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Sequential vs concurrent
computation

 Semantics of sequential programs:
function from the input state to the
output state

 Semantics of concurrent programs:
 No general agreement

 A concurrent program is not a function



Concurrent programs and
functions

 Consider, e.g., the following programs:
 X := 2
 X := 1; X:= X+1

 They compute the same function, but…
 X := 2 | X:= 2
 (X := 1; X:= X+1) | X:= 2

 They do not compute the same function
 Viewing concurrent programs as functions

gives us a notion of equivalence that is not a
congruence (and produces a non-compositional
semantics).



Concurrent programs and
functions

 A concurrent program may not terminate (e.g.
operating systems, controllers of a railway
system…)
 In sequential languages, nonterminating programs

useless (wrong)

 The behaviour of concurrent programs can be
nondeterministic
 (X := 1; X:= X+1) | X := 2



Concurrent systems as reactive
systems

 Concurrent system interact with the
environment during the computation

 Reactive system: a system that computes by
reacting to stimuli from the environment
 Inherently parallel systems
 Key role in their behaviour played by communication

with the environment

 A sequential program can be viewed as a
reactive system that interacts only at the
beginning and at the end of the computation



Concurrent systems as reactive
systems

 The behaviour of concurrent programs
should tell us when and how they can
interact with the environment

 The behaviour of concurrent programs
is very hard to analyse and understand
 Formal definition of behaviour



A theory of processes

 Process algebra
 Labelled transition systems
 Bisimulation
 Structural operational semantics
 (Hennessy-Milner) logics



Process Algebras

 Process = system with a specified behaviour
 Specification languages for reactive systems
 Algebra: collection of (basic processes and)

operations for building new processes from existing
ones

 Key issue: communication/interaction among
processes



Communication
 Information exchange between the producer

of information (sender) and the consumer
(receiver)

 Communication medium
 Buffers, shared variables, tuple spaces, …

 Idea: no need to distinguish between active
components (senders/receivers) and passive
ones (communication media)
 Everything is a process
 Interaction via message passing, modeled as

synchronized communication



Process algebras

 CCS [Milner ‘80s],
 CSP [Hoare ‘80s],
 ACP [BergstraKlop ‘80s],
 Pi-calculus [Milner, Parrow, Walker ‘90s]
 Mobile ambients [Cardelli, Gordon 00’s]



A Calculus of Communicating
Systems (CCS)

 0  nil
 The process that does nothing

 a.P   action prefix
 Perform action a and then behave like P
 Clock = tick.Clock
 Types of actions:

  a: send a signal on channel a
  a: receive a signal on channel a
 τ: silent action

 CM = coin.coffee.CM



A Calculus of Communicating
Systems (CCS)

 P+Q  choice operator
 The process P+Q has the capabilities of both P and

Q
 Choosing to perform an action from P will preempt

the further execution of actions from Q (and vice
versa)

 CTM = coin.(coffee.CTM + tea.CTM)
 Exercise: define a coffee machine that may steal the

money and fail



A Calculus of Communicating
Systems (CCS)

 P |Q  parallel composition operator
 The process P|Q describes a system where

 P and Q may proceed independently and
 They may communicate via complementary ports

 “A mathematician is a device for turning coffee into theorems”
(P. Erdos)
 M = coin.coffee.theorem.M
 CM = coin.coffee.CM
 M | CM
 The channel theorem is used by the mathematician to

communicate with its research environment
 Processes M and CM may communicate on channels coffee and

coin, but they can also communicate with other processes (e.g.,
another guy can use the coffee machine CM)



A Calculus of Communicating
Systems (CCS)

 P\a  restriction operator
 In P\a  the scope of channel a is restricted to P
 Channel a can only be used for communication within P
 Private coffee machine

 M = coin.coffee.theorem.M
 CM = coin.coffee.CM
 (M | CM)\coin\coffee
 The channels coin and coffee may be only used for communication

between the mathematician and the coffee machine
 The channel theorem is visible to the environment



A Calculus of Communicating
Systems (CCS)

 P[f]  relabelling operator
 In P[f]  the name of each channel a in the domain of f is replaced

by f(a)
 Vending machines

 CM = coin.coffee.CM
 ChocM = coin.chocolate.ChocM
 VM = coin.item.VM
 CM = VM[coffee/item]
 ChocM = VM[chocolate/item]



Behaviour of processes

 A process passes through states during an
execution

 Processes change their state by performing
actions
 Example: mathematician

 No difference between processes and states:
 By performing an action, a process evolves to

another process, describing what remains to be
executed of the original one

 Processes evolve by performing transitions
 Example!



Behaviour of processes:
transitions

€ 

M coin →  M1

€ 

M1 = coffee.theorem.M1

€ 

CM |M ? →  CM1 |M1

Binary synchronization: communication
produces an unobservable transition (I.e., a
transition that cannot further synchronize)



Behaviour of processes:
transitions

Silent (unobservable) action τ

Exercise: labelled transition system
describing the behaviour of CM | M

€ 

CM |M τ →  CM1 |M1



Behaviour of processes

 As silent actions are unobservable, the
following process could be an
appropriate high-level specification of
the behaviour of CM|M:
 Spec = theorem.Spec

 Notion of “behavioural equivalence”
between processes



Labelled transition systems

 Processes represented by vertices of
edge-labelled oriented graphs

 A change of process state caused by
performing an action corresponds to
moving along an edge (labelled with the
action name) that goes out of that
state



Labelled transition systems

Sometimes a state is singled out as
the initial state of the LTS



Example: vending machine

 A vending machine, capable of
dispensing tea or coffee for 1 coin

 VM = coin.(chooseTea.tea.VM +
chooseCoffee.coffee.VM)

 Exercise: LTS



Structural Operational Semantics

 The step from a CCS process to the LTS
describing its behaviour is taking using the
framework of Structural Operational
Semantics [Plotkin81]

 The collection of CCS processes is the set of
states of a LTS
 The transitions of such LTS are those that can be

proven to hold by means of a collection of syntax-
driven rules



Formal syntax of CCS

       = countably infinite collection of
channel names



Formal syntax of CCS



Formal syntax of CCS

 The behaviour of each process constant
is given by a defining equation

 Example:



Formal semantics of CCS



Behavioural equivalence

 CCS can be used to describe both the
implementation of processes and the
specification of their expected behaviour

 Behavioural equivalence: two processes, say
SPEC and IMPL, are equivalent if they
describe essentially the same behaviour
(maybe at different levels of abstraction)



Equivalence



Desirable properties of a
behavioural relation

 Each process is a correct implementation of
itself (reflexivity)

 Support stepwise derivation of
implementations from specifications
(transitivity)

 Two behaviourally equivalent processes can be
used interchangeably as part of large process
descriptions without affecting the overall
behaviour (congruence)
 P R Q implies C[P] R C[Q]



Desirable properties of a
behavioural relation

 Behavioural equivalence based on the
observable behaviour of processes (not on
their structure)
 Identify two processes unless there is some

sequences of interactions that an observer may have
with them, leading to different outcomes

 Lack of consensus on the appropriate notion
of behavioural equivalence
 Large number of proposals
 Lattice of behavioural equivalences [vanGlabbeek]



First attempt: trace equivalence

 A trace of a process P is a sequence

   such that there exists a sequence of
transitions

P and Q are behaviourally equivalent if
Traces(P) = Traces(Q)



Trace equivalence

 Is trace equivalence reasonable for reactive
machines that interact with their
environment?

 Example: vending machine
 VM = coin.(chooseTea.tea.VM +

chooseCoffee.coffee.VM)
 VM’ = coin.chooseTea.tea.VM’ +

coin.chooseCoffee.coffee.VM’

 VM and VM’ have the same traces



Trace equivalence

 If you want coffee and you hate tea, which
machine would you like to interact with?

 U = coin.chooseCoffee.coffee.U
 A = {coin, chooseCoffee, coffee, chooseTea,

tea}
 (U |VM)\A performs an infinite computation

consisting of silent moves
 (U | VM’)\A may deadlock (if the machine

reaches the state where it is only willing to
deliver tea)



Trace equivalence

 Trace equivalent processes may exhibit
different deadlock behaviour when
interacting with other parallel
processes

 We reject the law



Completed traces



Exercise: completed traces

 Do the processes (U |VM)\A  and (U |VM’)\A
have the same completed traces?

 Is it true that if P and Q are two processes
with the same completed traces and L is a set
of labels, then P\L and Q\L also have the
same completed traces?



LTS isomorphism

 Consider, e.g., the processes X and Y,
where
 X = a.b.X

 Y = a.Z

 Z = b.a.Z

 The (portions of) LTS (reachable from
X and Y) are not isomorphic



Strong bisimulation

 Trace equivalence is not suitable
 VM and VM’ exhibit different deadlock behaviour

when composed with user U
 Traces focus only on sequences of actions that a

process may perform but do not consider the
communication capabilities of the intermediate states

 Communication potential at intermediate states does
matter

 After input of a coin,
 VM enters a state in which it is willing to output either coffee

or tea
 VM’ can only enter a state in which it is willing to deliver

either coffee or tea, but not both



Properties of a behavioural
relation

 Allow to distinguish processes with different
deadlock behaviour when interacting with
other processes

 Take into account communication capabilities
of intermediate states

 Two processes are equivalent if they have the
same traces and the states that they reach
are still equivalent

 Bisimulation [Park’80]



Strong bisimulation



Strong bisimulation for CCS
processes

 As the semantics of CCS is given in terms of
an LTS whose staes are CCS processes, the
definition of strong bisimulation also applies
to CCS processes

 Bisimulation proof technique
 Two processes are bisimilar if there exists a strong

bisimulation relating them
 To prove that two processes are related by ~ it

suffices to exhibit a strong bisimulation that relates
them



Example: s~t



Example: s~t



Example: s~t

 (s,t) is in R
 We need to show that R is a

bisimulation:
 For each pair of states in R, check if all

possible transitions from both states can be
matched by corresponding transitions from
the other states



Example: si ~ t



Example: not VM~VM’

 Suppose VM~VM’

According to the def of bisimulation there must be a
transition

For some P s.t. P R chooseTea.tea.VM’€ 

VM ' coin →  chooseTea.tea.VM '

€ 

VM coin →  P



Example: not VM~VM’

 The only transition of VM labelled with coin
leads to the state
 chooseTea.tea.VM + chooseCoffee.coffee.VM

 The above state can perform a transition
labelled with chooseCoffee, that cannot be
matched by any transition of state
 chooseTea.tea.VM

 Hence, any relation containing (VM,VM’)
cannot be a bisimulation



Exercise



Properties of ~

 For all LTS, the relation ~ is an equivalence
 Reflexive: for all states s, s~s

 R = {(s,s) | s is a state of the LTS}

 Symmetric: for all states s,t, if s~t then t~s
 If s~t then there exists a bisimulation R s.t. (s,t) is in R
 Take R-1

 Transitive: for all states s,t,r: if s~t and t~r then s~r
 If s~t and t~r then there exist two bisimulations R and R’ s.t.

(s,t) in R and (t,r) in R;
 Take S = {(u,v) | there exists z s.t. (u,z) in R and (z,v) in R’}



Properties of ~

 For all LTSs, ~ is the largest strong
bisimulation
 Observe that the def of ~ states that
 ~ = U {R | R is a bisimulation}

 Hence, each bisimulation is included in ~

 We need to show that U {R | R is a
bisimulation} is a bisimulation



Properties of ~

 For all LTSs, ~ satisfies the following:



Properties of ~

 Two strong bisimilar processes have the
same sets of traces:



Properties of ~



Properties of ~

 ~ is a congruence
 We could replace equivalent processes

for equivalent processes in any larger
process expression without affecting
its behaviour



~ is a congruence



Exercise: hiding



Exercise: simulation



Exercise: simulation

 Show that strong bisimilarity is
included in simulation equivalence

 Does the converse inclusion also hold?
  consider a.b and a + a.b



Stratification



Stratification - examples

  a ~0 b
  not   a ~1 b
  c.a + d ~1 c.b  + d
  not   c.a + d ~2 c.b  + d
 Is ~w = ~ ???



Stratification

 Image-finite process: each reachable
process can only perform a finite set of
transitions

 ~ = ~w for image-finite processes
 Let an = a. … .a.0 and X = a.X
  Σnan ~w Σnan + X, but
  not Σnan ~ Σnan + X



Checking bisimulation
 Stratification is the basis for algorithms for

checking bisimulation
 These algorithms work for finite-state

processes (I.e., each process has only a finite
number of derivatives)
 They proceed by progressively refining a partition of

all processes

 Complexity of bisimulation (m transitions, n
states):
 O(m log n) time, O(m + n) space [PaigeTarjan’87]



Bisimulation up-to ~



Weak bisimilarity

 Strong bisimilarity satisfies many of the
properties we expect by a notion of
behavioural equivalence
 It is a congruence, supports an elegant proof

technique, permits to establish several natural
equalities (e.g., P|Q ~ Q|P)

 Is there some item in our wish list that is not
met by strong bisimilarity?



Tau actions

  τ denotes an internal, observable action
 Is is produced by synchronization of two

processes
 A notion of behavioural equivalence should

abstract from internal steps
 Consider a.τ.0 and a.0
 They should be behaviourally equivalent
 They are not strong bisimilar

 Strong bisimulation treats internal actions in
the same way as other actions



Tau actions

 We look for a notion of behavioural
equivalence that
 Has the good properties of strong bisimilarity

 Abstracts from internal actions in the behaviour of
processes

 Could we simply erase all the internal actions
in the behaviour of a process?

 This works for a.τ.0 and a.0, but…



Tau actions

 Consider the mathematician
 M = coin.coffee.theorem.M

 And a new version of the coffee machine
 CM’’ = coin.coffee.CM’’ + coin.CM’’
 Upon receipt of a coin, this coffee machine can decide to go

back to its initial state without delivering coffee

 Take the system (M | CM’’)\{coin, coffee}
 The system either loops (correct computation) or reaches a

deadlocked state

 Even if not directly observable, the transition leading
to the deadlocked state cannot be ignored because it
pre-empts other possible behaviours of the machine



Tau actions

 Unobservable actions cannot be just erased
because - in light of their pre-emptive power
- they may affect what we observe.

 This fact is unimportant in automata theory,
where ε-transitions do not increase the
expressive power

 We expect that the behaviour of the
specification Spec = theorem.Spec is not
equivalent to that of the process (M |
CM’’)\{coin, coffee}



New transition relation



Weak bisimulation



Weak bisimulation - example



Example - livelock

 Consider the processes
 A = a.0 + t.B
 B = b.0 + t.A

 We have A is weakly bisimilar to
 C = a.0 + b.0

 Observe that A has a livelock (I.e. possibility of
divergence) whereas C hasn’t

 Weak bisimilarity assumes that is a process can
escape from a loop consisting of internal transitions,
then it will eventually do so.
 Crucial property for verification of communication protocols



Example - divergence

 Process 0 is weakly bisimilar to process
 Div = τ.Div

 A process that can only diverge is
observationally equivalent to deadlock

 Motivation: if we can only observe a process
by communicating with it, 0 and Div are
observationally equivalent because both
refuse any attempt of communication



Weak bisimilarity - properties



Weak bisimilarity - equivalences



Weak bisimilarity - congruence

 Unlike strong bisimilarity, weak
bisimilarity is not a congruence.

 Note that 0 is equivalent to τ.0, but
 a.0 + 0 is not equivalent to a.0 + τ.0



Weak bisimilarity - congruence



Hennessy-Milner logic

 Observational semantics can be used to check
the correctness of a system w.r.t. its
specification

 However, to adopt this verification technique,
we are forced to specify the overall
behaviour of the system

 E.g. we want to check if the system can
perform an a-labelled transition now
 Rephrasing this requirement in terms of observational

equivalence is at best unnatural (or impossible)



Behavioural properties

 The mathematician
 Is not willing to drink tea now
 Is willing to drink both coffee and tea now
 Is willing to drink coffee, but not tea, now
 Always produces a theorem after drinking coffee

 It’s easier to check thes properties by
exploring the state space of the process,
rather than by trasforming them in
equivalence checking problems.



Behavioural properties

 To check behavioural properties, we need
 A language for expressing them

 Equipped with a formal syntax and semantics

 The formal semantics also allows us to overcome the
imprecision of natural language

 “the mathematician is willing to drink both coffee and
tea now”
 M can perform either a coffee-labelled or a tea-labelled

transition?

 M can perform such transitions one after the other?



Model checking

 Systems are specified by CCS
processes

 Properties are specified in Hennessy-
Milner logic (HML)



Hennessy-Milner formulae



Meaning of formulae



Meaning of formulae

 Formula <a>F states that it is possible to
perform action a and thereby satisfy
property F

 Formula [a]F states that no matter how a
process performs action a, the state it
reaches in doing so will necessarily have
property F

 The semantics of a formula consists of a the
set of processes which satisfy the formula



Semantics of formulae



Expressing behavioural properties
in HML

 The mathematician is willing to drink coffee
now
 The mathematician has the possibility of performing a

coffee-labelled transition

 <coffee>F

 Formula F should be satisfied by the mathematician
after having drunk the coffee

 Since we are requiring nothing of the subsequent
behaviour of the mathematician, take F = tt



Expressing behavioural properties
in HML

 The formula <coffee>tt is satisfied
exactly by all processes having an
outgoing coffee-labelled transition



Expressing behavioural properties
in HML

 The mathematician cannot drink tea now
 [tea]ff
 All the states that a process can reach by

performed a tea-labelled transition must
satisfy ff

 Since no state satisfies ff, the only way that
a process can satisfy [tea]ff is that it has no
tea-labelled transition.



Exercise

 Find a formula which is satisfied by a.b.0 +
a.c.0 but not by a.(b.0 + c.0)

 Gvien two non-bisimilar processes, does there
exist a formula that distinguishes them?

 If two processes satisfy the same formulae,
are they guaranteed to be strongly bisimilar?



HML and strong bisimilarity



HML and strong bisimilarity

 A consequence of the theorem is that if two
image finite processes are not strongly
bisimilar, then there exists a formula that
tells us the reason why they are not

 The proof of the theorem provides a
constructive method to exhibit the
distinguishing formula



Thank you!


