Linked Lists: Locking, Lock-
Free, and Beyond ...

Concurrent Objects:
Adding Threads ...

» Should not lower throughput
- Contention effects
- Mostly fixed by Queue locks

» Should increase throughput

- Not possible if inherently sequential
- Surprising things are paralellizable

BROWN © 2005 Herlihy & Shavit

Coarse-Grained
Synchronization
» Each method locks the object

- Avoid contention using queue locks

- Easy to reason about
» In simple cases

- Standard Java model
» Synchronized blocks and methods

+ So, are we done?

I

BROWN © 2005 Herlihy & Shavit

Coarse-Grained
Synchronization

» Sequential bottleneck
- All threads "stand in line"

* Adding more threads
- Does not improve throughput
- Struggle to keep it from getting worse

* So why even use a multiprocessor?
.. - Well, some apps inherently parallel ...

BROWN © 2005 Herlihy & Shavit

This Lecture

* Introduce four "patterns”
- Bag of tricks ...

- Methods that work more than once ...

* For highly-concurrent objects
* Goal:

- Concurrent access
.. — More threads, more throughput

€S
=

I

BROWN © 2005 Herlihy & Shavit

First:
Fine-Grained Synchronization
» Instead of using a single lock ..
+ Split object into
- Independently-synchronized components

* Methods conflict when they access
- The same component ...
- At the same time

BROWN © 2005 Herlihy & Shavit 6

Second:
Optimistic Synchronization

* Object = linked set of components
» Search without locking ...
» If you find it, lock and check ...

- OK, we are done
- Oops, try again
» Evaluation
- cheaper than locking
mowimistakes are expensive.

Third:
Lazy Synchronization

* Postpone hard work
* Removing components is tricky

- Logical removal
* Mark component to be deleted

- Physical removal

- Do what needs to be done

I

BROWN © 2005 Herlihy & Shavit

Fourth:
Lock-Free Synchronization

+ Don't use locks at all
- Use compareAndSet() & relatives ...

* Advantages
- Robust against asynchrony

- Disadvantages
- Complex
. - Sometimes high overhead

BROWN © 2005 Herlihy & Shavit

Linked List

* Tllustrate these patterns ...

* Using a linked-list class
- Common application
- Building block for other apps

BROWN © 2005 Herlihy & Shavit

10

Set Interface

» Unordered collection of objects

* No duplicates
* Methods

oy

- Add a new object
- Remove an object
- Test if object is present

BROWN © 2005 Herlihy & Shavit

11

List-Based Sets

public interface Set {

public boolean add(Object x);
public boolean remove(Object x);
public boolean contains(Object x);

}

S
=

BROWN © 2005 Herlihy & Shavit

12

LD

oy

List-Based Sets

public boolean add(Object x);]

Add object to set

BROWN © 2005 Herlihy & Shavit

13

List-Based Sets

@blic boolean remove(Obiject x);

Remove object from set

I

BROWN © 2005 Herlihy & Shavit

14

List-Based Sets

public boolean contains(Object x);]

Is object in set?

I

BROWN © 2005 Herlihy & Shavit 15

List Entry

public class Entry {
public Object object;
public int key;
public Entry next;

}

S
=

BROWN © 2005 Herlihy & Shavit

16

List Entry

Ejblic Object object;

TR
—a

BROWN

Object of interest

© 2005 Herlihy & Shavit

17

LD

oy

List Entry

Ejblic int key;

BROWN

Sort by key value
(usually hash code)

© 2005 Herlihy & Shavit

18

List Entry

Ejblic int key; g

Sorting makes it
easy to detect absence

BROWN © 2005 Herlihy & Shavit

19

List Entry

ublic Entry next; j

Reference to next entry

D
A

BROWN © 2005 Herlihy & Shavit

20

List-Based Set

[EB—>[E|3—>CD]

P

Sentinel nodes
(min & max possible keys)

BROWN © 2005 Herlihy & Shavit 21

Reasoning about Concurrent
Objects

* Invariant
- Property that always holds

» Established by

- True when object is created

- Truth preserved by each method
* Each step of each method

LD

BROWN © 2005 Herlihy & Shavit

22

Specifically ...

* Invariants preserved by

—add()
— remove()
— contains()

* Most steps are trivial
- Usually one step tricky
- Often linearization point

I

BROWN © 2005 Herlihy & Shavit

Interference

* Proof that invariants preserved works
only if
- methods considered
- are the only modifiers

» Language encapsulation helps
- List entries not visible outside class

I

BROWN © 2005 Herlihy & Shavit 24

Interference

- Freedom from interference neeeded
even for removed entries

- Some algorithms traverse removed
entries

- Careful with malloc() & free()!

* Garbage-collection helps here

I

BROWN © 2005 Herlihy & Shavit

Abstract Data Types

- Concrete representation
e[l

+ Abstract Type
- {a, b}

LD

ZSI
S

BROWN © 2005 Herlihy & Shavit

26

Abstract Data Types

* Meaning of rep given by abstraction
map

s CD-P[ED*[ED*CD) - (ab}

LD

BROWN © 2005 Herlihy & Shavit

27

Rep Invariant

* Which concrete values are
meaningful?
- Sorted? Duplicates?

* Rep invariant
- Characterizes legal concrete reps
- Preserved by methods

- Relied on by methods

BROWN © 2005 Herlihy & Shavit

Blame Game

* Rep invariant is a contract

* Suppose
—add() leaves behind 2 copies of x

—remove() removes only 1

- Which one is incorrect?

I

BROWN © 2005 Herlihy & Shavit

Blame Game

* Suppose
—add() leaves behind 2 copies of x

—remove() removes only 1

- Which one is incorrect?
- If rep invariant says no duplicates
« add() is incorrect

- Otherwise
BROWN * remove() is9AWBHeeityis Shavit

30

Shorthand

- a— b means a.next = b

- a = b means b reachable from a
- a=—a

-Ifa=band b —cthena=—c

ESD
A

BROWN © 2005 Herlihy & Shavit

31

Rep Invariant (partly)

» Sentinel nodes
- head = tail
+ Sorted, no duplicates
- If a — b then a.key < b.key

LD

BROWN © 2005 Herlihy & Shavit

32

Abstraction Map

 S(head) =

I

- { x | there exists a such that
- head = a and

- a.object = x

-}

BROWN © 2005 Herlihy & Shavit

33

BROWN

Adding an Entry

© 2005 Herlihy & Shavit

34

Adding an Entry

([l]5—kl3—(]]

© 2005 Herlihy & Shavit

izl =T
e
o}
=
@)
=

35

Adding an Entry

[[F—=l]5—kl3—(]]

aEl

© 2005 Herlihy & Shavit

izl =T
e
o}
=
@)
=

36

Adding an Entry

[:I:-]—>[E|E}\v bl (]

el

© 2005 Herlihy & Shavit

izl =T
e
o}
=
@)
=

37

Removing an Entry

‘E@
BROWN © 2005 Herlihy & Shavit

Removing an Entry

([l]5—kl3—(]]

© 2005 Herlihy & Shavit

izl =T
e
o}
=
@)
=

39

Removing an Entry

BT

© 2005 Herlihy & Shavit

izl =T
e
o}
=
@)
=

40

Removing an Entry

[]3—*% ab

© 2005 Herlihy & Shavit

41

Coarse-Grained Locking

+ Easy, same as synchronized methods
- "One lock to rule them all .."

+ Simple, clearly correct

- Deserves respect!

* Works poorly with contention
- Queue locks help
.. - But bottleneck still an issue

BROWN © 2005 Herlihy & Shavit 42

Fine-grained Locking

* Requires careful thought

- "Do not meddle in the affairs of wizards,
for they are subtle and quick to anger”

+ Split object into pieces
- Each piece has own lock

- Methods that work on disjoint pieces
need not exclude each other

LD

BROWN © 2005 Herlihy & Shavit 43

Optimistic Synchronization

* Requires very careful thought

- "Do not meddle in the affairs of dragons,
for you are crunchy and taste good with
ketchup."

* Try it without synchronization
- If you win, you win
- If not, try it again with synchronization

LD

BROWN © 2005 Herlihy & Shavit 44

Lock-Free Synchronization

* Dump locking altogether ...

- "You take the red pill and you stay in
Wonderland and T show you how deep
the rabbit-hole goes”

* No locks, just native atomic methods
- Usually compareAndSet()

D

BROWN © 2005 Herlihy & Shavit 45

Hand-over-Hand locking

([l]5—kl3—(]]

© 2005 Herlihy & Shavit

izl =T
e
o}
=
@)
=

46

Hand-over-Hand locking

([F=ll5—kl3—(]]

© 2005 Herlihy & Shavit

izl =T
e
o}
=
@)
=

47

Hand-over-Hand locking

(U

© 2005 Herlihy & Shavit

48

Hand-over-Hand locking

© 2005 Herlihy & Shavit

49

Hand-over-Hand locking

D)

BROWN © 2005 Herlihy & Shavit

50

Removing an Entry

([l[5>kl ([>l]

© 2005 Herlihy & Shavit 51

izl =T
e
o}
=
@)
=

Removing an Entry

o[3>l ([F>{a]]

o ch

remove
b Oooe

WN © 2005 Herlihy & Shavit 52

Removing an Entry

© 2005 Herlihy & Shavit

53

Removing an Entry

© 2005 Herlihy & Shavit

54

Removing an Entry

© 2005 Herlihy & Shavit

55

Removing an Entry

([l[5>kl ([>l]

L gkl

© 2005 Herlihy & Shavit 56

izl =T
e
o}
=
@)
=

Removing an Entry

([Tl 5>kl ([l

L gkl

© 2005 Herlihy & Shavit 57

izl =T
e
o}
=
@)
=

Removing an Entry

([Tl 5>kl ([l

L gkl

© 2005 Herlihy & Shavit 58

izl =T
e
o}
=
@)
=

Removing an Entry

(3~ 3+ 63> 3D

L gkl

© 2005 Herlihy & Shavit 59

izl =T
e
o}
=
@)
=

Removing an Entry

([Tl 5>kl ([>l

L gkl

© 2005 Herlihy & Shavit 60

izl =T
e
o}
=
@)
=

Removing an Entry

([Tl 5l T[>l

L gkl

© 2005 Herlihy & Shavit 61

izl =T
e
o}
=
@)
=

Removing an Entry

remove
b Oooe
BROWN

© 2005 Herlihy & Shavit

62

Removing an Entry

(B33 63> 3D

L gkl

© 2005 Herlihy & Shavit 63

izl =T
e
o}
=
@)
=

Removing an Entry

[[5rlely (e[F>{a]]

L gkl

© 2005 Herlihy & Shavit 64

—_—

BROWN

© 2005 Herlihy & Shavit

65

Problem

+ To delete entry b

- Swing entry a's next E:Tlgé to QB—P[ZE]

* Problem is,

- Someone could dele%

BROWN © 2005 Herlihy & Shavit 66

Insight

* If an entry is locked

- No one can delete entry's successor

» If a thread locks
- Entry to be deleted
- And its predecessor
- Then it works

I

BROWN © 2005 Herlihy & Shavit

67

= =t

Hand-Over-Hand Again

([l 5>kl ([l

BROWN © 2005 Herlihy & Shavit 68

Hand-Over-Hand Again

3> [l (I3

remove
b Oooe *

© 2005 Herlihy & Shavit 69

Hand-Over-Hand Again

BROWN © 2005 Herlihy & Shavit 70

Hand-Over-Hand Again

BROWN © 2005 Herlihy & Shavit 71

Hand-Over-Hand Again

BROWN © 2005 Herlihy & Shavit 72

Hand-Over-Hand Again

SEagHR e[l]

BROWN © 2005 Herlihy & Shavit 73

Removing an Entry

([l[5>kl ([>l]

[kl

© 2005 Herlihy & Shavit 74

izl =T
e
o}
=
@)
=

Removing an Entry

([Tl 5>kl ([l

Lkl

© 2005 Herlihy & Shavit 75

izl =T
e
o}
=
@)
=

Removing an Entry

([Tl 5>kl ([l

Lkl

© 2005 Herlihy & Shavit 76

izl =T
e
o}
=
@)
=

Removing an Entry

([Tl 5>kl ([>l

L gkl

© 2005 Herlihy & Shavit 77

izl =T
e
o}
=
@)
=

Removing an Entry

remove
b Oooe
BROWN

© 2005 Herlihy & Shavit

78

Removing an Entry

CB'"’EB'"’@%-ED

L gkl

© 2005 Herlihy & Shavit 79

izl =T
e
o}
=
@)
=

Removing an Entry

([FrlalFmlely)) (l5—>(el]
——

Lkl

© 2005 Herlihy & Shavit 80

izl =T
e
o}
=
@)
=

Removing an Entry

© 2005 Herlihy & Shavit

81

Removing an Entry

izl =T
e
o}
=
@)
=

an an

[[—F

Lkl

© 2005 Herlihy & Shavit 82

Removing an Entry
(13> (d] ‘3 an
(g

© 2005 Herlihy & Shavit 83

izl =T
e
o}
=
@)
=

Remove method

public boolean remove(Object object) {
int key = object.hashCode();
Entry pred, curr;

try {

} finally {
curr.unlock();
pred.unlock();

H

ESD
=

BROWN © 2005 Herlihy & Shavit

84

Remove method

(nt key = object.hashCode();]

Key used to order entry

I

BROWN © 2005 Herlihy & Shavit

Remove method

Entry pred, curr;

Predecessor and current entries

o
A

BROWN © 2005 Herlihy & Shavit 86

Remove method

fry{ L

finally {
urr.unlock();
red.unlock();

TR
—a

BROWN

© 2005 Herlihy & Shavit

Make sure
locks released

87

oy

Remove method

—

Everything else

BROWN © 2005 Herlihy & Shavit

88

Remove method

try {
pred = this.head;

pred.lock();
curr = pred.next;
curr.lock();

}finally { ... }

I

BROWN © 2005 Herlihy & Shavit

89

Remove method

lock previous

red = this.head;
red.lock();

BROWN

© 2005 Herlihy & Shavit

=

L

o

90

LD

oy

Remove method

Lock current

urr = pred.next;
urr.lock();

BROWN © 2005 Herlihy & Shavit

91

BROWN

Remove method

Traversing list

L

%:}

© 2005 Herlihy & Shavit

92

Remove: searching

while (curr.key <= key) {
if (object == curr.object) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;

curr = curr.next;
curr.lock();

}

return false;

=
=

BROWN © 2005 Herlihy & Shavit 93

Remove: searching
Evhile (curr.key <= key) { _J

\
Search key range

nt
N
gk
N R
RN Y TN
H DN
.

BROWN © 2005 Herlihy & Shavit 94

oy

Remove: searching

Evhile (curr.key <= key)

At start of each loop: curr
and predy locked

%]}I

BROWN

i © 2005 Herlihy & Shavit me—

Remove: searching

. i Y
(object == curr.object) {
pred.next = curr.next;
eturn true; B

_If entry found, remove it

a2
BROWN © 2005 Herlihy & Shavit

Remove: searching

. i N
(object == curr.object) {
pred.next = curr.next;
eturn true; /

_If entry found, remove it

a2
BROWN © 2005 Herlihy & Shavit

oy

Remove: searching

Unlock predecessor

Ered.unlock();

s

L

BROWN © 2005 Herlihy & Shavit

98

oy

Remove: searching
Only one entry locked!

@red.unlock();

s

L

BROWN © 2005 Herlihy & Shavit

99

Remove: searching

demote current

pred=curr; | =TT

BROWN © 2005 Herlihy & Shavit 100

Remove: searching

Find and lock new current

urr = curr.next;
urr.lock();

S
A

BROWN © 2005 Herlihy & Shavit 101

Remove: searching

Lock invariant restored

urr = curr.next;
urr.lock();

TR
—a

BROWN © 2005 Herlihy & Shavit 102

Remove: searching

Otherwise, not present

[return false;

=Gy

BROWN © 2005 Herlihy & Shavit 103

Why does this work?

- To remove entry e
- Must lock e
- Must lock e's predecessor

* Therefore, if you lock an entry
- It can't be removed
- And neither can its successor

I

BROWN © 2005 Herlihy & Shavit 104

First Invariant

- Different threads have different
pred values

-+ If A 2B, and pred, znull
- Then pred, pred,

LD

BROWN © 2005 Herlihy & Shavit 105

1st Tnvariant

-+ If A 2B, and pred, znull
- Then pred, z pred,
* Holds initially
* Must show it is preserved

LD

BROWN © 2005 Herlihy & Shavit 106

Claim

+ If pred, z null then A holds lock

- True at start when pred, is head
—curr, locked before assigned to pred,
- Other statements don't change pred,

I

BROWN © 2005 Herlihy & Shavit 107

1st Tnvariant

- If pred, znul
- then A holds

- If pred, znul
- then B holds

ock

ock

- Must be distinct

LD

oy

BROWN © 2005 Herlihy & Shavit

108

2" Tnvariant

- Threads never traverse deleted
entries

- If pred, # null
- Then head = pred, = tail

I

BROWN © 2005 Herlihy & Shavit 109

2" Tnvariant

» True initially

* A holds lock for pred, throughout
traversal

- No other thread can remove it
- So head = pred, is invariant.

» Same for pred, = tail

BROWN © 2005 Herlihy & Shavit 110

Why remove() is linearizable

if (object == curr.object) {]

head = pred, — curr,
] . so the object is in the set

BROWN © 2005 Herlihy & Shavit 111

Why remove() is linearizable

If (object == curr.object) {
red.next = curr.next;

urn true:

Entry locked, so no other
= thread can remove it

I

BROWN © 2005 Herlihy & Shavit 112

Why remove() is linearizable

Ered.next = curr.next; |

!

Linearization point

BROWN © 2005 Herlihy & Shavit 113

Why remove() is linearizable

Object not present
Eeturn false;{

BROWN © 2005 Herlihy & Shavit 114

Why remove() is linearizable

pred, — curr,

pred,.key < key
key < curr,.key
Eeturn false;

BROWN © 2005 Herlihy & Shavit 115

Why remove() is linearizable

Linearization point: when

curr, set to entry with higher
key
c@rr = curr.next;

TR
=

BROWN © 2005 Herlihy & Shavit 116

Adding Entries

+ Toadd entry e
- Must lock predecessor
- Must lock successor

- Neither can be deleted

- (Is successor lock actually required?)

I

BROWN © 2005 Herlihy & Shavit 117

Rep Invariant

» Easy to check that

- Tail always reachable from head
- Entries sorted, no duplicates

BROWN © 2005 Herlihy & Shavit 118

Drawbacks

» Better than coarse-grained lock

- Threads can traverse in parallel
» Still not ideal

- Long chain of acquire/release
- Inefficient

I

BROWN © 2005 Herlihy & Shavit 119

Optimistic Synchronization

» Find entries without locking
* Lock entries
* Check that everything is OK

BROWN © 2005 Herlihy & Shavit 120

Invariants

» Invariants no longer hold
- OK to scan deleted elements

* But we establish properties by
- Validation
- After we lock target entries

I

BROWN © 2005 Herlihy & Shavit 121

Key Property

* Fine-grained synchronization
- head = pred, = tail
- Is invariant

» Optimistic synchronization
- Validation checks same property
- After the fact

_ = Must restart if validation fails

BROWN © 2005 Herlihy & Shavit 122

Removing an Entry

[EESAE 'ur.,* 3D

N

refurn ftrue
B,

BROWN © 2005 Herlihy & Shavit 123

What Can Go Wrong?
(g Elp 36D

:‘7/,
Eoe-. '& l%)
124

BROWN © 2005 Herlihy & Shavit

Check that Entry is Still
Accessible

BROWN © 2005 Herlihy & Shavit 125

What Can Go Wrong?

ec
(T3 GG +E3+ED

izl =T
ki
o~}
=
o

© 2005 Herlihy & Shavit i 126

What Can Go Wrong?

BROWN © 2005 Herlihy & Shavit 127

Check that Entries Still
Adjacent

BROWN © 2005 Herlihy & Shavit 128

Correctness

. If
- Entries b and ¢ both locked
- Entry b still accessible
- Entry c still successor to b

- Then
- Neither will be deleted
- OK to delete and return true

LD

BROWN © 2005 Herlihy & Shavit 129

Removing an Absent Entry

TG

qpa-

return false
)

BROWN © 2005 Herlihy & Shavit 130

Correctness

- If
- Entries b and d both locked
- Entry b still accessible
- Entry d still successor to b

* Then

- Neither will be deleted

- No thread can add c after b
= - OK to return false

BROWN © 2005 Herlihy & Shavit 131

1st Tnvariant

+ Different threads have different
pred values if they're locked

- If A #B, and pred, znull and locked
- Then pred, pred,

BROWN © 2005 Herlihy & Shavit 132

2" Tnvariant

* An entry will remain reachable from

pred, as long as it is reachable from
the head

 For all reachable a,
- If pred, # null, pred,.key < a.key
- Then pred, = a

I

BROWN © 2005 Herlihy & Shavit 133

Validation

private boolean
validate(Entry pred,
Entry curry) {

Entry entry = head;

while (entry.key <= pred.key) {
if (entry == pred)
return pred.next == curr;
entry = entry.next;

}

return false;

}

=
=

BROWN © 2005 Herlihy & Shavit

134

Validation

(Enfry pred, j
Entry curr) {

Predecessor &
current entries

BROWN © 2005 Herlihy & Shavit 135

Validation

Entry entry = head;

Start at the
beginning

iy
=

BROWN © 2005 Herlihy & Shavit 136

Validation

While (entry.key <= pred.key) {]

Search range of keys

S
=

BROWN © 2005 Herlihy & Shavit 137

Validation

ﬁ (entry == pred)

Predecessor reachable

iy
=

BROWN © 2005 Herlihy & Shavit 138

Validation

return pred.next == curr;

Is current entry next?

TR
—a

BROWN © 2005 Herlihy & Shavit 139

Validation

Otherwise move on

e@try = entry.next;

S
—a:

BROWN © 2005 Herlihy & Shavit 140

Validation

Predecessor not reachable

return false;

5%
A

BROWN © 2005 Herlihy & Shavit 141

Remove: searching

public boolean remove(Object object) {

int key = object.hashCode();

retry: while (true) {

Entry pred = this.head;

Entry curr = pred.next;

while (curr.key <= key) {

if (object == curr.object)
break;

pred = curr;
curr = curr.next;
} ...

I

BROWN © 2005 Herlihy & Shavit

142

Remove: searching

BROWN

[int key = object.hashCode();]
(I>-(I3»-(I3»(D
Search key
© 2005 Herlihy & Shavit 143

oy

Remove: searching

ketry: while (true) {]

\

Retry on synchronization conflict

BROWN © 2005 Herlihy & Shavit 144

Remove: searching

ntry pred = this.head;
ntry curr = pred.next;

Examine predecessor and current entries

=
=

BROWN © 2005 Herlihy & Shavit 145

Remove: searching

hile (curr.key <= key) {]

Search by key

LD

BROWN © 2005 Herlihy & Shavit 146

Remove: searching

(object == curr.object)

Sfop:&:}f we find object 1’

BROWN © 2005 Herlihy & Shavit 147

Remove: searching

Move along

red = curr;
urr = curr.next;

S
—a:

BROWN © 2005 Herlihy & Shavit 148

On Exit from Loop

+ If object is present
- curr holds object
- pred just before curr

» If object is absent
- curr has first higher key

- pred just before curr

Assuming no synchronization problems

BROWN © 2005 Herlihy & Shavit 149

Remove Method

try {
pred.lock(); curr.lock();

if (validate(pred,curr) {
if (curr.object == object) {
pred.next = curr.next;
return true;
} else {
return false;
11} finally {
pred.unlock();
curr.unlock();

S
2

i

BROWN © 2005 Herlihy & Shavit

150

Remove Method

try {

Always unlock

YYS finally { =
pred.unlock();
curr.unlock();

LD

BROWN © 2005 Herlihy & Shavit 151

Remove Method

try {
dred.lock(); curr.lock();

Lock both entries

LD

BROWN © 2005 Herlihy & Shavit 152

Remove Method

if (validate(pred,curr) {]

Check for synchronization
conflicts

LD

BROWN © 2005 Herlihy & Shavit 153

Remove Method

if (curr.object == object) {
red.next = curr.next;
rue:

Object found,
remove entry

e
=

BROWN © 2005 Herlihy & Shavit 154

Remove Method

Object not found
return false; {

I

BROWN © 2005 Herlihy & Shavit 155

So Far, So Good

* Much less lock acquisition/release
- Performance

- Concurrency

* Problems
- Need to traverse list twice

- contains() method acquires locks
* Most common method call

BROWN © 2005 Herlihy & Shavit

156

Evaluation

» Optimistic works if cost of
- scanning twice without locks <
- Scanning once with locks

+ Drawback
- Contains() acquires locks
- 90% of calls in many apps

I

BROWN © 2005 Herlihy & Shavit 157

Lazy List

* Like optimistic, except
- Scan once
- Contains() never locks ...
+ Key insight
- Removing nodes causes trouble
- Do it "lazily”

I

BROWN © 2005 Herlihy & Shavit 158

Lazy List

* Remove Method
- Scans list (as before)
- Locks predecessor & current (as before)

* Logical delete

- Marks current entry as removed (hew!)

* Physical delete

.. - Redirects predecessor’'s next (as before)
BROWN © 2005 Herlihy & Shavit 159

Lazy List

» All Methods

- Scan through marked entry

- Removing an entry doesn't slow down
other method calls ...

* Must still lock pred and curr entries.

I

BROWN © 2005 Herlihy & Shavit 160

Validation

* No need to rescan list!

* Check that pred is not marked
* Check that curr is not marked

* Check that pred points to curr

BROWN © 2005 Herlihy & Shavit 161

Business as Usual

([Tl 5>kl >[5l

© 2005 Herlihy & Shavit 162

izl =T
e
o}
=
@)
=

Business as Usual

BROWN © 2005 Herlihy & Shavit 163

Business as Usual

(3l el 3>l (el]

© 2005 Herlihy & Shavit 164

izl =T
e
o}
=
@)
=

Business as Usual

BROWN © 2005 Herlihy & Shavit 165

Business as Usual

© 2005 Herlihy & Shavit

166

Interference

([Tl 5>kl >[5l

© 2005 Herlihy & Shavit 167

izl =T
e
o}
=
@)
=

Interference

BROWN © 2005 Herlihy & Shavit 168

Interference

BROWN © 2005 Herlihy & Shavit 169

Interference

[[F>la[5l T (el (el]

© 2005 Herlihy & Shavit i 170

izl =T
e
o}
=
@)
=

Validation

[[F>la[5l T (] (el]

© 2005 Herlihy & Shavit i 171

izl =T
e
o}
=
@)
=

Interference

[[F—>lal Tl T (el (el]

© 2005 Herlihy & Shavit i 172

izl =T
e
o}
=
@)
=

Interference

[[F>la[5l T (el (el]

© 2005 Herlihy & Shavit i 173

izl =T
e
o}
=
@)
=

Logical Delete

[[F>lal 5l T (el]

izl =T
ki
o~}
=
o

© 2005 Herlihy & Shavit i 174

Scan Through
(3>C3+EEHE
% '&

BROWN © 2005 Herlihy & Shavit

Physical Deletion

T3~ G4

izl =T
e
o}
=
@)
=

New Abstraction Map

* S(head) =
- { x | there exists entry a such that
* head = a and

* a.object = xand
* a is unmarked

-}

I

BROWN © 2005 Herlihy & Shavit 177

Modified Invariant

+ If A's pred entry is unmarked, then it
IS reachable

» If pred, # null and is not marked
- Then head = pred, = tail

BROWN © 2005 Herlihy & Shavit 178

Invariant

* Holds initially
* Not modified by add() or contains()
 Remove()?

- Marking doesn't violate invariant

* No entry made unreachable

- Physical remove doesn't violate
* Entry made unreachable is already marked

BROWN © 2005 Herlihy & Shavit 179

Modified Invariant

» If pred, # null and is not marked
- Then head = pred, = tail

» Justifies why contains() doesn't need
to lock
- Unmarked reachable entry
- Remains reachable

- Aslong as it remains unmarked

BROWN © 2005 Herlihy & Shavit 180

Validation

private boolean
validate(Entry pred, Entry curr) {
return
Ipred.next.marked &&
Icurr.next.marked &&
pred.next == curr);

}

5%
A

BROWN © 2005 Herlihy & Shavit 181

List Validate Method

Ered.next.marked

Predecessor not
Logically removed

BROWN © 2005 Herlihy & Shavit 182

List Validate Method

!Eurr.next.marked

Current not
Logically removed

BROWN © 2005 Herlihy & Shavit 183

List Validate Method

E'ed.next == Curr);

Predecessor still
Points to current

BROWN © 2005 Herlihy & Shavit 184

Remove

try {
pred.lock(); curr.lock();

if (validate(pred,curr) {
if (curr.key == key) {
curr.marked = true;
pred.next = curr.next;
return true;
} else {
return false;
11} finally {
pred.unlock();
curr.unlock();

i

4=] EIP
et

Remove

@(validate(pred,curr) { |

Validate as before

a=] BTN
e

Remove

Ef (curr.key == key) {

)

N

Key found

4= EIENS
e

Remove

Ejrr.marked = true;

Logical remove

4= EIENS
e

Remove

pEd.next = curr.next;

physical remove

Contains

public boolean contains(Object object) {
int key = object.hashCode();
Entry curr = this.head;
while (curr.key < key) {
curr = curr.next;

}

return curr.key == key && !curr.marked;

I

BROWN © 2005 Herlihy & Shavit

190

Contains

E\try curr = this.head; |

Start at the head

iy
=

BROWN © 2005 Herlihy & Shavit 191

Contains

Ewhile (curr.key < key) { |

Search key range

D
A

BROWN © 2005 Herlihy & Shavit 192

Contains

Eurr = curr.next;

Traverse without locking
(nodes may have been removed)

ESp
A

BROWN © 2005 Herlihy & Shavit 193

Contains

Eeturn curr.key == key && !curr.marked;

N

Present and undeleted?

iy
=

BROWN © 2005 Herlihy & Shavit 194

Evaluation

+ Good:
- Contains method doesn't need to lock
- Uncontended calls don't re-traverse

+ Bad

- Contended calls do re-traverse
- Traffic jam if one thread delays

I

BROWN © 2005 Herlihy & Shavit 195

Traffic Jam

» Any concurrent data structure based
on mutual exclusion has a weakness

- If one thread

- Enters critical section

- And "eats the big muffin” (stops running)
- Cache miss, page fault, descheduled ...

- Software error, ...

esn
=

4 >Everyone elseasingythat lock is stuck!

Lock-Free Data Structures

- No matter what .. @

- Some thread will complete method call
- Even if others halt at malicious times

* Implies that

- You can't use locks (why?)
- Um, that's why they call it lock-free

BROWN © 2005 Herlihy & Shavit 197

Lock-Free zWait-Free

* Wait-free synchronization
- Every method call eventually finishes
- What everyone really wants

* Lock-free synchronization
- Some method call eventually finishes
- What we are usually willing to pay for

- Starvation rare in practice ...

BROWN © 2005 Herlihy & Shavit 198

Lock-Free Lists

* Next logical step

» Eliminate locking entirely

* Use only compareAndSet()
* What could go wrong?

BROWN © 2005 Herlihy & Shavit 199

Adding an Entry

([l]5—kl3—(]]

© 2005 Herlihy & Shavit

izl =T
e
o}
=
@)
=

200

Adding an Entry

[[F—=l]5—kl3—(]]

aEl

© 2005 Herlihy & Shavit

izl =T
e
o}
=
@)
=

201

Adding an Entry

SER R AE AR

© 2005 Herlihy & Shavit

izl =T
S)
o~}
S
o
=

202

Adding an Entry

[[F—=l]5—kl3—(]]

aEl

© 2005 Herlihy & Shavit

izl =T
e
o}
=
@)
=

203

Adding an Entry

[:I:-]—>[E|E}\v bl (]

el

© 2005 Herlihy & Shavit

izl =T
e
o}
=
@)
=

204

Removing an Entry

B YR T
ShdA®
Ooe Q

© 2005 Herlihy & Shavit 205

Look Familiar?

([F>lly &) ([3>6l]

[kl

© 2005 Herlihy & Shavit 206

Problem

* Method updates entry's next field
+ After entry has been removed

BROWN © 2005 Herlihy & Shavit 207

Solution

- Use AtomicMarkableReference
+ Atomically

- Swing reference and
- Update flag

* Remove in two steps
- Set mark bit in next field

.. - Redirect predecessor’s pointer
BROWN © 2005 Herlihy & Shavit 208

Marking a Node

- AtomicMarkableReference class
_Java.util.concurrent.atomic package

r

Reference ——]
address F
\ 1

mark bit

BROWN © 2005 Herlihy & Shavit 209

Extracting Reference & Mark

Public Object get(boolean(]);

LD

BROWN © 2005 Herlihy & Shavit 210

Extracting Reference &
Mark

bject]boolg\n[]

Returns mark at

Returns .
array index Ol

reference

BROWN © 2005 Herlihy & Shavit 211

Extracting Reference Only

public boolean isMarked();

I

BROWN © 2005 Herlihy & Shavit 212

Extracting Reference Only

boolean]

Value of
mark

LD

I
=,

BROWN © 2005 Herlihy & Shavit 213

Changing State

Public boolean compareAndSet(
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark);

I

BROWN © 2005 Herlihy & Shavit 214

Changing State

If this is the current

reference ...
Jbject expected{lﬁ

Id§olean expectedMark,

And this is the
current mark ...

BROWN © 2005 Herlihy & Shavit 215

D

Changing State

..Yhen change to this
new reference ...

|
Object updateRef,]

boolean updatel\%;\l
.. and this new

mark

BROWN © 2005 Herlihy & Shavit 216

Changing State

public boolean attemptMark(
Object expectedRef,
boolean updateMark);

I

BROWN © 2005 Herlihy & Shavit 217

Changing State

bject expectedRef,]

If this is the current
reference ..

I

BROWN © 2005 Herlihy & Shavit 218

Changing State

Hoolean updateMark); |

. then change to
this new mark.

I

BROWN © 2005 Herlihy & Shavit 219

Removing an Entry

© 2005 Herlihy & Shavit

220

Removing an Entry

failed

BROWN © 2005 Herlihy & Shavit 221

Removing an Entry

[I-]—>@:J

[kl

© 2005 Herlihy & Shavit 222

Removing an Entry

L[5~

[kl

© 2005 Herlihy & Shavit

izl =T
e
o}
=
@)
=

]

223

Traversing the List

* Q: what do you do when you find a
“logically” deleted entry in your path?

» A: finish the job.
- CAS the predecessor's next field
- Proceed (repeat as needed)

BROWN © 2005 Herlihy & Shavit 224

Lock-Free Traversal

an

R

BROWN © 2005 Herlihy & Shavit 225

The Find Method

pred,curr,next = find(object);

LD

BROWN © 2005 Herlihy & Shavit 226

The Find Method

Eared,curr,succ

At some instant, - or ..
[I-]—»l! i (13>

pred curr succ

D

BROWN © 2005 Herlihy & Shavit 227

The Find Method

Eored,curr,succ

At some instant, not in list

(]

curr= null
pred succ

S
—a:

BROWN © 2005 Herlihy & Shavit 228

Remove

public boolean remove(Object object) {
while (true) {

pred,curr,succ = find(object);

if (curr == null)

return false;

if ('curr.next.attemptMark(succ,

true))
continue;
pred.next.compareAndSet(curr, succ,
false,false);

return true;

)

BROWN © 2005 Herlihy & Shavit

229

Remove

[while (true) {

Keep trying

S
BROWN © 2005 Herlihy & Shavit 230

Remove

pred,curr,succ = find(object);]

Find neighbors

S
BROWN © 2005 Herlihy & Shavit 231

Remove

f (curr == null)
return false;

She's not there ..

S
BROWN © 2005 Herlihy & Shavit 232

Remove

Try to mark entry as deleted

Icugr.next.attemptMark(succ,
true)

S
BROWN © 2005 Herlihy & Shavit 233

Remove

If it doesn't work, just retry

('curr.next.attemptMark(succ,
true))
continue; .

S
BROWN © 2005 Herlihy & Shavit 234

Remove

If it works, our job is (essentially) done

('curr.next.attemptMark(succ,)
true))
continue; -
\

S
BROWN © 2005 Herlihy & Shavit 235

Remove

~Try to advance reference
(if we don't succeed, someone else did).

s

N
red.next.compareAndSet(curr, succ,

false,false);

return true;

S
BROWN © 2005 Herlihy & Shavit 236

Add

public boolean add(Object object) {
while (true) {

pred,curr,succ= find(object);

if (curr != null)

return false;

Entry entry = new Entry(object);

entry.next = new AMR(succ,false);

if (pred.next.CAS(succ, entry,

false, false))
return true;

H

S
=

BROWN © 2005 Herlihy & Shavit

237

Add

f (curr = null)
return false; |

Object already there.

ESWpD
—_—
[

BROWN © 2005 Herlihy & Shavit 238

Add

P
T3=»(%:B-VI

_

ntry entry = new Entry(object);
ntry.next = new AMR(succ,false);

create new entry

S
=

BROWN © 2005 Herlihy & Shavit 239

Add

~
(1)
y Install new entry
iEpred.next.CAS(succ, entry, :l
false, false))

S
=

BROWN © 2005 Herlihy & Shavit 240

Contains

public boolean contains(Object obj){
while (true) {
prev,curr,succ = find(object);
return (curr != null);
}
}

S
=

BROWN © 2005 Herlihy & Shavit

241

Contains

cunﬁ: null

(3= (T 3-»

~\

53>

J

BROWN

\

B

r

(3>

.

R

Did we find anything?

© 2005 Herlihy & Shavit

242

Find

private Entry,Entry,Entry
find(Object object) {

Entry pred, curr, succ;

boolean[] pmark = new boolean|[1];

boolean[] cmark = new boolean[1];

int key = object.hashCode();

tryAgain: while (true) {

"

=
=

BROWN © 2005 Herlihy & Shavit

243

Find

The entries we seek

Eﬂry pred, curr, succ; |

e
=
T

BROWN ® 2005 Herlihy & Shavit 244

Find

oolean[] pmark = new boolean|[1];
oolean[] cmark = new boolean[1];

Deleted bits for pred

_ and curr
BROWN © 2005 Herlihy & Shavit 245

Find

EyAgain: while (true) { k

If list changes while
traversed, start over

o
A

BROWN © 2005 Herlihy & Shavit 246

Find

EyAgain: while (true) {

Lock-Free because we start over

_only if someone else makes progress
BROWN © 2005 Herlihy & Shavit 247

Find

pred = this.head.getReference();
curr = pred.next.get(pmark);

[—

Start with first two entries

e
=

BROWN © 2005 Herlihy & Shavit 248

Find

Evhile (true) {

Move down the list

ESWpD
—_—
[

BROWN © 2005 Herlihy & Shavit 249

Find

If (curr =
eturn pred, null, succ;

= null)

=
=
[

BROWN
ez

Fell off the end of the list

© 2005 Herlihy & Shavit

250

Find

sE:c = curr.next.get(cmark);

Get ref to successor and
current deleted bit

BROWN © 2005 Herlihy & Shavit 251

Find
Panic if predecessor's next
field changed

1

if|(isChanged(pred.next))
ontinue tryAgain;

e
=

BROWN © 2005 Herlihy & Shavit 252

Find

.t\

E(!cmark[O]) {

If current node is not deleted

S
BROWN © 2005 Herlihy & Shavit 253

Find

eturn pred, curr, succ;

iE:urr.object == object)

Object found

S
BROWN © 2005 Herlihy & Shavit 254

Find

.t\

eEe if (ckey <= key) {
= CUIT;

Keep looking

S
BROWN © 2005 Herlihy & Shavit 255

Find

Not there, give up

} else
return prev, null, curr; ll: D

S
BROWN © 2005 Herlihy & Shavit 256

Find

Eelse {

Current entry is
logically deleted

S
BROWN © 2005 Herlihy & Shavit 257

Find

Try_to redirect predecessor’s
next reference

if (pred.next.compareAndSet(
urr, succ, false, false))

S
BROWN © 2005 Herlihy & Shavit 258

Find

On success, keep going,
on failure, start over

pred.next.compareAndSet(

urr, succ, false, false))

continue;

Ise

ontinue tryAgain; -

S
BROWN © 2005 Herlihy & Shavit 259

Summary

» Coarse-grained locking

* Fine-grained locking

» Optimistic synchronization
* Lock-free synchronization

BROWN © 2005 Herlihy & Shavit 260

LD

ZSI
S

BROWN

Scrat

ch

[3=p(T3>

~

(1

B B
(L

J

© 2005 Herlihy &

Shavit

261

Scratch

S
—a:

BROWN © 2005 Herlihy & Shavit 262

Scratch

r ~
:B-P:Dg-?:[]
9 y

S
—a:

BROWN © 2005 Herlihy & Shavit 263

Scratch

S
—a:

BROWN © 2005 Herlihy & Shavit 264

Scratch

T3=»13=» 8->

S
—a:

BROWN © 2005 Herlihy & Shavit 265

Scratch

T3=»13=» 8->

S
—a:

BROWN © 2005 Herlihy & Shavit 266

Removing an Entry

AL e

BROWN © 2005 Herlihy & Shavit 267

