⊕ {t[e]} to denote the set of threads that
contain a thread executing expression e with identifier t.
We use evaluation contexts to specify order of evaluation within

a thread, and to prevent premature evaluation of the expression
encapsulated within a spawn expression. We define a thread context
E t,P

δ
[e] to denote an expression e available for execution by thread

t ∈ P within context E; the sequence δ indicates the ordered
sequence of nested stable sections within which the expression
evaluates.
Local reductions within a thread are specified by an auxiliary

relation, e → e′ that evaluates expression e within some thread
to a new expression e′. The local evaluation rules are standard:
holes in evaluation contexts can be replaced by the value of the
expression substituted for the hole, function application substitutes
the value of the actual parameter for the formal in the function body,
and channel creation results in the creation of a new location that
acts as a container for message transmission and receipt.
Program evaluation is specified by a global reduction relation,

P, ∆,
α

=⇒ P ′, ∆′, that maps a program state to a new program
state. A program state consists of a collection of evaluating threads
(P ) and a stable map (∆) that defines a finite function associating
stable section identifiers to states. We tag each evaluation step with

an action that defines the effects induced by evaluating the expres-

sion. We write
α

=⇒
∗

to denote the reflexive, transitive closure of
this relation. The actions of interest are those that involve commu-
nication events, or manipulate stable sections. We use labels LR to
denote local reduction actions, SP to denote thread creation, COMM
to denote thread communication, SS to indicate the start of a stable
section, ST to indicate a stabilize operation, and ES to denote the
exit from a stable section.
There are five global evaluation rules. The first describes

changes to the global state when a thread to evaluate expression
e is created; the new thread evaluates e in a context without any
stable identifier. The second describes how a communication event
synchronously pairs a sender attempting to transmit a value along a
specific channel in one thread with a receiver waiting on the same
channel in another thread.
The remaining three, and most interesting, global evaluation

rules are ones involving stable sections. When a stable section is
newly entered, a new stable section identifier is generated; these
identifiers are related under a total order that allows the semantics
to express properties about lifetimes and scopes of such sections.
The newly created identifier is mapped to the current global state
and this mapping is recorded in the stable map. This state represents
a possible checkpoint. The actual checkpoint for this identifier is
computed as the state in the stable map that is mapped by the
least stable identifier. This identifier represents the oldest active
checkpointed state. This state is either the state just checkpointed,
in the case when the stable map is empty, or represents some
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Global Checkpoint

125

maintain ordering of 
stable sections

find least common ancestor

associate global checkpoint with 
stable section

restore to checkpoint saved for 
current stable section

SYNTAX:

P ::= P‖P | t[e]
δ

e ::= x | l | λ x.e
| mkCh() | send(e, e) | recv(e) | spawn(e)
| stable(e) | stable(e) | stabilize

EVALUATION CONTEXTS:

E ::= • | E (e) | v(E ) |

send(E , e) | send(l,E ) |

recv(E ) | stable(E ) | stable(E )

E t,P

δ
[e] ::= P‖t[E [e]]

δ

e → e′

E t,P

δ
[e], ∆

LR
=⇒ E t,P

δ
[e′], ∆

PROGRAM STATES:

P ∈ Process
t ∈ Tid
x ∈ Var
l ∈ Channel
δ ∈ StableId
v ∈ Val = unit | λ x.e | l

α, β ∈ Op = {LR, SP,COMM,SS,ST,ES}
Λ ∈ StableState= Process × StableMap

∆ ∈ StableMap = StableId
fin
→ StableState

LOCAL EVALUATION RULES:

λ x.e(v) → e[v/x]

mkCh() → l, l fresh

GLOBAL EVALUATION RULES:

t′fresh

E t,P

δ
[spawn(e)], ∆

SP
=⇒ P‖t[E [unit]]

δ
‖t′[e]φ, ∆

t′fresh
P = P ′‖t[E [send(l, v)]]

δ
‖t′[E ′[recv(l)]]

δ′

P, ∆
COMM
=⇒ P ′‖t[E [unit]]

δ
‖t′[E ′[v]]

δ′
, ∆

∀δ ∈ Dom(∆), δ′ ≥ δ
∆′ = ∆[δ′ (→ (E t,P

δ
[stable(λ x.e)(v)], ∆)]

Λ = ∆′(δmin), δmin ≤ δ ∀δ ∈ Dom(∆′)

E t,P

δ
[stable(λ x.e)(v)], ∆

SS
=⇒ E t,P

δ.δ
[stable(e[v/x])], ∆[δ′ (→ Λ]

E t,P

δ.δ
[stable(v)], ∆

ES
=⇒ E t,P

δ
[v], ∆ − {δ}

∆(δ) = (P ′, ∆′)

E t,P

δ.δ
[stabilize], ∆

ST
=⇒ P ′, ∆′

Figure 6. A core call-by-value language for stabilizers.

context of stable section δ; since stable sections can be nested,
the notation generalizes to sequences of stable section identifiers
with sequence order reflecting nesting relationships. Our semantics
is defined up to congruence of threads (P‖P′ ≡ P′‖P). We write
P, {t[e]} to denote the set of threads that do not include a thread
with identifier t, and P ⊕ {t[e]} to denote the set of threads that
contain a thread executing expression e with identifier t.
We use evaluation contexts to specify order of evaluation within

a thread, and to prevent premature evaluation of the expression
encapsulated within a spawn expression. We define a thread context
E t,P

δ
[e] to denote an expression e available for execution by thread

t ∈ P within context E; the sequence δ indicates the ordered
sequence of nested stable sections within which the expression
evaluates.
Local reductions within a thread are specified by an auxiliary

relation, e → e′ that evaluates expression e within some thread
to a new expression e′. The local evaluation rules are standard:
holes in evaluation contexts can be replaced by the value of the
expression substituted for the hole, function application substitutes
the value of the actual parameter for the formal in the function body,
and channel creation results in the creation of a new location that
acts as a container for message transmission and receipt.
Program evaluation is specified by a global reduction relation,

P, ∆,
α

=⇒ P ′, ∆′, that maps a program state to a new program
state. A program state consists of a collection of evaluating threads
(P ) and a stable map (∆) that defines a finite function associating
stable section identifiers to states. We tag each evaluation step with

an action that defines the effects induced by evaluating the expres-

sion. We write
α

=⇒
∗

to denote the reflexive, transitive closure of
this relation. The actions of interest are those that involve commu-
nication events, or manipulate stable sections. We use labels LR to
denote local reduction actions, SP to denote thread creation, COMM
to denote thread communication, SS to indicate the start of a stable
section, ST to indicate a stabilize operation, and ES to denote the
exit from a stable section.
There are five global evaluation rules. The first describes

changes to the global state when a thread to evaluate expression
e is created; the new thread evaluates e in a context without any
stable identifier. The second describes how a communication event
synchronously pairs a sender attempting to transmit a value along a
specific channel in one thread with a receiver waiting on the same
channel in another thread.
The remaining three, and most interesting, global evaluation

rules are ones involving stable sections. When a stable section is
newly entered, a new stable section identifier is generated; these
identifiers are related under a total order that allows the semantics
to express properties about lifetimes and scopes of such sections.
The newly created identifier is mapped to the current global state
and this mapping is recorded in the stable map. This state represents
a possible checkpoint. The actual checkpoint for this identifier is
computed as the state in the stable map that is mapped by the
least stable identifier. This identifier represents the oldest active
checkpointed state. This state is either the state just checkpointed,
in the case when the stable map is empty, or represents some
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Global Checkpoint
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Thread 1  
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Thread 2

stable A: #2

stable B:#3#4

stable C: #5 #6

exit B
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Can we do better?

• Global checkpoints simple to describe, but ...

! hard to implement: requires global coordination to capture 
state

! overly conservative: restored checkpoint may revert 
computation unnecessarily

! does not take communication among threads into 
consideration

• Incremental construction:

! restore thread state based on the actions witnessed by 
threads

! build a dependency graph that tracks communication events 
and establishes a temporal ordering on thread-local actions

! use graph reachability on this graph to determine thread-
local checkpoints.
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Incremental Construction
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Incremental Checkpoint
Thread 1  

stable A: #2

Thread 2
#0

spawn

#1 #0 #1

#2

receive: #4send:#3
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#4
stable B: #5
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#6send: 

receive: #7
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Incremental Construction
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Incremental Checkpoint
Thread 1  

stable A: #2

Thread 2
#0

spawn

#1

#2

receive: #4send:#3

#3

#4

#0 #1

stable B: #5
#5

#6send: 

receive: #7
#7 #6

stabilize

#4

Garbage collection
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Characteristics
• Properties:

!Safety: A stabilize action never yields an infeasible state.
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CharacteristicsCharacteristics
• Properties:

!Correspondence: Incremental checkpointing is more efficient 
than global checkpointing.

stabilize stabilize
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Overheads
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Threads Channels Events
Shared 
Writes

Shared
Reads

Graph
Size (MB)

Runtime
Overheads (%)

Triangle 205 79 187  88 88 .19 .59

N-Body 240 99 224 224 273 .29 .81

Pretty 801 340 950 602 840 .74 6.23

Swerve 10532 231 902 9339 80293 5.43 6.60

• Implemented in MLton

! Insertion of read and write barriers

! Compensations

! hooks in the CML library to update the dependency graph

• Overheads to maintain checkpoints small, roughly 6% 

! eXene:  a windowing toolkit 

! Swerve: a web server
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Restoration Costs
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1130 85 42 470 5

2193 147 64 928 19

3231 207 84 1376 53

4251 256 93 1792 94

5027 296 95 2194 132

Requests Graph

Size

Channels

Num Cleared

Threads

Affected

Runtime
(milli-seconds)

20

40

60

80

100

Swerve web server

Stabilization performed after a varying number of 
concurrent requests.
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Instrumented Recovery
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Benchmark Channels Threads Runtime

Num Cleared Total Affected
milli-

seconds

Swerve 38 4 896 8 3

eXene 158 27 1023 236 1.9

Swerve: induce a timeout every 10 requests.
eXene: induce packet loss every 10 packets.
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Open Questions
• Long-lived and first-class transactions

! mixing implementation strategies safely and profitably

!Consistency properties

• Open nesting

! Compensations

• Atomic data sets vs. atomic code regions

• STM for multicore: 

!making non-thread-safe code thread-safe

• Safe futures of arbitrary size and scope

!Interaction with threads

• Stabilizers

! self-adjusting data structures (memoization)

! program slicing
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Conclusions

• Software transactional implementations are necessarily complex.

! Address issues of versioning, rollback, and global consistency checks

! Efficient implementations possible, but non-trivial 

• Can extract features of these implementations to address other interesting 
concurrency problems:

! safe speculative execution via futures

! safe checkpointing

• Much to be gained by exploring non-lock centric concurrency abstractions

• See http://www.cs.purdue.edu/s3
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