Process algebras, bisimulation
(and logics)

Nadia Busi
University of Bologna

Semantics of sequential programs:
function from the input state to the
output state

Semantics of concurrent programs:

No general agreement
A concurrent program is not a function

Consider, e.g., the following programs:
X:=2
X:=1: Xi= X+1

They compute the same function, but-...
X:=2
(X :=1; X:= X+1)

They do not compute the same function

Viewing concurrent programs as functions
gives us a hotion of equivalence that is not a
congruence (and produces a hon-compositional
semantics).

A concurrent program may not terminate (e.g.
operating systems, controllers of a railway

system...)

In sequential languages, nonterminating programs
useless (wrong)

The behaviour of concurrent programs can be

nondeterministic
(X=1, Xi=X+1) | X:=2

Concurrent system interact with the
environment during the computation

Reactive system: a system that computes by
reacting to stimuli from the environment

Inherently parallel systems

Key role in their behaviour played by communication
with the environment

A sequential program can be viewed as a
reactive system that interacts only at the
beginning and at the end of the computation

The behaviour of concurrent programs
should tell us when and how they can
inferact with the environment

The behaviour of concurrent programs

is very hard to analyse and understand
Formal definition of behaviour

Process algebra

Labelled transition systems
Bisimulation

Structural operational semantics
(Hennessy-Milner) logics

Process = system with a specified behaviour

Specification languages for reactive systems

Algebra: collection of (basic processes and)

operations for building new processes from existing
ones

Key issue: communication/interaction among
processes

Information exchange between the producer
of information (sender) and the consumer
(receiver)

Communication medium
Buffers, shared variables, tuple spaces, ...

Idea: no need to distinguish between active
components (senders/receivers) and passive
ones (communication media)

Everything is a process

Interaction via message passing, modeled as
synchronized communication

CCS [Milner '80s],

CSP [Hoare '80s],

ACP [BergstraKlop '80s],

Pi-calculus [Milner, Parrow, Walker '90s]
Mobile ambients [Cardelli, Gordon 00's]

0 hil
The process that does nothing

a.P action prefix
Perform action a and then behave like P
Clock = tick.Clock

Types of actions:
a: send a signal on channel a

a: receive a signal on channel a
T. silent action

CM = coin.coffee.CM

P+Q choice operator

The process P+Q has the capabilities of both P and
Q

Choosing to perform an action from P will preempt
the further execution of actions from Q (and vice
versa)

CTM = coin.(coffee.CTM + tea.CTM)

Exercise: define a coffee machine that may steal the
money and fail

PIQ parallel composition operator

The process P|Q describes a system where
P and Q may proceed independently and
They may communicate via complementary ports
“A mathematician is a device for turning coffee into theorems”
(P. Erdos)
M = coin.coffee.theorem.M
CM = coin.coffee.CM
M| CM
The channel theorem is used by the mathematician to
communicate with its research environment

Processes M and CM may communicate on channels coffee and
coin, but they can also communicate with other processes (e.g.,
another guy can use the coffee machine CM)

P\a restriction operator
In P\a the scope of channel a is restricted to P
Channel a can only be used for communication within P

Private coffee machine
M = coin.coffee.theorem.M
CM = coin.coffee.CM
(M | CM)\coin\coffee

The channels coin and coffee may be only used for communication
between the mathematician and the coffee machine

The channel theorem is visible to the environment

P[f] relabelling operator
In P[f] the name of each channel a in the domain of f is replaced
by f(a)
Vending machines
CM =—oin.coffee:CM——
ChocM = coin.chocolate.ChocM
VM = coin.item.VM
CM = VM]|coffee/item]
ChocM = VM[chocolate/item]

A process passes through states during an
execution

Processes change their state by performing
actions
Example: mathematician

No difference between processes and states:

By performing an action, a process evolves to
another process, describing what remains to be
executed of the original one

Processes evolve by performing transitions
Example!

M coin >]‘41
M, = coffee.theorem.M,
CMIM——CM, | M,

Binary synchronization: communication
produces an unobservable transition (I.e., a
transition that cannot further synchronize)

Silent (unobservable) action t

CMIM——>CM, | M,

Exercise: labelled transition system
describing the behaviour of CM | M

As silent actions are unobservable, the
following process could be an
appropriate high-level specification of
the behaviour of CM|M:

Spec = theorem.Spec

Notion of "behavioural equivalence”
between processes

Processes represented by vertices of
edge-labelled oriented graphs

A change of process state caused by
performing an action corresponds to
moving along an edge (labelled with the
action name) that goes out of that
state

Labelled transition systems

Definition 4.1 [Labelled Transition Systems] A labelled transition system (LTS)
is a triple [Proc. Act, {-%| a € Act}), where:

e Proc is a set of states, ranged over by s;

o Act is a set of actions, ranged over by a.

o« —C Proc = Proc is a transition relation, for every o = Aol As usua] we
sha]] UEE the more suggestive nntat:nn s — & in]lEU of (5,5") € %, and
WEte & — (read "= refuses a”') 1l 5 - % & for no state &',

Sometimes a state is singled out as
the initial state of the LTS

A vending machine, capable of
dispensing tea or coffee for 1 coin

VM = coin.(chooseTea.tea.VM +
chooseCoffee.coffee. VM)

Exercise: LTS

The step from a CCS process to the LTS
describing its behaviour is taking using the

framework of Structural Operational
Semantics [Plotkin81]

The collection of CCS processes is the set of
states of aLTS

The transitions of such LTS are those that can be
proven to hold by means of a collection of syntax-
driven rules

A = countably infinite collection of
channel names

Act = LU {7}

Formal syntax of CCS

Definition 4.3 The collection P of CCS expressions is given by the following
grammar:

PQ:=K | aP | P | PIQ | Plf] | P\L .
e

where
® A isa process name in A
® ¢ is an action in Act;
e [is an index set;

e f:Act — Actis arelabelling function satisfying the following constraints:

flr) = + and

fla) = fl(a) foreach label a ;

e L is a set of labels.

The behaviour of each process constant
is given by a defining equation

def

K=pP.
Example:

Nl
B’

def
Countery = up.Counter;
def

e

e

'

Counter,, = up.Counter,.; + down.Counter, (n > 0)

Formal semantics of CCS

- P; '*P*
PT;F K& p _ = jel
K= O R E;EJP_"PII

PP (5 PP QL0
PQ5P|Q PIQSP|Q PIQ5P|Q

P3P PP .
P[f’ f"*"pf_f] P\L3S P\ L @ a ¢

CCS can be used to describe both the
implementation of processes and the
specification of their expected behaviour

Behavioural equivalence: two processes, say
SPEC and IMPL, are equivalent if they
describe essentially the same behaviour
(maybe at different levels of abstraction)

Equivalence

Definition 5.1 Let X be a set. A binary relation over X is a subset of X x X, the
set of pairs of elements of X If I is a binary relation over X, we often write x [y
instead of (z,y) € R.

An equivalence relation over X 15 a relation that satisfies the following con-
straints:

e [is reflexive—that is, x R x for each r € X;
e [iis symmetric—that is, r It i implies y i =, for all z,y € X; and

o [iis transitive—thatis, s HRyand y iz implyx K z, forall x,y, 2z € X.

Each process is a correct implementation of
itself (reflexivity)

Support stepwise derivation of
implementations from specifications
(transitivity)

Two behaviourally equivalent processes can be
used interchangeably as part of large process
descriptions without affecting the overall

behaviour (congruence)
P R Q implies C[P] R C[Q]

Behavioural equivalence based on the
observable behaviour of processes (not on

their structure)

|dentify two processes unless there is some
sequences of interactions that an observer may have
with them, leading to different outcomes

Lack of consensus on the appropriate notion

of behavioural equivalence

Large number of proposals
Lattice of behavioural equivalences [vanGlabbeek]

A trace of a process P is a sequence
ay - oy € Act™ (k = 0)

such that there exists a sequence of
transitions

ir I ik k-

P=F-P—=.-—

P and Q are behaviourally equivalent if
Traces(P) = Traces(Q)

Is trace equivalence reasonable for reactive
machines that interact with their
environment?

Example: vending machine

VM = coin.(chooseTea.tea.VM +
chooseCoffee.coffee.VM)

VM’ = coin.chooseTea.tea.VM’ +
coin.chooseCoffee.coffee.VM’

VM and VM' have the same traces

If you want coffee and you hate tea, which
machine would you like to interact with?

U = coin.chooseCoffee.coffee.U

A = {coin, chooseCoffee, coffee, chooseTeq,
tea}

(U |VM)\A performs an infinite computation
consisting of silent moves

(U | VM)\A may deadlock (if the machine
reaches the state where it is only willing to
deliver tea)

Trace equivalent processes may exhibit
different deadlock behaviour when
interacting with other parallel
processes

We reject the law

a. [P+ Q) =alP+aQ .

Completed traces

Exercise 5.2 A completed trace of a process P is a sequence oy - -y © Act”
(& = () such that there exists a sequence of transitions

P:HIELPLE"-‘&JPR—}-P!

for some I, ..., P.. The completed traces of a process may be seen as capturing
its deadlock behaviour, as they are precisely the sequences of actions that may lead
the process into a state from which no further action is possible.

Do the processes (U |[VM)\A and (U [VM')\A
have the same completed traces?

Is it true that if P and Q are two processes
with the same completed traces and L is a set
of labels, then P\L and Q\L also have the

same completed traces?

Consider, e.g., the processes X and Y,
where

X=a.b.X

Y=al’/

/=Db.al
The (portions of) LTS (reachable from
X and Y) are not isomorphic

Trace equivalence is not suitable

VM and VM’ exhibit different deadlock behaviour
when composed with user U

Traces focus only on sequences of actions that a
process may perform but do not consider the
communication capabilities of the intermediate states

Communication potential at intermediate states does
matter

After input of a coin,

VM enters a state in which it is willing to output either coffee
or tea

VM’ can only enter a state in which it is willing to deliver
either coffee or tea, but not both

Allow to distinguish processes with different
deadlock behaviour when interacting with
other processes

Take into account communication capabilities
of intermediate states

Two processes are equivalent if they have the
same traces and the states that they reach
are still equivalent

Bisimulation [Park'80]

Strong bisimulation

Definition 5.2 [Strong Bisimulation] A binary relation R over the set of states of
an LTS is a hisimulation iff whenever 51 R 52 and « 1s an action:

. C i - i
- if 8y — 27, then there is a transition s; — &} such that 57 R =;

. i F 1 m = i F ¥
- if 82 — &, then there is a transition 8; — & such that 7 R =5,

Two states s and &' are bisimilar, written s ~ g, iff there is a bisimulation that
relates them. Henceforth the relation ~ will be referred to as strong bisimulation
equivalence or strong bisimilarity.

As the semantics of CCS is given in terms of
an LTS whose staes are CCS processes, the

definition of strong bisimulation also applies
to CCS processes

Bisimulation proof technique

Two processes are bisimilar if there exists a strong
bisimulation relating them

To prove that two processes are related by ~ it
suffices to exhibit a strong bisimulation that relates
them

Example: s~1

VAV

ITD

b

R= {(s,1), (51, 81), (52, t1))

Example: s~t

5
/ \
81 b - .Eli_.:‘]

&

(s,t)isinR

We need to show that R is a
bisimulation:

For each pair of states in R, check if all
possible transitions from both states can be
matched by corresponding transitions from
the other states

Example: s, ~ t

a a i1 i
8] ————= 89 —p= 8 ——p= B ———= . s

O

a

R={(s;,t) | 1 € N}

Suppose VM~VM'

VM'—<" s chooseTea.teaVM'

According to the def of bisimulation there must be a
transition

VM coin S P

For some P s.t. P R chooseTea.tea.VM’

The only transition of VM labelled with coin
leads to the state

chooseTea.tea.VM + chooseCoffee.coffee.VM

The above state can perform a transition
labelled with chooseCoffee, that cannot be
matched by any transition of state

chooseTea.tea.VM
Hence, any relation containing (VM,VM')
cannot be a bisimulation

Exercise

Exercise 3.4 Consider the processes

P ¥ a(b0+c0) and

0 % ab0+ac .

Show that IP and () are not strongly bisimilar.

For all LTS, the relation ~ is an equivalence

Reflexive: for all states s, s~s
R ={(s,s) | s is a state of the LTS}

Symmetric: for all states s.,t, if s~t then t~s
If s~t then there exists a bisimulation R s.t. (s,t) isin R
Take R

Transitive: for all states s,t,r: if s~t and t~r then s~r

If s~t and t~r then there exist two bisimulations R and R’ s.t.
(s,t)in Rand (t,r) in R;
Take S = {(u,v) | there exists z s.t. (u,z) in Rand (z,v) in R’}

For all LTSs, ~ is the largest strong
bisimulation

Observe that the def of ~ states that
~=U {R | R is a bisimulation}
Hence, each bisimulation is included in ~

We need to show that U {R | R is a
bisimulation} is a bisimulation

Properties of ~

For all LTSs, ~ satisfies the following:

51 ~ g4 Iff for each action cx,

= ik ' ' ik
- if 51 — s, then there is a transition 52 — s, such that &{ ~ s;

- ik ' v ik
- if 55 — s/, then there is a transition s; — s such that &| ~ &,.

Two strong bisimilar processes have the
same sets of traces:

P~) and cvy -+ cxp © Traces(P) imply o -+ o © Traces(Q)

Properties of ~

Exercise 5.8 Show that the following relations are strong bisimulations:

HP| .0 P) where P, () are CCS processes}
{{P|0,P) where Pisa CCS process}

P | R P|(Q|R)) | where P, (), R are CCS processes} .
Conclude thar, for all PP, (). I,

PQ ~ Q|P (13)
P|0 ~ P and (14)
(P|lQ)| R ~ P(Q|R) . (15)

~ 1S @ cohgruence

We could replace equivalent processes
for equivalent processes in any larger
process expression without affecting
its behaviour

~ IS @ cohgruence

Proposition 5.1 Let P, (), I be CCS processes. Assume that /7 ~ (). Then
o .0 ~ o), for each action o
o P4+ H~(+ Hand K+ P ~ H+ (), for each process i,
e P R~ |Rand R| P ~ R (), for each process H;
e P[f] ~ Q[f . for each relabelling f; and
e P L~ () L, for each set of labels L.

Exercise: hiding

Exercise 5.10 For each set of labels L and process PP, we may wish to build the
process T, () that is obtained by turning into a v each action o performed by PP
with o« € L or & © L. Operationally, the behaviour of the construct 71) can be
described by the following two rules:

PSP
tL(P) = 71.(P")

ifoce Lorae L

PSP
71.(P) = 71.(P')
Prove that vi,(P) ~ 7,(Q)), whenever P ~ ().
Consider the question of whether the operation 71() can be defined in CCS

modulo ~—that is, can you find a CCS expression Cp[| with a “hole" (a place
holder when another process can be plugged) such that, for each process PP,

TL(P) ~ O P] ?

fp=T1orpjp gL

Exercise: simulation

Exercise 5.12 (Simulation) Ler ws say that a binary relation R over the set of
states of an LTS is a simulation iff whenever 51] 52 and o is an action:

= ix = BB [
- if 81 — 5%, then there is a transition 50 — s, such that 87 R s5.

We say that &' simulates s, written 5 = &, iff there is a simulation R with s R &',
Two states 5 and s are simulation equivalent, written s ~ &', iff s = 8 and &' = s

both hold.
1. Prove that - is a preorder.
2. Build simulations showing that

a0 and
a.(b.0 + ¢.0) .

.0
a.b.0 + a.c.0

a1

Do the converse relations hold?

Show that strong bisimilarity is
included in simulation equivalence

Does the converse inclusion also hold?
consider a.band a + a.b

Stratification

H{'é 'P}{'P

1. if P 25 P’, then there is Q' such that ¢ -5 ¢ and P’ ~, Q"
2. if @ - ¢, then there is P" such that P -5 P"and P" ~, '

Then set:

PR ~t
w = [n *~n

a~yb

not a~; b
ca+d~ cb +d

not ca+d~,cb +d
Is ~, = ~?2??

Image-finite process: each reachable
process can only perform a finite set of
transitions

~ =~ for image-finite processes
Leta"=a....a.0and X = a.X
zat~, Za"+ X, but

not X a"~ X a"+ X

Stratification is the basis for algorithms for
checking bisimulation

These algorithms work for finite-state
processes (IL.e., each process has only a finite

number of derivatives)

They proceed by progressively refining a partition of
all processes

Complexity of bisimulation (m transitions, n

states):
O(m log n) time, O(m + n) space [PaigeTarjan’87]

Bisimulation up-to ~

We write P ~R~ ¢} if there are P/. Q' st. P~ P, PR (¥, and Q' ~ @}
(and alike for similar notations).

Definition 7 (bisimulation up-to ~) A relation R on the states of an LTS is a
bisimulation up-to ~ if P 'R Q implies:

1. if P -5 P’, then there is @' such that Q@ £+ Q' and P* ~R~ Q.
2. if Q@ 25 @', then there is P’ such that P -+ P’ and P' ~R~ Q'

Exercise 8 If K is a bisimulation up-to ~ then & Ce~. (Hint: prove that ~ &K ~~
15 a bisimulation.)

Strong bisimilarity satisfies many of the
properties we expect by a notion of

behavioural equivalence

It is a congruence, supports an elegant proof
technique, permits to establish several natural
equalities (e.g., P|Q ~ Q|P)
Is there some item in our wish list that is not
met by strong bisimilarity?

t denotes an internal, observable action

Is is produced by synchronization of two
processes

A notion of behavioural equivalence should
abstract from internal steps

Consider ax.0 and a.0

They should be behaviourally equivalent
They are not strong bisimilar

Strong bisimulation treats internal actions in
the same way as other actions

We look for a notion of behavioural

equivalence that

Has the good properties of strong bisimilarity

Abstracts from internal actions in the behaviour of
processes

Could we simply erase all the internal actions
in the behaviour of a process?

This works for a.x.0 and a.0, but...

Consider the mathematician

M = coin.coffee.theorem.M

And a new version of the coffee machine
CM” = coin.coffee.CM” + coin.CM”

Upon receipt of a coin, this coffee machine can decide to go
back to its initial state without delivering coffee

Take the system (M | CM")\{coin, coffee}

The system either loops (correct computation) or reaches a
deadlocked state

Even if not directly observable, the transition leading
to the deadlocked state cannot be ignored because it
pre-empts other possible behaviours of the machine

Unobservable actions cannot be just erased
because - in light of their pre-emptive power
- they may affect what we observe.

This fact is unimportant in automata theory,
where e-transitions do not increase the
expressive power

We expect that the behaviour of the
specification Spec = theorem.Spec is not

equivalent to that of the process (M |
CM")\{coin, coffee}

New transition relation

Definition 5.3 Let P and () be CCS processes. We write P = () iff there is a
(possibly empty) sequence of 7-labelled transitions that leads from I~ to (). (If the

sequence is empty, then I = ().)
For each action «, we write PP = () iff there are processes I and ()’ such that

PAEPAQSQ.

For each action «, we use ¢ to stand for € if «« = 7, and for o otherwise.

Weak bisimulation

Definition 5.4 [Weak Bisimulation and Observational Equivalence] A binary rela-

tion K over the set of states of an LTS 1s a weak bisimulation iff whenever 51 & 52
and c¥ 15 an action:

. |:t . S Ay

- if 81 = s}, then there is a transition s; = s, such that s} R s};
. |:t . S -

- if 8, = &}, then there is a transition s, = s} such that 5| R &).

Two states s and &' are observationally equivalent (or weakly bisimilar), written
5 == &', iff there is a weak bisimulation that relates them. Henceforth the relation
== will be referred to as observational equivalence or weak bisimilarity.

Weak bisimulation - example

Example 54 Let us consider the following labelled transition system.

S—Ta-Sl—E:-Hg I—E3"E1

Obviously s ¢ ¢, On the other hand = == { because
K= {{51 I}., [Slr ”1 [53:- I1}}

is a weak bisimulation such that {5, t) ©R. It remains to verify that R is indeed a
weak bisimulation.

Consider the processes
A=a0+tB
B=b.0+tA

We have A is weakly bisimilar to

C=a.0+b.0
Observe that A has a livelock (I.e. possibility of
divergence) whereas C hasn't

Weak bisimilarity assumes that is a process can
escape from a loop consisting of internal transitions,

then it will eventually do so.
Crucial property for verification of communication protocols

Process O is weakly bisimilar to process
Div = ©.Div

A process that can only diverge is

observationally equivalent to deadlock

Motivation: if we can only observe a process
by communicating with it, O and Div are
observationally equivalent because both
refuse any attempt of communication

Weak bisimilarity - properties

Theorem 5.2 For all LTSs, the relation == is

1. an equivalence relation,

2. the larpest weak bisimulation and

3. satisfies the following property:

51 == g9 Iff for each action v,

- ek : "]
- if 51 =+ %, then there is a transition s; = s}, such that s} =~ s);

- ek : " 1
- if 5, =+ s}, then there is a transition s, = s} such that 5| =~ s}.

Weak bisimilarity - equivalences

Exercise 519 Show that, for all P, (), the following equivalences, that are usually
referred to as Milner's v-laws, hold:

P = ol {18)
P+7.P ~ 7.P (19)
a.(P+7.0Q) = a(P+7.0)+a0Q . (20}

Unlike strong bisimilarity, weak
bisimilarity is not a congruence.

Note that O is equivalent to ©.0, but
a.0 + 0 is not equivalent to a.0 + 1.0

Weak bisimilarity - congruence

Proposition 5.3 Let P, (). [be CCS processes. Assume that 7 == (). Then
o oo 7 = o), for each action o
e P R=0¢|Rand BR| P ~ R ()}, for each process I;
e P[f] = Q|[f ,for each relabelling f; and
e P\ L= ()" L, foreach set of labels L.

Observational semantics can be used to check
the correctness of a system w.r.t. its
specification

However, to adopt this verification technique,

we are forced to specify the overall
behaviour of the system

E.g. we want to check if the system can

perform an a-labelled transition now

Rephrasing this requirement in terms of observational
equivalence is at best unnatural (or impossible)

The mathematician
Is not willing to drink tea now
Is willing to drink both coffee and tea now
Is willing to drink coffee, but not tea, now
Always produces a theorem after drinking coffee

I't's easier to check thes properties by
exploring the state space of the process,

rather than by trasforming them in
equivalence checking problems.

To check behavioural properties, we need
A language for expressing them
Equipped with a formal syntax and semantics

The formal semantics also allows us to overcome the
imprecision of natural language

“the mathematician is willing to drink both coffee and
tea now”

M can perform either a coffee-labelled or a tea-labelled
transition?

M can perform such transitions one after the other?

Systems are specified by CCS
processes

Properties are specified in Hennessy-
Milner logic (HML)

Hennessy-Milner formulae

Definition 6.1 The set of Hennessy-Milner formulae over a set of actions Act
(from now on referred to as M) 1s given by the following abstract syntax:

Fu=t|ff|FAG|FVG|{a)F|[alF

wherea € Act. If A = {a;,...,a,} T Act(n = 0), we use the abbreviation {4} F
for the formula {a;}F'V ...V {a,}F and A|F forthe formula [a; FA... A a, F.
(If A=0,then (A)F = ffand A|F =1&.)

Meaning of formulae

o All processes satisfy &.

e No process satisfies ff.

® A process satisfies & A (7 (respectively, I' W () iff it satisfies both I and &
(respectively, either I or ().

e A process satisfies {a) F for some a € Act iff it affords an a-labelled transi-
tion leading to a state satisfying .

e A process satisfies [a I for some a € Act iff all of its a-labelled transitions
lead to a state satusfying F'.

Formula <a>F states that it is possible to
perform action a and thereby satisfy
property F

Formula [a]F states that no matter how a
process performs action a, the state it
reaches in doing so will necessarily have
property F

The semantics of a formula consists of a the
set of processes which satisfy the formula

Semantics of formulae

Definition 6.2 We define [F] C Proc for ' € M by:

1. [t] = Proc, 1. [FvG]=[F]U[G].
2. [ff]=0 5. [{a}F] = {-a)[F],
3. [FnrG]=[F]N[G], 6. [lalF] = [-a][F],

where we use the set operators (-a-}, [-a:] : P{Proc) — P(Proc) defined by

{a)§ = {peProc|3p’.pSpandp’ €S} and
[a]§ = {peProc|vp.pop = p' €5}

We write p = F iff p € [F].
Two formulae are eguivalent if, and only if, they are satisfied by the same
Processes in every transition system.

The mathematician is willing to drink coffee
now

The mathematician has the possibility of performing a
coffee-labelled transition

<coffee>F

Formula F should be satisfied by the mathematician
after having drunk the coffee

Since we are requiring nothing of the subsequent
behaviour of the mathematician, take F = tt

The formula <coffee>tt is satisfied
exactly by all processes having an
outgoing coffee-labelled transition

[{coffee)tt] = (-coffee)[t]
= {-coffee-)Proc

= {P| P P for some P’ € Proc)

The mathematician cannot drink tea now

[tea]ff

All the states that a process can reach by
performed a tea-labelled transition must

satisfy ff

Since no state satisfies ff, the only way that
a process can satisfy [tealff is that it has no
tea-labelled transition.

Find a formula which is satisfied by a.b.0 +
a.c.0 but not by a.(b.0 + c.0)

Gvien two non-bisimilar processes, does there
exist a formula that distinguishes them?

If two processes satisfy the same formulae,
are they guaranteed to be strongly bisimilar?

HML and strong bisimilarity

Definition 6.3 [Image Finite Process] A process I 1s image finite iff the collection
{P"| P 5 P'} is finite for each action a.

An LTS is image finite if s0 is each of its states.

Theorem 6.1 [Hennessy and Milner [9]] Let (Proc, Act, {=| a € Act}) be an

image finite LTS. Assume that PP, (} are states in Proc. Then PP ~ ¢} iff P and @)
satisfy exactly the same formulae in M.

A consequence of the theorem is that if two
image finite processes are not strongly
bisimilar, then there exists a formula that
tells us the reason why they are not

The proof of the theorem provides a
constructive method to exhibit the
distinguishing formula

Thank you!

