
Higher Order Combinators for Join Patterns using STM

Satnam Singh
Microsoft

One Microsoft Way
Redmond WA 98052, USA

+1 425 705 8208
satnams@microsoft.com

http://research.microsoft.com/~satnams

ABSTRACT
Join patterns provide a higher level concurrent programming
construct than the explicit use of threads and locks and have
typically been implemented with special syntax and run-time
support. This paper presents a strikingly simple design for a small
number of higher order combinators which can be composed
together to realize a powerful set of join patterns as a library in
an existing language. The higher order combinators enjoy a lock
free implementation that uses software transactional memory
(STM). This allows joins patterns to be implemented simply as a
library and provides a transformational semantics for join
patterns.

1. INTRODUCTION
Join patterns provide a way to write concurrent programs that
provide a programming model which is higher level than the
direct invocation of threads and the explicit use of locks in a
specific order. This programming model has at its heart the notion
of atomically consuming messages from a group of channels and
then executing some code that can use the consumed message
values. Join patterns can be used to easily encode related
concurrency idioms like actors and active objects [1][14] as
shown by Benton et. al. in [4]. Join patterns typically occur as
language-level constructs with special syntax along with a
sophisticated implementation for a state machine which governs
the atomic consumption of messages. The contribution of this
paper is to show how join patterns can be modeled using a small
but powerful collection of higher order combinations which can
be implemented in a lock free style using software transactional
memory. The combinators are higher order because they take
functions (programs) as arguments and return functions (programs
as result) which glue together the input programs to form a
resulting composite program which allows us to make a domain
specific language for join patterns. All of this is achieved as a
library in an existing language without requiring any special
syntax or run-time code. The complete implementation appears in
this paper.
Join patterns emerged from a desire to find higher level
concurrency and communication constructs than locks and threads
for concurrent and distributed programs [13][6]. For example, the
work of Fournet and Gonthier on join calculus [10][11] provides a
process calculi which is amenable to direct implementation in a
distributed setting. Related work on JoCaml [8] and Funnel [20]
present similar ideas in a functional setting. An adaptation of join-
calculus to an object-oriented setting is found in Comega

(previously known as Polyphonic C#) [4] and similar extensions
have also been reported for Java [16].
Concurrent programming using join patterns promises to provide
useful higher level abstractions compared with asynchronous
message passing programs that directly manipulate ports. Comega
adds new language features to C# to implement join patterns.
Adding concurrency features as language extensions has many
advantages including allowing the compiler to analyze and
optimize programs and detect problems at compile time. This
paper presents a method of introducing a flexible collection of
join operations which are implemented solely as a library. We do
assume the availability of software transactional memories (STM)
which may be implemented as syntactic language extensions or
introduced just as a library. In this paper we use the lazy
functional programming language Haskell as our host language
for join patterns implemented in terms of STM because of the
robust implementation which provides composable memory
transactions [13] which also exploits the type system to statically
forbid side effecting operations inside STM. In Haskell the STM
functionality is made available through a regular library. We
make extensive use of the composable nature of Haskell's STM
implementation to help define join pattern elements which also
possess good compensability properties. Other reasons for using
Haskell include it support for very lightweight threads which
allows us to experiment with join pattern programs with vastly
more threads than is practical using a language in which threads
are implemented directly with operating system threads.
The remainder of this paper briefly presents the salient features of
Comega and STM in Haskell and then goes on to show how join
patterns can be added as a library using STM. This paper contains
listings for several complete Comega and Haskell programs and
the reader is encouraged to compile and execute these programs.

2. JOIN PATTERNS IN COMEGA
The polyphonic extensions to C# comprise just two new concepts:
(i) asynchronous methods which return control to the caller
immediately and execute the body of the method concurrently;
and (ii) chords (also known as ‘synchronization patterns’ or ‘join
patterns’) which are methods whose execution is predicated by
the prior invocation of some null-bodied asynchronous methods.

2.1 ASYNCHRONOUS METHODS
The code below is a complete Comega program that demonstrates
an asynchronous method.

using System ;

public class MainProgram

{ public class ArraySummer

 { public async sumArray (int[] intArray)

 { int sum = 0 ;

 foreach (int value in intArray)

 sum += value ;

 Console.WriteLine ("Sum = " + sum) ;

 }

 }

 static void Main()

 { Summer = new ArraySummer () ;

 Summer.sumArray (new int[] {1, 0, 6, 3, 5}) ;

 Summer.sumArray (new int[] {3, 1, 4, 1, 2}) ;

 Console.WriteLine ("Main method done.") ;

 }

}

Comega introduces the async keyword to identify an
asynchronous method. Calls to an asynchronous method return
immediately and asynchronous methods do not have a return type
(they behave as if their return type is void). The sumArray
asynchronous method captures an array from the caller and its
body is run concurrently with respect to the caller's context. The
compiler may choose a variety of schemes for implementing the
concurrency. For example, a separate thread could be created for
the body of the asynchronous method or a work item could be
created for a thread pool or, on a multi-processor or multi-core
machine, the body may execute in parallel with the calling
context. The second call to the sumArray does not need to wait
until the body of the sumArray method finishes executing from
the first call to sumArray.
In this program the two calls to the sumArray method of the
Summer object behave as if the body of sumArray was forked off
as a separate thread and control returns immediately to the main
program. When this program is compiled and run it will in general
write out the results of the two summations and the Main method
done text in arbitrary orders. The Comega compiler can be
downloaded from: http://research.microsoft.com/Comega/

2.2 CHORDS
The code below is a complete Comega program that demonstrates
how a chord can be used to make a buffer.

using System ;
public class MainProgram

{ public class Buffer

 { public async Put (int value) ;

 public int Get () & Put(int value)

 { return value ; }

 }

 static void Main()

 { buf = new Buffer () ;

 buf.Put (42) ;

 buf.Put (66) ;

 Console.WriteLine (buf.Get() + " " +

 buf.Get()) ;

 }

}

The & operator groups together methods that form a join pattern in
Comega. A join pattern that contains only asynchronous methods
will concurrently execute its body when all of the constituent
methods have been called. A join pattern may have one (but not
more) synchronous method which is identified by a return type
other than async. The body for a synchronous join pattern fires
when all the constituent methods (including the synchronous
method) are called. The body is executed in the caller's context
(thread). The Comega join pattern behaves like a join operation
over a collection of ports (e.g. in JoCaml) with the methods taking
on a role similar to ports. The calls to the Put method are similar
in spirit to performing an asynchronous message send (or post) to
a port. In this case the port is identified by a method name (i.e.
Put). Although the asynchronous posts to the Put ‘port’ occur in
series in the main body the values will arrive in the Put ‘port’ in
an arbitrary order. Consequently the program shown above will
have a non-deterministic output writing either “42 66” or “66
42”.

3. STM IN CONCURRENT HASKELL
Software Transactional Memory (STM) is a mechanism for
coordinating concurrent threads. We believe that STM offers a
much higher level of abstraction than the traditional combination
of locks and condition variables, a claim that this paper should
substantiate. The material in this section is largely borrowed
directly from [2]. We briefly review the STM idea, and especially
its realization in concurrent Haskell; the interested reader should
consult [9] for much more background and details.
Concurrent Haskell [21] is an extension to Haskell 98, a pure,
lazy, functional programming language. It provides explicitly-
forked threads, and abstractions for communicating between
them. These constructs naturally involve side effects and so,
given the lazy evaluation strategy, it is necessary to be able to
control exactly when they occur. The big breakthrough came
from using a mechanism called monads [22] . Here is the key
idea: a value of type IO a is an “I/O action” that, when
performed may do some input/output before yielding a value of
type a. For example, the functions putChar and getChar have
types:

putChar :: Char -> IO ()

getChar :: IO Char

That is, putChar takes a Char and delivers an I/O action that,
when performed, prints the string on the standard output; while
getChar is an action that, when performed, reads a character
from the console and delivers it as the result of the action. A
complete program must define an I/O action called main;

executing the program means performing that action. For
example:

main :: IO ()

main = putChar 'x'

I/O actions can be glued together by a monadic bind combinator.
This is normally used through some syntactic sugar, allowing a C-
like syntax. Here, for example, is a complete program that reads a
character and then prints it twice:

main = do { c <- getChar; putChar c; putChar c }

Threads in Haskell communicate by reading and writing
transactional variables, or TVars. The operations on TVars are
as follows:

data TVar a

newTVar :: a -> STM (TVar a)

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

All these operations all make use of the STM monad, which
supports a carefully-designed set of transactional operations,
including allocating, reading and writing transactional variables.
The readTVar and writeTVar operations both return STM
actions, but Haskell allows us to use the same do {...} syntax
to compose STM actions as we did for I/O actions. These STM
actions remain tentative during their execution: in order to expose
an STM action to the rest of the system, it can be passed to a new
function atomically, with type

atomically :: STM a -> IO a

It takes a memory transaction, of type STM a, and delivers an I/O
action that, when performed, runs the transaction atomically with
respect to all other memory transactions. For example, one might
say:

main = do { ...; atomically (getR r 3); ... }

Operationally, atomically takes the tentative updates and actually
applies them to the TVars involved, thereby making these effects
visible to other transactions. The atomically function and all of
the STM-typed operations are built over the software
transactional memory. This deals with maintaining a per-thread
transaction log that records the tentative accesses made to TVars.
When atomically is invoked the STM checks that the logged
accesses are valid – i.e. no concurrent transaction has committed
conflicting updates. If the log is valid then the STM commits it
atomically to the heap. Otherwise the memory transaction is re-
executed with a fresh log.

Splitting the world into STM actions and I/O actions provides two
valuable guarantees: (i) only STM actions and pure computation
can be performed inside a memory transaction; in particular I/O
actions cannot; (ii) no STM actions can be performed outside a
transaction, so the programmer cannot accidentally read or write a
TVar without the protection of atomically. Of course, one can
always write atomically (readTVar v) to read a TVar in a trivial
transaction, but the call to atomically cannot be omitted. As an
example, here is a procedure that atomically increments a TVar:

incT :: TVar Int -> IO ()

incT v = atomically (do x <- readTVar v

 writeTVar v (x+1))

The implementation guarantees that the body of a call to
atomically runs atomically with respect to every other thread; for
example, there is no possibility that another thread can read v
between the readTVar and writeTVar of incT.
A transaction can block using retry:

retry :: STM a

The semantics of retry is to abort the current atomic transaction,
and re-run it after one of the transactional variables has been
updated. For example, here is a procedure that decrements a
TVar, but blocks if the variable is already zero:

decT :: TVar Int -> IO ()

decT v = atomically (do x <- readTVar v

 when (x == 0)

 retry

 writeTVar v (x-1))

The when function examines a predicate (here the text to see if x
is 0) and if it is true it executes a monadic calculation (here
retry).
Finally, the orElse function allows two transactions to be tried in
sequence: (s1 `orElse` s2) is a transaction that first attempts
s1; if it calls retry, then s2 is tried instead; if that retries as well,
then the entire call to orElse retries. For example, this
procedure will decrement v1 unless v1 is already zero, in which
case it will decrement v2. If both are zero, the thread will block:

decPair v1 v1 :: TVar Int -> TVar Int -> IO ()

decPair v1 v2

 = atomically (decT v1 `orElse` decT v2)

In addition, the STM code needs no modifications at all to be
robust to exceptions. The semantics of atomically is that if an
exception is raised inside the transaction, then no globally visible
state change whatsoever is made.

An example of how a concurrent data structure from the Java
JSR-166 [18] collection can be written using STM in Haskell
appears in [2].

4. IMPLEMENTING JOINS WITH STM
4.1 TRANSACTED CHANNELS
To help make join patterns out of the STM mechanism in Haskell
we shall make use of an existing library which provides
transacted channels:

data TChan a

newTChan :: STM (TChan a)

readTChan :: TChan a -> STM a

writeTChan :: TChan a -> a -> STM ()

A new transacted channel is created with a call to newTChan. A
value is read from a channel by readTChan and a value is written
by writeTChan. These are tentative operations which occur
inside the STM monad and they have to be part of an STM
expression which is the subject of a call to atomically in order
to actually execute and commit.

4.2 SYNCHRONOUS JOIN PATTERNS
A first step towards trying to approach a join pattern like feature
of Comega is to try and capture the notion of a synchronous join
pattern. We choose to model the methods in Comega as channels
in Haskell. We can then model a join pattern by atomically
reading from multiple channels. This feature can be trivially
implemented using an STM as shown in the definition of join2
below.

module Main

where

import Control.Concurrent

import Control.Concurrent.STM

join2 :: TChan a -> TChan b -> IO (a, b)

join2 chanA chanB

 = atomically (do a <- readTChan chanA

 b <- readTChan chanB

 return (a, b)

)

taskA :: TChan Int -> TChan Int -> IO ()

taskA chan1 chan2

 = do (v1, v2) <- join2 chan1 chan2

 putStrLn ("taskA got: " ++ show (v1, v2))

main

 = do chanA <- atomically newTChan

 chanB <- atomically newTChan

 atomically (writeTChan chanA 42)

 atomically (writeTChan chanB 75)

 taskA chanA chanB

Assuming this program is saved in a file called Join2.hs it can
be compiled using the commands shown below. The Glasgow
Haskell compiler can be downloaded from
http://www.haskell.org/ghc/

$ ghc --make -fglasgow-exts Join2.hs -o join2.exe

Chasing modules from: Join2.hs

Compiling Main (Join2.hs, Join2.o)

Linking ...

$./join2.exe

taskA got: (42,75)

In this program the join2 function takes two channels and
returns a pair of values which have been read from each channel.
If either or both of the channels are empty then the STM aborts
and retries. Using this definition of join2 we still do not have a
full chord yet and we have to piece together the notion of
synchronizing on the arrival of data on several channels with the
code to execute when the synchronization fires. This is done in
the function taskA.
The implementation of the join mechanism in other languages
might involve creating a state machine which monitors the arrival
of messages on several ports and then decides which handler to
run. The complexity of such an implementation is proportional to
the number of ports being joined. Exploiting the STM mechanism
in Haskell gives a join style synchronization almost for free but
the cost of this implementation also depends on the size of the
values beings joined because these values are copied into a
transaction log.

4.3 ASYNCHRONOUS JOIN PATTERNS
In the code above taskA is an example of a synchronous join
pattern which runs in the context of the caller. We can also
program a recurring asynchronous join with a recursive call:
module Main

where

import Control.Concurrent

import Control.Concurrent.STM

join2 :: TChan a -> TChan b -> IO (a, b)

join2 chanA chanB

 = atomically (do a <- readTChan chanA

 b <- readTChan chanB

 return (a, b)

)

asyncJoin2 chan1 chan2 handler

 = forkIO (asyncJoinLoop2 chan1 chan2 handler)

asyncJoinLoop2 chan1 chan2 handler

 = do (v1, v2) <- join2 chan1 chan2

 forkIO (handler v1 v2)

 asyncJoinLoop2 chan1 chan2 handler

taskA :: Int -> Int -> IO ()

taskA v1 v2

 = putStrLn ("taskA got: " ++ show (v1, v2))

taskB :: Int -> Int -> IO ()

taskB v1 v2

 = putStrLn ("taskB got: " ++ show (v1, v2))

main

 = do chanA <- atomically newTChan

 chanB <- atomically newTChan

 chanC <- atomically newTChan

 atomically (writeTChan chanA 42)

 atomically (writeTChan chanC 75)

 atomically (writeTChan chanB 21)

 atomically (writeTChan chanB 14)

 asyncJoin2 chanA chanB taskA

 asyncJoin2 chanB chanC taskB

 threadDelay 1000

asyncJoin2 here is different from join2 in two important
respects. First, the intention is that the join should automatically
re-issue. This is done by recursively calling asyncJoinLoop2.
Second, this version concurrently executes the body (handler)
when the join synchronization occurs (this corresponds to the case
in Comega when a chord only contains asynchronous methods).
This example spawns off two threads which compete for values
on a shared channel.
When either thread captures values from a join pattern it then
forks off a handler thread to deal with these values and
immediately starts to compete for more values from the ports it is
watching. Here is a sample execution of this program:

> ./main

taskA got: (42,21)

taskB got: (14,75)

4.4 HIGHER ORDER JOIN COMBINATORS
Haskell allows the definition of infix symbols which can help to
make the join patterns much easier to read. This section presents
some type classes which in conjunction with infix symbols
provide a convenient syntax for join patterns.
A synchronous join pattern can be represented using one infix
operator to identify channels to be joined and another operator to
apply the handler. The infix operators are declared to be left
associative and are given binding strengths. The purpose of the &
combinator is to compose together the elements of a join pattern
which identify when the join should fire (in this case it identifies

channels). The purpose of the synchronous >>> combinator is to
take a join pattern and execute a handler when it fires. The result
of the handler expression is the result of the join pattern. We use a
lambda expression to bind names to the results of the join pattern
although we could also have used a named function. A sample
join pattern is shown in the definition of the function example.

module Main

where

import Control.Concurrent

import Control.Concurrent.STM

infixl 5 &

infixl 3 >>>

(&) :: TChan a -> TChan b -> STM (a, b)

(&) chan1 chan2

 = do a <- readTChan chan1

 b <- readTChan chan2

 return (a, b)

(>>>) :: STM a -> (a -> IO b) -> IO b

(>>>) joinPattern handler

 = do results <- atomically joinPattern

 handler results

example chan1 chan2

 = chan1 & chan2 >>> \ (a, b) -> putStrLn (show
(a, b))

main

 = do chan1 <- atomically newTChan

 chan2 <- atomically newTChan

 atomically (writeTChan chan1 14)

 atomically (writeTChan chan2 "wombat")

 example chan1 chan2

This program writes “(14, “wombat”)”. We can define an
operator for performing replicated asynchronous joins in a similar
way, as shown below.
…

(>!>) :: STM a -> (a -> IO ()) -> IO ()

(>!>) joins cont

 = do forkIO (asyncJoinLoop joins cont)

 return () -- discard thread ID

asyncJoinLoop joinPattern handler

 = do results <- atomically joinPattern

 forkIO (handler results)

 asyncJoinLoop joinPattern handler

example chan1 chan2

 = chan1 & chan2 >!> \ (a, b) -> putStrLn (show
((a, b)))

main

 = do chan1 <- atomically newTChan

 chan2 <- atomically newTChan

 atomically (writeTChan chan1 14)

 atomically (writeTChan chan2 "wombat")

 atomically (writeTChan chan1 45)

 atomically (writeTChan chan2 "numbat")

 example chan1 chan2

 threadDelay 1000

The continuation associated with the joins on chan1 and chan2 is
run each time the join pattern fires. A sample output is:
(14,"wombat")

(45,"numbat")

The asynchronous pattern >!> runs indefinitely or until the main
program ends and brings down all the other threads. One could
write a variant of this join pattern which gets notified when it
becomes indefinitely blocked (through an exception). This
exception could be caught and used to terminate
asyncJoinLoop. We choose to avoid such asynchronous
finalizers.
We can use Haskell's multi-parameter type class mechanism to
overload the definition of & to allow more than two channels to be
joined. Here we define a type class called Joinable which
allows us to overload the definition of &. There instances are
given: one for the case where both arguments are transacted
channels; one for the case where the second argument is an STM
expression (resulting from another join pattern); and one for the
case where the left argument is an STM expression. A fourth
instance for the case when both arguments are STM expressions
has been omitted but is straight forward to define.
…

class Joinable t1 t2 where

 (&) :: t1 a -> t2 b -> STM (a, b)

instance Joinable TChan TChan where

 (&) = join2

instance Joinable TChan STM where

 (&) = join2b

instance Joinable STM TChan where

 (&) a b = do (x,y) <- join2b b a

 return (y, x)

join2b :: TChan a -> STM b -> STM (a, b)

join2b chan1 stm

 = do a <- readTChan chan1

 b <- stm

 return (a, b)

example chan1 chan2 chan3

 = chan1 & chan2 & chan3 >>> \ ((a, b), c) ->
putStrLn (show [a,b,c])

main

 = do chan1 <- atomically newTChan

 chan2 <- atomically newTChan

 chan3 <- atomically newTChan

 atomically (writeTChan chan1 14)

 atomically (writeTChan chan2 75)

 atomically (writeTChan chan3 11)

 example chan1 chan2 chan3

One problem with this formulation is that the & operator is not
associative. The & was defined to be a left-associated infix
operator which means that different shapes of tuples are returned
from the join pattern depending on how the join pattern is
bracketed. For example:
example1 chan1 chan2 chan3

 = (chan1 & chan2) & chan3 >>> \ ((a, b), c) ->
putStrLn (show [a,b,c])

example2 chan1 chan2 chan3

 = chan1 & (chan2 & chan3) >>> \ (a, (b, c)) ->
putStrLn (show [a,b,c])

It would be much more desirable to have nested applications of
the & operator return a flat structure. We can address this problem
in various ways. One approach might be to use type classes again
to provide overloaded definitions for >>> which fix-up the return
type to be a flat tuple. This method is brittle because it requires us
to type in instance declarations that map every nested tuple
pattern to a flat tuple and we can not type in all of them. Other
approaches could exploit Haskell's dynamic types or the template
facility for program splicing to define a meta-program that re-
writes nested tuples to flat tuples. We do not go into the details of
these technicalities here and for clarity of exposition we stick with
the nested tuples for the remainder of this paper.

4.5 JOINS ON LISTS OF CHANNELS
Joining on a list of channels is easily accomplished by mapping
the channel reading operation on each element of a list. This is
demonstrated in the one line definition of joinList below.
…

joinList :: [TChan a] -> STM [a]

joinList = mapM readTChan

example channels chan2

 = joinList channels & chan2 >>> \ (a, b) ->
putStrLn (show (a, b))

main

 = do chan1 <- atomically newTChan

 chan2 <- atomically newTChan

 chan3 <- atomically newTChan

 atomically (writeTChan chan1 14)

 atomically (writeTChan chan2 75)

 atomically (writeTChan chan3 11)

 example [chan1, chan2] chan3

This program writes out “([14,75],11)”. One can define a join
over arrays of ports in a similar way. For greater generality one
could define a type class to introduce a method for mapping a
type T (TChan a) to the isomorphic type T a by performing
readTChan operations on each channel. One could also look into
ways of overloading & to operate directly over lists and arrays but
applying the joinList function as shown above seems to work
well and interacts well as an expression in a join pattern.

4.6 CHOICE
The biased choice combinator allows the expression of a choice
between two join patterns. The choice is biased because it will
always prefer the first join pattern if it can fire. Each alternative is
represented by a pair which contains a join pattern and the action
to be executed if the join pattern fires.
(|+|) :: (STM a, a -> IO c) ->

 (STM b, b -> IO c) ->

 IO c

(|+|) (joina, action1) (joinb, action2)

 = do io <- atomically

 (do a <- joina

 return (action1 a)

 `orElse`

 do b <- joinb

 return (action2 b))

 io

Here the orElse combinator is used to help compose alternatives.
This combinator tries to execute the first join pattern (joina) and
if it succeeds a value is bound is the variable a and this is used as
input to the IO action called action1. If the first join pattern can
not fire the first argument of orElse performs a retry and then
the second alternative is attempted (using the pattern joinb).
This will either succeed and the value emitted from the joinb
pattern is then supplied to action2 or it will fail and the whole
STM express will perform a retry.
A fairer choice can be made by using a pseudo-random variable to
dynamically construct an orElse expression which will either
bias joina or joinb. Another option is to keep alternating the
roles of joina and joinb by using a transacted variable to record
which join pattern should be checked first.

4.7 DYNAMIC JOINS
Join patterns in Comega occur as declarations which make them a
very static construct. Often one wants to dynamically construct a
join pattern depending on some information that is only available
at run-time. This argues for join patterns occurring as expressions
or statements rather than as declarations. Since in our formulation
join patterns are just expressions we get dynamic joins for free.
Here is a simple example:

example numSensors numSensors chan1 chan2 chan3

 = if numSensors = 2 then

 chan1 & chan2 >!> \ (a, b)

 -> putStrLn (show ((a, b)))

 else

 chan1 & chan2 & chan3 >!> \ ((a, b), c)

 -> putStrLn (show ((a, b, c)))

In this example the value of the variable numSensors is used to
determine which join pattern is executed. A more elaborate
example would be a join pattern which used the values read from
the patter to dynamically construct a new join pattern in the
handler function. Another example would be a join pattern which
returns channels which are then used to dynamically construct a
join pattern in the handler function.
Statically defined joins enjoy more opportunities for efficient
compilation and analysis than dynamically constructed joins.

4.8 CONDITIONAL JOINS
Sometimes it is desirable to predicate a join pattern to fire only
when some guard conditions are met or only if the values that
would be read by the join pattern satisfy a certain criteria.
We can avoid the complexities of implementing conditional join
patterns through tricky concurrent programming and language
extension by once again exploiting the STM library interface in
Haskell. First we define guards that predicate the consumption of
a value from a channel.
(?) :: TChan a -> Bool -> STM a

(?) chan predicate

 = if predicate then

 readTChan chan

 else

 retry

example cond chan1 chan2

 = (chan1 ? cond) & chan2 >>> \ (a, b) ->
putStrLn (show (a, b))

The guards expressed by ? can only be boolean expressions and
one could always have written a dynamically constructed join
pattern instead of a guard. The implementation exploits the retry
function in the Haskell STM interface to abort this transacted
channel read if the predicate is not satisfied.
A more useful kind of conditional join would want to access some
shared state about the system to help formulate the condition.
Shared state for STM programs can only be accessed via the STM
monad so we can introduce another overloaded version of ?
which takes a condition in the STM monad:
(?) :: TChan a -> STM Bool -> STM a

(?) chan predicate

 = do cond <- predicate

 if cond then

 readTChan chan

 else

 retry

Now the predicate can be supplied with transacted variables
which can be used to predicate the consumption of a value from a
channel. These conditions can also update shared state. Several
guards can try to update the shared state at the same time and the

STM mechanism will ensure that only consistent updates are
allowed.
This definition of ? also allows quite powerful conditional
expressions to be written which can depend on the values that
would be read from other channels in the join pattern. The
condition STM predicate can be supplied with the channels in the
join pattern or other transacted variables to help form the
predicate. This allows quite dynamic forms of join e.g. sometimes
performing a join pattern on channels chan1 and chan2 and
sometimes performing a join pattern on channels chan1 and
chan3 depending on the value read from chan1.
A special case of the STM predicate version of ? is a conditional
join that tests to see if the value that would be read satisfies some
predicate. The code below defines a function ?? which takes such
a predicate function as one of its arguments. The example shows a
join pattern which will only fire if the value read on chan1 is
greater than 3.
(??) :: TChan a -> (a -> Bool) -> STM a

(??) chan predicate

 = do value <- readTChan chan

 if predicate value then

 return value

 else

 retry

example chan1 chan2

 = (chan1 ?? \x -> x > 3) & chan2 >>> \ (a, b)

 -> putStrLn (show (a, b))

A conditional join pattern could be implemented in Comega by
returning a value to a port if it does not satisfy some predicate. If
several threads read from the same port and then return the values
they read there is a possibility that the port will end up with
values returned in a different order. Furthermore, other threads
can make judgments based on the state of the port after the value
has been read but before it has been returned. The conditional
formulations that we present where atomically remove values
from a port when a predicate is satisfied so they do not suffer
from such problems.

4.9 NON-BLOCKING VARIANTS
Non-blocking variants may be made by composing the blocking
versions of join patterns using orElse with an alternative that
returns negative status information. This is demonstrated in the
definition of nonBlockingJoin below which returns a value
wrapped in a Maybe type which has constructors Just a for a
positive result and Nothing for a negative result.
nonBlockingJoin :: STM a -> STM (Maybe a)

nonBlockingJoin pattern

 = (do result <- pattern

 return (Just result))

 `orElse`

 (return Nothing)

4.10 EXCEPTIONS
Understanding how exceptions behave in this join pattern scheme
amounts to understanding how exceptions behave in the Haskell

STM interface. Exceptions can be thrown and caught as described
in [13]. Our encoding of join patterns gives a default backward
error recovery scheme for the implementation of the join pattern
firing mechanism because if an error occurs in the handler code
the transaction is restarted and any consumed values are returned
to ports from which they were read. The handler code however
does not execute in the STM monad so it may raise exception.
This exception will require forward error recovery which may
involve returning values to channels because this code is executed
after the transacted consumption of values from channels has
committed.

5. RELATED WORK
A join pattern library for C# called CCR was recently announced
[7] although the underlying model is quite different what is
presented here. This model exposes ‘arbiters’ which govern how
messages are consumed (or returned) to ports. These arbiters are
the fundamental building blocks which are used to encode a
variety of communication and synchronization constructs
including a variant of join patterns. A significant difference is the
lack of a synchronous join because all handler code for join
patterns is asynchronously executed on a worker thread. This
requires the programmer to explicitly code in a continuation
passing style although the iterator mechanism in C# has been
exploited by the CCR to effectively get the compiler make the
continuation passing transform automatically for the user (in the
style of CLU [17]).
One could imagine extending Haskell with JoCaml [11] style join
patterns which are special language feature with special syntax.
Here is an example of a composite join pattern from the JoCaml
manual:
let def apple! () | pie! ()

 = print_string "apple pie" ;

or raspberry! () | pie! ()

 = print_string "raspberry pie" ;

Three ports are defined: apple, pie and raspberry. The composite
join pattern defines a synchronization pattern which contains two
alternatives: one which is eligible to fire when there are values
available on the ports apple and pie and the other when there are
values available on raspberry and pie. When there is only one
message on pie the system makes an internal choice e.g.
spawn {apple () | raspberry () | pie ()}

;;

-> raspberry pie

Alternatively, the system could have equally well responded with
apple pie. Expressing such patterns using the Haskell STM
encoding of join patterns seems very similar yet this approach
does not require special syntax or language extensions. However,
making join patterns concrete in the language does facilitate
compiler analysis and optimization.

6. CONCLUSIONS AND FUTURE WORK
The main contribution of this paper is the realization in Haskell
STM of join combinators which model join patterns that already
exist in other languages. The embedding of Comega style join
patterns into Haskell by exploiting a library that gives a small but
powerful interface to an STM mechanism affords a great deal of

expressive power. Furthermore, the embedding is implemented
solely as a library without any need to extend the language and
modify the compiler. The entire source of the embedding is
compact enough to appear in several forms in this paper along
with examples.
Several reasons conspire to aid the embedding of join patterns as
we have presented them. The very composable nature of STM in
Haskell means that we can separately define the behavior of
elements of join patterns and then compose them together with
powerful higher order combinators like &, >>>, >!> and ?. STM
actions can be glued together and executed atomically which
allows a good separation of concerns between what to do about a
particular channel and what to do about the interaction between
all the channels. The behavior of the exception mechanism also
composes in a very pleasant way.
The type safety that Haskell provides to ensure that no side-
effecting operations can occur inside an STM operation also
greatly aids the production of robust programs. The ability to
define symbolic infix operators and exploit the type class system
for systematic overloading also help to produce join patterns that
are concise. We also benefit from representing join patterns as
expressions rather than as declarations in Comega.
The STM mechanism proves to be very effective at allowing us to
describe conditional join patterns. These would be quite
complicated to define in terms of lower level concurrency
primitives. We were able to give very short and clear definitions
of several types of conditional join patterns.
The ability to perform dynamic joins over composite data
structures that contain ports (like lists) and conditional joins
makes this library more expressive than what is currently
implemented in Comega. Furthermore, in certain situations the
optimistic concurrency of a STM based implementation may yield
advantages over a more pessimistic lock-based implementation of
a finite state machine for join patterns. Another approach for
realizing join patterns in a lock free manner could involve
implementing the state machine at the heart of the join machinery
in languages like Comega using STM rather than explicit locks.
Even if an STM representation of join patterns is not the first
choice of an implementer we think that the transformational
semantics that they provide for join patterns is a useful model for
the programmer. Many of the join patterns we have shown could
have been written directly in the STM monad. We think that when
synchronization is appropriately expressible as a join pattern then
this is preferable for several reasons including the need for
intimating the programmer's intent and also giving the compiler
an opportunity to perhaps compile such join patterns using a more
specialized mechanism than STM.
An interesting avenue of future work suggested by one of the
anonymous reviewers is to consider the reverse experiment i.e.
use an optimistic implementation of join-calculus primitives in
conjunction with monitors and condition variables to try and
implement the Haskell STM mechanism. Our intuition is such an
approach would be much more complicated to implement. We
believe the value of the experiment presented in this paper is not
to do with the design of an efficient join pattern library but rather
to show that STM may be a viable idiom for capturing various
domain specific concurrency abstractions.

Although a Haskell based implementation is not likely to enjoy
widespread use or adoption we do believe that the model we have
presented provides a useful workbench for exploring how join
patterns can be encoded using a library based on higher order
combinators with a lock free implementation. Higher order
combinators can be encoded to some extent in conventional
languages using constructs like delegates in C#. Prototype
implementations of STM are available for some mainstream
languages e.g. Join Java [16] and SXM [12] for C#. When
translating examples from the Haskell STM world into languages
like C# which rely on heavyweight operating system threads one
may need to introduce extra machinery like threadpools which are
not required in Haskell because of its support for a large number
of lightweight threads.

REFERENCES

[1] Agha, G. ACTORS: A model of Concurrent computations in

Distributed Systems. The MIT Press, Cambridge, Mass.
1990.

[2] Discolo, A., Harris, T., Marlow, M., Peyton Jones, S., Singh,
S. Lock Free Data Structures using STM Haskell. Eigth
International Symposium on Functional and Logic
Programing (FLOPS 2006). April 2006 (to appear).

[3] Appel, A. Compiling with Continuations. Cambridge
University Press. 1992

[4] Benton, N., Cardelli, L., Fournet, C. Modern Concurrency
Abstractions for C#. ACM Transactions on Programming
Languages and Systems (TOPLAS), Vol. 26, Issue 5, 2004.

[5] Birrell, A. D. An Introduction to Programming with Threads.
Research Report 35, DEC. 1989.

[6] Chaki, S., Rajamani, S. K., Rehof, J. Types as models:
Model Checking Message Passing Programs. In Proceedings
of the 29th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM, 2002.

[7] Chrysanthakopoulos, G., Singh, S. An Asynchronous
Messaging Library for C#. Synchronization and Concurrency
in Object-Oriented Languages (SCOOL). October 2005.

[8] Conchon, S., Le Fessant, F. JoCaml: Mobile agents for
Objective-Caml. In First International Symposium on Agent
Systems and Applications. (ASA’99)/Third International
Symposium onMobile Agents (MA’99). IEEE Computer
Society, 1999.

[9] Daume III, H. Yet Another Haskell Tutorial. 2004. Available
at http://www.isi.edu/~hdaume/htut/ or via
http://www.haskell.org/.

[10] Fournet, C., Gonthier, G. The reflexive chemical abstract
machine and the join calculus. In Proceedings of the 23rd
ACM-SIGACT Symposium on Principles of Programming
Languages. ACM, 1996.

[11] Fournet, C., Gonthier, G. The join calculus: a language for
distributed mobile programming. In Proceedings of the
Applied Semantics Summer School (APPSEM), Caminha,
Sept. 2000, G. Barthe, P. Dybjer, , L. Pinto, J. Saraiva, Eds.
Lecture Notes in Computer Science, vol. 2395. Springer-
Verlag, 2000.

[12] Guerraoui, R., Herlihy, M., Pochon, S., Polymorphic
Contention Management. Proceedings of the 19th
International Symposium on Distributed Computing (DISC
2005), Cracow, Poland, September 26-29, 2005.

[13] Harris, T., Marlow, S., Jones, S. P., Herlihy, M. Composable
Memory Transactions. PPoPP 2005.

[14] Hewitt, C. Viewing control structures as patterns of passing
messages. Journal of Artificial Intelligence 8, 3, 323–364.
1977.

[15] Igarashi, A., Kobayashi, K. Resource Usage Analysis. ACM
Transactions on Programming Languages and Systems
(TOPLAS), Volume 27 Issue 2, 2005.

[16] Itzstein, G. S, Kearney, D. Join Java: An alternative
concurrency semantics for Java. Tech. Rep. ACRC-01-001,
University of South Australia, 2001.

[17] Liskov, B. A History of CLU. ACM SIGPLAN Notices,
28:3, 1993.

[18] Lea, D. The java.util.concurrent Synchronizer Framework.
PODC CSJP Workshop. 2004.

[19] Ousterhout, J. Why Threads Are A Bad Idea (for most
purposes). Presentation at USENIX Technical Conference.
1996.

[20] Odersky, M. Functional nets. In Proceedings of the European
Symposium on Programming. Lecture Notes in Computer
Science, vol. 1782. Springer-Verlag, 2000.

[21] Peyton Jones, S., Gordon A., Finne S. Concurrent Haskell. In
23rd ACM Symposium on Principles of Programming
Languages (POPL’96), pp. 295–308.

[22] Peyton Jones, S., Wadler, P. Imperative functional
programming. In 20th ACM Symposium on Principles of
Programming Languages (POPL’93), pp. 71–84.

