
Debugging with Transactional Memory

Yossi Lev
Brown University & Sun Microsystems Laboratories

Mark Moir
Sun Microsystems Laboratories

ABSTRACT
Transactional programming promises to substantially
simplify the development of correct, scalable, and ef-
ficient concurrent programs. Designs for supporting
transactional programming using transactional memory
implemented in hardware, software, and a mixture of
the two have emerged recently. To our knowledge, no-
body has yet addressed issues involved with debugging
programs executed using transactional memory.

Because transactional memory implementations pro-
vide the “illusion” of multiple memory locations chang-
ing value atomically, while in fact they do not, there
are challenges involved with integrating debuggers with
such programs to provide the user with a coherent view
of program execution. This paper shows how to over-
come these problems by making the debugger interact
with transactional memory implementations in a mean-
ingful way. In addition to describing how “standard”
debugging functionality can be integrated with transac-
tional memory implementations, we also describe some
powerful new debugging mechanisms that are enabled
by transactional memory infrastructure. Our descrip-
tion focuses on how to enable debugging in software and
hybrid software-hardware transactional memory systems.

1. INTRODUCTION
In concurrent software it is often important to guar-

antee that one thread cannot observe partial results of
an operation being executed by another thread. These
guarantees are necessary for practical and productive
software development because, without them, it is ex-
tremely difficult to reason about the interactions of con-
current threads. In today’s software practice, these
guarantees are almost always provided by using locks to
prevent other threads from accessing the data affected
by an ongoing operation. Such use of locks gives rise
to a number of well known problems, both in terms of
software engineering and in terms of performance.

Transactional memory (TM) [7, 16] allows the pro-
grammer to think as if multiple memory locations can
be accessed and/or modified in a single atomic step.
Thus, in many cases, it is possible to complete an op-

(c) Sun Microsystems, Inc. 2006. All rights re-
served.

eration with no possibility of another thread observing
partial results, even without holding any locks. This sig-
nificantly simplifies the design of concurrent programs.

Transactional memory can be implemented in hard-
ware [7], with the hardware directly ensuring that a
transaction is atomic, or in software [16] that provides
the “illusion” that the transaction is atomic, even though
in fact it is executed in smaller atomic steps by the un-
derlying hardware. Substantial progress has been made
in making software transactional memory (STM) prac-
tical recently [2, 3, 6, 10]. Nonetheless, there is a grow-
ing consensus that at least some hardware support for
transactional memory is desirable, and several proposals
for supporting TM in hardware have emerged recently
[1, 4, 13]. All existing proposals for implementing TM
in hardware either impose severe limitations on pro-
grammers or are too complicated and inflexible to be
considered in the near future, and also leave a number
of issues unresolved. To address this situation, we have
proposed Hybrid TM (HyTM) [11], which provides a
fully functional STM implementation that can exploit
best-effort HTM support to boost performance if it is
available and when it is effective. Kumar et. al [8] have
recently made a similar proposal.

To our knowledge, none of the TM designs (HTM,
STM, or HyTM) proposed to date addresses the issue of
debugging programs that use them. While TM promises
to substantially simplify the development of correct con-
current programs, programmers will still need to debug
code while it is under development, and therefore it is
crucial that we develop robust TM-compatible debug-
ging mechanisms.

Debugging poses challenges for all forms of TM. If
HTM is to provide support for debugging, it will be
even more complicated than current proposals. STM
on the other hand provides the “illusion” that trans-
actions are executed atomically, while in fact they are
implemented by a series of smaller steps. If a standard
debugger were used with an STM implementation, it
would expose this illusion, creating significant confu-
sion for programmers. HyTM is potentially susceptible
to both problems. In this paper, we describe a series
of mechanisms for supporting debugging in STM and
HyTM systems. In keeping with the HyTM philosophy,
we do not impose any requirement on HTM support for
debugging.

For concreteness we describe the debugging techniques



in the context of a simple word-based HyTM system,
such as described in [11]. In Section 2 we give a brief
overview of this HyTM system. In Section 3, we de-
scribe several debug modes which will aid in the descrip-
tion of our debugging techniques. Section 4 presents
debugging techniques in the following topics:

• Breakpoints in atomic blocks.

• Viewing and modifying variables

• Atomic snapshots

• Watchpoints

• Delayed breakpoints

• Replay debugging

2. A WORD-BASED HYTM SCHEME

2.1 Overview
The HyTM system [11] comprises a compiler, a li-

brary for supporting transactions in software, and (op-
tionally) HTM support. Programmers express blocks of
code that should (appear to) be executed atomically in
some language-specific notation. For concreteness, we
assume the following simple notation:

atomic {

...

code to be executed atomically

...

}

For each such atomic block, the compiler produces
code to execute the code block atomically using trans-
actional support. A typical HyTM approach is to pro-
duce code that attempts to execute the block one or
more times using HTM, and if that does not succeed,
to repeatedly attempt to do so using the STM library.

The compiler also produces “glue” code that hides
this retrying from the programmer, and invokes “con-
tention management” mechanisms [6, 15] when neces-
sary to facilitate progress. Such contention manage-
ment mechanisms may be implemented, for example,
using special methods in the HyTM software library.
These methods may make decisions such as whether a
transaction that encounters a potential conflict with a
concurrent transaction should a) abort itself, b) abort
the other transaction, or c) wait for a short time to
give the other transaction an opportunity to complete.
As we will see, debuggers may need to interact with
contention control mechanisms to provide a meaningful
experience for users.

Because the above-described approach may result in
the concurrent execution of transactions in hardware
and in software, we must ensure correct interaction of
these transactions. The HyTM approach is to have the
compiler emit additional code in the hardware trans-
action that looks up structures maintained by software
transactions in order to detect any potential conflict.
In case such a conflict is detected, the hardware trans-
action is aborted, and is subsequently retried, either in

hardware or in software. Below we explain how software
transactions provide the illusion of atomicity, and how
hardware transactions are augmented to detect poten-
tial conflicts with software ones.

2.2 Transactional Execution
As a software transaction executes, it acquires “own-

ership” of each memory location that it accesses: ex-
clusive ownership in the case of locations modified, and
possibly shared ownership in the case of locations read
but not modified. This ownership cannot be revoked
while the owning transaction is in the active state: A
second transaction that wishes to acquire exclusive own-
ership of a location already owned by the first trans-
action must first abort the transaction by changing its
status to aborted. Furthermore, a location can be mod-
ified only by a transaction that owns it. However, rather
than modifying the locations directly while executing,
the transaction “buffers” its modifications in a “write
set”. Thus, if a transaction reaches its end without be-
ing aborted, then all of the locations it accessed have
maintained the same values since they were first ac-
cessed. The transaction atomically switches its status
from active to committed, thereby logically applying
the changes in its write set to the respective memory
locations it accessed. Before releasing ownership of the
modified locations, the transaction copies back the val-
ues from its write set to the respective memory locations
so that subsequent transactions acquiring ownership of
these locations see the new values.

2.3 Ownership
In the word-based HyTM scheme described here, there

is an ownership record (henceforth orec) associated with
each transactional location (i.e., each memory location
that can be accessed by a transaction). To avoid the ex-
cessive space overhead that would result from dedicating
one orec to each transactional location, we instead use
a special orec table. Each transactional location maps
to one orec in the orec table, but multiple locations
can map to the same orec. To acquire ownership of a
transactional location, a transaction acquires the cor-
responding orec in the orec table. The details of how
ownership is represented and maintained are mostly ir-
relevant here. We do note, however, that the orec con-
tains an indication of whether it is owned, and if so
whether in “read” or “write” mode. These indications
are the key to how hardware transactions are augmented
to detect conflicts with software ones. For each memory
access in an atomic block to be executed by a hardware
transaction, the compiler emits additional code for the
hardware transaction to lookup the corresponding orec
and determine whether there is (potentially) a conflict-
ing software transaction. If so, the hardware transac-
tion simply aborts itself. By storing an indication of
whether the orec is owned in read or write mode, we
allow a hardware transaction to succeed even if it ac-
cesses one or more memory locations in common with
one or more concurrent software transactions, provided
none of the transactions modifies these locations.

2.4 Atomicity



As described above, the illusion of atomicity is pro-
vided by considering the updates made by a transaction
to “logically” take effect at the point at which it com-
mits, known as the transaction’s linearization point [5].
By preventing transactions from observing the values of
transactional locations that they do not own, we hide
the reality that the changes to these locations are in
fact made one by one after the transaction has already
committed.

If we use such an STM or HyTM package with a stan-
dard debugger, the debugger will not respect these own-
ership rules. Therefore, for example, it might display
a pre-transaction value in one memory location and a
post-transaction value in another location that is up-
dated by the same transaction. This would “break” the
illusion of atomicity, which would severely undermine
the user’s ability to reason about the program.

Furthermore, a standard debugger would not deal in
meaningful ways with the multiple code paths used to
execute transactions in hardware and in software, or
library calls for supporting software transactions, con-
tention management, etc. In this paper, we explain how
to address all of these issues. We also explain how the
infrastructure for STM and HyTM can support some
powerful new debugging mechanisms.

3. DEBUG MODES
In this document we will distinguish between three

basic debug modes:

• Unsynchronized Debugging: In this mode, when a
thread stops (when hitting a breakpoint, for ex-
ample), the rest of the threads keep running.

• Synchronized Debugging: if a thread stops the rest
of the threads also stop with it. There are two
synchronized debugging modes:

– Concurrent Stepping: In this mode, when the
user asks the debugger to run one step of a
thread, the rest of the threads also run while
this step is executed (and stop again when the
step is completed, as this is a synchronized
debugging mode).

– Isolated Stepping: In this mode, when the
user asks the debugger to run one step of a
thread, only that thread’s step is executed.

For simplicity, we assume that the debugger is at-
tached to only one thread at a time, which we denote
as the debugged thread. If the debugged thread is in
the middle of executing a transaction, we denote this
transaction as the debugged transaction. When a thread
stops at a breakpoint, it automatically becomes the de-
bugged thread. Note that with the synchronized de-
bugging modes, after hitting a breakpoint the user can
choose to change the debugged thread, by switching to
debug another thread.

4. DEBUGGING TECHNIQUES

4.1 Breakpoints in Atomic Blocks
The ability to stop the execution of a program on a

breakpoint and to run a thread step by step is a funda-
mental feature of any debugger. In a transactional pro-
gram, a breakpoint will sometimes reside in an atomic
block. In this section we describe a technique that en-
ables the debugger to stop and step through such a block
in the HyTM system, wherein an atomic block may have
at least two implementations, for example, one that uses
HTM and another that uses STM.

In keeping with the HyTM philosophy, we do not as-
sume that any special debugging capability is provided
by the HTM support. Therefore, if the user sets a
breakpoint inside an atomic block, in order to debug
that atomic block, we must disable the code path that
attempts to execute this particular atomic block using
HTM,1 thereby forcing it to be executed using STM. If
we cannot determine whether a given atomic block con-
tains a breakpoint (for example, in the presence of indi-
rect function calls), we can simply abort the executing
hardware transaction when it reaches the breakpoint,
eventually causing the atomic block to be executed by
a software transaction.

One way to disable the HTM code path is to modify
the code for the transaction so that it branches uncon-
ditionally to the software path, rather than attempting
the hardware transaction. In HyTM schemes in which
the decision about whether to try to execute a transac-
tion in hardware or in software is made by a method in
the software library, the code can be modified to omit
this call and branch directly to the software path. An
alternative approach is to provide the debugger with an
interface to the software library so that it can instruct
the software method to always choose the software path
for a given atomic block.

In addition to disabling the hardware path, we must
also enable the breakpoint in the software path. This
is achieved mostly in the same way that breakpoints
are achieved in standard debuggers. However, there are
some issues to note.

First, the correspondence between the source code
and the STM-based implementation of an atomic block
differs from the usual correspondence between source
and assembly code: the STM-based implementation uses
the STM library functions for read and write operations
in the block, and may also use other function calls to
correctly manage the atomic block execution. For exam-
ple, it is sometimes necessary to invoke the STM library
method STM-Validate in order to verify that the values
read by the transaction so far represent a consistent
state of the memory. Figure 1 shows an example of an
STM-based implementation of a simple atomic block.

The debug information generated by the compiler should
reflect this special correspondence to support a mean-
ingful debugging view to users. When the user is step-
ping in source-level mode, all of these details will be
hidden, just as assembly-level instructions are hidden
from the user when debugging in source-level mode with

1We do not want to disable all use of HTM in the pro-
gram, because we wish to minimize the impact on pro-
gram timing in order to avoid masking bugs.



atomic {
v = node->next->value;

}

=⇒

while(true) {
tid = STM-begin-tran();

tmp = STM-read(tid, &node);

if (STM-Validate(tid)) {
tmp = STM-read(tid, &(tmp->next));

if (STM-Validate(tid)) {
tmp2 = STM-read(tid, &(tmp->value));

STM-write(tid, &v, tmp2);

}
}
if (STM-commit-tran(tid)) break;

}

Figure 1: An example of an atomic block and its
STM-based implementation.

a standard debugger. However, when the user is step-
ping in assembly-level mode, all STM function calls are
visible to the user, but should be regarded as atomic as-
sembly operations: stepping into these functions should
not be allowed.

Another issue is that control may return to the begin-
ning of an atomic block if the transaction implementing
it is aborted. Without special care, this may be con-
fusing for the user: it will look like “a step backward”.
In particular, in response to the user asking to execute
a single step in the middle of an atomic block, control
may be transferred to the beginning of the atomic block
(which might reside in a different function or file). In
such cases the debugger may prompt the user with a
message indicating that the atomic block execution has
been restarted due to an aborted transaction.

Finally, it might be desirable for the debugger to call
STM-Validate right after it hits a breakpoint, to ver-
ify that the transaction can still commit successfully.
This is because, with some HyTM implementations, a
transaction might continue executing even after it has
encountered a conflict that will prevent it from com-
mitting successfully. While the HyTM must prevent
incorrect behavior (such as dereferencing a null pointer
or dividing by zero) in such cases, it does not necessarily
prevent a code path from being taken that would not
have been taken if the transaction were still “viable”.
In such cases, it is probably not useful for the user to
believe that such a code path was taken, as the transac-
tion will fail and be retried anyway. The debugger can
avoid such “false positives” by calling STM-Validate af-
ter hitting the breakpoint, and ignore the breakpoint if
the transaction is no longer viable.

The debugger may also provide a feature that allows
the user to abort the debugged transaction, with the op-
tion to either retry it from the beginning, or perhaps to
skip it altogether and resume execution after the atomic
block. Such functionality is straightforward to provide
because the compiler already includes code for trans-

ferring control for retry or commit, and because most
TM implementations provide means for a transaction to
explicitly abort itself.

4.1.1 Contention Manager Support
When stepping through an atomic block, it might

be useful to change the way in which conflicts are re-
solved between transactions, for example by making the
debugged transaction win any conflict it might have
with other transactions. We call such a transaction a
super-transaction. This feature is crucial for the iso-
lated stepping synchronized debugging mode because
the debugged thread takes steps while the rest of the
threads are not executing, and therefore there is no
point in waiting in case of a conflict with another thread,
nor in aborting the debugged transaction. It may also
be useful in other debugging modes, because it will
avoid the debugged transaction being aborted, causing
the “backward-step” phenomenon previously described.
This is especially important because the debugged trans-
action will probably run much slower than other trans-
actions, and therefore is more likely to be aborted.

In some STM and HyTM implementations, particu-
larly those supporting read sharing, orecs indicate only
that they are owned in read mode, and do not indi-
cate which transactions own them in that mode (with
these implementations, transactions record which loca-
tions they have read, and recheck the orecs of all such
locations before committing to ensure that none has
changed). Supporting the super-transaction with these
implementations might seem problematic, since when a
transaction would like to get write ownership on an orec
currently owned in read mode, it needs to know whether
one of readers owning this orec is a super-transaction.
One simple solution is to specially mark the orecs of
all locations read so far by the debugged transaction
upon hitting a breakpoint, and to continue marking
orecs newly acquired in read mode as the transaction
proceeds. The STM library and/or its contention man-
ager component would then ensure that a transaction
never acquires write ownership of an orec that is cur-
rently owned by the super-transaction.

4.1.2 Switching between Debugged Threads
When stopping at a breakpoint, the thread that hit

that breakpoint automatically becomes the debugged
thread. In some cases though, the user would like to
switch to debug another thread after the debugger has
stopped on the breakpoint. This is particularly useful
when using the isolated steps synchronized debugging
mode, because in this case the user has total control over
all the threads, and can therefore simulate complicated
scenarios of interaction between the threads by taking
a few steps with each thread separately.

There are a few issues to consider when switching
between debugged threads. The first has to do with
hardware transactions when using HyTM: it might be
that the new debugged thread is in the middle of ex-
ecuting the HTM-based implementation of an atomic
block. Depending on the HTM implementation, attach-
ing the debugger to such a thread may cause the hard-
ware transaction to abort. Moreover, because HTM is



not assumed to provide any specific support for debug-
ging, we will often want to abort the hardware transac-
tion anyway, and restart the atomic block’s execution
using the STM-based implementation.

Again, depending on the HTM support available, var-
ious alternatives may be available, and it may be useful
to allow users to choose between such alternatives, ei-
ther through configuration settings, or each time the
decision is to be made. Possible actions include:

1. Switch to the new thread aborting its transaction

2. Switch to the new thread but only after it has
completed (successfully or otherwise) the transac-
tion (this might be implemented for example by
appropriate placement of additional breakpoints).

3. Cancel and stay with the old debugged thread.

Another issue to consider is the combination of the
super-transaction feature and the ability to switch the
debugged thread. Generally it makes sense to have only
one super-transaction at a time. If the user switches
between threads, it is probably desirable to change the
previously debugged transaction back to be a regular
transaction, and make the new debugged transaction a
super-transaction. As described above, this may require
unmarking all orecs owned in read mode by the old de-
bugged transaction, and marking those of the new one.

4.2 Viewing and Modifying Variables
Another fundamental feature supported by all debug-

gers is the ability to view and modify variables when
the debugger stops execution of the program. The user
provides a variable name or a memory address, and the
debugger displays the value stored there and may also
allow the user to change this value. As explained ear-
lier, in various TM implementations, particularly those
based on STM or HyTM approaches, the current logical
value of the address or variable may differ from the value
stored in it. In such cases, the debugger cannot deter-
mine a variable’s value by simply reading the value of
the variable from memory. The situation is even worse
with value modifications: in this case, simply writing
a new value to the specified variable may violate the
atomicity of transactions currently accessing it. In this
section we explain how the debugger can view and mod-
ify data in a TM-based system despite these challenges.

The key idea is to access variables that may be ac-
cessed by transactions using the TM implementation,
rather than directly, in order to avoid the above-described
problems. However, there are several important issues
to consider in deciding whether to access a variable us-
ing a transaction, and if so, with which transaction.

First, the debugged program may contain transac-
tional variables that should be accessed using TM and
nontransactional variables that can be accessed directly
using conventional techniques. A variety of techniques
for distinguishing these variables exist, including type-
based rules enforced by the compiler, as well as dynamic
techniques that determine and possibly change the sta-
tus of a variable (transactional or nontransactional) at
runtime (for example, [9]). Whichever technique is used

in a particular system, the debugger must be designed
to take the technique into account and access variables
using the appropriate method. In particular, the de-
bugger should always use transactions to access trans-
actional variables, and nontransactional variables can
be accessed as in a standard debugger.2

For transactional variables, one option is for the de-
bugger to get or set the variable value by executing
a “mini-transaction”—that is, a transaction that con-
sists of the single variable access. The mini-transaction
might be executed as a hardware transaction or as a
software transaction, or it may follow the HyTM ap-
proach of attempting to execute it in hardware, but
retrying as a software transaction if the hardware trans-
action fails to commit or detects a conflict with a soft-
ware transaction.

If, however, the debugger has stopped in the mid-
dle of an atomic block execution, and the variable to
be accessed has already been accessed by the debugged
transaction, then it is often desirable to access the spec-
ified variable from the debugged transaction’s “point of
view”. For example, if the debugged transaction has
written a value to the variable, then the user may de-
sire to see the value it has stored, even though the trans-
action has not yet committed, and therefore this value
is not (yet) the value of the variable being examined.
Similarly, if the user requests to modify the value of a
variable that has been accessed by the debugged trans-
action, then it may be desirable for this modification to
be part of the effect of the transaction when it commits.
To support this behavior, the variable can be accessed in
the context of the debugged transaction simply by call-
ing the appropriate library function. (We note that it is
straightforward to extend existing HyTM and STM im-
plementations to support functionality that determines
whether a particular variable has been modified by a
particular transaction.)

Note that it is still better to access variables that
were not accessed by the debugged transaction using
mini-transactions and not the debugged transaction it-
self. This is because accessing such variables using the
debugged transaction increases the set of locations that
the transaction is accessing, thereby making it more
likely to abort due to a conflict with another transac-
tion.

In general, it is preferable that actions of the debug-
ger have minimal impact on normal program execution.
For example, we would prefer to avoid aborting trans-
actions of the debugged program in order to display
values of variables to the user. However, we must pre-
serve the atomicity of program transactions. In some
cases, it may be necessary to abort a program transac-
tion in order to service the user’s request. For example,
if the user requests to modify a value that has been
accessed by an existing program transaction, then the
mini-transaction used to effect this modification may
conflict with that program transaction. Furthermore,

2In some TM systems, accessing a nontransactional
variable using a transaction will not result in incorrect
behavior, in which case we can choose to access all vari-
ables with transactions.



some STM and HyTM implementations are susceptible
to false conflicts in which two transactions conflict even
though they do not access any variables in common.

In case the mini-transaction used to implement a user
request does conflict with a program transaction, sev-
eral alternatives are possible. We might choose either
to abort the program transaction, or to wait for it to
complete (in appropriate debugging modes), or to aban-
don the attempted modification. These choices may be
controlled by preferences configured by the user, or by
prompting the user to decide between them when the
situation arises. In the latter case, various information
may be provided to the user, such as which program
transaction is involved, what variable is causing the con-
flict (or an indication that it is a false conflict), etc.

In some cases, the STM may provide special-purpose
methods for supporting mini-transactions for debugging.
For example, if all threads are stopped, then the debug-
ger can modify a variable that is not being accessed
by any transaction without acquiring ownership of its
associated orec. Therefore in this case, if the STM im-
plementation can tell the debugger whether a given vari-
able is being accessed by a transaction, then the debug-
ger can avoid acquiring ownership and aborting another
transaction due to a false conflict.

4.2.1 Adding and Removing a Variable from the
Transaction’s Access Set

As described in the previous section, it is often prefer-
able to access variables that do not conflict with the de-
bugged transaction using independent mini-transactions.
In some cases, however, it may be useful to allow the
user to access a variable as part of the debugged trans-
action even if the transaction did not previously access
that variable. This way, the transaction would com-
mit only if the variable viewed does not change before
the transaction attempts to commit, and any modifica-
tions requested by the user would commit only if the
debugged transaction commits. This approach provides
the user with the ability to “augment” the transaction
with additional memory locations.

Moreover, some TM implementations support early-
release functionality [6]: with early-release, the pro-
grammer can decide to discard any previous accesses
done to a variable by the transaction, thereby avoiding
subsequent conflicts with other transactions that mod-
ify the released variable. If early-release is supported by
the TM implementation, the debugger can also support
removing a variable from the debugged-transaction’s ac-
cess set.

4.2.2 Displaying the pre-transaction value of the
debugged transaction

Although when debugging an atomic block the user
would usually prefer to see variables as they would be
seen by the debugged transaction, in some cases it might
be useful to see the value as it was before the transac-
tion began (note that since the debugged transaction
has not committed yet, this pre-transaction value is the
current logical value of the variable, as may be seen by
other threads). Some STM implementations can easily
provide such functionality because they record the value

of all variables accessed by a transaction the first time
they are accessed. In other STM implementations, the
pre-transaction value is kept in the variable itself until
the transaction commits, and can thus be read directly
from the variable. In such systems, the debugger can
display the pre-transaction value of a variable (as well
as the regular value seen by the debugged transaction).

4.2.3 Getting values from conflicting transactions
In some cases, it is possible to determine the logical

value of a variable even if it is currently being modi-
fied by another transaction. As described above, it may
be possible for the debugger to get the pre-transaction
value of a variable accessed by a transaction. If the de-
bugger can determine that the conflicting transaction’s
linearization point has not passed, then it can display
the pre-transaction value to the user. How such a deter-
mination can be made depends on the particular STM
implementation, but in many cases this is not difficult.

Another potentially useful piece of information we can
get from the transaction that owns the variable the user
is trying to view is the tentative value of that variable—
that is, the value as seen by the transaction that owns
the variable. Specifically, the debugger can inform the
user that the variable is currently accessed by a software
transaction, and give the user both the current logical
value of the variable (that is, its pre-transaction value),
and its tentative value (which will be the the variable’s
value when and if the transaction commits successfully).

4.3 Atomic Snapshots
The debugger can allow the user to define an atomic

group of variables to be read and/or modified atom-
ically. Such a feature provides a powerful debugging
capability that is not available in standard debuggers:
the ability to get a consistent view of multiple vari-
ables even in unsynchronized debug mode, when threads
are running and potentially modifying these variables.
(It can also be used with synchronized debugging when
combined with the delayed breakpoint feature; see Sec-
tion 4.5.)

Implementing atomic groups using TM is simply done
by accessing all variables in the group using one transac-
tion. The variables in the group are read using a single
transaction. As for modifications, when the user modi-
fies a variable in an atomic group, the modification does
not take effect until the user asks to commit all modifi-
cations to the group, at which point the debugger begins
a transaction that executes these modifications atomi-
cally. The transactions can be managed by HTM, STM
or HyTM.

Note that the displayed values of the group’s vari-
ables may not be their true value at the point the user
tries to modify them. We can extend this feature with
a compare-and-swap option, which modifies the values
of the group’s variables only if they contain the previ-
ously displayed values. This can be done by beginning
a transaction that first rereads all the group’s variables
and compares them to the previously presented values
(saved by the debugger), and only if these values all
match, applies the modifications using the same trans-
action. If some of the values did change, the new values



can be displayed.
Finally, the debugger may use a similar approach when

displaying a compound structure, to guarantee that it
displays a consistent view of that structure. Suppose,
for example, that the user views a linked list, starting
at the head node and expanding it node-by-node. Be-
cause in unsynchronized debugging mode the list might
change while being viewed, reading it node-by-node might
display an inconsistent view of the list. The debugger
can use a transaction to re-read the nodes leading to
the node the user has just expanded, thereby avoiding
such inconsistency.

4.4 Watchpoints
Many debuggers support watchpoint functionality, al-

lowing a user to instruct the debugger to stop when
a particular memory location or variable is modified.
More sophisticated watchpoints, called conditional watch-
points, can also specify that the debugger should stop
only when a certain predicate holds (for example, that
the variable value is bigger than some number).

Watchpoints are sometimes implemented using spe-
cific hardware support, called hw-breakpoints. If no hw-
breakpoint support is available, some debuggers imple-
ment watchpoints in software, by executing the program
step-by-step and checking the value of the watched vari-
able(s) after each step, which results in executing the
program hundreds of times slower than normal.

We describe here how to exploit TM infrastructure
to stop on any modification or even a read access to
a transactional variable. The idea is simple: because
the TM implementation needs to keep track of which
transactions access which memory locations, we can use
this tracking mechanism to detect accesses to specific lo-
cations. Particularly, with the HyTM implementation
described in Section 2, we can mark the orec that corre-
sponds to the memory location we would like to watch,
and invoke the debugger whenever a transaction gets
ownership of such an orec. In the hardware code path,
when checking an orec for a possible conflict with a soft-
ware transaction, we can also check for a watchpoint
indication on that orec. Depending on the particular
hardware TM support available, it may or may not be
possible to transfer control to the debugger while keep-
ing the transaction viable. If not, it may be necessary
to abort the hardware transaction and retry the trans-
action in software.

The debugger can mark an orec with either a stop-
on-read or stop-on-write marking. With the first mark-
ing, the debugger is invoked whenever a transaction
gets read ownership of that orec (note that some TM
implementations allow multiple transactions to concur-
rently own an orec in read mode), and with the latter,
it is invoked only when a transaction gets write owner-
ship of that orec. When invoked, the debugger should
first check whether the accessed variable is one of the
watchpoint’s variables (multiple memory locations may
be mapped to the same orec). If so, then the debugger
should stop, or, in the case of a conditional watchpoint,
evaluate a predicate to decide whether to stop.

Stopping the program upon access to a watchpoint
variable can be done in one of two ways:

1. Immediate-Stop: The debugger can be invoked im-
mediately when the variable is accessed. While
this gives the user control at the first time the
variable is accessed, it has some disadvantages:

• The first value written by the transaction to
the variable may not be the actual value fi-
nally written by the transaction: the trans-
action may later change the value written to
this variable, or abort without modifying the
variable at all. In many cases, the user would
not care about these intermediate values of
the variable, or about accesses done by trans-
actions that do not eventually commit.

• Most STMs do not reacquire ownership of a
location if the transaction modifies it multiple
times. Therefore, if we stop execution only
when the orec is first acquired, we may miss
subsequent modifications that establish the
predicate we are attempting to detect.

2. Stop-on-Commit: This option overcomes the prob-
lems of the immediate-stop approach, by delaying
the stopping to the point when the transaction
commits. That is, instead of invoking the debug-
ger whenever a marked orec is acquired by a trans-
action, we invoke it when a transaction that owns
the orec commits; this can be achieved for example
by recording an indication that the transaction has
acquired a marked orec when it does so, and then
invoking the debugger upon commit if this indica-
tion is set. That way the user sees the value actu-
ally written to the variable, since at that point no
other transaction can abort the triggering trans-
action anymore. While this approach has many
advantages over the immediate-stop approach, it
also has the disadvantage that the debugger will
never stop on an aborted transaction that tried
to modify the variable, which in some cases might
be desirable for example when chasing a slippery
bug that rarely occurs. Therefore, it may be desir-
able to support both options, and allow the user
to choose between them. Also, when using the
stop-on-commit approach, the user cannot see how
exactly the written value was calculated by the
transaction, although this problem can be miti-
gated by the replay debugging technique describes
in Section 4.6.

While the above description assumes a TM imple-
mentation that uses orecs, the techniques we propose
are also applicable to other TM approaches. For exam-
ple, in object-based TM implementations like the one
by Herlihy et. al. [6], we can stop on any access to an
object since any such access requires opening the object
first, so we can change the method used for opening an
object to check whether a watchpoint was set on that
object. This might be optimized by recording an indi-
cation in an object header or handle that a watchpoint
has been set on that object.

4.4.1 Dynamic Watchpoints



In some cases, the user may want to put a watchpoint
on a field whose location may dynamically change. Sup-
pose, for example, that the user is debugging a linked
list implementation, and wishes to stop whenever some
transaction accesses the value in the first node of the
list, or when some predicate involving this value is sat-
isfied. The challenge is that the address of the field
storing the value in the first node of the list is indicated
by head->value, and this address changes when head

is changed, for example when inserting or removing the
first node in the list. In this case, the address of the
variable being watched changes. We denote this type of
a watchpoint as a dynamic watchpoint.

We can implement a dynamic watchpoint on head->value

as follows: when the user asks to put a watchpoint
on head->value, the debugger puts a regular watch-
point on the current address of head->value, and a
special debugger-watchpoint on the address of head.
The debugger-watchpoint on head is special in the sense
that it does not give the control to the user when head

is accessed: instead, the debugger cancels the previous
watchpoint on head->value at that point, and puts a
new watchpoint on the new location of head->value.
That is, the debugger uses the debugger-watchpoint on
head to detect when the address of the field the user
asked to watch is changed, and changes the watchpoint
on that field accordingly.

4.4.2 Multi-Variable Conditional Watchpoints
Watching multiple variables together may also be use-

ful when the user would like to condition the watch-
point on more than one variable: for example, to stop
only if the sum of two variables is greater than some
value. We denote such a watchpoint as a multi-variable
conditional-watchpoint. With such a watchpoint, the
user asks the debugger to stop on the first memory mod-
ification that satisfies the predicate.

To implement a multi-variable conditional watchpoint,
the debugger can place a watchpoint on each of the
variables, and evaluate the predicate whenever one of
these variables is modified. We denote by the triggering
transaction the transaction that caused the predicate
evaluation to be invoked. One issue to be considered
is that evaluating the predicate requires accessing the
other watched variables. This can be done as follows:

• The debugger uses the stop-on-commit approach,
so that when a transaction that modifies any of the
predicate variables commits, we stop execution ei-
ther before or after the transaction commits. In
either case, we ensure that the transaction still has
ownership of all of the orecs it accessed, and we
ensure that these ownerships are not revoked by
any other threads that continue to run, for exam-
ple by making the triggering transaction a super-
transaction.

• When evaluating the predicate, the debugger dis-
tinguishes between two kinds of variables: ones
that were accessed by the triggering transaction,
which we denote as triggering variables, and the
rest which we denote as external variables. Ex-
ternal variables might be accessed by using the

stopped transaction, or by using another transac-
tion initiated by the debugger. In the latter case,
because the triggering transaction is stopped and
retains ownership of the orecs it accessed while
the new transaction that evaluates the external
variables executes, the specified condition can be
evaluated atomically.

• While reading the external variables, conflicts with
other transactions that access these variables may
occur. One option is to simply abort the conflict-
ing transaction. However, this may be undesir-
able, because we may prefer that the debugger
has minimal impact on program execution. As
discussed in Section 4.2.2, it is possible in some
cases to determine the pre-transaction value for
the watched variable without aborting the trans-
action that is accessing it.

4.5 Delayed Breakpoints
Stopping at a breakpoint and running the program

step-by-step affects the behavior of the program, and
particularly the timing of interactions between the threads.
Placing a breakpoint inside an atomic block may result
in even more severe side-effects, because the behavior of
atomic blocks may be very sensitive to timing modifica-
tions since they may be aborted by concurrent conflict-
ing transactions. These effects may make it difficult to
reproduce a bug scenario.

To exploit the benefits of breakpoint debugging while
attempting to minimize such effects, we suggest the de-
layed breakpoint mechanism. A delayed breakpoint is a
breakpoint in an atomic block that does not stop the
execution of the program until the transaction imple-
menting the atomic block commits. To support delayed
breakpoints, rather than stopping program execution
when an instruction marked as a delayed breakpoint is
executed, we merely set a flag that indicates that the
transaction has hit a delayed breakpoint, and resume
execution. Later, upon committing, we stop the pro-
gram execution if this indication is set. Besides the
advantage of impacting execution timing less, this tech-
nique also avoids stopping execution in the case that a
transaction executes a breakpoint instruction, but then
aborts (either explicitly or due to a conflict with another
transaction). In many cases, it will be preferable to only
stop at a breakpoint in a transaction that subsequently
commits.

One simple type of a delayed breakpoint stops on the
instruction following the atomic block if the transac-
tion implementing the atomic block hit the breakpoint
instruction in the atomic block. This kind of delayed
breakpoint can be implemented even when the transac-
tion executing the atomic block is done using HTM. The
debugger simply replaces the breakpoint-instruction in
the HTM-based implementation to branch to a piece of
code that executes that instruction, and raises a flag
indicating that the execution should stop on the in-
struction following the atomic block. This simple ap-
proach has the disadvantage that the values written by
the atomic block may have already been changed by
other threads when execution stops, so the user may see



a state of the world that differs from the state when the
breakpoint instruction was hit. Moreover, if the trans-
action is executed in hardware, then unless there is spe-
cific hardware support for this purpose, the user would
not be able to get any information about the transaction
execution (like which values were read/written, etc.).

On the other hand, if the atomic block is executed
by a software transaction, we can have a more powerful
type of a delayed breakpoint, which stops at the com-
mit point of the executing transaction. More precisely,
the debugger tries to stop at a point during the com-
mit operation of that transaction in which the transac-
tion is guaranteed to commit successfully, but that no
other transaction has seen its effects on memory. This
can be done by having the commit operation check the
flag that indicates if a delayed-breakpoint placed in the
atomic block was hit by the transaction, and if so do
the following:

1. Make the transaction a super-transaction (see Sec-
tion 4.1.1 for details).

2. Validate the transaction. That is, make sure that
the transaction can commit. If validation fails,
abort the transaction, fail the commit operation,
and resume execution.

3. Give control to the user.

4. When the user asks to continue execution, com-
mit the transaction. Note that, depending on how
super-transactions are supported, a lightweight com-
mit may be applicable here if we can be sure that
the transaction cannot be aborted after becoming
a super-transaction.

The idea behind the above procedure is simple: Guar-
antee that all future conflicts will be resolved in favor
of the transaction that hit the breakpoint, check that
the transaction can still commit, and then give control
to the user, who can subsequently decide to commit the
transaction.

At Step 3 the debugger stops the execution of the
commit operation and gives control to the user. This is
the point where the user gets to know that a commit-
ted execution of the atomic block has hit the delayed
breakpoint. At that point, the user can view various
variables, including those accessed by the transaction,
to try to understand the effect of that execution. In
Section 4.6, we describe other techniques that can give
the user more information about the committed trans-
action’s execution at that point.

4.5.1 Combining with Atomic Groups
One disadvantage of using a delayed breakpoint is

that if the user views variables not accessed by the
transaction, the values seen are at the time the debugger
stops rather than the time of the breakpoint-instruction
execution. Therefore, it may be useful to combine the
delayed breakpoint mechanism with the atomic group
feature (Section 4.3): with this combination, the user
can associate with the delayed breakpoint an atomic
group of variables whose values should be recorded when
the delayed breakpoint instruction is executed. When

the delayed breakpoint instruction is hit, besides trig-
gering a breakpoint at the end of the transaction, the
debugger gets the atomic group’s value (as described in
Section 4.3), and presents it to the user when it later
stops in the transaction’s commit phase.

4.6 Replay Debugging for Atomic Blocks
It is useful to be able to determine how the program

reached a breakpoint. Replay debugging has been sug-
gested in a variety of contexts to support such func-
tionality, and support ranging from special hardware to
user libraries have been proposed (see [12, 14] for two
recent examples). Replay debugging for multithreaded
concurrent applications generally requires logging that
can add significant overhead. In this section, we explain
how STM infrastructure can be exploited to support re-
playing atomic blocks, without the need for additional
logging. We also explain how the user can experiment
with alternative executions of the atomic block by mod-
ifying data and even commit an alternative execution
instead of the original one. To our knowledge, previous
replay debugging proposals do not include such func-
tionality.

The idea behind our replay debugging technique is to
exploit the fact that the behavior of most atomic blocks
is uniquely determined by the values it reads from mem-
ory3. Some STM implementations record values read by
the transaction in a readset. Others preserve these val-
ues in memory until the transaction commits, at which
point the values may be overwritten by new values writ-
ten by the transaction. In either case, if we modify
the STM to allow the debugger access to this informa-
tion, then the debugger can reconstruct execution of the
transaction, as explained in more detail below:

• The debugger maintains its own write-set for the
transaction. This is necessary to allow the de-
bugger to determine the values returned by reads
from locations that the transaction has previously
written. The replay begins with an empty write
set.

• The replay procedure starts from the beginning of
the debugged atomic block, and executes all in-
structions that are not STM-library function calls
as usual.

• The replay procedure ignores all STM library func-
tion calls except the ones that implement the trans-
actional read/write operations.

• When the replay procedure reaches a transactional
write operation, it writes the value in the write set
maintained by the debugger.

• When the replay procedure reaches a transactional
read operation, it first searches the write set main-
tained by the debugger. If a value for the address

3We call such atomic blocks transactionally determinis-
tic. While the techniques described in this section may
be useful even for blocks that the compiler cannot prove
are transactionally deterministic, in this case the user
should be informed that the displayed execution might
not be identical to the one that triggered the breakpoint.



being read is there, this is the value read by the
transactional read operation. Otherwise, the orig-
inal value read by the transaction is used (acquired
from the readset or from memory, depending on
the STM implementation).

Because the debugged transaction retains ownership
of orecs it acquired during the original execution, mem-
ory locations it accesses cannot change during replaying,
so the replayed execution is faithful to the original.

Replay debugging functionality can be combined with
various other features we have described. For example,
by combining replay debugging with the delayed break-
point feature described in Section 4.5, we can create
the illusion that control has stopped inside an atomic
block, although it has actually already run to its commit
point. Then, the replay functionality allows the user to
step through the remainder of the atomic block before
committing it. It is even possible to allow experimenta-
tion with alternative executions of a debugged atomic
block, for example by changing values it reads or writes.
In some cases, we may wish to do so without affecting
the actual program execution. In other cases, we may
prefer to change the actual execution, and subsequently
resume normal debugging. One way to handle the latter
case is to abort the current transaction without releas-
ing orecs, and replay it up to the point at which the
user wishes to change something. This way, we guaran-
tee that the transaction will reexecute up to this point
identically to how it did in the first place.

Combining replay debugging with other debugger fea-
tures we have proposed can support a rather powerful
debugging environment for transactional programs.

Acknowledgements
We thank Maurice Herlihy for suggesting the ability to
see a transaction’s tentative values (Section 4.2.3).

5. REFERENCES
[1] Ananian, C. S., Asanović, K., Kuszmaul,

B. C., Leiserson, C. E., and Lie, S.

Unbounded transactional memory. In Proceedings
of the 11th International Symposium on
High-Performance Computer Architecture
(HPCA’05) (San Franscisco, California, Feb.
2005), pp. 316–327.

[2] Ananian, C. S., and Rinard, M. Efficient
object-based software transactions. In Workshop
on Synchronization and Concurrency in
Object-Oriented Languages (SCOOL) (Oct. 2005).

[3] Fraser, K. Practical lock freedom. PhD thesis,
Cambridge University Computer Laboratory,
2003. Also available as Technical Report
UCAM-CL-TR-579.

[4] Hammond, L., Wong, V., Chen, M.,

Carlstrom, B. D., Davis, J. D., Hertzberg,

B., Prabhu, M. K., Wijaya, H., Kozyrakis,

C., and Olukotun, K. Transactional memory
coherence and consistency. In Proceedings of the
31st Annual International Symposium on

Computer Architecture. IEEE Computer Society,
Jun 2004, p. 102.

[5] Herlihy, M. Wait-free synchronization. ACM
Transactions on Programming Languages and
Systems 13, 1 (January 1991), 124–149.

[6] Herlihy, M., Luchangco, V., Moir, M., and

Scherer, W. N. Software transactional memory
for dynamic-sized data structures. In Proceedings
of the 22nd Annual ACM Symposium on
Principles of Distributed Computing (Jul 2003),
pp. 92–101.

[7] Herlihy, M., and Moss, J. Transactional
memory: Architectural support for lock-free data
structures. Tech. Rep. CRL 92/07, Digital
Equipment Corporation, Cambridge Research
Lab, 1992.

[8] Kumar, S., Chu, M., Hughes, C., Kundu, P.,

and Nguyen, A. Hybrid transactional memory.
In Preceedings of the 11th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (2006).

[9] Lev, Y., and Maessen, J. Towards a safer
interaction with transactional memory by tracking
object visibility. In Workshop on Synchronization
and Concurrency in Object-Oriented Languages
(SCOOL) (Oct. 2005).

[10] Marathe, V. J., Scherer III, W. N., and

Scott, M. L. Adaptive software transactional
memory. Tech. rep., Cracow, Poland, Sep 2005.
Earlier but expanded version available as TR 868,
University of Rochester Computer Science Dept.,
May 2005.

[11] Moir, M. Hybrid transactional memory, Jul
2005. http://www.cs.wisc.edu/trans-
memory/misc-papers/moir:hybrid-tm:tr:2005.pdf.

[12] Narayanasamy, S., Pokam, G., and Calder,

B. Bugnet: Continuously recording program
execution for deterministic replay debugging. In
ISCA ’05: Proceedings of the 32nd Annual
International Symposium on Computer
Architecture (Washington, DC, USA, 2005), IEEE
Computer Society, pp. 284–295.

[13] Rajwar, R., Herlihy, M., and Lai, K.

Virtualizing transactional memory. In ISCA ’05:
Proceedings of the 32nd Annual International
Symposium on Computer Architecture
(Washington, DC, USA, 2005), IEEE Computer
Society, pp. 494–505.

[14] Saito, Y. Jockey: A user-space library for
record-replay debugging. Technical Report
HP-2006-46, HP Laboratories, Palo Alto, CA,
March 2005.

[15] Scherer, W., and Scott, M. Advanced
contention management for dynamic software
transactional memory. In Proc. 24th Annual ACM
Symposium on Principles of Distributed
Computing (2005).

[16] Shavit, N., and Touitou, D. Software
transactional memory. Distributed Computing 10,
2 (February 1997), 99–116.


