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Abstract rency. Fine-grain locking algorithms are thus often required, but
these are difficult to design, debug, maintain, and understand.

Ad hoc nonblockingalgorithms [15, 16, 24, 25] solve the se-
mantic problems of locks by ensuring that forward progress is never
precluded by the state of any thread or set of threads. They provide
performance comparable to fine-grain locking, but each such algo-
rithm tends to be a publishable result.

Transactional memory (TM) systems seek to increase scalabil-
ity, reduce programming complexity, and overcome the various se-
mantic problems associated with locks. Software TM proposals run
on stock processors and provide substantial flexibility in policy, but
incur significant overhead for data versioning and validation in the Clearly, what we want is something that combines the semantic
face of conflicting transactions. Hardware TM proposals have the 54y antages of ad hoc nonblocking algorithms with the conceptual
advantage of speed, but are typically highly ambitious, embed sig- gjmpjicity of coarse-grain locks. Transactional memory promises to
nificant amounts of policy in silicon, and provide no cI_ear migration 44 50 Originally proposed by Herlihy and Moss [8], fransactional
path for software that must also run on legacy machines. memory (TM) borrows the notions of atomicity, consistency, and

We advocate an intermediate approach, in which hardware is jsq|ation from database transactions. In a nutshell, the programmer
used to accelerate a TM implementation controlled fundamentally . compiler labels sections of code agmicand relies on the

by software. We present a system, RTM, that embodies this ap-nqerlying system to ensure that their executidmisarizable[7],
proach. It consists of_a novélansactional MESI('_I'I\/_IESI) pro- consistent, and as highly concurrent as possible.
tocol and accompanying TM software. TMESI eliminates the key 506 regarded as impractical, in part because of limits on the
software overheads of data copying, garbage collection, and vali- 5j;6 ang complexity of 1990s caches, TM has in recent years
dation, without introducing any global consensus algorithm in the o664 renewed aftention. Rajwar and Goodman's Transactional
cache coherence protocol (a commit is allqwed to perform using | ook Removal (TLR) [19, 20] speculatively elides acquire and
only a few cycles of completely local operation). The only change gjease operations in traditional lock-based code, allowing critical
to the snooping interface is a “threatened” signal analogous 1o the gecions to execute in parallel so long as their write sets fit in cache
existing “shared” signal. _ and do not overlap. In the event of conflict, all processors but one
_By leaving policy to software, RTM allows us to experiment 4 hack and acquire the lock conservatively. Timestamping is used
with a wide variety of policies for contention management, dead- y, 5 arantee forward progress. Martinez and Torrellas [13] describe
lock and livelock avoidance, data granularity, nesting, and virtual- 5 re|ated mechanism for multithreaded processors that identifies, in

ization. advance, a “safe thread” guaranteed to win all conflicts.
Ananian et al. [1] argue that a TM implementation must sup-
1. Introduction and Background port transactions of arbitrary size and duration. They describe two

, . . . implementations, one of which (LTM) is bounded by the size of
Moore’s Law has h_|t the heat wall. Slmultaneously, the a_blllty to physical memory and the length of the scheduling quantum, the
use growing on-chip real estate to extract more instruction-level ger of which (UTM) is bounded only by the size of virtual mem-
parallelism (ILP) is also reaching its limits. Major microproces- ory. Rajwar et al. [21] describe a reiated mechanism (VTM) that
sor vendors have largely abandoned the search for more aggresygeg hardware tartualizetransactions across both space and time.
sively superscalar uniprocessors, and are instead designing chipgyoore et al. [18] attempt to optimize the common case by making
with large numbers of simpler, more power-efficient cores. The im- 4sactionally-modified overflow data visible to the coherence pro-
plications for software vendors are profound: for 40 years only the 50| immediately, while logging old values for roll-back on abort
most talented programmers have been alqle to write good thread-(LogTM). Hammond et al. [5] propose a particularly ambitious re-
level parallel code; now everyone must do_ It. . thinking of the relationship between the processor and the memory,

Parallel programs have traditionally relied on mutual exclusion . which everythingis a transaction (TCC). However, they require
locks, but these suffer from both semantic and performance prob- heavy-weight global consensus at the time of a commit.
Iems: they are vulnerable to d_eadlock, priority inversion, and ar- While we see great merit in all these proposals, it is not yet
bitrary delays due to preemption. In addition, while coarse-grain cjear 1o us that full-scale hardware TM will provide the most
lock-based algorithms are easy to understand, they limit concur- yractical, cost-effective, or semantically acceptable implementation
of transactions. Specifically, hardware TM proposals suffer from
* Presented at TRANSACT: the First ACM SIGPLAN Workshop on Lan- three key limitations:
guages, Compilers, and Hardware Support for Transactional Computing,
held in conjunction with PLDI, Ottawa, Ontario, Canada, June 2006. 1. They are architecturally ambitious—enough so that commercial

vendors will require very convincing evidence before they are

This work was supported in part by NSF grants CCR-0204344, CNS- willing to make the investment.
0411127, and CNS-0509270; an IBM Faculty Partnership Award; financial ) S o )
and equipment support from Sun Microsystems Laboratories; and financial 2. They embed important policies in silicon—policies whose im-
support from Intel. plications are not yet well understood, and for which current
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evidence suggests that no one static approach may be acceptLogTM, it can accommodate “fast path” execution of dramatically
able. larger transactions with a given size of cache.

TMESI is intended for implementation either at the L1 level of
a CMP with a shared L2 cache, or at the L2 level of an SMP with
write-through L1 caches. We believe that implementations could
also be devised for directory-based machines (this is one topic
of our ongoing work). TMESI could also be used with a variety
of software systems other than RTM. We do not describe such
extensions here.
Section 2 provides more detailed background and motivation for

3. They provide no obvious migration path from current machines
and systems: programs written for a hardware TM system may
not run on legacy machines.

Moir [17] describes a design philosophy for a hybrid transac-
tional memory system in which hardware makes a “best effort” at-
tempt to complete transactions, falling back to software when nec-

essary. The goal of this philosophy is to be able to leverage al- g\ including an introduction to software TM in general, a char-
most any reasonable hardware implementation. Kumar et al. [10] 5 terization of its dominant costs, and an overview of how TMESI

de;\c;\;ibe a Spedﬁﬁ; uar(lj_\;]vare—sloft\évarLeJ r;ybrid th"?t bﬁ?lds on the 44 RTM address them. Section 3 describes TMESI in detalil, in-
software system of Herlihy et al. [6]. Unfortunately, this system cluding its instructions, its states and transitions, and the mecha-

S;i” embft?ds signi:;icant pglicy in Tilicon. It a_zfumes, for example, pism ysed to detect conflicts and abort remote transactions. Sec-
that conflicts are detected as early as possible (pessimistic CONCUMion 4 then describes the RTM software that leverages this hard-

rency control), disallowing either read-write or write-write sharing. 4.6 support. Our choice of concrete policies reflects experimen-
Previous published papers [11, 22] reveal performance d'ﬁerencestation with several software TM systems, and incorporates several

acrosi applications of 2X — 10) each d|rect|%n‘or different ap- orms of dynamic adaptation to the offered workload. We conclude
proaches to contention management, metadata organization, ang, section 5 with a summary of contributions, a brief description of

eagerness of conflict detection (i.e., write-write sharing). Itis clear - gjm jation infrastructure (currently nearing completion), and a
that no one knows the "right” way to do these things; it is likely list of topics for future resear((:h Y 9 P )

that there is no one right way.

We propose that hardware serve simply to optimize the perfor- -
mance of transactions that are controlled fundamentally by soft- 2. RTM Overview
ware. This allows us, in almost all cases, to cleanly separate policy Software TM systems display a wide variety of policy and imple-
and mechanism. The former is the province of software, allowing mentation choices. Our RSTM system [12] draws on experience
flexible policy choice; the latter is supported by hardware in cases with several of these in an attempt to eliminate as much software
where we can identify an opportunity for significant performance overhead as possible, and to identify and characterize what re-

improvement. mains. RTM is, in essence, a derivative of RSTM that uses hard-
We present a system, RTM, that embodies this software-centric ware support to reduce those remaining costs. A transaction that
hybrid strategy. RTM comprises Bransactional MESKTMESI) makes full use of the hardware support is calldthedware trans-

coherence protocol and a modified version of our RSTM software action A transaction that has abandoned that support (due to over-
TM [12]. TMESI extends traditional snooping coherence with a flow or policy decisions made by the contention manager) is called
“threatened” signal analogous to the existing “shared” signal, and a software transaction
with several new instructions and cache states. One new set of states .
allows transactional data to be hidden from the standard coherence?-1 Programming Model
protocol, until such time as software permits it to be seen. A second Like most (though not all) STM systems, RTM d@bject-based
set allows metadata to be tagged in such a way that invalidation updates are made, and conflicts arbitrated, at the granularity of
forces an immediate abort. language-level objectsOnly those objects explicitly identified as
In contrast to most software TM systems, RTM eliminates, in shared are protected by the TM systerShared objects can-
the common case, the key overheads of data copying, garbage colnot be accessed simultaneously in both transactional and non-
lection, and consistency validation. In contrast to pure hardware transactional mode. Other data (local variables, debugging and
proposals, it requires no global consensus algorithm in the cachelogging information, etc.) can be accessed within transactions, but
coherence protocol, no snapshotting of processor state, and meswiill not be rolled back on abort.
sage traffic comparable to that of a regular MESI coherence pro-  Before aShared object can be used within a transaction, it
tocol. Nonspeculative loads and stores are permitted in the middle must beopenedfor read-only or read-write access. RTM enforces
of transactions—in fact they constitute the hook that allows us to this rule using C++ templates and inheritance, but a functionally
implement policy in software. Among other things, we rely on soft- equivalent interface could be defined through convention in C. The
ware to determine the structure of metadata, the granularity of con- open_R0 method returns a pointer to the current version of an ob-
currency and sharing (e.g., word vs. object-based), and the degregect, and performs bookkeeping operations that allow the TM sys-
to which conflicting transactions are permitted to proceed specu- tem to detect conflicts with future writers. Thgen_RW method,
latively in parallel. (We permit, but do not require, read-write and when executed by a software transaction, creates a hew copy, or
write-write sharing, with delayed detection of conflicts.) Finally, clone of the object, and returns a pointer to that clone, allowing
we employ a softwareontention manag€g@2, 23] to arbitrate con-  other transactions to continue to use the old copy. As in software
flicts and determine the order of commits. TM systems, a transaction commits with a single compare-and-
Because conflicts are handled in software, speculatively writ- swap (CAS) instruction, after which any clones it has created are
ten data can be made visible at commit time with only a few cy- immediately visible to other transactions. (Like UTM and LogTM,
cles of entirely local execution. Moreover, these data (and a small software and hybrid TM systems employ what Moore et al. refer
amount of nonspeculative metadata) altehat must remaininthe  to aseager version managemefd8].) If a transaction aborts, its

cache for fast-path execution: data that were speculatrealgf or clones are discarded. RTM currently supports nested transactions
nonspeculativelywritten can safely be evicted at any time. Like  only via subsumption in the parent.
the proposals of Moir and of Kumar et al., RTM falls back to a Figure 1 contains an example of C++ RTM code to insert an

software-only implementation of transactions in the event of over- element in a singly-linked sorted list of integers. The API is in-
flow (or at the discretion of the contention manager), but in contrast
not only to the hybrid proposals, but also to TLR, LTM, VTM, and  1We do require that each object reside in its own set of cache lines.
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void intset::insert(int val) { 4.5

BEGIN_TRANSACTION; 4 “—F AsST™
“A—/ RSTM

~>——=> Coarse-grained Locks

const nodex previous = head->open_ROQ) ;
// points to sentinel node
const node* current = previous->next->open_R0O();
// points to first real node
while (current != NULL) {
if (current->val >= val) break;
previous = current;
current = current->next->open_ROQ); 05

Micro—seconds/Txn
N
[9,]
I

}
if (!'current || current->val > val) { 0 5 10 15 20 25 30
node *n = new node(val, current->shared()); Threads
// uses Object<T>::operator new - - .
previous->open_RW()->next = new Shared<node>(n); Figure 2. Performance scaling of RSTM, ASTM, and coarse-grain
} locking on a hash table microbenchmark.
END_TRANSACTION;
}

Figure 1. Insertion in a sorted linked list using RTM. 100

80 Validation

Memory Management
60 Metadata Management
B Useful Work

herited from our RSTM system [12], which runs on legacy hard-
ware (space limitations preclude a full presentation here). The
rtm: :Shared<T> template class provides an opaque wrapper
around transactional objects. Several crucial methods, including
operator new, are provided byttm: : Object<T>, from whichT 20
must be derived. Within a transaction, brackete@b§IN_TRANS- |
ACTION and END_TRANSACTION macros, theopen_RO() and LinkedList Hash RBTree- RBTree- Counter

open_RW() methods can be used to obtatenst T* and T* Small - Large

pointers respectively. Thehared () method performs the inverse Benchmark

operation, returning a pointer to tl$&ared<T> with which this Figure 3. Cost breakdown for RSTM on a single processor, for
is associated. Our code traverses the list from the head, opening obs;e gifferent microbenchmarks. '

jects in read-only mode, until it finds the proper place to insert the

element. It then re-opens the object wheset pointer it needs

to modify in read-write mode. To make such upgrades convenient, management algorithms simple enough (and static enough) to be

Execution Time %

Object<T>: :open_RW returnsshared () ->open_RW(). implemented in hardware on a cache miss.

) Work by Marathe et al. [11] suggests that TM systems should
2.2 Software Implementation choose between eager and lazy conflict detection based on the
The two principal metadata structures in RTM are titamsaction characteristics of the application, in order to obtain the best per-
descriptorand theobject headerThe descriptor contains an indi-  formance (we employ their adaptive heuristics). Likewise, work
cation of whether the transactionastive committed or aborted by Scherer et al. [22, 23] suggests that the preferred contention

The header contains a pointer to the descriptor of the most recentmanagement policy is also application-dependent, and may alter
transaction to modify the object, together with pointers to old and Program run time by as much as an order of magnitude. In both
new clones of the data. If the most recent writer committed in soft- these dimensions, RTM provides significantly greater flexibility
ware, the new clone is valid; otherwise the old clone is valid. than pure hardware TM proposals.

Before it can commit, a transacti@hmustacquirethe headers
of any objects it wishes to modify, by making them point at its
descriptor. By using a CAS instruction to change the status word in Figure 2 compares the performance of RSTM (the all-software
the descriptor fronactiveto committe¢ a transaction can then, in  system from which RTM is derived) to that of coarse-grain locking
effect, make all its updates valid in one atomic step. Prior to doing on a hash-table microbenchmark as we vary the number of threads
so, it must also verify that all the object clones it has been reading from 1 to 32 on a 16-processor 1.2GHz SunFire 6800. Also shown
are still valid. is the performance (in Java) of ASTM, previously reported [11] to

Acquisition is the hook that allows RTM to detect conflicts match the faster of Sun’s DSTM [6] and the Cambridge OSTM [3]
between transactions. If a writ& discovers that a header it wishes  across a variety of benchmarks. Each thread in the microbenchmark
to acquire is already “owned” by some other, still active, wriger repeatedly inserts, removes, or searches for (one third probability
R consults a softwareontention manageto determine whetherto  of each) a random element in the table. There are 256 buckets, and

2.3 Dominant Costs

abortS and steal the object, wait a bit in the hope tBawill finish, all values are taken from the range 0-255, leading to a steady-state
or abort R and retry later. Similarly, if any object opened B/ average of 0.5 elements per bucket.

(for read or write) has subsequently been modified by an already-  Unsurprisingly, coarse-grain locking does not scale. Increased
committed transaction, thelR must abort. contention and occasional preemption cause the average time per

RTM can perform acquisition as early apentime or as late transaction to climb with the number of threads. On a single proces-
as just before commit. The former is know @ageracquire, the sor, however, locking is an order of magnitude faster than ASTM,
latter aslazy acquire. Most hardware TM systems perform the and more than 8 faster than RSTM. We need about 4 active
equivalent of acquisition by requesting exclusive ownership of a threads in this program before software TM appears attractive from
cache line. Since this happens as soon as the transaction attempta performance point of view.
to modify the line, these systems are inherently restricteshtger Instrumenting code for the single-processor case, we can appor-
conflict managemertl8]. They are also restricted to contention tion costs as shown in Figure 3, for five different microbenchmarks.
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Four—the hash table of Figure 2, the sorted list whose insert opera-

tion appeared in Figure 1, and two red-black trees—are implemen-
tations of the same abstract set. The fifth represents the extreme
case of a trivial critical section—in this case one that increments a
single integer counter.

In all five microbenchmarks TM overhead dwarfs real execution
time. Because they have significant potential parallelism, however,
both HashTable and RBTree outperform coarse-grain locks given
sufficient numbers of threads. Parallelism is nonexistent in Counter

Instruction Description

SetHandler (H) Indicate address of user-level abort handler

TLoad (A, R) Transactional Load from A into R

TStore (R, A) Transactional Store from R into A

AlLoad (A,R) Load A into R; tag “abort on invalidate”

ARelease (A) UntagALoaded line

CAS-Commit (A, O,N) | End Transaction

Abort Invoked by transaction to abort itself

Wide-CAS (A, O, N, K) | Update K (currently up to 4) adjacent words
atomically

and limited in LinkedList: a transaction that updates a node of the
list aborts any active transactions farther down the list.

Memory management in Figure 3 includes the cost of allo-
cating, initializing, and (eventually) garbage collecting clones.
The total size of objects written by all microbenchmarks other
than RBTree-Large (which uses 4 KByte nodes instead of the 40
byte nodes of RBTree-Small) is very small. As demonstrated by
RBTree-Large, transactions that access a very large object (espe-
cially if they update only a tiny portion of it) will suffer enormous
copying overhead.

In transactions that access many small objee#didation is
the dominant cost. It reflects a subtlety of conflict detection not
mentioned in Section 2.2. Suppose transactidiopens objects
X andY in read-only mode. In between, suppose transacfion
acquires both objects, updates them, and commits. Thatigh
doomed to abort (the version &f has changed), it may temporarily
access the old version of and the new version of. It is not
difficult to construct scenarios in which thisutual inconsistency

2.

Table 1. ISA Extensions for RTM.

transaction commits. Unlike most hardware proposals (but like
TCC), RTM allows data to be speculatively read or even written
when it is also being written by another concurrent transaction.
TCC ensures, in hardware, that only one of the transactions will
commit. RTM relies on software for this purpose.

TMESI also allows selected metadata, buffered in the local
cache, to be tagged in such a way that invalidation will cause
an immediate abort of the current transaction. This mechanism
allows the RTM software to guarantee that a transaction never
works with inconsistent data, without incurring the cost of in-
cremental validation or visible readers (as in software TM),
without requiring global consensus for hardware commit, and
without precluding read-write and write-write speculation.

To facilitate atomic updates to multiword metadata (which

may lead to arbitrary program errors, induced, for example, by would otherwise need to be dynamically aII_ocated, _and accessed
stores or branches employing garbage pointers. (Hardware TM through a one-word pointer), RTM also provides a wide compare-
systems are not vulnerable to this sort of inconsistency, becauseand-swap, which atomically inspects and updates several adjacent

they roll transactions back to the initial processor and memory

snapshot the moment conflicting data becomes visible to the cache

coherence protocol.)

Without a synchronous hardware abort mechanism, RSTM (like
DSTM and ASTM) requiresk to double-check the validity of all
previously opened objects whenever opening something new. For
a transaction that accesses a totalhobbjects, thisincremental
validationimposesO(n?) total overhead.

As an alternative to incremental validation, Herlihy's SXM [4]
and more recent versions of DSTM allow readers to add them-
selves to avisible readerlist in the object header at acquire time.
Writers must abort all readers on the list before acquiring the ob-

locations in memory (all within the same cache line).

A transaction could, in principle, use hardware support for cer-
tain objects and not for others. For the sake of simplicity, our ini-
tial implementation of RTM takes an all-or-nothing approach: a
transaction initially attempts to leverage TMESI support for write
buffering and conflict detection of all of its accessed objects. If it
aborts for any reason, it retries as a software transaction. Aborts
may be caused by conflict with other transactions (detected through
invalidation of tagged metadata), by the loss of buffered state to
overflow or insufficient associativity, or by executing #hbortin-
struction. (The kernel executddort on every context switch.)

ject. Readers ensure consistency by checking the status word in3. TMESI Hardware Details

their transaction descriptor on evaygenoperation. Unfortunately,
the constant overhead of reader list manipulation is fairly high. In
practice, incremental validation is cheaper for small transactions

(as in Counter); visible readers are cheaper for large transactions

with heavy contention; neither clearly wins in the common middle
ground [23]. RSTM supports both options; the results in Figures 2
and 3 were collected using incremental validation.

2.4 Hardware Support

RTM uses hardware support (the TMESI protocol) to address the
memory management and validation overhead of software TM. In
so doing it eliminates the top two components of the overhead bars
shown in Figure 3.

1. TMESI protocol allows transactional data, buffered in the local
cache, to be hidden from the normal coherence protocol. This
buffering allows RTM, in the common case, to avoid allocating

In this section, we discuss the details of hardware acceleration for
common-case transactions, which have bounded time and space
requirements. In order, we consider ISA extensions, the TMESI
protocol itself, and support for conflict detection and immediate
aborts.

3.1

RTM requires eight new hardware instructions, listed in Table 1.

The SetHandleiinstruction indicates the address to which con-
trol should branch in the event of an immediate abort (to be dis-
cussed at greater length in Section 3.3). This instruction could be
executed at the beginning of every transaction, or, with OS kernel
support, on every heavyweight context switch.

The TLoadand TStoreinstructions aréransactionalloads and
stores. All accesses to transactional data are transformed (via com-
piler support) to use these instructions. They move the target line

ISA Extensions

and initializing a new copy of the object in software. Like most to one of fivetransactional state the local cache. Transactional

hardware TM proposals, RTM keeps only the new version of
speculatively modified data in the local cache. The old version
of any given cache line is written through to memory if nec-

states are special in two ways: (1) they are not invalidated by read-
exclusive requests from other processors; (2) if the line has been

the subject of & Store then they do not supply data in response

essary at the time of the first transactional store. The new ver- to read or read-exclusive requests. More detail on state transitions

sion becomes visible to the coherence protocol when and if the

appears in Section 3.2.
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The ALoad instruction supports immediate aborts of remote and PrTWr, to reflecTLoadandTStoreinstructions, respectively,
transactions. When iacquiresa to-be-written object, RTM per- but these are visible only to the local cache. We also add a “threat-
forms a nontransactional write to the object’'s header. Any reader ened” bus signal (T) analogous to the existing “shared” signal (S).
transaction whose correctness depends on the consistency of thalThe T signal serves to warn a reader transaction of the existence of
object will previously have performed alLoadon the header (at  a potentially conflicting writer. Because the writer's commit will be
the time of theoper). The read-exclusive message caused by the alocal operation, the reader will have no way to know when or if it
nontransactional write then serves as a broadcast notice that immeactually occurs. It must therefore make a conservative assumption
diately aborts all such readers. A similar convention for transaction when it reaches the end of its own transaction (until then the line is
descriptors allows hardware transactions to immediately abort soft- protected by the software TM protocol).
ware transactions even if those software transactions don't have
room for all their object headers in the cache (more on this in 3.2.1 State transitions
Section 3.3). In contrast to most hardware TM proposals, which rigyre 4 contains a state transition diagram for the TMESI protocol.
eagerly abort readers whenever another transaction performs arpe four states on the left comprise the traditional MESI protocol.

conflicting transactional store, TMESI allows RTM to delay ac-  The five states on the right, together with the bridging transitions,
quires when speculative read-write or write-write sharing is desir- comprise the TMESI additions. Cache lines move from a MESI

able [11]. . _ o state to a TMESI state on a transactional read or write. Once a
The AReleasenstruction erases the abort-on-invalidate tag of cache line enters a TMESI state, it stays in the transactional part
the specified cache line. It can be useddarly releasea software of the state space until the current transaction commits or aborts,

optimization that dramatically improves the performance of certain ¢ hich time it reverts to the appropriate MES! state, indicated by
transactions, notably those that search large portions of a datayne second (commit) or third (abort) letters of the transactional state
structure prior to making a local update [6, 11]. It is also used by 3me.
software transactions to release an object header after copying the  The TSS TEE and TMM states behave much like their MESI
object’s data. . . . counterparts. In particular, lines in these states continue to supply
The CAS-Commitinstruction performs the usual function of  gata in response to bus messages. The two key differences are
compare-and-swap. In addition, speculatively read lines (the trans- 1) on a PrTWr we transition taMI; (2) on a BusRdX (bus
actional and abort-on-invalidate lines) are untagged and revert t0reaq exclusive) we transition fll. These two states have special
their corresponding MESI states. If the CAS succeeds, specula-pahayior that serves to support speculative read-write and write-
tively written lines become visible to the coherence protocol and \yyite sharing. SpecificallyTMI indicates that a speculative write
begin responding to coherence messages. If the CAS fails, speculans occurred on the local processhi indicates that a speculative
tively written lines are invalidated, and control transfers to the loca- rjte has occurred on a remote processor, but not on the local
tion registered bysetHandlerThe motivation behin€AS-Commit pProcessor.

is simple: softwgre TM systems inva.ria.bly usea CAS to commit the A TIl line must be dropped on either commit or abort, because
current transaction; we overload this instruction to make buffered 5 remote processor has made speculative changes which, if com-

transactional state once again visible to the coherence protocol.  mitted, would render the local copy stale. No writeback or flush is
The Abortinstruction clears the transactional state in the cache required since the line is not dirty. Even during a transaction, silent

in the same manner as a fail€AS-Commitlts principal use is o gyjction and re-read is not a problem because software ensures that
implement condition synchronization by allowing a transaction t0 q \writer can commit unless it first aborts the readeMil line

abort itself when it discovers that its precondition does not hold. 5 the complementary side of the scenario. On abort it must be
Such a transaction will typically then jump to its abort handler. gropped, because its value was incorrectly speculated. On commit
Abortis also executed by the scheduler on every context switch. it will be the only valid copy: hence the reversionib Software

The Wide-CASinstruction allows a compare-and-swap across st ensure that conflicting writers never both commit, and that if

multiple contiguous locations (within a single cache line). As in 4 conflicting reader and writer both commit, the reader does so first
ltanium’s cmp8xchg16 instruction [9], if the first two words at o the point of view of program semantics. LinesTiMI state
location A match their “old” values, all words are swapped withthe 5qcert the T signal on the bus in response to BusRd messages. The
“new” values (loaded into contiguous registers). Success is deteCtedreading processor then transitionsT rather thariTSSor TEE

by comparing old and new values in the registétéde-CASis Processors executinglétoreinstruction (writing processors) con-

intended for fast update of object headers. tinue to transition torMI; only one of the writers will eventually
commit, resulting in only one of the caches revertingvtcstate.

3.2 TMESI Protocol Lines originally inM or TMM state require a writeback on the first

A central goal of our design has been to maximize software flexi- 1Storeto ensure that memory has the latest non-speculative value.

bility while minimizing hardware complexity. Like most hardware Among hardware TM systems, only TCC and RTM support

TM proposals (but unlike TCC or Herlihy & Moss’s original pro- _read-wr_ite and write-write sharing; all the others_chemes ment_ioned
posal), we use the processor’s cache to buffer a single copy of each” Sections 1 and 2 use eager conflict detection. By allowing a
transactional line, and rely on shared lower levels of the memory readertransac_tlon to commit bfefore ag:_onfhctmg writer acquires the
hierarchy to hold the old values of lines that have been modified contended object, RTM permits significant concurrency between
but not yet committed. Like TCC—but unlike most other hardware é@ders and long-running writers. Write-write sharing is more prob-
systems—we permit mutually inconsistent versions of a line to re- lematic, since only one transaction can usually commit, but may be
side in different caches. Where TCC requires an expensive global desirable in conjunction with early release [11]. Note that nothing
arbiter to resolve these inconsistencies at commit time, we rely on about the TMESI protocakquiresread-write or write-write shar-
software to resolve them at acquire time. The validation portion INg; if the software protocol detects and resolves conflicts eagerly,
of a CAS-Commits a purely local operation (unlike TCC, which  theTIl andTMI states will simply go unused.
broadcasts all written lines) that exposes modified lines to subse- . .
quent coherence traffic. 3.2.2 Abort-on-invalidate

Our protocol requires no bus messages other than those alreadyn addition to the states shown in Figure 4, the TMESI protocol
required for MESI. We add two new processor messages, PrTRdprovidesAM, AE, andASstates. The\ bit is set in response to an
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CAS-Commit P
MESI States
PrTRd/-

PrRd,Prwr/-

PrTWr/Flush
PrTwr/=

/BusRdX

PrTRd/-

PrTRd/BusRd(S,T)

PrTRd/BusRd(S,T

PrTRd/BusRd(T)

ABORT

TMESI States

v
PITRd/H

B

PrTRd,PrTWr,
BusRd,BusRdX/-

BusRdX/Flush’

PrTRd/-
usRd/Flush’

PrTRd,BusRdX/-
BusRd/Flush’

Figure 4. TMESI Protocol. Dashed boxes enclose the MESI and TMESI subsets of the state space. All TMESI lines revert to MESI states in
the wake of &£AS-Commibr Abort Specifically, the 2nd and 3rd letters of a TMESI state name indicate the MESI state to which to revert on
commit or abort, respectively. Notation on transitions is conventional: the part before the slash is the triggering message; after is the ancillary
action. “Flush” indicates that the cache supplies the requested data; “Fludicates it does so iff the base protocol prefers cache—cache
transfers over memory—cache. When specified, S and T indicate signals on the “shared” and “threatened” bus lines; an overbar means “not

signaled”.

ALoad instruction, and cleared in response toAsfReleaseCAS-
Commit or Abortinstruction (each of these requires an additional
processor—cache message not shown in Figure 4). Invalidation or
eviction of anAxline aborts the current transaction.

ALoads serve three related roles in RTM. First, every transac-
tion ALoadks its own transaction descriptor (the word it will even-
tually attempt toCAS-Commjt If any other transaction aborts it
(by CAS-ing its descriptor taborted, the first transaction is guar-
anteed to notice immediately. Second, every hardware transaction
ALoads the headers of objects it reads, so it will abort if a writer
acquires them. Third, a software transactidroads the header of
any object it is copyingAReleasing it immediately afterward), to
ensure the integrity of the copy. Note that a software transaction
never requires more than twid_oaded words at once, and we can
guarantee that these are never evicted from the cache.

3.2.3 State tag encoding

All told, a TMESI cache line can be in any of 12 different states: the
four MESI statesl( S E, M), the five transactional stateBl{, TSS

T A MESI C/A M/l State

0 O 00 — — } |

0 O 11 0 0

0 O 01 — — S

0 O 10 — — E

0 O 11 1

0 O 11 0 M

1 0 00 — — TII

1 0 01 — — TSS

1 0 10 — — TEE

1 0 11 — 0 T™I

1 0 11 — 1 TMM

0 1 01 — — AS

0 1 10 — — AE

0o 1 11 1 —

0 1 11 0 1 AM
T Line is (1)/is not (0) transactional
A Line is (1) /is not (0) abort-on-invalidate
MESI 2 bits: 1 (00), S (01), E (10), or M (11)
CIA Most recent txn committed (1) or aborted (0)
M/ Line is/was in TMM (1) or TMI (0)

TEE TMM, TMI), and the three abort-on-invalidate stat&§ (AE,

Table 2. Tag array encoding. Interpretations of the bits (right) give

AM). For the sake of fast commits and aborts, we encode these inyjse to 15 valid encodings of the 12 TMESI states.

five bits, as shown in Table 2.
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At commit time, if the CAS inCAS-Commisucceeds, we first  Tll, TSS TEE or TMM lines remain in the cache. These can be
broadcast a 1 on the C/A bit line, and use Thieits to conditionally freely evicted and reloaded on demand. Memory always has an up-
enable only the tags of transactional lines. Following this we flash- to-date non-speculative copy of data, which it returns; lines in TMI
clear theA andT bits. ForTSS TMM, Tll, andTEE the flash clear state do not respond to read or write requests from the bus, thereby
alone would suffice, buEMI lines must revert ttéd on commit and allowing readers from both hardware and software transactions to
I on abort. We use th€/A bit to distinguish between these: aline  work with the stable non-speculative copy. When choosing lines
is interpreted as being in stat if its MESI bits are 11 and either  for eviction, the cache preferentially retaifibll andAxlines. If it
C/A or M/l is set. On Aborts we broadcast 0 on the C/A bit line. must evict one of these, it aborts the current transaction, which will

. . . then retry in software. Other hardware schemes buffer both transac-
3.3 Conflict Detection & Immediate Aborts tional reads and writes, exerting much higher pressure on the cache.
Hardware TM systems typically checkpoint processor state at the
beginning of a transaction. As soon as a conflict is noticed, the hard-3.4 Example

ware restarts the losing transaction. Most hardware systems makerigure 5 illustrates the interactions among three simple concurrent
conflicts visible as soon as possible; TCC delays detection until transactions. Only the transactional instructions are shown. Num-
commit time. Software systems, by contrast, require that transac- pers indicate the order in which instructions occur. At the beginning
tions validatetheir status eXp|ICIt|y, and restart themselves if they of each transaction' RTM software executeéSeaHandlernstruc-
have lost a conflict. tion, initializes a transaction descriptor (in software), @idads

The overhead of validation, as we saw in Section 2.3, is one that descriptor. Though thepencalls are not shown explicitly,
of the dominant costs of software TM. RTM avoids this overhead RTM software also executes gl oad on each Object header at

by ALoadng object headers in hardware transactions. When a the time of theopenand before the initial Loador TStore
writer modifies the header, all conflicting readers are aborted by Let us assume that initially objects A and B are invalid in all

Cyatome, iis broaddast happens only at acquire fel the rst | caches: A@ ansacion T1 performs HLoadof object A. RTM
tr)z/ansacti’onal store aIIowinprl)‘IexibIe yolic q 2 software will haveALoaded A's header into T1's cache in state
! 9 policy. AE (since it is the only cached copy) at the time of tipen The

If the procesor is in user mode, delivery of the abort takes the | o¢oronced fine of A is then loaded TEE. When the store happens
form of a spontaneous subroutine call, thereby avoiding kernel-user

crossing overhead. The current program counter is pushed on thdn T2 at @, the line inTEE in T1 sees a BusRdX message and

user stack, and control transfers to the address specified by the mos@rops toTll. The line remains valid, however, and T1 can continue

recentSetHandleiinstruction. If either the stack pointer or the han- 0 use it until T2 acquires 'A (thereby aborting T1) or T1 itself

dler address is invalid, an exception occurs. If the processor is in COMMIts. Regardless of T1's outcome, Thi line must drop to

kernel mode, delivery takes the form of an interrupt vectored in the | to reflect the pOSSIblllty that a transaction threatening that line

usual way. If the processor is executing at interrupt level when an ¢&n subsequently commit.

abort occurs, delivery is deferred until the return from the interrupt. At @ T1 performs aT Storeto object B. RTM loads B's header

Transactions may not be used from within interrupt handlers. Both in stateAE at the time of theopen and B itself is loaded iTMI,

kernel and user programs are allowed to execute hardware transacsince the write is speculative. If T1 commits, the line will revert to

tions, however, so long as those transactions complete before conM, making theTStorés change permanent. If T1 aborts, the line

trol transfers to the other. The operating system is expected to abortwill revert to I, since the speculative value will at that point be

any currently running user-level hardware transaction when trans- invalid.

ferring from an interrupt handler into the top half of the kernel. At @ transaction T3 performs BLoadon object A. Since T2

Interrupts handled entirely in the bottom half (TLB refill, register holds the line inTMI, it asserts the T signal in response to T3's

window overflow) can safely coexist with user-level transactions. BusRd message. This causes T3 to load the lin€lingiving it

User transactions that take longer than a quantum to run will in- access only until it commits or aborts (at which point it loses the

evitably execute in software. With simple statistics gathering, RTM protection of software conflict detection). Prior to fileoad RTM

can detect when this happens repeatedly, and skip the initial hard-software will haveALoaded A's header into T3's cache during the

ware attempt. open causing T2 to assert the S signal and to drop its own copy of
Unfortunately, nothing guarantees that a software transaction the header t&S If T2 acquires A while T3 is active, its BusRdX

will have all of its object headers ifLoackd lines. Moreover soft- on As header will cause an invalidation in T3's cache and thus an

ware validation at the nexdpenoperation cannot ensure consis- immediate abort of T3.

tency: because hardware transactions modify data in place, objects Event@is similar to@, and B is also loaded ill.

are notimmutable, and inconsistency can arise among words of the

same object read at different times. The RTM software therefore  \We now consider the ordering of eve@,@, and@.

makes every software transaction a visible reader, and arranges for

it to ALoadits own transaction descriptor. Writers (whether hard- 1. E1 happens before E2 and E3When T1 acquires B’s header,

ware or software) abort such readers at acquire time, one by one, itinvalidates the line in T3's cache. This causes T3 to abort. T2,

by writing to their descriptors. In a similar vein, a software writer however, can commit. When it retries, T3 will see the new value

ALoads the header of any object it needs to clone, to make sure it ~ of A from T1's commit.

will receive an immediate abort if a hardware transaction modifies )

the object in place during the cloning operatfon. 2. E2 happens before E1 and E3When T2 acquires As header,
Because RTM detects conflicts based on access to object head- it aborts both T1 and T3.

ers only, correctness for hardware transactions does not require that3. E3 happens before E1 and E2Since T3 is only a reader of

2 An immediate abort is not strictly necessary if the cloning operation is OpJeCtS’ and h".’ls .TOtl been |n\_/al!;jate(:] by writer a(f:quwes, it com-
simply a bit-wise copy; for this it suffices to double-check validity after mits. T2 can similarly commit, if E1 happens before E2, since

finishing the copy. In object-oriented languages, however, the user can ~ T1isareader of A. Thus, the orderig, E1, E2will allow all
provide a class-specificlone method that will work correctly only if the three transactions to commit. TCC would also admit this sce-

object remains internally consistent. nario, but none of the other hardware schemes mentioned in
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Figure 5. Execution of Transactions. Top: interleaving of accesses in three transactions, with lazy acquire. Bottom: Cache tag arrays at
various event points. (OH(x) is used to indicate the header of object x.)

Sections 1 or 2 would do so, because of eager conflict detec- actions currently reading the object. (The need for explicitly visible
tion. RTM enforces consistency with a single BusRdX per ob- software readers, explained in Section 3.3, is the principal policy re-
ject header. In contrast, TCC must broadcast all speculatively striction imposed by RTM. Without such visibility [and immediate

modified lines at commit time. aborts] we see no way to allow software transactions to interoperate
with hardware transactions that may modify objects in place.)
4. RTM Software The least significant bit of the transaction pointer in the ob-

ject header is used to indicate whether the most recent writer was

In the previous section we presented the TMESI hardware, which a hardware or software transaction. If the writer was a software
enables flexible policy making in software. With a few exceptions transaction and it has committed, then the “new” object is current;
related to the interaction of hardware and software transactions, otherwise the “old” object is current (recall that hardware transac-
policy is set entirely in software, with hardware serving simply to tions make updates in place). Writers acquire a header by updating
speed the common case. it atomically with aWide-CASnstruction. To first approximation,

Transactions that overflow hardware due to the size or associa-RTM object headers combine DSTM-styl&/IObjectandLocator
tivity of the cache are executed entirely in software, while ensur- fields [6]3
ing interoperability with concurrent hardware transactions. Soft- Serial numbers allow RTM to avoid dynamic memory manage-
ware transactions are essentiallypoundedn space and time. In - ment for transaction descriptors by reusing them. When starting
the subsections below we first describe the metadata that allowsa new transaction, a thread increments the number in the descrip-
hardware and software transactions to share a common set of ob+tor. When acquiring an object, it sets the number in the header to
jects, thereby combining fast execution in the common case with match. If, atopentime, a transaction finds mismatched numbers in
unbounded space in the general case. We then describe mechanismge object header and the descriptor to which it points, it interprets
used to ensure consistency when handling immediate aborts. Fi-it as if the header had pointed to a matchamgnmitteddescriptor.
nally, we present context-switching support for transactions with On abort, a thread must erase the pointers in any headers it has ac-
unbounded time. quired. As an adaptive performance optimization for read-intensive

4.1 Transactions Unbounded in Space

- . R 3RSTM avoids the need for WCAS by moving much of an object’s meta-
The principal metadata employed by RTM are illustrated in Fig- qata into the data object instance, rather than the header. In particular, it
ure 6. The object header has five main fields: a pointer to the most arranges for the newer data object to point to the older [12]. We keep all

recent writer transaction, a serial number, pointers to one or two metadata in the header in RTM to minimize the needAbsaded cache
clones of the object, and a head pointer for a list of software trans- lines.
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Figure 6. RTM metadata structure. On the left a hardware transaction is in the process of acquiring the object, overwriting the transaction
pointer and serial number fields. On the right a software transaction will also overwrite the New Obiject field. If a software transaction
acquires an object previously owned by a committed software transaction, it overi@ite®bject, New Objegtwith (New Object, Clong

Several software transactions can work concurrently on their own object clones @a@muietime, just as hardware transactions can work
concurrently on copies buffered in their caches.

applications, a reader that finds a pointer tmanmitteddescriptor they were asleep. Toward these ends, RTM requires that the sched-
replaces it with a sentinel value that saves subsequent readers theler be aware of the location of each thread’s transaction descrip-
need to dereference the pointer. tor, and that this descriptor contain, in addition to the information
For hardware transactions, the in-place update of objects andshown in Figure 6, (1) an indication of whether the transaction is
reuse of transaction descriptors eliminate the need for dynamic running in hardware or in software, and (2) for software transac-
memory management within the TM runtime. Software transac- tions, the transaction pointer and serial number of any object cur-
tions, however, must still allocate and deallocate clones and en-rently being cloned.
tries for explicit reader lists. For these purposes RTM employs a  The scheduler performs the following actions.
lightweight, custom storage manager. In a software transaction, ac- 1. To avoid confusing the state of multiple transactions, the sched-
quisition installs a new data object in the “New Object” field, erases uler executes am\bort instruction on every context switch,
the pointer to any data obje€t that was formerly in that field, and thereby clearing both T and A states out of the cache. A soft-
reclaims the space f@. Immediate aborts preclude the use of dan- ware transaction can resume execution when rescheduled. A
gling references. hardware transaction, on the other hand, is aborted. The sched-

uler modifies its state so that it will wake up in its abort handler
4.2 Deferred Aborts when rescheduled.

While aborts must be synchronous to avoid any possible data in- 2. As previously noted, interoperability between hardware and
consistency, there are times when they shaubd occur. Most software transactions requires that a software transagtioad
obviously, they need to be postponed whenever a transaction is its transaction descriptor, so it will notice immediately if
currently executing RTM system code (e.g., memory manage- aborted by another transaction. When resuming a software
ment) that needs to run to completion. Within the RTM library, transaction, the scheduler fd-oads the descriptor.

code that should not be interrupted is bracketed WEBIN_NO_ 3. A software transaction may be aborted while it is asleep. At

%BORT&'E;\%-NUFAB%R? rr:1acro§d T:es%funﬁtlgpm afmsar:QLeJrnren;-. preemption time the scheduler notes whether the transaction’s
iniscent of the preémption avoldance mechanism ot Sy ix [2]: status is currenthactive On wakeup it checks to see if this has

BEGIN_NO_ABORT increments a counter, inspected by the stan- b : 6 )
. ! een changed taborted If so, it modifies the thread’s state so
dard abort handler installed by RTM. If an abort occurs when the that it will wake up in its abort handler.

counter is positive, the handler sets a flag and retufNB, NO_ ] o

ABORT decrements the counter. If it reaches zero and the flag is set, 4- A software transaction mu#tLoadthe header of any object it

it clears the flag and reinvokes the handler. is cloning. On wakeup the scheduler checks to see whether that
Transactions may perform nontransactional operations for log-  object (if any) is still valid (by comparing the current and saved

ging, profiling, debugging, or similar purposes. Occasionally these ~ Sefial numbers and transaction pointers). If not, it arranges for

must be executed to completion (e.g. because they acquire and re- the thread to wake up in its handler. If so, it A&oads the

lease an I/O library lock). For this purpose, RTM maBEsIN_ header.

NO_ABORT andEND_NO_ABORT available to user code. These rules suffice to implement unbounded software transactions

that interoperate correctly with (bounded) hardware transactions.
4.3 Transactions Unbounded in Time

To permit transactions of unbounded duration, RTM must ensure 5. Conclusions and Future Work
that software transactions survive a context switch, and that they beWe have described a transactional memory system, RTM, that uses
aware, on wakeup, of any significant events that transpired while hardware to accelerate transactions managed by a software proto-
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col. RTM is 100% source-compatible with the RSTM software TM
system, providing users with a gentle migration path from legacy

Expanded version available as CRL 92/07, DEC Cambridge Research
Laboratory, Dec. 1992.

machines. We believe this style of hardware/software hybrid con- 9] Intel Corporation. Intel Itanium Architecture Software Developers

stitutes the most promising path forward for transactional program-
ming models.
In contrast to previous transactional hardware protocols, RTM

1. requires only one new bus signal and no hardware consensus
protocol or extra traffic at commit time.

2. requires, for fast path operation, that osfyeculatively written
lines be buffered in the cache.

Manual. Revision 2.2, Jan. 2006.

[10] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid

Transactional Memory. IRroc. of the 11th ACM Symp. on Principles
and Practice of Parallel ProgrammindNew York, NY, Mar. 2006.

[11] V. J. Marathe, W. N. Scherer Ill, and M. L. Scott. Adaptive Software

Transactional Memory. IRroc. of the 19th Intl. Symp. on Distributed
Computing Cracow, Poland, Sept. 2005.

[12] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N.

3. falls back to software on overflow, or at the direction of the
contention manager, thereby accommodating transactions of
effectively unlimited size and duration.

4. allows software transactions to interoperate with ongoing hard-
ware transactions.

Scherer Ill, and M. L. Scott. Lowering the Overhead of Software
Transactional Memory. IACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing
Ottawa, ON, Canada, July 2006. Held in conjunction with PLDI
2006. Expanded version available as TR 893, Dept. of Computer
Science, Univ. of Rochester, Mar. 2006.

5. supports immediate aborts of remote transactions, even if their [13] J. F. Martinez and J. Torrellas. Speculative Synchronization: Applying

transactional state has overflowed the cache.

6. permits read-write and write-write sharing, when desired by the
software protocol.

7. permits “leaking” of information from inside aborted transac-
tions, for logging, profiling, debugging, and similar purposes.

8. performs contention management entirely in software, enabling
the use of adaptive and application-specific protocols.

(15]

We are currently nearing completion of an RTM implementa-
tion using the GEMS SIMICS/SPARC-based simulation infrastruc-

ture [14]. In future work, we plan to explore a variety of topics, [16]

including other styles of RTM software (e.g., word-based); hard-
ware (e.g., directory-based protocols); nested transactions; gradual
fall-back to software, with ongoing use of whatever fits in cache;

context tags for simultaneous transactions in separate hardwargz17]

threads; and realistic real-world applications.
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