
Extending Hardware Transactional Memory to Support
Non-busy Waiting and Non-transactional Actions

Craig Zilles Lee Baugh
Computer Science Department

University of Illinois at Urbana-Champaign

[zilles,leebaugh]@cs.uiuc.edu

ABSTRACT
Transactional Memory (TM) is a compelling alternative to
locks as a general-purpose concurrency control mechanism,
but it is yet unclear whether TM should be implemented as a
software or hardware construct. While hardware approaches
offer higher performance and can be used in conjunction with
legacy languages/code, software approaches are more flexible
and currently offer more functionality. In this paper, we try
to bridge, in part, the functionality gap between software and
hardware TMs by demonstrating how two software TM ideas
can be adapted to work in a hardware TM system. Specif-
ically, we demonstrate: 1) a process to efficiently support
transaction waiting — both intentional waiting and waiting
for a conflicting transaction to complete — by de-scheduling
the transacting thread, and 2) the concept of pausing and
an implementation of compensation to allow non-idempotent
system calls, I/O, and access to high contention data within
a long-running transaction. Both mechanisms can be imple-
mented with minimal extensions to an existing hardware TM
proposal.

1. INTRODUCTION
While the industry-wide shift to multi-core processors pro-

vides an effective way to exploit increasing transistor den-
sity, it introduces a serious programming challenge into the
mainstream; even expert programmers find it difficult to
write reliable, high-performance parallel programs, with much
of this difficulty resulting from the available primitives for
managing concurrency. The problems with locks, presently
the dominant primitive for managing concurrency, are well
documented (e.g., [24]): they don’t compose, they have a
possibility for deadlock, they rely on programmer conven-
tion, and they represent a trade-off between simplicity and
concurrency.

Transactional Memory (TM) [1, 8, 9, 10, 11, ?, 18, 22]
has been identified as a promising alternative approach for
managing concurrency. TM addresses a number of the prob-
lems with locks by providing an efficient implementation of
atomic blocks [15], code regions that must (appear to) not be
interleaved with other execution. Atomic blocks, or trans-
actions as the recent literature calls them, simplify concur-
rent programming because, while the programmer must still
identify critical sections (where shared state is not consis-
tent), they need not be associated with any synchronization
variable. By using an optimistic approach to concurrency
(i.e., speculate independence and rollback on a conflict),
concurrency need only be limited by data dependences, lead-

ing to even better performance than fine-grain locking in
some cases.

Since the introduction of Transactional Memory, devel-
opment of TM systems has gone in two distinct directions.
First, researchers have explored to what degree transactional
memory can be implemented efficiently without hardware
support. In this process, these software transactional mem-
ory (STM) systems have been extended to support addi-
tional software primitives, further increasing the power of
the programming model. Concurrently, research in hard-
ware transactional memory (HTM) has yielded approaches
that avoid exposing hardware implementation details (e.g.,
cache size, associativity) to the programmer, but generally
without extending the programming model.

In this paper, we show that a number of the extensions
developed in the context of STMs can be incorporated into
HTMs, and that doing so can be inexpensive, in that it does
not require significant extensions to existing HTM propos-
als. In this paper, we focus on the Virtual Transactional
Memory (VTM) proposal from Rajwar et al. [22]. We pro-
vide background about VTM in Section 2, discussing its
salient features and how our implementation differs from its
original proposal.

We focus on incorporating two STM features. First, in
Section 3, we show how an HTM can cooperate with a soft-
ware thread scheduler to avoid having transactions busy-
wait for long periods of time. This has two applications: 1)
stalling one transaction while it waits for a conflicting trans-
action to commit, and 2) using transactions to intentionally
wait on multiple variables, much in the manner of the Unix
system call select(). We find that the additional required
hardware support is limited to raising exceptions to transfer
control to software under certain transaction conflicts.

Second, we demonstrate how support for non-transactional
actions can be included within transactions (Section 4). This
too has two main applications: 1) avoiding contention re-
sulting from accessing frequently modified variables within
a long transaction, and 2) performing I/O or system calls in
the middle of transactions. The only required hardware ex-
tension is the ability to pause a transaction without pausing
the thread’s execution, which requires an additional mode
for transactions and two new primitives for pausing and
unpausing. With transactional pause in place, we demon-
strate how a non-idempotent system call, mmap(), can be
supported in a hardware transaction using a software-only
framework for compensating actions.

In Section 5, we discuss concurrent work to extend HTM’s
with more STM-like features before concluding in Section 6.

...

T
T
T
T
F
T
T

F
T

r
r
r
r

r
r

r

&xsw1
&xsw1
&xsw1
&xsw2

&xsw2
&xsw3

&xsw4

0x080000
0x080020
0x080044
0x054010

0x054030
0x031740

0x080100

spec. data
spec. data
spec. data
spec. data

spec. data
spec. data

spec. data

Overflow Count = 4XADT

NonT

BSO

RSO

CAO

BAO

RAL RAO

a) b)

Figure 1: Virtual Transactional Memory. a) transaction read/write sets are stored in a central XADT; b) VTM transaction state
transition diagram.

2. VIRTUAL TRANSACTIONAL MEMORY
While small transactions can be supported by the cache

and coherence protocol, large transactions require spilling
transaction state to memory. In particular, if we want trans-
actions to survive a context switch, we cannot rely on any
structures related with a particular processor, including the
cache, coherence state, or per-processor in-memory data
structures. Rather, the bulk of the transaction state (the
read and write sets) must be held in (virtual) memory where
it can be observed by any potentially conflicting thread.

In VTM, transaction read and write sets are maintained
in a centralized data structure called the transactional ad-
dress data table (XADT) shown in Figure 1a. This data
structure is shared by all of the threads within an address
space; for the sake of performance isolation — the degree
to which the system can prevent the behavior of one ap-
plication from impacting the performance of others [27, 28]
— each virtual address space is allocated its own XADT.
Each entry in the XADT stores the address, control state
(valid, read/write), data, and a pointer to a transactional
status word (XSW). Each transacting thread has its own
XSW, which holds the transaction’s current state. Because
the same XSW is pointed to by all of a transaction’s XADT
entries, a transaction can be logically committed or aborted
with a single update to an XSW.

In VTM, a transaction can be in any of seven states, as
shown in Figure 1b. When a transaction begins, a tran-
sition is made from non-transactional (NonT) to running,
active, local (RAL) where the transaction is held in cache,
and abort/commit can be handled in hardware with a tran-
sition back to NonT. When the transaction’s footprint gets
too large, a transition is made to running, active, overflowed
(RAO). Upon this transition, the transaction must incre-
ment the XADT’s associated overflow count, which signals
to other potentially conflicting threads that they must probe
the XADT. In order to prevent unnecessary searches of the
XADT, VTM provides the transaction filter (XF), a count-
ing Bloom filter that can be checked prior to accessing the
XADT that conservatively indicates when an XADT access
is unnecessary.

From the RAO state, a transaction’s XADT entries may
be marked as committed or aborted via transitions to com-
mitted, active, overflowed (CAO) and aborted, active, over-
flowed (BAO), respectively. When the physical commit/abort
has completed, by removing the related entries from the
XADT, the XSW can be transitioned back to NonT and the
overflow counter decremented. The physical commit/abort

can potentially be performed lazily — handling committed
and aborted XADT entries as they are encountered — and
in parallel with the thread’s further execution (by allocating
the thread a new XSW).

If an interrupt, exception, or trap is encountered, a run-
ning transaction (RAL, RAO) is transitioned to the running,
swapped, overflowed (RSO) state where it no longer adds to
the transaction’s read/write sets. If a transaction is aborted
while it is swapped out, it moves to the aborted, swapped,
overflowed (BSO) state, and the abort is handled when it is
swapped back in (the BAO state).

2.1 Simulated Implementation
Our variant of VTM was implemented through extensions

to the x86 version of the Simics full-system simulator [16]
and the Linux kernel, version 2.4.18. The primary differ-
ence in our implementation from Rajwar et al.’s descrip-
tion [22] is that, like LogTM [18], we use eager versioning:
we allow transaction writes to speculatively update memory
after logging the architected values. The VTM hardware
was emulated by a Simics module that monitored memory
traffic and could be controlled by software through new in-
structions implemented using Simics’ magic instruction, a
nop (xchg %bx,%bx) recognized by the simulator. Although
no performance results are included in this paper, we have
subjected our implementation to torture tests meant to ex-
pose unhandled race conditions, giving us some confidence
that our implementation (and hence this text) addresses the
salient issues.

While VTM could be implemented as an almost entirely
user-mode construct, doing so would rely on the existence of
user-mode exception handling. Because x86 currently does
not have a user-mode exception handling mechanism, our
implementation uses the existing kernel-mode exceptions,
and much of the software stack associated with VTM is im-
plemented as part of the Linux kernel. Also, our VTM im-
plementation uses locks in its implementation (so that it
doesn’t depend on itself), but its critical sections could ex-
ploit a technique like speculative lock elision [21].

In keeping with the spirit of VTM, we wanted to mini-
mally impact the execution of processes that are not using
transaction support. To this end we add only two new reg-
isters that must be set on a context switch, add less than
100 bytes of process state, and add two instructions to the
system call path. All other kernel modifications are only
encountered by transacting processes.

The VTM hardware/software interface is embodied by
two main data structures, shown in Figure 2. The global

typedef struct global_xact_state_s {
int overflow_count;
xadt_entry_t *xadt;
/************* the following fields are software only ************/
int next_transaction_num; // for uniquely numbering LTSSs
spinlock_t gtss_lock; // guards the allocation of GTSS fields
spinlock_t xact_waiter_lock; // guards modification of waiter fields

} global_xact_state_t;

typedef struct local_xact_state_t {
xsw_type_t xsw;
int transaction_num; // for resolving conflicts
x86_reg_chkpt_t *reg_chkpt;
comp_lists_t *comp_lists; // discussed in Section 4
/**** the following are software only fields, described in Section 3 ****/
struct transaction_state_s *waiters;
struct transaction_state_s *waiter_chain_prev;
struct transaction_state_s *waiter_chain_next;
struct task_struct *task_struct;

} local_xact_state_t;

Figure 2: Data structures for the global and local transactional state segments (GTSS and LTSS, respectively).

transaction state segment (GTSS) holds the overflow count,
and a pointer to the XADT. In addition, our kernel allo-
cates additional state for its own use (also discussed below).
The local transaction state segment (LTSS) holds the XSW,
a transaction priority for resolving conflicts, a pointer to
storage for a register checkpoint, and additional fields dis-
cussed in Sections 3 and 4. The kernel allocates one GTSS
per address space (as part of mm struct) and LTSSs on a
per thread (or, in Linux terminology, task) basis. Pointers
to these data structures are written into the two registers
(the GTSR and LTSR, respectively) on a context switch.

To meet our goal of minimally impacting non-transacting
processes, we delay allocation of data structures until they
are required. Specifically, large structures (e.g., the XADT)
and per thread structures (e.g., the LTSS) are allocated on
demand; if a thread tries to execute a transaction begin and
its LTSR holds a NULL, the processor throws an exception
whose handler allocates the LTSS, as well as an XADT if
necessary. The gtss lock is used to prevent a race condition
where multiple threads try to allocate XADTs. The only
structure not allocated on demand is the GTSS, because (in
our implementation) even threads that are not transacting
need to monitor the overflow count field. By allocating the
GTSS at process creation time, we avoid having to notify
other threads (via interprocessor interrupt) that they need
to update their GTSR. Since the GTSS contains only a few
scalars and pointers, it results in a small per-process space
overhead.

For simplicity, all of the small structures (e.g., GTSS,
LTSS) are allocated to pinned memory (i.e., not swapped)
to avoid unnecessary page faults. For performance isolation
reasons, large structures (e.g., the XADT) are allocated in
the process’s virtual memory address space. If executing
an instruction requires access to XADT data not present in
physical memory, the VTM hardware causes the processor
to raise a page fault. After servicing the page fault — we
made no modifications to the page fault handling code —
the operation can be retried.

3. DE-SCHEDULING TRANSACTIONS
While VTM provides support for swapping out threads

without aborting their running transactions (and continu-
ing their execution on another processor), this support was
intended to handle swapping that results from conventional
system activity (e.g., timer interrupts). In this section, we
discuss how the VTM system can coordinate with a software
scheduler to support de-scheduling/re-scheduling processes
based on VTM actions. We present two cases: first, we
demonstrate how a transaction conflict can be resolved by
de-scheduling one thread until the other thread’s transac-
tion either commits or aborts. Second, we show how Har-
ris et al.’s intentional wait primitive retry can be imple-
mented in an HTM like VTM.

3.1 De-scheduling Threads on a Conflict
A conflict does not necessitate aborting a transaction,

an observation made in previous transactional memory sys-
tems [18, 20] and earlier in database research [23]. In partic-
ular, the conflict is asymmetric: when two transactions con-
flict, one of them (which we call T1) already owns the data
(i.e., it belongs to the transaction’s memory footprint) and
the other transaction (T2) is requesting the data for a con-
flicting access, as shown in Figure 3. By detecting conflicts
eagerly (i.e., when they occur rather than at transaction
commit time) we can prevent the conflict from taking place
by stalling transaction T2. For short-lived transactions,
stalling T2 briefly can allow T1 to commit (or abort) at
which point T2 can continue. If T1 does not commit/abort
quickly, we need to resolve the conflict. This conflict can be
resolved in many ways (e.g., [12]). If T2 is selected as the
“winner,” then T1 must be aborted to allow T2 to proceed.
In contrast, if T1 “wins,” T2 can either be aborted or fur-
ther stalled, provided the conflict resolution is repeatable so
as to avoid deadlock.

If T1 is a long running transaction, T2 may be stalled for
a significant time, unnecessarily occupying a processor core.
This situation corresponds to the case in a conventionally
synchronized critical section where a lock is spinning for a
long time. In this section, we demonstrate how our system
can be extended to allow such stalled transactions to be
de-scheduled until T1 commits/aborts, in much the same
way that a down on a unavailable semaphore de-schedules a

access type
T1 T2 conflictaccesses D

(successfully)

X
tim

e

T1 T2

tries to
access D

read read no
read write yes
write read yes
write write yesconflict!

Figure 3: The asymmetric nature of transaction conflicts. Transaction T1 added the data item D to its memory footprint, then
transaction T2 tried to access that data in a conflicting way.

waiters
w_prev
w_next
task

waiters
w_prev
w_next
task

waiters
w_prev
w_next
task

T1 LTSS T2 LTSS T3 LTSS

RUNNING

T1 task_struct

BLOCKED

T2 task_struct

BLOCKED

T3 task_struct

Figure 4: The responsibility for waking up de-scheduled processes is maintained by linking the LTSSs. Shaded fields
represent NULL pointers. Each LTSS includes a pointer to the task struct for waking the thread.

thread. In the description that follows, we describe an oper-
ating system-based implementation that uses the traditional
x86 exception model. The same approach could be imple-
mented completely in user-mode, with a user-mode thread
scheduler and user-mode exceptions [25].

In order to de-schedule a thread on a transaction conflict,
we need to communicate a microarchitectural event up to
the operating system. We implement this communication
by having T2 raise an xact wait exception, whose handler
marks T2 as not available for scheduling and calls the sched-
uler. The only challenging aspect of the implementation is
ensuring that T2 is woken up when T1 commits or aborts.

For T1 to perform such a wakeup, it needs to know two
things: 1) that such a wakeup is required, and 2) who to
wake up. The first requirement is achieved by setting a bit
(XSW EXCEPT) in T1’s XSW to indicate that a xact completion

exception should be raised when the transaction commits or
aborts. The second requirement is achieved by building a
(doubly-) linked list of waiters; we use the LTSSs (recall
Figure 2) as nodes to avoid having to allocate/deallocate
memory, as shown in Figure 4. We also include in the
LTSS a pointer to the thread’s task struct, which holds
the thread’s scheduling state.

Code for the xact wait exception handler is shown in Fig-
ure 5; we used conventionally synchronized code, but this
would be an ideal use for a (bounded) kernel transaction.
As part of raising the exception, T2’s processor writes the
address of T1’s LTSS to a control register (cr2). A key fea-
ture is our transferral of the responsibility of waking up T2
from itself to T1. In particular, we don’t want to transfer
responsibility if T1 has already committed or aborted. By
doing a compare-and-swap on T1’s XSW, we can know that
T1 was still running when we set the XSW EXCEPT flag, and,
therefore, that responsibility has been transferred. Now,
T1 will except on commit/abort. In the xact completion

exception handler (not shown), it acquires the same lock,
ensuring that it will find node T2 inserted in its waiter list.

The only remaining race condition is one that can re-
sult from T1 committing and recycling its XSW for another
transaction between the conflict and the xact wait excep-
tion executing. This is not a problem in our implementation
that only slowly recycles XSWs. If this were a problem, it
could be handled by either having the VTM unit monitor
T1’s XSW (via the cache coherence protocol) or by using
sequence numbers, but space limitations preclude a detailed
discussion.

3.2 Implementing an Intentional Wait
In their software TM for Haskell, Harris et al. propose a

particularly elegant primitive for waiting for events, called
retry [9]. The retry primitive enables waiting on multi-
ple conditions, much like the POSIX system call select or
Win32’s WaitForMultipleObjects, but in a manner that
supports composition. Its use is demonstrated by the code
example in Figure 6, which selects a data item from the first
of a collection of work lists that has an available data item.
If all of the lists are empty, then the code reaches the retry

statement, which conceptually aborts the transaction and
restarts it at the beginning.

However, as Harris et al. rightly point out, “there is no
point to actually re-executing the transaction until at least
one of the variables read during the attempted transaction
is written by another thread.” Because the locations read
have already been recorded in the transaction’s read set, we
can put the transacting thread to sleep until a conflict is
detected with another executing thread.

Doing so in the context of our VTM implementation re-
quires a modest modification to the described system. Specif-
ically, two pieces of additional functionality are required:
1) a software primitive is required that allows a transac-
tion to communicate its desire to wait for a conflict, and 2)
when another thread aborts a transaction that is waiting,
the conflicting thread must ensure that the waiting thread
is re-scheduled.

asmlinkage void xact_wait_except(struct pt_regs * regs, long error_code) {
// puts this thread to sleep waiting for T1 to abort or commit
struct task_struct *tsk = current; // get pointer to current task_struct
xact_local_state_t *T1, *T2, *T3;
xsw_state_t T1_xsw;

__asm__("movl %%cr2,%0":"=r" (T1)); // get ptr to winner’s (T1) xact state
T2 = tsk->thread.ltsr; // get ptr to our (T2) xact state
tsk->state = TASK_UNINTERRUPTIBLE; // deschedule this thread

spin_lock(&tsk->mm->context.xact_waiter_lock); // get per address-space lock
do {
if ((T1_xsw = T1->xsw) & (XSW_ABORTING|XSW_COMMITTING)) { // already done

spin_unlock(&tsk->mm->context.xact_waiter_lock);
tsk->state = TASK_RUNNING;
return;

}
} while (!compare_and_swap(&T1->xsw, T1_xsw, T1_xsw|XSW_EXCEPT))

T3 = T1->waiters;
T1->waiters = T2; // insert into doubly-linked list
T2->waiter_chain_prev = T1;
if (T3 != NULL) {

T3->waiter_chain_prev = T2;
T2->waiter_chain_next = T3;

}

spin_unlock(&tsk->mm->context.xact_waiter_lock);
schedule();

}

Figure 5: Code for de-scheduling a thread on a transaction conflict. In this implementation, a per-address space spin lock is
used to ensure the atomicity of transferring to T1 the responsibility for waking up T2.

element *get_element_to_process() {
TRANSACTION_BEGIN;
for (int i = 0 ; i < NUM_LISTS ; ++ i) {

if (list[i].has_element()) {
element *e = list[i].get_element();
TRANSACTION_END;
return e;

}
}
retry;

}

Figure 6: An illustrative example demonstrating the use
of retry. Retry enables simultaneously waiting on multiple con-
ditions (multiple lists in this case); conceptually, the transaction
is aborted and re-executed when the retry primitive is encoun-
tered.

Our implementation provides the first primitive with an
instruction that raises a retry exception. In the exception
handler (not shown), the process is blocked, the transac-
tion’s priority is set to a minimum value (so that it will
always be aborted when a conflict occurs), and it marks
its XSW with a XSW RETRY bit indicating that a conflict-
ing thread is responsible for waking up this sleeping thread.
As above, a compare-and-swap is used to set this bit, so
the software knows that the XSW was not already marked
as aborted. If the transaction has already been aborted,
the thread is set back to state TASK RUNNING and the pro-
cess returns from the exception. Otherwise the handler calls
schedule() to find an alternate thread to schedule on this
processor.

When a thread aborts a transaction with the XSW RETRY

bit set, it completes the current instruction, copies the XSW
address of the aborted thread to a control register (cr2),
and raises a retry wakeup exception. This exception han-
dler reads the task struct field from the aborted transac-
tion’s LTSS and wakes up the thread using try to wakeup

Also, a potential race condition exists that requires adding
a check to the code in Figure 5 to verify that the transac-
tion is not waiting on a retrying transaction, before it calls
schedule().

4. PAUSING TRANSACTIONS TO MITIGATE
CONSTRAINTS

In the previous section, we discussed dealing with conflicts
efficiently. In this section, we consider how pausing a trans-
action (without pausing the thread’s execution) can be used
to avoid conflicts for data elements with high contention,
as well as allow actions with non-memory-like semantics to
be performed within transactions. While a transaction is
paused, its thread is allowed to perform any action, includ-
ing system calls and I/O, and its memory operations are
not added to the transaction’s footprint. We begin this
section with an illustrative example and conclude with a
collection of dynamic memory allocator-based examples to
demonstrate the benefit and use of pausing transactions.

4.1 A Simple Example: Keeping Statistics
In Figure 7a, we show a transaction that increments a

global counter to maintain statistics. Such code can be
problematic, because transactions that are otherwise inde-
pendent may conflict on updates to this statistic. While

...
transaction {
 ...
 ...
 ++ statistic;
 ...
}
...

xact_begin

xact_pause

xact_unpause

ABORT! X
xact_begin

increment statistic atomically (using CAS)
register compensation action

(perform compensation)
decrement statistic atomically (using CAS)
deallocate compensation data
(retry transaction)

(try transaction)

transactional non-transactional

a) b)

Figure 7: Incrementing statistics using pausing and compensation when precise intermediate value is not required. a) A
“hot” statistic is incremented within a transaction, b) conflicts can be avoided by pausing before incrementing (using a compare-and-swap)
the statistic and performing compensation if the transaction aborts.

seemingly trivial, such statistics impact the scalability of
existing hardware TMs [5]. The problem derives from the
fact that the TM is providing a stronger degree of atomic-
ity than the application requires: while the statistic’s final
value should be precise, an approximate value is generally
sufficient while execution is in progress.

We can exploit the reduced requirements for atomicity, by
non-transactionally performing the increment from within
the transaction. Note that this is not an action automati-
cally performed by a compiler, but, rather, one performed
by a programmer to tune the performance of their code.
In Figure 7b, we sketch an implementation that pauses the
transaction before performing the counter update, so that
the counter is not added to the transaction’s read or write
sets. To preserve the statistic’s integrity, we also register a
compensation action — to be performed if the transaction
aborts — that decrements the counter. Such an implemen-
tation achieves the application’s desired behavior without
unnecessary conflicts between transactions. An alternative
implementation could just register an action to be performed
after the transaction commits that increments the counter.
In the next subsection, we describe the necessary implemen-
tation mechanisms.

4.2 Transaction Pause Implementation
Hardware-wise, implementing the transaction pause is quite

straightforward; it is simply another bit that modifies the
XSW state. We add two new instructions xact pause and
xact unpause, which set and clear this bit, respectively.

As previously noted, when a transaction is paused, ad-
dresses loaded from or stored to are not added to the trans-
action’s read and write sets (i.e., no entries are added to the
XADT). Instead concurrency must be managed using other
means (e.g., the use of compare-and-swap instructions to up-
date the statistic). Nevertheless, we check for conflicts with
transactions, just as if we were executing non-transaction
code. The one exception is that we should ignore conflicts
with the thread’s own paused transaction. It is not uncom-
mon to want to pass arguments/return values between the
transaction and the paused region, and some of these may
be stored in memory.

Furthermore, when the paused region stores into a mem-
ory location covered by the transaction’s write set, clean
semantics dictate that the write should not be undone if

the transaction is aborted. We would like just to remove
the written region from the transaction’s write set, but the
granularity at which the write set is tracked may prevent
this. We have implemented this case by causing such stores
to write both to memory and the associated XADT entry,
so that the write is preserved on an abort. In many re-
spects, the semantics of performing writes in paused regions
resemble the previously proposed open commit [19]; while
pausing is, in some ways, a weaker primitive than open com-
mit (transaction semantics are not provided in the paused
region), in other ways it is more powerful (non-memory-like
actions can be performed). Furthermore, pause is simpler to
implement, because support for true nesting, which in turn
requires supporting multiple speculative versions for a given
data item, is not required.

Because the actions within a paused region will not be
rolled back if the transaction aborts, it may be necessary to
perform some form of compensation [6, 7, 13, 26] to function-
ally undo the effects of a paused region. As such, we allow a
thread to register a data structure that includes pointers for
two linked lists (shown in Figure 8), one for actions to per-
form upon an abort and another for actions to perform upon
a commit. Each list node includes a pointer to the next list
element, a function pointer to call in order to perform the
compensation, and an arbitrary amount of data1 (for use by
and interpreted by the compensation function). If a trans-
action aborts, it performs the actions in the abort actions

list and discards the actions in the commit actions list. On
a commit, it does the inverse. To ensure that it leaves all
data structures in a consistent state, as well as has a chance
to register any necessary compensation actions, we don’t
handle an abort (i.e., restore the register checkpoint) while
a transaction is paused. Instead, the abort is handled when
the transaction is unpaused.

In the proposed implementation compensating actions are
not performed atomically with the transaction. While we
have yet to identify a circumstance where this is problem-
atic, an alternative approach would enable the appearance
of atomicity by serializing commit. Logically, if we prevent
any other threads from executing during the execution of the

1To avoid any dependences on the context in which the compen-
sation action is performed, we require the programmer to encap-
sulate any necessary context information into the compensation
action’s data structure.

typedef struct comp_action_s {
 struct comp_action_s *next;
 comp_function_t comp_func;
 // data for compensation
} comp_action_t;

typedef struct comp_lists_s {
 comp_action_t *abort_actions;
 comp_action_t *commit_actions;
} comp_lists_t;

typedef void (*comp_function_t)(struct comp_action_s *ca, bool do_action);

func1
data1a

func2
data2

data1b

Figure 8: An architecture for registering compensation actions. Each transactions maintains lists of actions to perform on a
commit and on an abort. The do action argument of comp function t indicates whether the compensation should be performed or the
comp action t should just be deallocated.

compensation code, we provide atomicity while enabling ar-
bitrary non-memory operations in the compensation code.
The implementation need not be quite this strict, as other
transactions can be allowed to execute (but not commit) un-
til they attempt to access data touched by the committing
transaction; if the compensation code touches data from an-
other transaction, the other transaction must be aborted. If
strong atomicity [3] is desired, non-transactional execution
cannot proceed (as each instruction is logically a commit-
ting transaction). Because such support for atomic com-
pensation constrains concurrency, it could be designed to
be invoked only when it was required.

From a software engineering perspective, it is desirable to
be able to write a single piece of code that can be called
both from within a transaction (where it registers compen-
sation actions) and from non-transactional code (where no
compensation is required). To this end, the xact pause in-
struction returns a value that encodes both: 1) whether a
transaction is running, and 2) whether the transaction was
already paused. By testing this value, the software can de-
termine whether compensating actions should be performed.
Furthermore, by passing this value to the corresponding
xact unpause instruction, we can handle nested pause re-
gions (without the VTM hardware having to track the nest-
ing depth) by clearing the pause XSW bit only if it was set
by the corresponding xact pause2.

Clearly, correctly writing paused regions with compensa-
tion can be challenging, but they should not have to be
written by most programmers. Instead, functions of this
sort should generally be written by expert programmers
and provided as libraries, much like conventional locking
primitives and dynamic memory allocators. In the next sec-
tion, we demonstrate how a dynamic memory allocator can
be readily implemented using pause and compensation, be-
cause programs generally do not rely on which memory is
allocated.

4.3 Pausing in Dynamic Memory Allocators
Dynamic memory allocation is a staple of most modern

programs and, due to the modular nature of modern soft-
ware, likely to take place within large transactions. For this
discussion, we will concentrate on C/C++-style memory al-
location, but, as we will see, the motivation for pause goes
beyond these particular languages. While we demonstrate
the fundamental issues in a relatively simple malloc imple-
mentation (Doug Lea’s malloc, dlmalloc [14]), the same

2A similar idea could be used for xact begin to support transac-
tion nesting without keeping a nesting depth count.

issues are present even in advanced parallel memory alloca-
tors (e.g., Hoard [2]).

void *X, Y, Z = malloc(...);
transaction {

X = malloc(...);
free(Z);
Y = malloc(...);
free(X);

}
free(Y);

Figure 9: Example transaction that includes memory al-
location and deallocation.

In Figure 9, we illustrate a short code segment that illus-
trates the three cases that we have to correctly handle: 1)
an allocation deallocated within the same transaction (X),
2) an allocation within a transaction that lives past commit
(Y), and 3) an existing allocation that is deallocated within a
transaction (Z). In executing this code (and code like it), we
want to ensure two things: 1) we don’t want to leak memory
allocated within a transaction (even if an abort occurs), and
2) we want to free memory exactly once and not irrevoca-
bly so until the transaction commits. As will be seen, by
correctly handling cases 2 and 3, case 1 is handled as well.

Here, we consider two implementations of malloc: the
first is quite straightforward (and merely for illustration),
executing the whole malloc library non-transactionally and
the second where pausing and compensation is only used to
deal with the non-idempotent system calls mmap and munmap.

In the first implementation, we construct new wrappers
for the functions malloc and free. The wrappers, which
comprise nearly the entire change to the library, are shown
in Figure 10. The malloc wrapper first pauses the transac-
tion, then (non-transactionally) performs the memory allo-
cation. Then, if the code was called from within the transac-
tion, it registers an abort action that will free the memory,
preventing a memory leak if the transaction gets aborted.
If the transaction succeeds, the abort actions list will be
discarded.

The case of deallocation is complementary. When free

is called from within a transaction, we do not want to ir-
revocably free the memory until the transaction commits.
As such, when executed inside a transaction, our wrapper
does nothing but register the requested deallocation in the
commit actions list. If the transaction aborts, this list will
be discarded. Only when the transaction commits will the
deallocation actually be performed. Concurrent accesses to
the memory allocator are handled using the library’s exist-

void *malloc(size_t bytes) {
void *ret_val;
int pause_state = 0;
XACT_PAUSE(pause_state);
ret_val = malloc_internal(bytes);
if (INSIDE_A_TRANSACTION(pause_state)) { // if in a transaction, register compensating action

comp_lists_t *comp_lists = NULL;
XACT_COMP_DATA(comp_lists); // get a pointer to the compensation lists
free_comp_action_t *fca = (free_comp_action_t *)malloc_internal(sizeof(free_comp_action_t));
fca->comp_function = free_comp_function;
fca->ptr = ret_val;
fca->next = comp_lists->abort_actions;
comp_lists->abort_actions = (comp_action_t *)fca;

}
XACT_UNPAUSE(pause_state);
return ret_val;

}

void free(void* mem) {
int pause_state = 0;
XACT_PAUSE(pause_state);
if (INSIDE_A_TRANSACTION(pause_state)) { // if in a transaction, defer free until commit

comp_lists_t *comp_lists = NULL;
XACT_COMP_DATA(comp_lists); // get a pointer to the compensation lists
free_comp_action_t *fca = (free_comp_action_t *)malloc_internal(sizeof(free_comp_action_t));
fca->comp_function = free_comp_function;
fca->ptr = mem;
fca->next = comp_lists->commit_actions;
comp_lists->commit_actions = (comp_action_t *)fca;

} else {
free_internal(mem);

}
XACT_UNPAUSE(pause_state);

}

typedef struct free_comp_action_s {
struct comp_action_s *next;
comp_function_t comp_function;
void *ptr;

} free_comp_action_t;

void free_comp_function(comp_action_t *ca, int do_action) {
if (do_action) {

free_comp_action_t *fca = (free_comp_action_t *)ca;
free_internal(fca->ptr);

}
free_internal(ca);

}

Figure 10: Wrappers for malloc and free that perform them non-transactionally. The original versions of malloc and
free have been renamed as malloc internal and free internal, respectively. When executed within a transaction, malloc registers a
compensation action that frees the allocated block in case of an abort, and free does nothing but register a commit action that actually
frees the memory. To register compensation actions, the transaction must dynamically allocate memory (note the use of malloc internal)
and insert it into the list of compensation actions stored in the LTSS (recall Figure 2).

ing mutual exclusion primitives.
An alternative implementation executes the bulk of the

memory allocator’s code as part of the transaction. In the
common case, the transactional memory system ensures that
memory is not leaked: memory allocated/deallocated by an
aborting transaction is restored by undoing the transaction’s
stores. Only when the allocator interacts with the kernel is
there potential for a problem, as kernel activity is not in-
cluded in the transaction for reasons of performance isola-
tion [28]. Instead, the VTM hardware sets the transaction
into a SWAPPED state during kernel execution, so system call
activity is not rolled back on an abort. While this is per-
haps not problematic for idempotent system calls like brk()

and getpid(), it is problematic for mmap(), which is not
idempotent.
dlmalloc uses mmap() to allocate very large chunks (>

256kB) and when sbrk() cannot allocate contiguous chunks.
When mmap() is called, the Linux kernel records the allo-
cation (in a vm area struct), in part to guarantee that it
doesn’t allocate the memory again. If a transaction calling
mmap() aborts, the application will have no recollection of
the allocation, but the kernel will, resulting in memory leak
of the virtual address space3.

To prevent such a leak, we wrap the call to mmap() in a
paused region and register a compensation action to munmap()

the region if the transaction is aborted, much in the same
spirit as the malloc wrapper in Figure 10. Correspondingly,
calls to munmap that are performed within transactions are
deferred until the transaction commits.

In general, this second approach is likely preferable, be-
cause less effort has to be spent registering and disposing
of compensation actions. The primary drawback of this ap-
proach is that conflicts will result if multiple transactions
try to allocate memory from the same pool, but this prob-
lem can be largely mitigated by using a parallel memory
allocator (e.g., Hoard [2]) that provides per-thread pools of
free memory.

5. RELATED WORK
Concurrently with this work, Carlstrom et al. proposed an

implementation of open nesting to handling high-contention
and actions with non-memory-like semantics [17]. In many
respects, their implementation of abort/commit actions is
similar to ours, with one noteworthy exception: they guar-
antee that the abort/commit handlers execute atomically
with the transaction by performing it during the commit
process and preventing other transactions from committing
simultaneously. While this programming abstraction is cleaner,
it can also serialize commit unnecessarily; for example, atom-
icity is not required in our malloc example. The best of both
worlds may be to support both approaches and allow the
programmer to make the simplicity/performance trade-off
themselves.

Also noteworthy in the work, they deride the notion of
a transactional pause primitive as “redundant and danger-
ous.” In contrast, we don’t view the two primitives as mu-
tually exclusive, but rather as representing slightly differ-
ent trade-offs in software complexity and capability. While
open-nesting provides a cleaner programming interface by

3To avoid errors of this sort in general, we’ve modified the Linux
kernel to kill unpaused transactions in the system call() inter-
rupt vector.

eliminating the lock-based concerns of paused regions, the
fact that both will require compensation code ensures that
neither will be written except by expert programmers. Paus-
ing, however, unlike open nesting, enables transactions to
contain code not written in transactions. We believe that it
is unlikely that transactions will completely replace locks for
reasons of performance isolation (especially with respect to
kernel execution [28]) as well as legacy code. In addition, be-
cause composition of paused regions is handled in software,
we do not have the handle the complexity of supporting ar-
bitrary nesting in hardware, a topic not yet handled by the
literature for hardware support of open nested transactions.

Also, the ATOMOS extensions to Java [4], work done
concurrently with our implementation, also provide an im-
plementation of retry. The major differences between the
implementations are two-fold: 1) the ATOMOS implemen-
tation requires the programmer to explicitly identify the set
of values on which to wait using the “watch” primitive;
requiring explicit identification of the watch set presents
the possibility that a programmer will omit necessary items
and as well as a software maintenance headache, without a
clear need for the enabled selectivity, 2) the ATOMOS im-
plementation requires a processor to be dedicated to serve
as a thread scheduler, a requirement that seems to derive
from the fact that transactions cannot live across context
switches. In a machine with a conventional virtual memory
system, it seems likely that one scheduler processor would
be required for each virtual address space, and it is unclear
what happens if the composite watch set of many threads
exceeds the size of what can be supported directly by the
transaction hardware. In contrast, our implementation sup-
ports waiting on the whole existing read set and requires no
dedicated processors due to VTM’s existing support of “un-
bounded” transactions that can survive context switches.

6. CONCLUSION
With highly-concurrent machines prominently on the main-

stream roadmaps of every computer vendor, it is clear that
a program’s degree of concurrency will be the primary fac-
tor affecting its performance. This paper reflects our belief
that the power of transactional memory will not be in how
it performs on applications that have already been paral-
lelized, but in how it enables new applications to be paral-
lelized. In particular, many applications that have yet to be
parallelized have inherent parallelism, but not of a regular
sort that can be expressed with DOALL-type constructs. In-
stead, the parallelism is unstructured — requiring significant
effort on the programmer’s part to manage the concurrency
using traditional means — and exists in varying granulari-
ties. The key goal of a transactional memory system should
be to allow the programmer to trivially express the existence
of this potential concurrency at its natural granularity.

A key component of this strategy is providing the pro-
grammer with those primitives that facilitate the expres-
sion of parallelism. While previous work on hardware trans-
actional memory has shown to support the atomic execu-
tion of arbitrarily sized regions of normal code, it has yet
to provide the richness of the interface provided by soft-
ware transactional memory systems. This paper attempts to
shrink the functionality gap between software transactional
memory systems and hardware ones, through demonstrat-
ing how a hardware TM can interface with a software thread
scheduler and by supporting non-transactional memory ac-

cesses within a transaction memory system. Furthermore,
we show that functionally, these techniques represent small
extensions to existing proposals for hardware transactional
memory.

7. ACKNOWLEDGMENTS
This research was supported in part by NSF CCR-0311340,

NSF CAREER award CCR-03047260, and a gift from the In-
tel corporation. We thank Brian Greskamp, Pierre Salverda,
Naveen Neelakantam, Ravi Rajwar, and the anonymous re-
viewers for feedback on this work.

8. REFERENCES
[1] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E.

Leiserson, and S. Lie. Unbounded Transactional Memory.
In Proceedings of the Eleventh IEEE Symposium on
High-Performance Computer Architecture, Feb. 2005.

[2] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R.
Wilson. Hoard: A Scalable Memory Allocator for
Multithreaded Applications. In Proceedings of the Ninth
International Conference on Architectural Support for
Programming Languages and Operating Systems, Nov.
2000.

[3] C. Blundell, E. C. Lewis, and M. M. Martin.
Deconstructing Transactional Semantics: The Subtleties of
Atomicity. In Proceedings of the Fourth Workshop on
Duplicating, Deconstructing, and Debunking, June 2005.

[4] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C.
Minh, C. Kozyrakis, and K. Olukotun. The ATOMOS
Transactional Programming Language. In Proceedings of
the SIGPLAN 2006 Conference on Programming Language
Design and Implementation, June 2006.

[5] C. Click. A Tour inside the Azul 384-way Java Appliance:
Tutorial held in conjunction with the Fourteenth
International Conference on Parallel Architectures and
Compilation Techniques (PACT), Sept. 2005.

[6] A. A. Farrag and M. T. Ozsu. Using semantic knowledge of
transactions to increase concurrency. ACM Transactions
on Database Systems, 14(4):503–525, 1989.

[7] H. Garcia-Molina. Using Semantic Knowledge for
Transaction Processing in Distributed Database. ACM
Transactions on Database Systems, 8(2):186–213, 1983.

[8] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional Memory
Coherence and Consistency. In Proceedings of the 31st
Annual International Symposium on Computer
Architecture, pages 102–113, June 2004.

[9] T. Harris, S. Marlowe, S. Peyton-Jones, and M. Herlihy.
Composable Memory Transactions. In Principles and
Practice of Parallel Programming (PPOPP), 2005.

[10] M. Herlihy, V. Luchangco, M. Moir, and W. N. S. III.
Software Transactional Memory for Dynamic-Sized Data
Structures. In Proceedings of the Twenty-Second
Symposium on Principles of Distributed Computing
(PODC), 2003.

[11] M. Herlihy and J. E. B. Moss. Transactional Memory:
Architectural Support for Lock-Free Data Structures. In
Proceedings of the 20th Annual International Symposium
on Computer Architecture, pages 289–300, May 1993.

[12] W. N. S. III and M. L. Scott. Advanced Contention
Management for Dynamic Software Transactional Memory.
In Proceedings of the Twenty-Fourth Symposium on
Principles of Distributed Computing (PODC), 2005.

[13] H. F. Korth, E. Levy, and A. Silberschatz. A Formal
Approach to Recovery by Compensating Transactions. In
Proceedings of the 16th International Conference on Very
Large Data Bases, pages 95–106, 1990.

[14] D. Lea. A memory allocator,
http://gee.cs.oswego.edu/dl/html/malloc.html.

[15] D. Lomet. Process structuring, synchronization, and
recovery using atomic actions. In Proceedings of the ACM
Conference on Language Design for Reliable Software,
pages 128–137, Mar. 1977.

[16] P. S. Magnussen et al. Simics: A Full System Simulation
Platform. IEEE Computer, 35(2):50–58, Feb. 2002.

[17] A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh,
H. Chafi, C. Kozyrakis, and K. Olukotun. Architectural
Semantics for Practical Transactional Memory. In
Proceedings of the 33rd Annual International Symposium
on Computer Architecture, June 2006.

[18] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and
D. A. Wood. LogTM: Log-based Transactional Memory. In
Proceedings of the Twelfth IEEE Symposium on
High-Performance Computer Architecture, Feb. 2006.

[19] E. Moss and T. Hosking. Nested Transactional Memory:
Model and Preliminary Architecture Sketches. In
Proceedings of the workshop on Synchronization and
Concurrency in Object-Oriented Languages (SCOOL),
2005.

[20] R. Rajwar and J. R. Goodman. Transactional Lock-Free
Execution of Lock-Based Programs. In Proceedings of the
Tenth International Conference on Architectural Support
for Programming Languages and Operating Systems, Oct.
2000.

[21] R. Rajwar and J. R. Goodman. Speculative Lock Elision:
Enabling Highly Concurrent Multithreaded Execution. In
Proceedings of the 28th Annual International Symposium
on Computer Architecture, July 2001.

[22] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing
Transactional Memory. In Proceedings of the 32nd Annual
International Symposium on Computer Architecture, June
2005.

[23] D. J. Rosenkrantz, R. Stearns, and P. Lewis. System level
concurrency control for distributed database systems. ACM
Transactions on Database Systems, 3(2):178–198, June
1978.

[24] H. Sutter and J. Larus. Software and the Concurrency
Revolution. ACM Queue, 3(7):54–62, Sept. 2005.

[25] C. A. Thekkath and H. M. Levy. Hardware and Software
Support for Efficient Exception Handling. In Proceedings of
the Sixth International Conference on Architectural
Support for Programming Languages and Operating
Systems, Oct. 1994.

[26] S. Vaucouleur and P. Eugster. Atomic features. In
Proceedings of the workshop on Synchronization and
Concurrency in Object-Oriented Languages (SCOOL),
2005.

[27] B. Verghese, A. Gupta, and M. Rosenblum. Performance
Isolation: Sharing and Isolation in Shared-Memory
Multiprocessors. In Proceedings of the Eighth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 181–192, Oct.
1998.

[28] C. Zilles and D. Flint. Challenges to Providing Performance
Isolation in Transactional Memories. In Proceedings of the
Fourth Workshop on Duplicating, Deconstructing, and
Debunking, pages 48–55, June 2005.

