
1

Adaptive Algorithms for new Parallel
Supports

Bruno Raffin, Jean-Louis Roch, Denis Trystram

 ID Lab, INRIA, France

2

Overview

Today:
• Introduction
• Some Basics on Scheduling Theory
• Multicriteria Mapping/scheduling

Tomorrow:
• Adaptive Algorithms: a Classification
• Work Stealing: basics on Theory and Implementation
• Processors oblivious parallel algorithms
• Anytime Work Stealing

3

The Moais Group

Interactivity

Coupling

Scheduling

Adaptive
Algorithms

Execution
Control

4

New Parallel Supports (Large ones)

 Clusters:
- 72% of top 500 machines
- Trends: more processing units, faster networks (PCI- Express)
- Heterogeneous (CPUs, GPUs, FPGAs)

 Grids:
- Heterogeneous networks
- Heterogeneous administration policies
- Resource Volatility

 Virtual Reality/Visualization Clusters:
- Virtual Reality, Scientific Visualization and Computational Steering
- PC clusters + graphics cards + multiple I/O devices (cameras, 3D trackers, multi-

projector displays)
 Interactive Grids:

- Grid + very high performance networks (optical networks) + high prformance I/O
devices (Ex. Optiputer)

5

New Parallel Supports (small ones)

 Commodity SMPs:
- 8 way PCs equipped with multi-core processors (AMD Hypertransport)

 Multi-core architectures:
- Dual Core processors (Opterons, Itanium, etc.)
- Dual Core graphics processors (and programmable: Shaders)
- Heteregoneous multi-cores (Cells)
- MPSoCs (Multi-Processor Systems-on-Chips)

6

Moais Plateforms
 Icluster 2 :

- 110 dual Itanium 2 processors with Myrinet network
 GrImage (“Grappe” and Image):

- Camera Network
- 54 processors (dual processor cluster)
- Dual gigabits network
- 16 projectors display wall

 Grids:
- Regional: Ciment
- National: Grid5000

• Dedicated to CS experiments
 SMPs:

- 8-way Itanium (Bull novascale)
- 8-way dual-core Opteron + 2 GPUs

 MPSoCs
- Collaborations with ST Microelectronics

7

FlowVR (flowvr.sf.net)
• Dedicated to interactive applications
• Static Macro-dataflow
• Parallel Code coupling

Kaapi (kaapi.gforce.inria.fr)
• Work stealing (SMP and Clusters)
• Dynamics Macro-dataflow
• Fault Tolerance (add/del resources)

Oar (oar.imag.fr)
• Batch scheduler (Clusters and Grids)
• Developed by the Mescal group
• A framework for testing new scheduling algorithms

Moais Softwares

Kaapi

8

Some Basic on Scheduling
Theory

9

Parallel Interactive App.
 Human in the loop
 Parallel machines (cluster) to enable large interactive applications
 Two main performance criteria:

- Frequency (refresh rate)
• Visualization: 30-60 Hz
• Haptic : 1000 Hz

- Latency (makespan for one iteration)
• Object handling: 75 ms

 A classical programming approach: data-flow model
- Application = static graph

• Edges: FIFO connections for data transfert
• Vertices: tasks consuming and producing data
• Source vertices: sample input signal (cameras)
• Sink vertices: output signal (projector)

 One challenge:
Good mapping and scheduling of tasks on processors

10

Video

11

Frequency and Latency
Question

Can we optimize the frequency and latency independently ?

Theorem
For an unbounded number of identical processors, no

communiction cost, any mapping with one task per
processor is optimal for both the latency and frequency.

Idea of Proof
 Frequency: given by the slowest module
 Latency: length of the critical path

12

A Multicriteria Problem
Theorem

If at least one of the following holds:
- Bounded number of processors
- Processors have different speeds
- Communication cost between processors is not nul

then for some applications there exist no mapping that optimize both, the
latency and the frequency.

Proof : We just have to identify three examples.

13

Bounded Number of Proc.

14

Different Processor Speeds

15

Communication Cost

16

Mapping
Solving the multicriteria mapping:

 Optimize one parameter while a bound is set on the other.

How to chose the “best”
Latency/frequency tradeoff:
A user decision.

Preliminary results on a simple example
using simple heuristics

17

Perspectives
Today we are far from being able to compute mappings for real applications

(hundred of tasks)

Other parameters the mapping could take advantage of:
Stateless tasks:

- Duplicate the tasks if idle resources
- Improve frequency but not latency

Parallel Tasks:
- Give the mapping algorithm the ability to decide the number of processors assigned
- Can improve both frequency and latency (if parallelisation efficient)

Tasks implementing level of detail algorithms:
- The task adapt the quality of the result to the execution time it has been allowed to

execute
- Can improve latency and frequency but impair quality (an other cirteria to take into

account?)

Static mapping on an “average work load” but work load vary over time
(2 users bellow the camera network instead of one for instance).

18

Adaptive/Hybrid Algorithms: a
Classification

 What adaptation is ?
 Example 1: List Scheduling
 Example 2:

 Several algorithms to solve a same problem f : algo_f1, algo_f2, … algo_fk
 Each algo_fk is recursive

Adaptation:
choose algo_fj for

each call to f

algo_fi (n, …) {
 ….
 f (n - 1, …) ;
 ….
 f (n / 2, …) ;
 …
}

• Adaptation choice can be based on a variety of parameters: data size,
cache size, number of processors, etc.

Adaptation has an overhead: how to manage it ?

19

Classification (1/2)

 Simple hybrid if bounded number of choices independent on the input size
� [eg parallel/sequential, block size in

Atlas, …]
 Choices are either dynamic or pre-computed based on architecture
properties.

 Baroque hybrid if unbounded number of choices (based on input sizes)
[eg message size for hybrid collective communications,

recursive splitting factors in FFTW]

Choices are dynamic

20

Classification (2/2)

Tuned: Strategic choices are based on static resource properties
 [eg cache size, # processors,…]

[eg ATLAS and GOTO libraries, FFTW, LinBox/FFLAS]
 Adaptive:

 Choices based on input properties or resource availability discovered at run-time
 No machine or memory specific parameter analysis

[eg : idle processors, …]
[eg work stealing]

Oblivious: Control flow depends neither on particular input data values nor static properties of
the resources

[eg cache-oblivious algorithm]

Architecture/input dependent hybrid algorithm

ObliviousTuned Adaptive

21Adaptation in parallel
algorithms

Problem: compute f(a)

Sequential
algorithm

parallel
P=2

parallel
P=100

parallel
P=max

...

Multi-user SMP server GridHeterogeneous network

?Which algorithm
to choose ?

… …

22

Parallelism and efficiency

Difficult in general (coarse grain)

But easy if W∞ small (fine grain)

Wp = W1/p + W∞ [List scheduling, Graham69]

Expensive in general (fine grain)
But small overhead if
 coarse grain

Scheduling
efficient policy

(close to optimal)

control of the policy
(realisation)

Problem : how to adapt the potential parallelism to the resources ?

«Depth »

W∞ = #ops on a critical path
Time on ∞ proc.

∞T
« Work »

W1= #operations
Time on 1 proc.

=> to have T∞ small with coarse grain control

23

Work-stealing (1/2)
«Depth »

W∞ = #ops on critical path

• List scheduling : processors get their work from a centralized list
• Workstealing : distributed and randomized list scheduling

• Each processor manages locally the tasks it creates
• When idle, a processor steals the oldest ready task on a

remote -non idle- victim processor (randomly chosen)

« Work »

W1= #total
 operations
 performed

24

Work-stealing (2/2)
«Depth »

W∞ = #ops on a critical path

(parallel time on ∞ resources)

« Work »

W1= #total
 operations
 performed

• Guarantees :

Πave: Processor average speeds [Bender-Rabin02]

 #success steals ≤ O(pW∞)
[Blumofe 98, Narlikar 01, Bender 02]

Near-optimal adaptive schedule if W∞ <<< W1 (with a good probability)

25

f2

Implementation of Work Stealing

fork f2

f1() { ….

 fork f2 ; …

} steal

f1

P P’

f1

Stack

26

Implementation of Work-stealing

 Goal: Reduce the overheads
 Stealing overheads
 Local task queue management overheads

 Work first principle: scheduling overhead on the steal operations
(only O(pW∞) steals)

 Depth first local computation to save memory
 Compare&Swap atomic operations

 Some work stealing libraries:
Cilk, Charm ++, Satin, Kaapi

27

Experimentation: knary benchmark

SMP Architecture
Origin 3800 (32 procs)

Cilk / Athapascan

Distributed Archi.
iCluster
 Athapascan

59,264
90,1100

30,932
15,616
7,838
Speed-Up#procs

Ts = 2397 s ≈ T1 = 2435

28

Dynamic architecture : non-fixed number of resources, variable speeds
eg: grid, SMP server in multi-users mode,….

 => motivates « processor-oblivious » parallel algorithm that :
 + is independent from the underlying architecture:

no reference to p nor Πi(t) = speed of processor i at time t nor …

 + on a given architecture, has performance guarantees :
behaves as well as an optimal (off-line, non-oblivious) one

Processor-oblivious algorithms

29

Work-stealing and adaptability
• Work-stealing ensures allocation of processors to tasks transparently to the

application with provable performances
• Support to addition of new resources
• Support to resilience of resources and fault-tolerance (crash faults, network, …)

• Checkpoint/restart mechanisms with provable performances [Porch, Kaapi, …]

• “Baroque hybrid” adaptation: there is an -implicit- dynamic choice between two
algorithms

• a sequential (local) algorithm : depth-first (default choice)
• A parallel algorithm : breadth-first
• Choice is performed at runtime, depending on resource idleness

• Well suited to applications where a fine grain parallel algorithm is also a good
sequential algorithm [Cilk]:

• Parallel Divide&Conquer computations
• Tree searching, Branch&X …

-> suited when both sequential and parallel algorithms perform (almost)
 the same number of operations

30

Processor Oblivious Algorithm
Based on the Work-first principle :
Executes always a sequential algorithm to reduce parallelism overhead

⇒ use parallel algorithm only if a processor becomes idle (ie steals)
by extracting parallelism from a sequential computation

Hypothesis : two algorithms :
• - 1 sequential : SeqCompute

- 1 parallel : LastPartComputation : at any time, it is possible to extract parallelism
from the remaining computations of the sequential algorithm

SeqCompute

Extract_parLastPartComputationSeqCompute

31

• Prefix problem :
• input : a0, a1, …, an
• output : π0, π1, …, πn with

• Sequential algorithm :
 for (i= 0 ; i <= n; i++) π[i] = π[i – 1] * a [i] ;

• Fine grain optimal parallel algorithm [Ladner-Fischer]:

 Prefix computation

Critical path W∞ =2. log n

but performs W1 = 2.n ops

 Twice more expensive
 than the sequential …

 a0 a1 a2 a3 a4 … an-1 an

* * **

Prefix of size n/2
 π1 π3 … πn

 π2 π4 … πn-1

** *

 performs
W1 = W∞ = n operations

32

• Lower bound: any parallel prefix algorithm runs on p
processors in time at least:

lower bound : block algorithm + pipeline [Nicolau&al. 1996]

–Question : How to design a generic parallel algorithm,
independent from the architecture, that achieves optimal
performance on any given architecture ?
–> to design a processor oblivious hybrid algorithm where
scheduling suits the number of operations performed to the
architecture

 Prefix computation

33

 - Heterogeneous processors with changing speed [Bender-Rabin02]

=> Πi(t) = instantaneous speed of processor i at time t in #operations per second

 - Average speed per processor for a computation with duration T :

 - Lower bound for the time of prefix computation :

Architecture model

34

Parallel

Sequential

π0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Work-
stealer 1

Main
Seq.

 Work-
stealer 2

P-Oblivious Prefix on 3 proc.

π1

Steal re
quest

35

Parallel

Sequential

P-Oblivious Prefix on 3 proc.

π0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq. π1

 Work-
stealer 2

 a5 a6 a7 a8 a9 a10 a11 a12

α7

π3

Steal re
quest

π2

α6 αi=a5*…*ai

36

Parallel

Sequential
P-Oblivious Prefix on 3 proc.

π0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq. π1

 Work-
stealer 2

 a5 a6 a7 a8

α7

π3 π4π2

α6 αi=a5*…*ai

a9 a10 a11 a12

α8

π4
Preempt

β10 βi=a9*…*ai

α8

α8

37

Parallel

Sequential

P-Oblivious Prefix on 3 proc.

π0 a1 a2 a3 a4 π8

Work-
stealer 1

Main
Seq. π1

 Work-
stealer 2

 a5 a6 a7 a8

α7

π3 π4π2

α6 αi=a5*…*ai

a9 a10 a11 a12

α8π5

β10 βi=a9*…*aiπ9

π6

β11

π8
Preempt β11

β11π8

38

Parallel

Sequential

P-Oblivious Prefix on 3 proc.

π0 a1 a2 a3 a4 π8 π11 a12

Work-
stealer 1

Main
Seq. π1

 Work-
stealer 2

 a5 a6 a7 a8

α7

π3 π4π2

α6 αi=a5*…*ai

a9 a10 a11 a12

α8π5

β10 βi=a9*…*aiπ9

π6

β11

π12

π10

π7

π11π8

39

Parallel

Sequential

P-Oblivious Prefix on 3 proc.

π0 a1 a2 a3 a4 π8 π11 a12

Work-
stealer 1

Main
Seq. π1

 Work-
stealer 2

 a5 a6 a7 a8

α7

π3 π4π2

α6 αi=a5*…*ai

a9 a10 a11 a12

α8π5

β10 βi=a9*…*aiπ9

π6

β11

π12

π10

π7

π11π8

Implicit critical path on the sequential process

40

Analysis of the algorithm
 Execution time

 Sketch of the proof :
Dynamic coupling of two algorithms that complete simultaneously:
 Sequential: (optimal) number of operations S on one processor
 Parallel : minimal time but performs X operations on other processors

- dynamic splitting always possible till finest grain BUT local sequential
• Critical path small (eg : log X)
• Each non constant time task can potentially be splitted (variable speeds)

 Algorithmic scheme ensures Ts = Tp + O(log X)
=> enables to bound the whole number X of operations performed
and the overhead of parallelism = (s+X) - #ops_optimal

Lower bound

41

 Results 1/2

Single-usercontext : processor-oblivious prefix achieves near-optimal performance :
 - close to the lower bound both on 1 proc and on p processors

- Less sensitive to system overhead : even better than the theoretically “optimal” off-line parallel algorithm on p processors :

Optimal off-line on p procs

Oblivious

Prefix sum of 8.106 double on a SMP 8 procs (IA64 1.5GHz/ linux)

Ti
m

e
(s

)

#processors

Pure sequential

Single user context

42

Results 2/2

Multi-user context :
Additional external charge: (9-p) additional external dummy processes are concurrently executed

Processor-oblivious prefix computation is always the fastest
 15% benefit over a parallel algorithm for p processors with off-line schedule,

Multi-user context :
Additional external charge: (9-p) additional external dummy processes are concurrently executed

Processor-oblivious prefix computation is always the fastest
 15% benefit over a parallel algorithm for p processors with off-line schedule,

External charge
 (9-p external processes)

Off-line parallel algorithm for p processors

Oblivious

Prefix sum of 8.106 double on a SMP 8 procs (IA64 1.5GHz/ linux)

Ti
m

e
(s

)

#processors

Multi-user context :

43

Work Stealing: Summary
 Classical work stealing: Adaptive hybrid algorithm

 Implicitly mix a parallel and sequential algorithm
 Efficient if parallel and sequential algorithms perform about the same amount of

operations

 Processor Oblivious
 Explicit mix a parallel and sequential algorithm (may execute different amount of

operations)
 Oblivious: optimal whatever the execution contect is.

Other oblivious parallel algorithms:
Iterated product, gzip / compression, MPEG-4 / H264

44

Anytime Algorithm:
• Can be stopped at any time (with a result)
• Result quality improve has more time is allocated

In Computer graphics anytime algorithms are common:
Level of Detail algorithms (time budget, triangle budget, etc…)
Example: Progressive texture loading, triangle decimation (Google

Earth)

Anytime Work Stealing:
• Use parallelism to get faster, but keep anyway the ability
to stop computations at anytime.
• Work stealing: adapt to input irregularities.

Example: Parallel Octree computation for 3D Modeling

Anytime Work Stealing

45

3D Modeling :
build a 3D model of a scene from a set of calibrated

images

On-line 3D modeling for interactions: 3D modeling from
multiple video streams (30 fps)

Parallel 3D Modeling

…

…

46

A classical recursive anytime 3D modeling algorithm.

Init: 1 grey cube (cover the acquisition space)

Iterate:
while (grey cubes available && time left)

Select a grey cube
Project cube in each image
If inside each silhouette, cube is black
if outside one silhouette, cube is transparent
else split the cube in 8 grey su-cubes

 end

Tree shape depends on input data.

Octree Carving

47

Parallel Octree:
-Work stealing to avoid idle processors (adapt to data irregularities)

-Small critical path, while huge amount of work (eg. W∞ = 8, W1 = 164
000)
-Same amount of work for sequential and parallel algorithms

- Octree need to be “balanced” when stopping:
• Width first stealing
• Width first local computations
• Synchronization barriers locking processors when progressing along
W ∞

Octree Carving

Unbalanced Balanced

48

- 16 core Opteron machine, 64 images
- Sequential: 269 ms, 16 Cores: 24 ms
- 8 cores: about 100 steals (167 000 grey cells)

Results

Efficience

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Efficience

Efficiency

49

Classical Parallel algorithms (MPI-1):
Not well adapted to new supports:

- Resource volatility (grid, large clusters, multi-user
environments)
- Data irregularities (interactive applications)

List Scheduling:
Adaptive algorithm with performance guarantee
But centralized ready task queue

Work Stealing:
Distributed task queues + Random steals

 Efficient if
 W∞ <<< W1 parallel and W1≈ Wsequential

Processor oblivious algorithm:
 When W1very different from Wsequential
 Hybrid a sequential and a parallel algorithm
with a work sealing approach

Conclusion

