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ABSTRACT 
Join patterns provide a higher level concurrent programming 
construct than the explicit use of threads and locks and have 
typically been implemented with special syntax and run-time 
support. This paper presents a strikingly simple design for a small 
number of higher order combinators which can be composed 
together to realize a powerful set of join patterns as a library in 
an existing language. The higher order combinators enjoy a lock 
free implementation that uses software transactional memory 
(STM). This allows joins patterns to be implemented simply as a 
library and provides a transformational semantics for join 
patterns. 

1. INTRODUCTION 
Join patterns provide a way to write concurrent programs that 
provide a programming model which is higher level than the 
direct invocation of threads and the explicit use of locks in a 
specific order. This programming model has at its heart the notion 
of atomically consuming messages from a group of channels and 
then executing some code that can use the consumed message 
values. Join patterns can be used to easily encode related 
concurrency idioms like actors and active objects [1][14] as 
shown by Benton et. al. in [4]. Join patterns typically occur as 
language-level constructs with special syntax along with a 
sophisticated implementation for a state machine which governs 
the atomic consumption of messages. The contribution of this 
paper is to show how join patterns can be modeled using a small 
but powerful collection of higher order combinations which can 
be implemented in a lock free style using software transactional 
memory. The combinators are higher order because they take 
functions (programs) as arguments and return functions (programs 
as result) which glue together the input programs to form a 
resulting composite program which allows us to make a domain 
specific language for join patterns. All of this is achieved as a 
library in an existing language without requiring any special 
syntax or run-time code. The complete implementation appears in 
this paper. 
Join patterns emerged from a desire to find higher level 
concurrency and communication constructs than locks and threads 
for concurrent and distributed programs [13][6]. For example, the 
work of Fournet and Gonthier on join calculus [10][11] provides a 
process calculi which is amenable to direct implementation in a 
distributed setting. Related work on JoCaml [8] and Funnel [20] 
present similar ideas in a functional setting. An adaptation of join-
calculus to an object-oriented setting is found in Comega 

(previously known as Polyphonic C#) [4] and similar extensions 
have also been reported for Java [16]. 
Concurrent programming using join patterns promises to provide 
useful higher level abstractions compared with asynchronous 
message passing programs that directly manipulate ports. Comega 
adds new language features to C# to implement join patterns. 
Adding concurrency features as language extensions has many 
advantages including allowing the compiler to analyze and 
optimize programs and detect problems at compile time. This 
paper presents a method of introducing a flexible collection of 
join operations which are implemented solely as a library. We do 
assume the availability of software transactional memories (STM) 
which may be implemented as syntactic language extensions or 
introduced just as a library. In this paper we use the lazy 
functional programming language Haskell as our host language 
for join patterns implemented in terms of STM because of the 
robust implementation which provides composable memory 
transactions [13] which also exploits the type system to statically 
forbid side effecting operations inside STM. In Haskell the STM 
functionality is made available through a regular library. We 
make extensive use of the composable nature of Haskell's STM 
implementation to help define join pattern elements which also 
possess good compensability properties. Other reasons for using 
Haskell include it support for very lightweight threads which 
allows us to experiment with join pattern programs with vastly 
more threads than is practical using a language in which threads 
are implemented directly with operating system threads. 
The remainder of this paper briefly presents the salient features of 
Comega and STM in Haskell and then goes on to show how join 
patterns can be added as a library using STM. This paper contains 
listings for several complete Comega and Haskell programs and 
the reader is encouraged to compile and execute these programs. 

2. JOIN PATTERNS IN COMEGA 
The polyphonic extensions to C# comprise just two new concepts: 
(i) asynchronous methods which return control to the caller 
immediately and execute the body of the method concurrently; 
and (ii) chords (also known as ‘synchronization patterns’ or ‘join 
patterns’) which are methods whose execution is predicated by 
the prior invocation of some null-bodied asynchronous methods. 

2.1 ASYNCHRONOUS METHODS 
The code below is a complete Comega program that demonstrates 
an asynchronous method. 
 



using System ; 

 

public class MainProgram 

{ public class ArraySummer 

  { public async sumArray (int[] intArray) 

    { int sum = 0 ; 

      foreach (int value in intArray) 

        sum += value ; 

      Console.WriteLine ("Sum  = " + sum) ; 

    } 

  } 

 

  static void Main() 

  { Summer = new ArraySummer () ; 

    Summer.sumArray (new int[] {1, 0, 6, 3, 5}) ; 

    Summer.sumArray (new int[] {3, 1, 4, 1, 2}) ; 

    Console.WriteLine ("Main method done.") ; 

  } 

} 

Comega introduces the async keyword to identify an 
asynchronous method. Calls to an asynchronous method return 
immediately and asynchronous methods do not have a return type 
(they behave as if their return type is void). The sumArray 
asynchronous method captures an array from the caller and its 
body is run concurrently with respect to the caller's context. The 
compiler may choose a variety of schemes for implementing the 
concurrency. For example, a separate thread could be created for 
the body of the asynchronous method or a work item could be 
created for a thread pool or, on a multi-processor or multi-core 
machine, the body may execute in parallel with the calling 
context. The second call to the sumArray does not need to wait 
until the body of the sumArray method finishes executing from 
the first call to sumArray. 
In this program the two calls to the sumArray method of the 
Summer object behave as if the body of sumArray was forked off 
as a separate thread and control returns immediately to the main 
program. When this program is compiled and run it will in general 
write out the results of the two summations and the Main method 
done text in arbitrary orders. The Comega compiler can be 
downloaded from:  http://research.microsoft.com/Comega/ 

2.2 CHORDS 
The code below is a complete Comega program that demonstrates 
how a chord can be used to make a buffer. 
 
using System ; 
public class MainProgram 

{ public class Buffer 

  { public async Put (int value) ; 

    public int Get () & Put(int value) 

    { return value ; }    

  } 

 

 

  static void Main() 

  { buf = new Buffer () ; 

    buf.Put (42) ; 

    buf.Put (66) ; 

    Console.WriteLine (buf.Get() + " " +  

                       buf.Get()) ; 

  } 

} 

 

The & operator groups together methods that form a join pattern in 
Comega. A join pattern that contains only asynchronous methods 
will concurrently execute its body when all of the constituent 
methods have been called. A join pattern may have one (but not 
more) synchronous method which is identified by a return type 
other than async. The body for a synchronous join pattern fires 
when all the constituent methods (including the synchronous 
method) are called. The body is executed in the caller's context 
(thread). The Comega join pattern behaves like a join operation 
over a collection of ports (e.g. in JoCaml) with the methods taking 
on a role similar to ports. The calls to the Put method are similar 
in spirit to performing an asynchronous message send (or post) to 
a port. In this case the port is identified by a method name (i.e. 
Put). Although the asynchronous posts to the Put ‘port’ occur in 
series in the main body the values will arrive in the Put ‘port’ in 
an arbitrary order. Consequently the program shown above will 
have a non-deterministic output writing either “42 66” or “66 
42”. 

3. STM IN CONCURRENT HASKELL 
Software Transactional Memory (STM) is a mechanism for 
coordinating concurrent threads.  We believe that STM offers a 
much higher level of abstraction than the traditional combination 
of locks and condition variables, a claim that this paper should 
substantiate. The material in this section is largely borrowed 
directly from [2]. We briefly review the STM idea, and especially 
its realization in concurrent Haskell; the interested reader should 
consult [9] for much more background and details. 
Concurrent Haskell [21] is an extension to Haskell 98, a pure, 
lazy, functional programming language. It provides explicitly-
forked threads, and abstractions for communicating between 
them.  These constructs naturally involve side effects and so, 
given the lazy evaluation strategy, it is necessary to be able to 
control exactly when they occur.  The big breakthrough came 
from using a mechanism called monads [22] . Here is the key 
idea: a value of type IO a is an “I/O action” that, when 
performed may do some input/output before yielding a value of 
type a.  For example, the functions putChar and getChar have 
types: 
 
putChar :: Char -> IO () 

getChar :: IO Char 

 
That is, putChar takes a Char and delivers an I/O action that, 
when performed, prints the string on the standard output; while 
getChar is an action that, when performed, reads a character 
from the console and delivers it as the result of the action.  A 
complete program must define an I/O action called main; 



executing the program means performing that action. For 
example: 
 
main :: IO () 

main = putChar 'x' 

 
I/O actions can be glued together by a monadic bind combinator. 
This is normally used through some syntactic sugar, allowing a C-
like syntax. Here, for example, is a complete program that reads a 
character and then prints it twice: 
 
main = do { c <- getChar; putChar c; putChar c } 

 
Threads in Haskell communicate by reading and writing 
transactional variables, or TVars.  The operations on TVars are 
as follows: 
 
data TVar a 

newTVar   :: a -> STM (TVar a) 

readTVar  :: TVar a -> STM a 

writeTVar :: TVar a -> a -> STM () 

 

All these operations all make use of the STM monad, which 
supports a carefully-designed set of transactional operations, 
including allocating, reading and writing transactional variables.  
The readTVar and writeTVar operations both return STM 
actions, but Haskell allows us to use the same do {...} syntax 
to compose STM actions as we did for I/O actions. These STM 
actions remain tentative during their execution: in order to expose 
an STM action to the rest of the system, it can be passed to a new 
function atomically, with type 
   
atomically :: STM a -> IO a 

 
It takes a memory transaction, of type STM a, and delivers an I/O 
action that, when performed, runs the transaction atomically with 
respect to all other memory transactions.  For example, one might 
say: 
 
main = do { ...; atomically (getR r 3); ... } 

 
Operationally, atomically takes the tentative updates and actually 
applies them to the TVars involved, thereby making these effects 
visible to other transactions. The atomically function and all of 
the STM-typed operations are built over the software 
transactional memory. This deals with maintaining a per-thread 
transaction log that records the tentative accesses made to TVars.  
When atomically is invoked the STM checks that the logged 
accesses are valid – i.e. no concurrent transaction has committed 
conflicting updates.  If the log is valid then the STM commits it 
atomically to the heap. Otherwise the memory transaction is re-
executed with a fresh log. 

Splitting the world into STM actions and I/O actions provides two 
valuable guarantees: (i) only STM actions and pure computation 
can be performed inside a memory transaction; in particular I/O 
actions cannot; (ii) no STM actions can be performed outside a 
transaction, so the programmer cannot accidentally read or write a 
TVar without the  protection of atomically. Of course, one can 
always write atomically (readTVar v) to read a TVar in a trivial 
transaction, but the call to atomically cannot be omitted. As an 
example, here is a procedure that atomically increments a TVar: 
 
incT :: TVar Int -> IO () 

incT v = atomically (do x <- readTVar v 

      writeTVar v (x+1)) 

 
The implementation guarantees that the body of a call to 
atomically runs atomically with respect to every other thread; for 
example, there is no possibility that another thread can read v 
between the readTVar and writeTVar of incT. 
A transaction can block using retry: 
 

retry :: STM a 

 

The semantics of retry is to abort the current atomic transaction, 
and re-run it after one of the transactional variables has been 
updated.  For example, here is a procedure that decrements a 
TVar, but blocks if the variable is already zero: 
 
decT :: TVar Int -> IO () 

decT v = atomically (do x <- readTVar v  

     when (x == 0)  

                           retry  

            writeTVar v (x-1)) 

 

The when function examines a predicate (here the text to see if x 
is 0) and if it is true it executes a monadic calculation (here 
retry). 
Finally, the orElse function allows two transactions to be tried in 
sequence: (s1 `orElse` s2) is a transaction that first attempts 
s1; if it calls retry, then s2 is tried instead; if that retries as well, 
then the entire call to orElse retries.  For example, this 
procedure will decrement v1 unless v1 is already zero, in which 
case it will decrement v2.  If both are zero, the thread will block: 
 
decPair v1 v1 :: TVar Int -> TVar Int -> IO () 

decPair v1 v2  

  = atomically (decT v1 `orElse` decT v2) 

 
In addition, the STM code needs no modifications at all to be 
robust to exceptions.  The semantics of atomically is that if an 
exception is raised inside the transaction, then no globally visible 
state change whatsoever is made.  



An example of how a concurrent data structure from the Java 
JSR-166 [18] collection can be written using STM in Haskell 
appears in [2]. 

4. IMPLEMENTING JOINS WITH STM 
4.1 TRANSACTED CHANNELS 
To help make join patterns out of the STM mechanism in Haskell 
we shall make use of an existing library which provides 
transacted channels: 
 

data TChan a  

newTChan :: STM (TChan a)  

readTChan :: TChan a -> STM a   

writeTChan :: TChan a -> a -> STM ()  

 

A new transacted channel is created with a call to newTChan. A 
value is read from a channel by readTChan and a value is written 
by writeTChan. These are tentative operations which occur 
inside the STM monad and they have to be part of an STM 
expression which is the subject of a call to atomically in order 
to actually execute and commit. 

4.2 SYNCHRONOUS JOIN PATTERNS 
A first step towards trying to approach a join pattern like feature 
of Comega is to try and capture the notion of a synchronous join 
pattern.  We choose to model the methods in Comega as channels 
in Haskell. We can then model a join pattern by atomically 
reading from multiple channels. This feature can be trivially 
implemented using an STM as shown in the definition of join2 
below. 
 

module Main 

where 

 

import Control.Concurrent 

import Control.Concurrent.STM 

 

join2 :: TChan a -> TChan b -> IO (a, b) 

join2 chanA chanB 

  = atomically (do a <- readTChan chanA 

                   b <- readTChan chanB 

                   return (a, b) 

               ) 

 

taskA :: TChan Int -> TChan Int -> IO () 

taskA chan1 chan2 

  = do (v1, v2) <- join2 chan1 chan2 

       putStrLn ("taskA got: " ++ show (v1, v2)) 

 

main 

  = do chanA <- atomically newTChan 

       chanB <- atomically newTChan 

       atomically (writeTChan chanA 42) 

       atomically (writeTChan chanB 75) 

       taskA chanA chanB 

 
Assuming this program is saved in a file called Join2.hs it can 
be compiled using the commands shown below. The Glasgow 
Haskell compiler can be downloaded from 
http://www.haskell.org/ghc/ 
 
$ ghc --make -fglasgow-exts Join2.hs -o join2.exe 

Chasing modules from: Join2.hs 

Compiling Main             ( Join2.hs, Join2.o ) 

Linking ... 

$ ./join2.exe 

taskA got: (42,75) 

 
In this program the join2 function takes two channels and 
returns a pair of values which have been read from each channel. 
If either or both of the channels are empty then the STM aborts 
and retries. Using this definition of join2 we still do not have a 
full chord yet and we have to piece together the notion of 
synchronizing on the arrival of data on several channels with the 
code to execute when the synchronization fires. This is done in 
the function taskA. 
The implementation of the join mechanism in other languages 
might involve creating a state machine which monitors the arrival 
of messages on several ports and then decides which handler to 
run. The complexity of such an implementation is proportional to 
the number of ports being joined. Exploiting the STM mechanism 
in  Haskell gives a join style synchronization almost for free but 
the cost of this implementation also depends on the size of the 
values beings joined because these values are copied into a 
transaction log. 

4.3 ASYNCHRONOUS JOIN PATTERNS 
In the code above taskA is an example of a synchronous join 
pattern which runs in the context of the caller.  We can also 
program a recurring asynchronous join with a recursive call: 
module Main 

where 

 

import Control.Concurrent 

import Control.Concurrent.STM 

 

join2 :: TChan a -> TChan b -> IO (a, b) 

join2 chanA chanB 

  = atomically (do a <- readTChan chanA 

                   b <- readTChan chanB 

                   return (a, b) 

               ) 

 

asyncJoin2 chan1 chan2 handler 

 = forkIO (asyncJoinLoop2 chan1 chan2 handler) 

 

asyncJoinLoop2 chan1 chan2 handler 

  = do (v1, v2) <- join2 chan1 chan2 



       forkIO (handler v1 v2) 

       asyncJoinLoop2 chan1 chan2 handler 

 

 

 

taskA :: Int -> Int -> IO () 

taskA v1 v2 

  = putStrLn ("taskA got: " ++ show (v1, v2)) 

 

taskB :: Int -> Int -> IO () 

taskB v1 v2 

  = putStrLn ("taskB got: " ++ show (v1, v2)) 

 

main 

  = do chanA <- atomically newTChan 

       chanB <- atomically newTChan 

       chanC <- atomically newTChan 

       atomically (writeTChan chanA 42) 

       atomically (writeTChan chanC 75) 

       atomically (writeTChan chanB 21) 

       atomically (writeTChan chanB 14) 

       asyncJoin2 chanA chanB taskA 

       asyncJoin2 chanB chanC taskB 

       threadDelay 1000 

 
asyncJoin2 here is different from join2 in two important  
respects. First, the intention is that the join should automatically 
re-issue. This is done by recursively calling asyncJoinLoop2. 
Second, this version concurrently executes the body (handler) 
when the join synchronization occurs (this corresponds to the case 
in Comega when a chord only contains asynchronous methods). 
This example spawns off two threads which compete for values 
on a shared channel. 
When either thread captures values from a join pattern it then 
forks off a handler thread to deal with these values and 
immediately starts to compete for more values from the ports it is 
watching. Here is a sample execution of this program: 
 
> ./main 

taskA got: (42,21) 

taskB got: (14,75) 

 

4.4 HIGHER ORDER JOIN COMBINATORS 
Haskell allows the definition of infix symbols which can help to 
make the join patterns much easier to read. This section presents 
some type classes which in conjunction with infix symbols 
provide a convenient syntax for join patterns.  
A synchronous join pattern can be represented using one infix 
operator to identify channels to be joined and another operator to 
apply the handler. The infix operators are declared to be left 
associative and are given binding strengths. The purpose of the & 
combinator is to compose together the elements of a join pattern 
which identify when the join should fire (in this case it identifies 

channels). The purpose of the synchronous >>> combinator is to 
take a join pattern and execute a handler when it fires. The result 
of the handler expression is the result of the join pattern. We use a 
lambda expression to bind names to the results of the join pattern 
although we could also have used a named function. A sample 
join pattern is shown in the definition of the function example. 
 

module Main 

where 

 

import Control.Concurrent 

import Control.Concurrent.STM 

 

infixl 5 & 

infixl 3 >>> 

 

(&) :: TChan a -> TChan b -> STM (a, b) 

(&) chan1 chan2 

  = do a <- readTChan chan1 

       b <- readTChan chan2 

       return (a, b) 

 

(>>>) :: STM a -> (a -> IO b) -> IO b 

(>>>) joinPattern handler 

   = do results <- atomically joinPattern 

        handler results 

 

example chan1 chan2 

  = chan1 & chan2 >>> \ (a, b) -> putStrLn (show 
(a, b)) 

 

main 

  = do chan1 <- atomically newTChan 

       chan2 <- atomically newTChan 

       atomically (writeTChan chan1 14) 

       atomically (writeTChan chan2 "wombat") 

       example chan1 chan2 

 
This program writes “(14, “wombat”)”.  We can define an 
operator for performing replicated asynchronous joins in a similar 
way, as shown below. 
… 

(>!>) :: STM a -> (a -> IO ()) -> IO () 

(>!>) joins cont 

   = do forkIO (asyncJoinLoop joins cont) 

        return () -- discard thread ID 

 

asyncJoinLoop joinPattern handler 

  = do results <- atomically joinPattern 

       forkIO (handler results) 

       asyncJoinLoop joinPattern handler 

 



example chan1 chan2 

  = chan1 & chan2 >!> \ (a, b) -> putStrLn (show 
((a, b))) 

 

main 

  = do chan1 <- atomically newTChan 

       chan2 <- atomically newTChan 

       atomically (writeTChan chan1 14) 

       atomically (writeTChan chan2 "wombat") 

       atomically (writeTChan chan1 45) 

       atomically (writeTChan chan2 "numbat") 

       example chan1 chan2 

       threadDelay 1000 

 

The continuation associated with the joins on chan1 and chan2 is 
run each time the join pattern fires. A sample output is: 
(14,"wombat") 

(45,"numbat") 

The asynchronous pattern >!> runs indefinitely or until the main 
program ends and brings down all the other threads. One could 
write a variant of this join pattern which gets notified when it 
becomes indefinitely blocked (through an exception). This 
exception could be caught and used to terminate 
asyncJoinLoop. We choose to avoid such asynchronous 
finalizers. 
We can use Haskell's multi-parameter type class mechanism to 
overload the definition of & to allow more than two channels to be 
joined. Here we define a type class called Joinable which 
allows us to overload the definition of &. There instances are 
given: one for the case where both arguments are transacted 
channels; one for the case where the second argument is an STM 
expression (resulting from another join pattern); and one for the 
case where the left argument is an STM expression. A fourth 
instance for the case when both arguments are STM expressions 
has been omitted but is straight forward to define. 
… 

class Joinable t1 t2 where 

  (&) :: t1 a -> t2 b -> STM (a, b) 

 

instance Joinable TChan TChan where 

  (&) = join2 

 

instance Joinable TChan STM where 

  (&) = join2b 

 

instance Joinable STM TChan where 

  (&) a b = do (x,y) <- join2b b a 

               return (y, x) 

 

join2b :: TChan a -> STM b -> STM (a, b) 

join2b chan1 stm 

  = do a <- readTChan chan1 

       b <- stm 

       return (a, b) 

 

example chan1 chan2 chan3 

  = chan1 & chan2 & chan3 >>> \ ((a, b), c) -> 
putStrLn (show [a,b,c]) 

 

main 

  = do chan1 <- atomically newTChan 

       chan2 <- atomically newTChan 

       chan3 <- atomically newTChan 

       atomically (writeTChan chan1 14) 

       atomically (writeTChan chan2 75) 

       atomically (writeTChan chan3 11) 

       example chan1 chan2 chan3 

 
One problem with this formulation is that the & operator is not 
associative. The & was defined to be a left-associated infix 
operator which means that different shapes of tuples are returned 
from the join pattern depending on how the join pattern is 
bracketed. For  example: 
example1 chan1 chan2 chan3 

  = (chan1 & chan2) & chan3 >>> \ ((a, b), c) -> 
putStrLn (show [a,b,c]) 

example2 chan1 chan2 chan3 

  = chan1 & (chan2 & chan3) >>> \ (a, (b, c)) -> 
putStrLn (show [a,b,c]) 

It would be much more desirable to have nested applications of 
the & operator return a flat structure. We can address this problem 
in various ways. One approach might be to use type classes again 
to provide overloaded definitions for >>> which fix-up the return 
type to be a flat tuple. This method is brittle because it requires us 
to type in instance declarations that map every nested tuple 
pattern to a flat tuple and we can not type in all of them. Other 
approaches could exploit Haskell's dynamic types or the template 
facility for program splicing to define a meta-program that re-
writes nested tuples to flat tuples. We do not go into the details of 
these technicalities here and for clarity of exposition we stick with 
the nested tuples for the remainder of this paper. 

4.5 JOINS ON LISTS OF CHANNELS 
Joining on a list of channels is easily accomplished by mapping 
the channel reading operation on each element of a list. This is 
demonstrated in the one line definition of joinList below. 
… 

joinList :: [TChan a] -> STM [a] 

joinList = mapM readTChan 

 

example channels chan2 

  = joinList channels & chan2 >>> \ (a, b) -> 
putStrLn (show (a, b)) 

 

main 

  = do chan1 <- atomically newTChan  

       chan2 <- atomically newTChan 

       chan3 <- atomically newTChan 

       atomically (writeTChan chan1 14) 



       atomically (writeTChan chan2 75) 

       atomically (writeTChan chan3 11) 

       example [chan1, chan2] chan3 

 
This program writes out “([14,75],11)”. One can define a join 
over arrays of ports in a similar way. For greater generality one 
could define a type class to introduce a method for mapping a 
type T (TChan a) to the isomorphic type T a by performing 
readTChan operations on each channel. One could also look into 
ways of overloading & to operate directly over lists and arrays but 
applying the joinList function as shown above seems to work 
well and interacts well as an expression in a join pattern. 

4.6 CHOICE 
The biased choice combinator allows the expression of a choice 
between two join patterns. The choice is biased because it will 
always prefer the first join pattern if it can fire. Each alternative is 
represented by a pair which contains a join pattern and the action 
to be executed if the join pattern fires. 
(|+|) :: (STM a, a -> IO c) ->  

         (STM b, b -> IO c) ->  

         IO c 

(|+|) (joina, action1) (joinb, action2) 

  = do io <- atomically  

             (do a <- joina 

                 return (action1 a) 

             `orElse` 

              do b <- joinb 

                 return (action2 b)) 

       io 

Here the orElse combinator is used to help compose alternatives. 
This combinator tries to execute the first join pattern (joina) and 
if it succeeds a value is bound is the variable a and this is used as 
input to the IO action called action1. If the first join pattern can 
not fire the first argument of orElse performs a retry and then 
the second alternative is attempted (using the pattern joinb). 
This will either succeed and the value emitted from the joinb 
pattern is then supplied to action2 or it will fail and the whole 
STM express will perform a retry. 
A fairer choice can be made by using a pseudo-random variable to 
dynamically construct an orElse expression which will either 
bias joina or joinb. Another option is to keep alternating the 
roles of joina and joinb by using a transacted variable to record 
which join pattern should be checked first. 

4.7 DYNAMIC JOINS 
Join patterns in Comega occur as declarations which make them a 
very static construct.  Often one wants to dynamically construct a 
join pattern depending on some information that is only available 
at run-time. This argues for join patterns occurring as expressions 
or statements rather than as declarations. Since in our formulation 
join patterns are just expressions we get dynamic joins for free. 
Here is a simple example: 
 

example numSensors numSensors chan1 chan2 chan3 

  = if numSensors = 2 then 

       chan1 & chan2 >!> \ (a, b)  

         -> putStrLn (show ((a, b))) 

    else 

       chan1 & chan2 & chan3 >!> \ ((a, b), c) 

         -> putStrLn (show ((a, b, c))) 

In this example the value of the variable numSensors is used to 
determine which join pattern is executed. A more elaborate 
example would be a join pattern which used the values read from 
the patter to dynamically construct a new join pattern in the 
handler function. Another example would be a join pattern which 
returns channels which are then used to dynamically construct a 
join pattern in the handler function.  
Statically defined joins enjoy more opportunities for efficient 
compilation and analysis than dynamically constructed joins.  

4.8 CONDITIONAL JOINS 
Sometimes it is desirable to predicate a join pattern to fire only 
when some guard conditions are met or only if the values that 
would be read by the join pattern satisfy a certain criteria. 
We can avoid the complexities of implementing conditional join 
patterns through tricky concurrent programming and language 
extension by once again exploiting the STM library interface in 
Haskell. First we define guards that predicate the consumption of 
a value from a channel. 
(?) :: TChan a -> Bool -> STM a 

(?) chan predicate 

  = if predicate then 

      readTChan chan 

    else 

      retry 

 

example cond chan1 chan2 

  = (chan1 ? cond) & chan2 >>> \ (a, b) -> 
putStrLn (show (a, b)) 

 

The guards expressed by ? can only be boolean expressions and 
one could always have written a dynamically constructed join 
pattern instead of a guard. The implementation exploits the retry 
function in the Haskell STM interface to abort this transacted 
channel read if the predicate is not satisfied.  
A more useful kind of conditional join would want to access some 
shared state about the system to help formulate the condition. 
Shared state for STM programs can only be accessed via the STM 
monad so we can introduce another overloaded version of ? 
which takes a condition in the STM monad: 
(?) :: TChan a -> STM Bool -> STM a 

(?) chan predicate 

  = do cond <- predicate 

       if cond then 

          readTChan chan 

        else 

          retry 

Now the predicate can be supplied with transacted variables 
which can be used to predicate the consumption of a value from a 
channel. These conditions can also update shared state. Several 
guards can try to update the shared state at the same time and the 



STM mechanism will ensure that only consistent updates are 
allowed. 
This definition of ? also allows quite powerful conditional 
expressions to be written which can depend on the values that 
would be read from other channels in the join pattern. The 
condition STM predicate can be supplied with the channels in the 
join pattern or other transacted variables to help form the 
predicate. This allows quite dynamic forms of join e.g. sometimes 
performing a join pattern on channels chan1 and chan2 and 
sometimes performing a  join pattern on channels chan1 and 
chan3 depending on the value read from chan1. 
A special case of the STM predicate version of ? is a conditional 
join that tests to see if the value that would be read satisfies some 
predicate. The code below defines a function ?? which takes such 
a predicate function as one of its arguments. The example shows a 
join pattern which will only fire if the value read on chan1 is 
greater than 3. 
(??) :: TChan a -> (a -> Bool) -> STM a 

(??) chan predicate 

  = do value <- readTChan chan 

       if predicate value then 

          return value 

         else 

           retry 

 

example chan1 chan2 

  = (chan1 ?? \x -> x > 3) & chan2 >>> \ (a, b)  

     -> putStrLn (show (a, b)) 

A conditional join pattern could be implemented in Comega by 
returning a value to a port if it does not satisfy some predicate. If 
several threads read from the same port and then return the values 
they read there is a possibility that the port will end up with 
values returned in a different order. Furthermore, other threads 
can make judgments based on the state of the port after the value 
has been read but before it has been returned. The conditional 
formulations that we present where atomically remove values 
from a port when a predicate is satisfied so they do not suffer 
from such problems. 

4.9 NON-BLOCKING VARIANTS 
Non-blocking variants may be made by composing the blocking 
versions of join patterns using orElse with an alternative that 
returns negative status information. This is demonstrated in the 
definition of nonBlockingJoin below which returns a value 
wrapped in a Maybe type which has constructors Just a for a 
positive result and Nothing for a negative result. 
nonBlockingJoin :: STM a -> STM (Maybe a) 

nonBlockingJoin pattern 

  = (do result <- pattern  

        return (Just result)) 

    `orElse` 

    (return Nothing) 

 

4.10 EXCEPTIONS 
Understanding how exceptions behave in this join pattern  scheme 
amounts to understanding how exceptions behave in the Haskell 

STM interface. Exceptions can be thrown and caught as described 
in [13]. Our encoding of join patterns gives a default backward 
error recovery scheme for the implementation of the join pattern 
firing mechanism because if an error occurs in the handler code 
the transaction is restarted and any consumed values are returned 
to ports from which they were read. The handler code however 
does not execute in the STM monad so it may raise exception. 
This exception will require forward error recovery which may 
involve returning values to channels because this code is executed 
after the transacted consumption of values from channels has 
committed. 

5. RELATED WORK 
A join pattern library for C# called CCR was recently announced 
[7] although the underlying model is quite different what is 
presented here. This model exposes ‘arbiters’ which govern how 
messages are consumed (or returned) to ports. These arbiters are 
the fundamental building blocks which are used to encode a 
variety of communication and synchronization constructs 
including a variant of join patterns. A significant difference is the 
lack of a synchronous join because all handler code for join 
patterns is asynchronously executed on a worker thread. This 
requires the programmer to explicitly code in a continuation 
passing style although the iterator mechanism in C# has been 
exploited by the CCR to effectively get the compiler make the 
continuation passing transform automatically for the user (in the 
style of CLU [17]). 
One could imagine extending Haskell with JoCaml [11] style join 
patterns which are special language feature with special syntax. 
Here is an example of a composite join pattern from the JoCaml 
manual: 
# let def apple! () | pie! ()  

     = print_string "apple pie" ; 

# or  raspberry! () | pie! ()  

     = print_string "raspberry pie" ; 

Three ports are defined: apple, pie and raspberry. The composite 
join pattern defines a synchronization pattern which contains two 
alternatives: one which is eligible to fire when there are values 
available on the ports apple and pie and the other when there are 
values available on raspberry and pie. When there is only one 
message on pie the system makes an internal choice e.g. 
# spawn {apple () | raspberry () | pie ()} 

# ;; 

 

-> raspberry pie 

Alternatively, the system could have equally well responded with 
apple pie. Expressing such patterns using the Haskell STM 
encoding of join patterns seems very similar yet this approach 
does not require special syntax or language extensions. However, 
making join patterns concrete in the language does facilitate 
compiler analysis and optimization. 

6. CONCLUSIONS AND FUTURE WORK 
The main contribution of this paper is the realization in Haskell 
STM of join combinators which model join patterns that already 
exist in other languages. The embedding of Comega style join 
patterns into Haskell by exploiting a library that gives a small but 
powerful interface to an STM mechanism  affords a great deal of 



expressive power. Furthermore, the embedding is implemented 
solely as a library without any need to extend the language and 
modify the compiler. The entire source of the embedding is 
compact enough to appear in several forms in this paper along 
with examples.  
Several reasons conspire to aid the embedding of join patterns as 
we have presented them. The very composable nature of STM in 
Haskell means that we can separately define the behavior of 
elements of join patterns and then compose them together with 
powerful higher order combinators like &, >>>, >!> and ?. STM 
actions can be glued together and executed atomically which 
allows a good separation of concerns between what to do about a 
particular channel and what to do about the interaction between 
all the channels. The behavior of the exception mechanism also 
composes in a very pleasant way. 
The type safety that Haskell provides to ensure that no side-
effecting operations can occur inside an STM operation also 
greatly aids the production of robust programs. The ability to 
define symbolic infix operators and exploit the type class system 
for systematic overloading also help to produce join patterns that 
are concise. We also benefit from representing join patterns as 
expressions rather than as declarations in Comega. 
The STM mechanism proves to be very effective at allowing us to 
describe conditional join patterns. These would be quite 
complicated to define in terms of lower level concurrency 
primitives. We were able to give very short and clear definitions 
of several types of conditional join patterns.  
The ability to perform dynamic joins over composite data 
structures that contain ports (like lists) and conditional joins 
makes this library more expressive than what is currently 
implemented in Comega. Furthermore, in certain situations the 
optimistic concurrency of a STM based implementation may yield 
advantages over a more pessimistic lock-based implementation of 
a finite state machine for join patterns. Another approach for 
realizing join patterns in a lock free manner could involve 
implementing the state machine at the heart of the join machinery 
in languages like Comega using STM rather than explicit locks. 
Even if an STM representation of join patterns is not the first 
choice of an implementer we think that the transformational 
semantics that they provide for join patterns is a useful model for 
the programmer. Many of the join patterns we have shown could 
have been written directly in the STM monad. We think that when 
synchronization is appropriately expressible as a join pattern then 
this is preferable for several reasons including the need for 
intimating the programmer's intent and also giving the compiler 
an opportunity to perhaps compile such join patterns using a more 
specialized mechanism than STM. 
An interesting avenue of future work suggested by one of the 
anonymous reviewers is to consider the reverse experiment i.e. 
use an optimistic implementation of join-calculus primitives in 
conjunction with monitors and condition variables to try and 
implement the Haskell STM mechanism. Our intuition is such an 
approach would be much more complicated to implement. We 
believe the value of the experiment presented in this paper is not 
to do with the design of an efficient join pattern library but rather 
to show that STM may be a viable idiom for capturing various 
domain specific concurrency abstractions. 

Although a Haskell based implementation is not likely to enjoy 
widespread use or adoption we do believe that the model we have 
presented provides a useful workbench for exploring how join 
patterns can be encoded using a library based on higher order 
combinators with a lock free implementation. Higher order 
combinators can be encoded to some extent in conventional 
languages using constructs like delegates in C#. Prototype 
implementations of STM are available for some mainstream 
languages e.g. Join Java [16] and SXM [12] for C#. When 
translating examples from the Haskell STM world into languages 
like C# which rely on heavyweight operating system threads one 
may need to introduce extra machinery like threadpools which are 
not required in Haskell because of its support for a large number 
of lightweight threads. 
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