
Process algebras, bisimulation
(and logics)

Nadia Busi
University of Bologna

Sequential vs concurrent
computation

 Semantics of sequential programs:
function from the input state to the
output state

 Semantics of concurrent programs:
 No general agreement

 A concurrent program is not a function

Concurrent programs and
functions

 Consider, e.g., the following programs:
 X := 2
 X := 1; X:= X+1

 They compute the same function, but…
 X := 2 | X:= 2
 (X := 1; X:= X+1) | X:= 2

 They do not compute the same function
 Viewing concurrent programs as functions

gives us a notion of equivalence that is not a
congruence (and produces a non-compositional
semantics).

Concurrent programs and
functions

 A concurrent program may not terminate (e.g.
operating systems, controllers of a railway
system…)
 In sequential languages, nonterminating programs

useless (wrong)

 The behaviour of concurrent programs can be
nondeterministic
 (X := 1; X:= X+1) | X := 2

Concurrent systems as reactive
systems

 Concurrent system interact with the
environment during the computation

 Reactive system: a system that computes by
reacting to stimuli from the environment
 Inherently parallel systems
 Key role in their behaviour played by communication

with the environment

 A sequential program can be viewed as a
reactive system that interacts only at the
beginning and at the end of the computation

Concurrent systems as reactive
systems

 The behaviour of concurrent programs
should tell us when and how they can
interact with the environment

 The behaviour of concurrent programs
is very hard to analyse and understand
 Formal definition of behaviour

A theory of processes

 Process algebra
 Labelled transition systems
 Bisimulation
 Structural operational semantics
 (Hennessy-Milner) logics

Process Algebras

 Process = system with a specified behaviour
 Specification languages for reactive systems
 Algebra: collection of (basic processes and)

operations for building new processes from existing
ones

 Key issue: communication/interaction among
processes

Communication
 Information exchange between the producer

of information (sender) and the consumer
(receiver)

 Communication medium
 Buffers, shared variables, tuple spaces, …

 Idea: no need to distinguish between active
components (senders/receivers) and passive
ones (communication media)
 Everything is a process
 Interaction via message passing, modeled as

synchronized communication

Process algebras

 CCS [Milner ‘80s],
 CSP [Hoare ‘80s],
 ACP [BergstraKlop ‘80s],
 Pi-calculus [Milner, Parrow, Walker ‘90s]
 Mobile ambients [Cardelli, Gordon 00’s]

A Calculus of Communicating
Systems (CCS)

 0 nil
 The process that does nothing

 a.P action prefix
 Perform action a and then behave like P
 Clock = tick.Clock
 Types of actions:

 a: send a signal on channel a
 a: receive a signal on channel a
 τ: silent action

 CM = coin.coffee.CM

A Calculus of Communicating
Systems (CCS)

 P+Q choice operator
 The process P+Q has the capabilities of both P and

Q
 Choosing to perform an action from P will preempt

the further execution of actions from Q (and vice
versa)

 CTM = coin.(coffee.CTM + tea.CTM)
 Exercise: define a coffee machine that may steal the

money and fail

A Calculus of Communicating
Systems (CCS)

 P |Q parallel composition operator
 The process P|Q describes a system where

 P and Q may proceed independently and
 They may communicate via complementary ports

 “A mathematician is a device for turning coffee into theorems”
(P. Erdos)
 M = coin.coffee.theorem.M
 CM = coin.coffee.CM
 M | CM
 The channel theorem is used by the mathematician to

communicate with its research environment
 Processes M and CM may communicate on channels coffee and

coin, but they can also communicate with other processes (e.g.,
another guy can use the coffee machine CM)

A Calculus of Communicating
Systems (CCS)

 P\a restriction operator
 In P\a the scope of channel a is restricted to P
 Channel a can only be used for communication within P
 Private coffee machine

 M = coin.coffee.theorem.M
 CM = coin.coffee.CM
 (M | CM)\coin\coffee
 The channels coin and coffee may be only used for communication

between the mathematician and the coffee machine
 The channel theorem is visible to the environment

A Calculus of Communicating
Systems (CCS)

 P[f] relabelling operator
 In P[f] the name of each channel a in the domain of f is replaced

by f(a)
 Vending machines

 CM = coin.coffee.CM
 ChocM = coin.chocolate.ChocM
 VM = coin.item.VM
 CM = VM[coffee/item]
 ChocM = VM[chocolate/item]

Behaviour of processes

 A process passes through states during an
execution

 Processes change their state by performing
actions
 Example: mathematician

 No difference between processes and states:
 By performing an action, a process evolves to

another process, describing what remains to be
executed of the original one

 Processes evolve by performing transitions
 Example!

Behaviour of processes:
transitions

€

M coin →  M1

€

M1 = coffee.theorem.M1

€

CM |M ? →  CM1 |M1

Binary synchronization: communication
produces an unobservable transition (I.e., a
transition that cannot further synchronize)

Behaviour of processes:
transitions

Silent (unobservable) action τ

Exercise: labelled transition system
describing the behaviour of CM | M

€

CM |M τ →  CM1 |M1

Behaviour of processes

 As silent actions are unobservable, the
following process could be an
appropriate high-level specification of
the behaviour of CM|M:
 Spec = theorem.Spec

 Notion of “behavioural equivalence”
between processes

Labelled transition systems

 Processes represented by vertices of
edge-labelled oriented graphs

 A change of process state caused by
performing an action corresponds to
moving along an edge (labelled with the
action name) that goes out of that
state

Labelled transition systems

Sometimes a state is singled out as
the initial state of the LTS

Example: vending machine

 A vending machine, capable of
dispensing tea or coffee for 1 coin

 VM = coin.(chooseTea.tea.VM +
chooseCoffee.coffee.VM)

 Exercise: LTS

Structural Operational Semantics

 The step from a CCS process to the LTS
describing its behaviour is taking using the
framework of Structural Operational
Semantics [Plotkin81]

 The collection of CCS processes is the set of
states of a LTS
 The transitions of such LTS are those that can be

proven to hold by means of a collection of syntax-
driven rules

Formal syntax of CCS

 = countably infinite collection of
channel names

Formal syntax of CCS

Formal syntax of CCS

 The behaviour of each process constant
is given by a defining equation

 Example:

Formal semantics of CCS

Behavioural equivalence

 CCS can be used to describe both the
implementation of processes and the
specification of their expected behaviour

 Behavioural equivalence: two processes, say
SPEC and IMPL, are equivalent if they
describe essentially the same behaviour
(maybe at different levels of abstraction)

Equivalence

Desirable properties of a
behavioural relation

 Each process is a correct implementation of
itself (reflexivity)

 Support stepwise derivation of
implementations from specifications
(transitivity)

 Two behaviourally equivalent processes can be
used interchangeably as part of large process
descriptions without affecting the overall
behaviour (congruence)
 P R Q implies C[P] R C[Q]

Desirable properties of a
behavioural relation

 Behavioural equivalence based on the
observable behaviour of processes (not on
their structure)
 Identify two processes unless there is some

sequences of interactions that an observer may have
with them, leading to different outcomes

 Lack of consensus on the appropriate notion
of behavioural equivalence
 Large number of proposals
 Lattice of behavioural equivalences [vanGlabbeek]

First attempt: trace equivalence

 A trace of a process P is a sequence

 such that there exists a sequence of
transitions

P and Q are behaviourally equivalent if
Traces(P) = Traces(Q)

Trace equivalence

 Is trace equivalence reasonable for reactive
machines that interact with their
environment?

 Example: vending machine
 VM = coin.(chooseTea.tea.VM +

chooseCoffee.coffee.VM)
 VM’ = coin.chooseTea.tea.VM’ +

coin.chooseCoffee.coffee.VM’

 VM and VM’ have the same traces

Trace equivalence

 If you want coffee and you hate tea, which
machine would you like to interact with?

 U = coin.chooseCoffee.coffee.U
 A = {coin, chooseCoffee, coffee, chooseTea,

tea}
 (U |VM)\A performs an infinite computation

consisting of silent moves
 (U | VM’)\A may deadlock (if the machine

reaches the state where it is only willing to
deliver tea)

Trace equivalence

 Trace equivalent processes may exhibit
different deadlock behaviour when
interacting with other parallel
processes

 We reject the law

Completed traces

Exercise: completed traces

 Do the processes (U |VM)\A and (U |VM’)\A
have the same completed traces?

 Is it true that if P and Q are two processes
with the same completed traces and L is a set
of labels, then P\L and Q\L also have the
same completed traces?

LTS isomorphism

 Consider, e.g., the processes X and Y,
where
 X = a.b.X

 Y = a.Z

 Z = b.a.Z

 The (portions of) LTS (reachable from
X and Y) are not isomorphic

Strong bisimulation

 Trace equivalence is not suitable
 VM and VM’ exhibit different deadlock behaviour

when composed with user U
 Traces focus only on sequences of actions that a

process may perform but do not consider the
communication capabilities of the intermediate states

 Communication potential at intermediate states does
matter

 After input of a coin,
 VM enters a state in which it is willing to output either coffee

or tea
 VM’ can only enter a state in which it is willing to deliver

either coffee or tea, but not both

Properties of a behavioural
relation

 Allow to distinguish processes with different
deadlock behaviour when interacting with
other processes

 Take into account communication capabilities
of intermediate states

 Two processes are equivalent if they have the
same traces and the states that they reach
are still equivalent

 Bisimulation [Park’80]

Strong bisimulation

Strong bisimulation for CCS
processes

 As the semantics of CCS is given in terms of
an LTS whose staes are CCS processes, the
definition of strong bisimulation also applies
to CCS processes

 Bisimulation proof technique
 Two processes are bisimilar if there exists a strong

bisimulation relating them
 To prove that two processes are related by ~ it

suffices to exhibit a strong bisimulation that relates
them

Example: s~t

Example: s~t

Example: s~t

 (s,t) is in R
 We need to show that R is a

bisimulation:
 For each pair of states in R, check if all

possible transitions from both states can be
matched by corresponding transitions from
the other states

Example: si ~ t

Example: not VM~VM’

 Suppose VM~VM’

According to the def of bisimulation there must be a
transition

For some P s.t. P R chooseTea.tea.VM’€

VM ' coin →  chooseTea.tea.VM '

€

VM coin →  P

Example: not VM~VM’

 The only transition of VM labelled with coin
leads to the state
 chooseTea.tea.VM + chooseCoffee.coffee.VM

 The above state can perform a transition
labelled with chooseCoffee, that cannot be
matched by any transition of state
 chooseTea.tea.VM

 Hence, any relation containing (VM,VM’)
cannot be a bisimulation

Exercise

Properties of ~

 For all LTS, the relation ~ is an equivalence
 Reflexive: for all states s, s~s

 R = {(s,s) | s is a state of the LTS}

 Symmetric: for all states s,t, if s~t then t~s
 If s~t then there exists a bisimulation R s.t. (s,t) is in R
 Take R-1

 Transitive: for all states s,t,r: if s~t and t~r then s~r
 If s~t and t~r then there exist two bisimulations R and R’ s.t.

(s,t) in R and (t,r) in R;
 Take S = {(u,v) | there exists z s.t. (u,z) in R and (z,v) in R’}

Properties of ~

 For all LTSs, ~ is the largest strong
bisimulation
 Observe that the def of ~ states that
 ~ = U {R | R is a bisimulation}

 Hence, each bisimulation is included in ~

 We need to show that U {R | R is a
bisimulation} is a bisimulation

Properties of ~

 For all LTSs, ~ satisfies the following:

Properties of ~

 Two strong bisimilar processes have the
same sets of traces:

Properties of ~

Properties of ~

 ~ is a congruence
 We could replace equivalent processes

for equivalent processes in any larger
process expression without affecting
its behaviour

~ is a congruence

Exercise: hiding

Exercise: simulation

Exercise: simulation

 Show that strong bisimilarity is
included in simulation equivalence

 Does the converse inclusion also hold?
 consider a.b and a + a.b

Stratification

Stratification - examples

 a ~0 b
 not a ~1 b
 c.a + d ~1 c.b + d
 not c.a + d ~2 c.b + d
 Is ~w = ~ ???

Stratification

 Image-finite process: each reachable
process can only perform a finite set of
transitions

 ~ = ~w for image-finite processes
 Let an = a. … .a.0 and X = a.X
 Σnan ~w Σnan + X, but
 not Σnan ~ Σnan + X

Checking bisimulation
 Stratification is the basis for algorithms for

checking bisimulation
 These algorithms work for finite-state

processes (I.e., each process has only a finite
number of derivatives)
 They proceed by progressively refining a partition of

all processes

 Complexity of bisimulation (m transitions, n
states):
 O(m log n) time, O(m + n) space [PaigeTarjan’87]

Bisimulation up-to ~

Weak bisimilarity

 Strong bisimilarity satisfies many of the
properties we expect by a notion of
behavioural equivalence
 It is a congruence, supports an elegant proof

technique, permits to establish several natural
equalities (e.g., P|Q ~ Q|P)

 Is there some item in our wish list that is not
met by strong bisimilarity?

Tau actions

 τ denotes an internal, observable action
 Is is produced by synchronization of two

processes
 A notion of behavioural equivalence should

abstract from internal steps
 Consider a.τ.0 and a.0
 They should be behaviourally equivalent
 They are not strong bisimilar

 Strong bisimulation treats internal actions in
the same way as other actions

Tau actions

 We look for a notion of behavioural
equivalence that
 Has the good properties of strong bisimilarity

 Abstracts from internal actions in the behaviour of
processes

 Could we simply erase all the internal actions
in the behaviour of a process?

 This works for a.τ.0 and a.0, but…

Tau actions

 Consider the mathematician
 M = coin.coffee.theorem.M

 And a new version of the coffee machine
 CM’’ = coin.coffee.CM’’ + coin.CM’’
 Upon receipt of a coin, this coffee machine can decide to go

back to its initial state without delivering coffee

 Take the system (M | CM’’)\{coin, coffee}
 The system either loops (correct computation) or reaches a

deadlocked state

 Even if not directly observable, the transition leading
to the deadlocked state cannot be ignored because it
pre-empts other possible behaviours of the machine

Tau actions

 Unobservable actions cannot be just erased
because - in light of their pre-emptive power
- they may affect what we observe.

 This fact is unimportant in automata theory,
where ε-transitions do not increase the
expressive power

 We expect that the behaviour of the
specification Spec = theorem.Spec is not
equivalent to that of the process (M |
CM’’)\{coin, coffee}

New transition relation

Weak bisimulation

Weak bisimulation - example

Example - livelock

 Consider the processes
 A = a.0 + t.B
 B = b.0 + t.A

 We have A is weakly bisimilar to
 C = a.0 + b.0

 Observe that A has a livelock (I.e. possibility of
divergence) whereas C hasn’t

 Weak bisimilarity assumes that is a process can
escape from a loop consisting of internal transitions,
then it will eventually do so.
 Crucial property for verification of communication protocols

Example - divergence

 Process 0 is weakly bisimilar to process
 Div = τ.Div

 A process that can only diverge is
observationally equivalent to deadlock

 Motivation: if we can only observe a process
by communicating with it, 0 and Div are
observationally equivalent because both
refuse any attempt of communication

Weak bisimilarity - properties

Weak bisimilarity - equivalences

Weak bisimilarity - congruence

 Unlike strong bisimilarity, weak
bisimilarity is not a congruence.

 Note that 0 is equivalent to τ.0, but
 a.0 + 0 is not equivalent to a.0 + τ.0

Weak bisimilarity - congruence

Hennessy-Milner logic

 Observational semantics can be used to check
the correctness of a system w.r.t. its
specification

 However, to adopt this verification technique,
we are forced to specify the overall
behaviour of the system

 E.g. we want to check if the system can
perform an a-labelled transition now
 Rephrasing this requirement in terms of observational

equivalence is at best unnatural (or impossible)

Behavioural properties

 The mathematician
 Is not willing to drink tea now
 Is willing to drink both coffee and tea now
 Is willing to drink coffee, but not tea, now
 Always produces a theorem after drinking coffee

 It’s easier to check thes properties by
exploring the state space of the process,
rather than by trasforming them in
equivalence checking problems.

Behavioural properties

 To check behavioural properties, we need
 A language for expressing them

 Equipped with a formal syntax and semantics

 The formal semantics also allows us to overcome the
imprecision of natural language

 “the mathematician is willing to drink both coffee and
tea now”
 M can perform either a coffee-labelled or a tea-labelled

transition?

 M can perform such transitions one after the other?

Model checking

 Systems are specified by CCS
processes

 Properties are specified in Hennessy-
Milner logic (HML)

Hennessy-Milner formulae

Meaning of formulae

Meaning of formulae

 Formula <a>F states that it is possible to
perform action a and thereby satisfy
property F

 Formula [a]F states that no matter how a
process performs action a, the state it
reaches in doing so will necessarily have
property F

 The semantics of a formula consists of a the
set of processes which satisfy the formula

Semantics of formulae

Expressing behavioural properties
in HML

 The mathematician is willing to drink coffee
now
 The mathematician has the possibility of performing a

coffee-labelled transition

 <coffee>F

 Formula F should be satisfied by the mathematician
after having drunk the coffee

 Since we are requiring nothing of the subsequent
behaviour of the mathematician, take F = tt

Expressing behavioural properties
in HML

 The formula <coffee>tt is satisfied
exactly by all processes having an
outgoing coffee-labelled transition

Expressing behavioural properties
in HML

 The mathematician cannot drink tea now
 [tea]ff
 All the states that a process can reach by

performed a tea-labelled transition must
satisfy ff

 Since no state satisfies ff, the only way that
a process can satisfy [tea]ff is that it has no
tea-labelled transition.

Exercise

 Find a formula which is satisfied by a.b.0 +
a.c.0 but not by a.(b.0 + c.0)

 Gvien two non-bisimilar processes, does there
exist a formula that distinguishes them?

 If two processes satisfy the same formulae,
are they guaranteed to be strongly bisimilar?

HML and strong bisimilarity

HML and strong bisimilarity

 A consequence of the theorem is that if two
image finite processes are not strongly
bisimilar, then there exists a formula that
tells us the reason why they are not

 The proof of the theorem provides a
constructive method to exhibit the
distinguishing formula

Thank you!

