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Why not Lock-based Synchronization?

Challenges of programming with mutual exclusion locks:

  avoiding data races
  choosing lock granularity
  enforcing lock acquisition order
  dealing with modularity and abstraction

& in hard real-time systems:

  bounding blocking time
  avoiding priority inversion
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Preemptible Atomics

Transactional concurrency control construct

Designed for commodity uniprocessor embedded systems

Alternative to locks with, e.g., priority inheritance (PIP)

Atomicity

All statements will execute, or none.

Strong Isolation

High priority threads (HPT) preempt Atomics in LPTs

HPT execute without observing changes performed by LPT
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Example with Locks
    class ThreadPoolLane { 
1     synchronized leaderExec(Request task) { 
2         if (borrowThreadAndExec(task)) 
3             synchronized(rQueue) { 
4                rQueue.enqueue(task); 
5                numBuffered++; 
          } 
          ... 
       } 
    class Queue  { 
7      final Object sObject = new Object(); 
8      void enqueue(Object data)  { 
9          QueueNode node=getNode(); 
10         node.value=data; 
11         synchronized(sObject) { 
12           // enqueue the object 
           }
       }

from the UCI Zen  real-time ORB
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Example with Atomics
    class ThreadPoolLane { 
1     @Atomic leaderExec(final Request task) { 
2         if (borrowThreadAndExec(task)) 
3
4                rQueue.enqueue(task); 
5                numBuffered++; 
          } 
          ... 
       }
 
    class Queue  { 

8      @Atomic void enqueue(final Object data)  { 
9          QueueNode node=getNode(); 
10         node.value=data; 

12           // enqueue the object
       }
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Related Work
Bershad, Redell, Ellis. 
Fast Mutual Exclusion for Uniprocessors,   ASPLOS, 1992.
     -- no undo

Anderson, Ramamurthy, Jeffay, 
Real-time Computing with Lock-Free Shared Objects,   RTSS, 1995.
     -- non-blocking algorithms, no language support

Herlihy+, Harris+, Welc+, 
Software Transactional Memory, 2003--2005.
     -- weak isolation

Ringenburg, Grossman, 
AtomCaml First-Class Atomicity with Rollback, ICFP, 2005.
     -- no real-time guarantees, simpler environment
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Semantics

B logically atomic

B can be preempted by a higher-priority thread

If preempted, B’s updates not be observed by HPT

Nesting coalesced in a single atomic.

@Atomic  method(...) { B }
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Schedulability

Assuming tasks scheduled with a rate monotonic scheme:

however, since PARs are designed for a real-time environment, we do not consider
awareness of the memory constraints to be a drawback. Our implementation leaves
room for the log size to be determined by the programmer.

Real-time threads execute within memory regions that are not garbage collected.
The size of allocation regions is fixed. If an object is allocated within a PAR, and the
PAR is aborted, the memory will be leaked. If a transaction is repeatedly aborted, it is
conceivable that the region may run out of memory entirely. A solution to this problem
is to undo the effect of allocation. All memory allocated within a transaction can be
returned when the transaction exits. What is needed here is for the implementation of
start to record the value of the allocation pointers in all regions that are accessible to
the currently executing thread. When a thread enters a new region while a transaction
is active, the allocation pointer of that region is also recorded. The abort operation
resets the allocation pointers to their previous value. This procedure does not inter-
act with the partially committed transactions mentioned above, because classes and
interned string objects are allocated in immortal memory.

Ordinary Java threads run in the garbage collected heap. If a similar leak occurs
in such a thread, we can rely on the garbage collector to reclaim the lost memory. For
these threads, the GC may be triggered within the scope of a PAR. If this is the case,
the transaction is aborted before the GC is run.

6 Response Time Analysis

We outline a response time analysis for PARs for a priority preemptive scheduler. As-
sume a set of n periodic tasks scheduled according to the rate monotonic scheme [10].
Each task τi performs a job Ji. A job has period pi such that ∀i < n, pi < pi+1 and
a worst case execution time Ci. There is one critical section per job, and the critical
section always ends before the job finishes. For each job,Wi is the maximal execution
time spent in a critical section and Ui is the maximal time needed to perform an undo.
Ri is the worst case response time of a job Ji. Tasks with higher priority π than τi are
hp(i) = {j | πj > πi}, and ones with lower priority are lp(i) = {j | πj < πi}.

Given that a task τi suffers interference from higher priority tasks and blocking
from lower priority tasks, the response time is computed as Ri = Ci + Bi + Ii, where
Ii is the maximum interference time and Bi the maximum blocking factor that Ji can
experience [11]. The schedulability theorem is the following.

Theorem 1 A set of n periodic tasks τi, 0 ≤ i < n is schedulable in RM, iff

∀i ≤ n,∃Ri : Ri ≤ pi

Ri = Ci + max
j∈lp(i)

Uj +
∑

j∈hp(i)

⌈
Ri

pj

⌉
(Cj + Ui + Wi)

The worst case interference of Ji with higher priority tasks, plus extra execution
time needed to reexecute some critical sections are computed as follows. Given that⌈

Ri
pj

⌉
is the maximal number of releases of a higher priority task τj that can interfere

with a task τi, we can compute the number of releases of τj in Ji as
∑

j∈hp(i)

⌈
Ri
pj

⌉
.

The most pessimistic approximation of how many rollbacks can occur is to assume
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Atomic vs. PIP | PCE
Priority Inheritance Protocol:

A HPT may block for multiple LPT
Deadlock and data races
Non-real-time LPTs may cause unbounded blocking
programmer error, but an easy one to make.

Priority Ceiling Protocol:

HPTs may still have to wait for completion of a LPT
Hard to assign ceilings with libraries, changing thread priorities

Preemptible Atomic Region:

HPTs only block for higher-level tasks.
At most one abort per context switch.
no dead-locks & no live-locks 
                         if schedulable
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Refactoring Legacy Code
Locks ⇒ Atomics  =  ~straightforward

All uses of a particular lock must be made into atomic

Consider:
public class Vector extends AbstractList ... {

   @Atomic public void insertElementAt(Object o ... 

 @Atomic public int size() { ...

N.B. requires preemptible & logged System.arraycopy
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Locks and Atomics
Atomic must coexist with PIP-locks

Lock long lived, write-intensive methods

HPT in an atomic needs to acquire lock held by a LPT:

undo ⇒ boost and execute LPT ⇒ reexecute HPT

Wait / Notify can be used when needed
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IMPLEMENTATION
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Implementation
A method  “@Atomic f(){ x++; B(); }” is translated to:

 while (true) {
   try{  
     try {  Transaction.start();

    log(x);
    x++

       B_T();
     } finally { Transaction.commit(); break; }
  } catch(Retry _) { }        // undo performed by aborting thread
}

finally implemented by catching all subclasses of Throwable

Retry not a subclass of Throwable,not get caught by finally
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Scaling-Up
I/O -  How do you undo a write to the screen?  You don’t. Could support 
buffering of output/replay of input or using compensations 

Garbage collection - Addresses stored in log need to be updated.  GC must 
be preemptible and cannot preempt RT task. Now - Rollback the Atomic if a GC 
is triggered.

Dynamic class loading - Could generate transactional versions of methods 
on the fly.  Now - RT does not require dynamic class loading.

Reflection - Methods invoked reflectively from an Atomic must be 
transactional.  Simple check in the implementation of the reflection package. 

Regions - Memory allocated within a region must be returned on abort to 
avoid leaks.

Asynchronous Transfer of control - Defer until interruptible, then abort.
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Optimizations
Turn an atomic into a nop

   @Atomic m()  =>  @Uninterruptible m() 

Safe iff  execution time is bounded

Heuristic:  short, non-looping methods

(n.b. not safe for lock-based sync)



(c) Jan Vitek 2006

Extensions
Prescient commits

exception throwing code does not affect or rely on user 
allocated heap data

Open nesting

string interning requires that strings not be undone as the VM 
kernel has pointer on char array

Exposed regions

operations are immediately made visible, aborts are deferred,

e.g. for debugging
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Evaluation
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HTP response times

2 threads, performing mix of get/put ops into a HashMap

300Mhz PPC, 256MB memory, Embedded Planet Linux 

Ovm RTSJ VM, AOT, priority preemptive, PIP locks

7 Experimental Validation

We used a number of benchmark applications to evaluate
the usefulness and performance of our implementation of
PARs. These include a microbenchmark (Section. 7.1), a
110,000 line real-time avionics application developed by
the Boeing company (Section. 7.2), and a real-time CORBA
server (Section. 7.3). All measurements were obtained with
Ovm running on a 300Mhz Embedded Planet PowerPC
8260 board with 256MB SDRAM, 32 MB Flash, and Em-
bedded Linux.

7.1 Microbenchmark

We evaluated the response times of high-priority threads
with a program that executes a low and a high priority thread
which access the same data structure, a HashMap from the
java.util package. The low priority thread continually
executes critical sections that perform a fixed number of
read, insert and delete operations on the HashMap. Period-
ically, the high-priority thread executes a similar number of
operations. In one configuration, the accesses are protected
by the default RTSJ priority inheritance lock implementa-
tion. In the other, the accesses are protected by a PAR. For
a PAR-based HashMap, this produced a high likelihood of
aborts. In fact, an abort occurred every time a high-priority
thread is scheduled (once per frame).
Figure 4 shows the results of the test. The reader will

note two points. First, the latency for the PAR-based
HashMap was lower; this indicates that undoing the low
priority thread’s writes was faster than context switching
to the other thread, finishing its critical section, and con-
text switching back. Second, the response time of the PAR-
based HashMap was more predictable; this is because it was
not necessary to execute a indeterminately long critical sec-
tion before executing the high-priority thread’s PAR.

7.2 A Real-time Avionics Application

PRISMj is a Real-time Java application developed in a col-
laboration between the Boeing Company and Purdue Uni-
versity. PRISMj is designed to run on a ScanEagle Un-
manned Aerial Vehicle (UAV), a low-cost, high-endurance
UAV developed by Boeing and the Insitu Group. PRISMj
controls components of the UAV dedicated to the Global
Positioning System, the airframe, tactical steering, and nav-
igation steering. It runs over 100 threads in three rate groups
(20Hz, 5Hz, and 1Hz). These threads perform different
tasks. There is a single infrastructure thread which acts as
a cyclic executive and pushes events to components in the
physical device layer. Based on those events, 5Hz and 20Hz
threads implement steering and route computation. The 1
Hz thread simulates the pilot control component and pe-
riodically switches all components in the system between
tactical a navigation steering. The source code for PRISMj
represents approximately 110 KLoc; this number does not
include libraries.
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Figure 4. Response time of a high-priority thread in

the HashMap Microbenchmark. The x-axis indicates the

number of periods that have elapsed (frames), and the y-axis

indicates the response time of the high-priority thread (in

microseconds). Lower is better. The graph compares RTSJ

locks with PARs, and indicates that using PARs provides

consistently better performance.

The experiment we ran measured the response time of
the special configuration of the PRISMj components that
was instrumented to produce benchmarking data. In our
setup, we refactored the program to use preemptible atomic
regions. The refactoring involved turning 157 synchronized
sections into atomic regions. We measured the response
time of jobs in the three rate groups for the Boeing 1xwork-
load, which is a simulation of the workload on the UAV. Fig-
ure 5 shows the worst response time for each kind of thread.
Tasks are modal and the workload varies every 20 frames;
the change in workload is clearly visible on the graph. Out-
liers in the high priority task were consistent across versions
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locks with PARs, and indicates that using PARs provides
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the special configuration of the PRISMj components that
was instrumented to produce benchmarking data. In our
setup, we refactored the program to use preemptible atomic
regions. The refactoring involved turning 157 synchronized
sections into atomic regions. We measured the response
time of jobs in the three rate groups for the Boeing 1xwork-
load, which is a simulation of the workload on the UAV. Fig-
ure 5 shows the worst response time for each kind of thread.
Tasks are modal and the workload varies every 20 frames;
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thread to process the frame. Lower is better.
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Figure 6. RT-Zen Results. Comparing the response time for a game server running on top of a Real-time Java CORBA im-

plementation. There are two thread groups (low and high) handling 300 requests each. The y-axis indicates the time taken by the

application code to process the request. Lower is better.

of the VM and remain within acceptable ranges.
Figure 5 shows that the response times of the high and

medium priority threads were consistently better with pre-
emptible atomic regions. There are few runtime aborts in
this run. One explanation for the improved performance is
that the cost of implementing priority inheritance is high
(and that overhead has to paid frequently as Java programs
acquire locks often). The low priority thread was mostly un-
affected; we assume this is because it does very little work,
making it less likely to be preempted.

7.3 Real-time CORBA

RT-Zen is a freely available, open-source, middleware com-
ponent developed at UC Irvine [12] and written using the

Real-time Specification for Java. For this experiment, we
use an application which implements a server for a dis-
tributed multi-player action game. The application allows
players to register with the server, update location informa-
tion, and find the position of all of the other players in the
game. RT-Zen has a pool of worker threads that it uses to
serve client requests. Each worker thread is assigned either
a high or low priority. The code of the RT-Zen ORB, as well
as the demonstration application, were refactored to employ
atomic regions in the place of synchronization. In total, 30
synchronized blocks were turned into preemptible methods.

Figure 6 shows the response time of the two categories of
threads for the default version of Zen and our PAR version.
We measure the time spent in the user code implementing
the game server. Five client machines perform 300 invoca-

9

UCI’s RT-ZEN 
Real-time CORBA ORB written in RTSJ,   179,000 LOC,  

~600 synchronized stmts mechanically translated to atomics

30 HPT/70 LPT. Measure time to process a request

AMD Athlon XP1900+, 1.6GHz, 1GB RTLinux
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PRiSMj
Avionics applications from the Boeing Company

Benchmark scenarios w. different workloads / components

Oscillating modal behavior

~100 periodic threads in three main rate groups: 1, 5, 20Hz

953 Java classes, 6616 methods.

Deployed on a ScanEagle
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PRiSMj: 1X

High responsiveness, small workloads

300Mhz PPC, 256MB memory, Embedded Planet Linux 

Ovm RTSJ VM, AOT, priority preemptive, PIP locks
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PRiSMj: 100X

Large workloads

300Mhz PPC, 256MB memory, Embedded Planet Linux 

Ovm RTSJ VM, AOT, priority preemptive, PIP locks
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Conclusions
Easier to write reusable correct concurrent real-time code

Improve responsiveness with little impact on throughput

Not a replacement for locks, another tool in the box

source code at http://ovmj.org

[Manson+. Preemptible Atomic Regions for Real-time Java. RTSS’05]

[Baker+. A Real-time Java Virtual Machine for Avionics. RTAS’06]

http://ovmj.org
http://ovmj.org

