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Abstract

Transactional memory (TM) provides a general-purpose mech-
anism with which to construct concurrent objects. Transactional
memory can also be thought of as a concurrent object, but its se-
mantics are less clear than those of the objects typically constructed
on top of it. In particular, commit operations in a transactional
memory may fail when transactions conflict. Under what circum-
stances, exactly, is such behavior permissible?

We offer candidate sequential specifications to capture the se-
mantics of transactional memory. In all cases, we require that reads
return consistent values in any transaction that succeeds. Each spec-
ification embodies a conflict function, which specifies when two
transactions cannot both succeed. Optionally, a specification may
also embody an arbitration function, which specifies which of two
conflicting transactions must fail. In the terminology of the STM
literature, arbitration functions correspond to the concept of con-
tention management.

We identify TM implementations from the literature corre-
sponding to several specific conflict and arbitration functions. We
note that the specifications facilitate not only correctness (i.e., lin-
earizability) proofs for nonblocking TM implementations, but also
formal comparisons of the degree to which different implementa-
tions admit inter-transaction concurrency. In at least one case—
eager detection of write-write conflicts and lazy detection of read-
write conflicts—the formalization exercise has led us to semantics
that are arguably desirable, but not, to the best of our knowledge,
provided by any current TM system.

1. Modeling STM
We can model a transactional memory as a mapping from objects
to values. Initially all values are undefined. The memory supports
the following operations:

start(t) Begin transaction t. No return value.

read(o, t) Return the current value of object o in the context of
transaction t. Return the distinguished value⊥ if o is uninitial-
ized.

write(o, d, t) Write d to o in the context of transaction t. No
return value.
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commit(t) Attempt to commit transaction t and return a Boolean
indication of success. The call is said to succeed iff it returns
true.

abort(t) Abandon transaction t. No return value.

These definitions are intended to simplify correctness argu-
ments, not to simplify programming. The richer interfaces typical
of object-oriented software TM can be implemented in terms of
these more basic primitives, without changing the underlying se-
mantics. We defer discussion of such interfaces to Section 6.

Following the terminology of Herlihy and Wing [8], a history is
a finite sequence of operation invocation and response events, each
of which is tagged with its arguments and return values, and with
the id of the calling thread. In a sequential history, each invocation
is immediately followed by its matching response, with no events
in between. A sequential history H thus induces a total order <H

on its operations. Throughout the rest of the paper we will consider
only sequential histories. We define the semantics of transactional
memory on these histories.

A transaction is a sequence of operations, performed by a sin-
gle thread, of the form (start (read | write)* (commit | abort)),
where t is a unique transaction descriptor passed to start, to the
commit or abort, and to every read or write in between. Transac-
tions S and T in history H are said to overlap if startS <H endT

and startT <H endS , where endT is T ’s commit or abort opera-
tion. Transaction T is said to be isolated in H if for all transactions
S 6= T in H , S and T do not overlap. We say a history H is se-
rial if it consists of a sequence of isolated transactions, optionally
followed by a single uncompleted transaction (i.e., a transaction
prefix). For convenience, we associate endT with the end of H if
T is uncompleted (i.e., all operations in H precede the end of an
uncompleted transaction). If S and T are both uncompleted, endS

and endT are incomparable under <H .
We assume throughout this note that all histories are well-

formed, meaning that every thread subhistory is serial (we do not
currently consider nested or overlapped transactions within a single
thread). Well-formedness implies, among other things, a one-one
correspondence between transactions and their descriptors. We also
assume, for simplicity, that write is called no more than once for
a given object within a given transaction. A transaction is said to
succeed it if ends with a commit that succeeds. It is said to fail it if
ends with a commit that fails. We use successful(H) to represent
the history obtained by deleting from H all operations of failed,
aborted, or uncompleted transactions.

As defined by Herlihy and Wing, a sequential specification S of
a concurrent object O is a prefix-closed set of sequential histories
on O. For most kinds of objects it is intuitively clear which histories
should be in S. Intuition is less clear for transactional memory.
Certainly we must insist that reads return the “right” value in any
transaction that succeeds. It also seems reasonable, at least in a
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preliminary study, to insist that a commit succeed if it ends an
isolated transaction. But under what circumstances may a commit
operation fail?

To answer this question we first define, in Sections 2 and 3, a se-
quential specification that embodies the two minimal requirements
just suggested. Our definition is driven by the notion of a conflict
function, which specifies the circumstances in which two transac-
tions cannot both succeed. In Section 4 we introduce a variety of
conflict functions, leading to a rich structure of sequential specifi-
cations, several of which capture the semantics of published TM
systems. We also identify an arguably attractive sequential speci-
fication that is not, to our knowledge, embodied in any published
system. In Section 5, we consider the notions of blocking and live-
lock, and the extent to which they may be permitted or precluded
by a sequential specification of TM. In particular, we introduce the
notion of an arbitration function, which specifies, when two trans-
actions conflict, which of them must fail. Section 6 explains how
our model can accommodate an object-oriented API. We conclude
in Section 7 with a summary and a list of open questions.

2. Consistency
We say a read operation r = read(o, t) in history H is consistent
if it returns the most recent committed value of o; that is, r returns
d if there exists an operation w = write(o, d, s) in a successful
transaction S such that (1) s 6= t, (2) commitS <H r, and (3)
for all operations x = write(o, e, u) in transactions U 6= S, if U
is successful, then commitU <H commitS or r <H commitU .
If there is no such w, then o is uninitialized, and r returns ⊥.
Our definition does not make writes in T visible to subsequent
reads in T , but this restriction is easily relaxed at a higher level of
abstraction (we do so in Section 6).

We say a history H is consistent if (1) every read in every
successful transaction is consistent, and (2) every such read is
still valid when its transaction commits; that is, if r = read(o, t)
appears in a successful transaction T , then there exists an operation
w = write(o, d, s) in a successful transaction S such that (a) r
returns d, (b) s 6= t, (c) commitS <H commitT , and (d) for
all operations x = write(o, e, u) in transactions U /∈ {S, T}, if
U is successful, then commitU <H commitS or commitT <H

commitU . Note that this definition permits an implementation to
ignore the ABA problem: a read is still considered valid at commit
time if its value has been overwritten and then restored.

Lemma 1. In any consistent history, all reads of the same object
in the same successful transaction return the same value.

Proof: Immediate consequence of the validity of reads. 2

Theorem 1 (Fundamental theorem of TM). If H is a consistent
history, then so is the serial history J consisting of all and only
the transactions in successful(H), ordered according to the order of
their commit operations in H .

Proof: Consider history I = successful(H). Clearly I is consistent,
since the definition of consistency makes no reference to unsuc-
cessful transactions. Now consider serial history J , consisting of all
transactions of I , ordered according to the order of their commit
operations in I . All of J’s transactions remain successful, and its
commit operations appear in the same order they did in I . More-
over because I’s reads are valid at commit time, they remain con-
sistent in J . Thus J as a whole is consistent. 2

In the terminology of the database community [11, Sections
16.3 and 17.1], any history in which all reads are consistent avoids
cascading aborts: when a transaction fails or aborts, an implemen-
tation never has to cause other transactions to fail in order to en-
sure consistency. Theorem 1, moreover, is equivalent to saying that

consistent histories are strictly serializable or, equivalently, lin-
earizable (since we never consider more than a single concurrent
object—the transactional memory itself) [8]. There exist more re-
laxed notions of consistency in which transactions can read stale
values that force them to “commit in the past” or, conversely, read
speculative values from writes that have not yet been committed;
we do not consider such extensions here.

3. Conflict
Consistency alone does not capture intuition regarding transac-
tional semantics. A history in which no transaction ever succeeds
is certainly consistent, but the set of all such histories is not an
appealing sequential specification. It seems reasonable to require
a commit operation to succeed unless its transaction T conflicts
with some other transaction S, in which case at most one of them
can succeed.

Let H be the set of all (well-formed) histories, D be the set
of all transaction descriptors, and H[s,t) be the history obtained
by removing from H all operations that specify a transaction de-
scriptor other than s or t, or that follow commit(t), abort(t),
commit(s), or abort(s) in H . (The notation is meant to suggest
a half-open interval: H[s,t) includes the initial portions of both s’s
and t’s transactions, but is missing a suffix of the one that finishes
last.) A conflict function C is then a mapping from H × D × D
to {true, false} such that (1) C(H, s, t) = C(H, t, s); (2) if s = t
or if the transactions corresponding to s and t do not overlap, then
C(H, s, t) = false; and (3) if H[s,t) = I[s,t), then C(H, s, t) =
C(I, s, t). In other words, for overlapping transactions S and T , C
makes its decision solely on the basis of the operations of those two
transactions (and their interleaving) prior to the earlier of endS and
endT .

For convenience, we use H[S,T ) and C(H, S, T ) as shorthand
for H[s,t) and C(H, s, t), respectively, where s and t are the de-
scriptors of S and T , respectively. If C(H, S, T ) = true, we also
say that “S and T have a C conflict.”

Lemma 2. Given any conflict function C, history H , and isolated
transaction T in H , there is no transaction S that conflicts with T .
Proof: Immediate consequence of the definition of conflict. 2

A history H is said to be C-respecting, for some conflict func-
tion C, if (1) for every pair of transactions S and T in H , if
C(H, S, T ) = true, then at most one of S and T succeeds; and
(2) for every transaction T in H , if T ends with a commit opera-
tion, then that operation succeeds unless there exists a transaction
S in H such that C(H, S, T ) = true. Put another way, if there is
no S that conflicts with T , then T ’s commit succeeds.

For any given function C, we use the term C-based transac-
tional memory to denote the set of all consistent, C-respecting his-
tories. It seems reasonable to define conflict functions in a way that
forces any C-respecting history to be consistent, but nothing about
the definition of conflict requires this. We say that C is validity-
ensuring if C(H, S, T ) = true whenever there exists an object o
and operations r = read(o, t) in T and w = write(o, d, s) in S
such that S ends with a commit and r <H commit

S
<H endT .

Lemma 3. If C is a validity-ensuring conflict function and H is
a C-respecting history in which every read is consistent, then H is
a consistent history.
Proof: Immediate consequence of definitions. 2

Given the ABA problem, a validity-ensuring conflict function
is sufficient but not necessary to ensure that all reads in successful
transactions are still valid at commit time.

Perhaps the simplest conflict function is the following:
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Overlap conflict: Transactions S and T in history H conflict if
S and T overlap. Overlap-based TM thus consists of all histories
in which every isolated transaction is successful and no two over-
lapping transactions are both successful.

Lemma 4. For any conflict function C, history H , and transac-
tions S and T in H , if S and T have a C conflict, they also have an
overlap conflict.

Proof: Immediate consequence of the definition of conflict func-
tion. 2

Theorem 2. For any conflict function C, C-based TM is a se-
quential specification.

Proof: By the definition of sequential specification, we need only
show that C-based TM is prefix-closed. Suppose the contrary:
there exists some history H ∈ C-based TM and some H prefix
P /∈ C-based TM. There are two cases to consider. First, suppose
there exist two successful transactions S and T that conflict in
P but not in H . Since T is successful in P , P must include
commitT , which implies that P[S,T ) = H[S,T ). But this implies
that C(P, S, T ) = C(H, S, T ), a contradiction. Second, suppose
there exists some failed transaction T that has an excuse to fail in
H but not in P . There must exist some transaction S in H such that
C(H, S, T ) = true but C(P, S, T ) = false. Since T fails in P , P
must include commitT , which implies that P[S,T ) = H[S,T ). But
this implies that C(P, S, T ) = C(H, S, T ), a contradiction. 2

4. Requiring concurrency
Overlap-based TM is a very weak specification; it admits an imple-
mentation in which overlapping transactions are never successful.
An implementation might, for example, employ global counts of
the number of started and active transactions. Operation start(t)
would increment both counts and remember the started count;
commit(t) would decrement the active count and return true iff
the result were zero and the started count were equal to the remem-
bered value.

To require that certain non-isolated transactions succeed, we
must refine our definition of conflict, so more transactions are seen
to be conflict-free. As a first step, we might insist that readers be
permitted to proceed concurrently. (Remember here that we are still
talking about sequential histories. Our goal is to increase concur-
rency among transactions, not [in this note] among individual op-
erations.)

Writer overlap conflict: Transactions S and T conflict in history
H if they overlap and one performs a write before the other ends.

Most TM systems go further, allowing transactions to proceed
concurrently if they do not perform conflicting accesses to the same
object:

Lazy invalidation conflict: Transactions S and T conflict in
history H if there exist operations r = read(o, t) in T and w =
write(o, d, s) in S such that S ends with a commit operation and
r <H commitS <H endT . In other words, S and T conflict if S
attempts to commit, and allowing it to succeed would invalidate a
read in T .

Eager W-R conflict: Transactions S and T conflict in history H
if (1) S and T have a lazy invalidation conflict or (2) there exist
operations r = read(o, t) in T and w = write(o, d, s) in S such
that w <H r <H endS . In other words, beyond the requirements
of lazy invalidation conflicts, S and T conflict if a read in T is
“threatened” by a previous write in S; that is, if w precedes r and
the prefix of H that ends at r can be extended to create a history in
which r is invalidated by w.

…

… )

W

R
A:  lazy invalidation

)…

… )

W

R
B:  eager W-RA  or
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… )
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WR
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)…

… )
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D:  eager invalidationB  or

Figure 1. Alternative definitions of conflict. Arrows indicate his-
tory order. A straight terminator indicates a commit operation. A
curved terminator indicates that a transaction may optionally be un-
completed.

Eager invalidation conflict: Transactions S and T conflict in
history H if (1) S and T have an eager W-R conflict or (2) there
exist operations r = read(o, t) in T and w = write(o, d, s)
in S such that r <H w <H endT . In other words, beyond the
requirements of eager W-R conflicts, S and T conflict if a read in
T is threatened by a subsequent write in S; that is, if w follows
r and the prefix of H that ends at w can be extended to create a
history in which r is invalidated by w.

These definitions of conflict are illustrated graphically in Fig-
ure 1. None of them defines writes to the same object as conflict-
ing: writes do not become visible to other transactions until com-
mit time, and the fact that some other transaction is planning to
update an object at some point in the future is harmless. Of course
if a transaction updates an object—reading its value before writing
it—then a concurrent write is indeed a conflict. Under the object-
oriented API of Section 6, every write will be an update.

Note the asymmetry of eager W-R conflict: w would also
threaten r if r <H w <H endT , but we do not define this as
a conflict. The rationale for this asymmetry is that in a practical
implementation a transaction must detect conflict with previous ac-
tivity in some other transaction. The “other half” of eager invalida-
tion, shown in Figure 1D, requires that readers be visible to writers.
In practice, this in turn requires that readers modify some sort of
metadata, inducing cache conflicts among readers that would not
otherwise occur.

Lemma 5. Lazy invalidation conflict is the weakest consistency-
ensuring conflict function.

Proof: Immediate consequence of definitions.

Claim (Proof omitted). The OSTM of Harris and Fraser [1], with
appropriate API adjustments (see Section 6) is an implementation
of lazy invalidation-based TM. The DSTM of Herlihy et al. [7],
with appropriate API adjustments and visible readers, is an imple-
mentation of eager invalidation-based TM. If it were augmented
to permit validation of reads whose objects were subsequently ac-
quired by not-yet-committed writers (our group refers to this as
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“validating through”), DSTM with invisible readers would be an
implementation of eager W-R-based TM.1

Note that the sets of histories induced by different conflict
functions are generally incomparable. Consider, for example, the
sequence of operations start(s) start(t) write(o, d, t) read(o, s)
commit(s) commit(t). If this sequence is executed in isolation, the
read must return ⊥. The return values of the commits, however,
will depend on the choice of conflict function: the transactions
with descriptors s and t have an eager W-R conflict, but not a
lazy invalidation conflict. The set of all lazy invalidation-respecting
histories will include exactly one history corresponding to this
sequence of operations: one in which both commits return true.
The set of all eager W-R-respecting histories will include one in
which both commits fail and two in which one succeeds but the
other fails.

Eager W-R conflict gives transactions more excuses to fail than
lazy invalidation conflict does (and eager invalidation conflict gives
still more). In a practical implementation these extra excuses may
or may not be a good thing. They are good if they allow the im-
plementation to improve performance by heuristically abandoning
work on transactions that are likely to fail (but see Section 5 below);
they are bad if they allow the implementation to neglect opportuni-
ties for parallel speedup.

An implementation that uses a hash function h to locate
transaction metadata might introduce the notion of h-conflicting
transactions—transactions that perform conflicting accesses to ob-
jects in the same hash-induced equivalence class. Given a function
h, assume some arbitrary total order on objects, and let let g(a), for
any object a, be the smallest object b such that h(a) = h(b). Then
for any conflict function C, history H , and transactions S and T
in H , S and T would be said to have an hC conflict if the trans-
actions S′ and T ′ have a C conflict, where S′ and T ′ are obtained
from S and T by replacing every object o in a read or write op-
eration with its image g(o). Definitions of hC-respecting histories
and hC-based TM would follow accordingly.

Claim (Proof omitted). The WSTM of Harris and Fraser [5]
is an implementation of h-lazy invalidation-based TM for some
appropriate hash function h.

If overlapping transactions S and T both read and then write
the same object o, the argument for allowing S and T to proceed
concurrently (as lazy invalidation does) is that any history in which
both are uncompleted can be extended to abort either and commit
the other; there is no way for an implementation to tell, a priori,
which transaction “ought” to fail. This is a weak argument, how-
ever, since S and T cannot both succeed.

If, however, one of S and T writes o but the other merely reads
it, there is a stronger argument for allowing them to proceed con-
currently: both can succeed if the writer commits last. To capture
this form of concurrency we can define the following:

Mixed invalidation conflict: Transactions S and T conflict in
history H if (1) S and T have a lazy invalidation conflict or (2)
there exist operations r = read(o, s) in S, wS = write(o, d, s) in
S, and wT = write(o, e, t) in T such that r <H wS <H endT

and r <H wT <H endS . In other words, beyond the requirements
of lazy invalidation conflicts, S and T conflict if (a) a read in T is
threatened by a subsequent write in S, (b) the read is followed by
a write in T , and (c) both writes happen before either transaction
ends.

1 As implemented, DSTM with invisible readers realizes semantics only
subtly different from eager invalidation conflict: it admits histories in which
both S and T are uncompleted, the last operation in T reads some object o,
and there is a subsequent write of o in S.

Mixed invalidation conflict falls between lazy invalidation con-
flict and eager invalidation conflict, but is incomparable to eager
W-R conflict. More formally and completely:

Theorem 3. The sets of transactions that have lazy invalidation,
eager W-R, eager invalidation, and mixed invalidation conflicts are
nested as shown on the left side of Figure 2, with each of the
containments non-trivial.
Proof: Simple containment is an immediate consequence of the
definitions of the respective conflict functions. Proper containment
is illustrated by the examples on the right side of Figure 2. 2

We are currently experimenting with mixed invalidation-re-
specting histories in our RSTM system [10]. To the best of our
knowledge, no other existing system currently implements these
semantics (without also being eager W-R-respecting).

5. Progress and arbitration
So far our discussion has addressed only correctness: what are the
legal histories that may be realized by an implementation? One is
also usually interested in progress: under what circumstances, if
any, may a thread be blocked by the state of other threads? Tradi-
tionally progress has been discussed in the context of concurrent
histories: when, if ever, can the response to an invocation be arbi-
trarily delayed? For transactional memory, however, we may also
be interested in transaction-level progress in sequential histories:
when, if ever, can a thread suffer an arbitrarily long string of failed
transactions?

Consider, for example, the trivial implementation of overlap-
based TM mentioned at the beginning of Section 4. This imple-
mentation clearly admits blocking at the level of transactions: given
any history H in which transaction T is uncompleted, any exten-
sion of H in which T remains uncompleted will contain no suc-
cessful transactions beyond the end of H . The implementation also
admits livelock: we can easily construct a history in which every
thread performs an arbitrary number of commits, none of which
succeeds.

We define these conditions in the usual way:

Starvation: A sequential specification S is said to be starvation-
free if for any thread a and any history H in S there exists an n > 0
such that in any H extension H ′ ∈ S, if a performs more than n
commit operations in H ′ after H , at least one of them will succeed.

Livelock: A sequential specification S is said to be livelock-free
if for any thread a and any history H in S there exists an n > 0
such that in any H extension H ′ ∈ S , if a performs more than
n commit operations in H ′ after H , some commit operation will
succeed in H ′ after H (not necessarily one of a’s).

Blocking: A sequential specification S is said to be nonblocking
if for any thread a and any history H in S there exists an n > 0
such that in any H extension H ′ ∈ S, if all operations in H ′

after H are performed by a, and they include at least n commit
operations, at least one of those commits will succeed.

Note that these conditions are defined here at the level of trans-
actions. If extended in the obvious way to concurrent histories of
implementations, they yield, respectively, the familiar notions of
wait freedom, lock freedom, and obstruction freedom [6, 8].

Lemma 6. For any validity-ensuring conflict function C, C-
based TM admits blocking.
Proof: Consider histories of the form Hk = R W1 W2 . . . Wk,
where R is the 2-operation sequence start(r) read(o, r), performed
by some thread a, and Wi is the 3-operation sequence start(wi)
write(o, i, wi) commit(wi), performed by some thread b. Since
C ensures consistency, transaction R conflicts with all transactions
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Figure 2. Left: containment relationships among sets of conflicting transactions. Smaller sets provide fewer excuses for a transaction to fail.
Right: timelines illustrating histories that separate the inner sets. Arrows indicate history order.

Wi. Thus given any n > 0, C-based TM contains a version of Hn

in which b performs all operations after R, including n commits,
all of which fail. 2

Note that an implementation is not required to fail all the writes
in this example; the point is that C-based TM permits it to do so.

Corollary 1. For any validity-ensuring conflict function C, C-
based TM admits livelock and starvation.

If we want to ensure progress, clearly we need to insist that
some transactions succeed even in the presence of conflicts. To do
so, we introduce a function to arbitrate between pairs of conflicting
transactions. We can then insist that a transaction succeed if there
is no conflicting transaction to which it loses at arbitration.

Where conflict is a purely local phenomenon, based only on
the operations of the conflicting transactions, we allow arbitration
to consider a broader context. Let H[[s,t) be the prefix of H ex-
tending through the earlier of commit(t), abort(t), commit(s), or
abort(s) in H . We define an arbitration function A to be a map-
ping from H × D × D to {true, false} such that (1) A(H, s, t) is
undefined if s = t; (2) ¬A(H, s, t) → A(H, t, s) if s 6= t; and (3)
if H[[s,t) = I[[s,t), then A(H, s, t) = A(I, s, t).

If transactions S and T conflict in H and A(H, S, T ) = true,
transaction S must fail. It seems likely that many arbitration func-
tions will satisfy ¬A(H, s, t) ↔ A(H, t, s), but our definitions do
not require this. A history H is said to be AC-respecting, for some
conflict function C and arbitration function A, if (1) for every pair
of transactions S and T in H , if C(H, S, T ) = true, then S fails
if A(H, S, T ) = true, and T fails if A(H, T, S) = true; and (2)
for every transaction T in H , if T ends with a commit operation,
then that operation succeeds unless there exists a transaction S in
H such that C(H, T, S) = true and A(H, T, S) = true. AC-
based transactional memory denotes the set of all consistent, AC-
respecting histories.

Theorem 4. For any conflict function C and arbitration function
A, AC-based TM is a sequential specification.
Proof: Analogous to that of Theorem 2.

As a simple example, we can extend the semantics of overlap-
respecting histories with an arbitration function that chooses as
victim the transaction that started first:

Eagerly aggressive arbitration: For transactions S and T in
history H , A(H, S, T ) = true if startS <H startT .

A trivial implementation of eagerly aggressive, overlap-based
TM might keep the descriptor of the most recently started transac-
tion in a global variable. Operation start(t) would store t in this
variable; commit(t) would return true iff the variable were still t.

Lemma 7. Eagerly aggressive, overlap-based TM is nonblock-
ing.

Proof: Given any history H ∈ eagerly aggressive, overlap-based
TM and any thread a, consider any extension H ′ of H composed
entirely of operations of a after H . If H ′ contains two commit
operations after H then H ′ contains a full transaction T of a after
H , during which no other transaction starts. By the definition of
eagerly aggressive, overlap-based TM, T must be successful. 2

Eagerly aggressive, overlap-based TM retains, trivially, the vul-
nerability to livelock of ordinary overlap-based TM. One way to
eliminate this problem is to resolve conflicts in favor of the trans-
action that attempts to commit first:

Lazily aggressive arbitration: For transactions S and T in his-
tory H , A(H, T, S) = true if commitS <H endT and for all
transactions U such that commitU <H commitS , C(H, U, S) =
false or A(H, U, S) = true. That is, T must fail if it conflicts with
S, S commits first, and S is not itself forced to fail by some earlier
transaction.

Eagerly and lazily aggressive arbitration both resolve conflicts
in favor of the thread that “discovers” the conflict. More precisely,
in both cases the shortest history prefix in which the value of
the arbitration function is defined ends with an operation of the
“winning” thread.

Theorem 5. For any conflict function C, lazily aggressive C-
based TM is livelock free.

Proof: Suppose the contrary: there exists a history H ∈ lazily
aggressive C-based TM, a thread a, and a prefix P of H such
that a performs two commit operations after P in H , neither of
which succeeds. Consider the second commit. Call its transaction
T . How can T fail? By the definition of lazily aggressive arbitra-
tion, there must be some conflicting transaction S in H such that
commitS <H commitT and S is not forced to fail by any earlier
transaction U . Moreover since C(H, U, S) considers only opera-
tions prior to the earlier of endU and endS , S cannot be forced
to fail by any later transaction. By the definition of arbitration, S
must succeed. Moreover since T starts after P , S commits after P ,
contradicting our assumption. 2

NB: since sequential specifications say nothing about concur-
rent histories, it is still possible for a concurrent implementation of
a nonblocking, livelock-free specification to have operations that
block or livelock.

Theorem 6. For any validity-ensuring conflict function C, lazily
aggressive C-based TM admits starvation.
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Proof: Consider histories of the form Hk = W1 W2 . . . Wk, where
Wi is the 6-operation sequence start(ai) start(bi) read(o, ai)
write(o, i, bi) commit(bi) commit(ai), where all the a transac-
tions are performed by the same thread a. Since C ensures consis-
tency, each b transaction conflicts with the corresponding a trans-
action. And by the definition of lazily aggressive arbitration, the a
transaction always loses. Thus given any n > 0, lazily aggressive
C-based TM contains exactly one version of Hn, in which thread
a is never successful. 2

Claim (Proof omitted). OSTM is an implementation of lazily
aggressive, lazy invalidation-based TM. Even in the absence of
adversarial scheduling, it admits the possibility that a thread will
starve if it tries, repeatedly, to execute a long, complex transaction
in the face of a continual stream of short conflicting transactions in
other threads.

Contention management. While it may seem natural for a se-
quential specification to specify the outcome of conflicts, there are
two potentially serious disadvantages to doing so. First, if we at-
tempt to capture some nontrivial notion of fairness in our arbitra-
tion function (based, perhaps, on how often the threads in question
have lost at arbitration in the past), we may end up with an un-
desirably complicated specification, or one that over-constrains the
implementation (e.g., by requiring guarantees where heuristic or
probabilistic assurances might be acceptable in practice). Second,
we may preclude decisions based on factors outside the purview of
the specification (e.g., thread priorities, processor load, or run-time
cache performance.)

An attractive alternative strategy is to couple a blocking or
livelock-admitting sequential specification with an implementation
that avoids the histories in which blocking or livelock occurs. In ef-
fect, this is the suggestion of Herlihy, Luchangco, and Moir [6, 7],
who argue for obstruction-free algorithms. In such an algorithm
the implementation subsumes the role of an arbitration function,
which can then be realized as a self-contained contention man-
agement module. So long as it follows certain minimal rules, a
contention manager can guarantee forward progress without the
design and verification complexity that would be required for di-
rect implementation of a comparable arbitration function embed-
ded in the specification. A variety of sophisticated contention man-
agers, several of them quite subtle, have been developed in recent
years [2, 3, 4, 12, 13, 14].

6. Object-based API
As noted in Section 1, our model of transactional memory is in-
tended to simplify correctness arguments, not to simplify program-
ming. Several extensions are useful in practice, and indeed are em-
bodied in extant TM systems. We focus in this Section on object-
oriented software TM systems such as DSTM [7], OSTM [1],
ASTM [9], SXM [2], and RSTM [10]. Our extensions are straight-
forward optimizations and wrappers for the TM operations used in
Sections 1 through 5; they do not change the underlying semantics.
Simpler extensions, not presented here, would adapt our TM model
to hardware TM proposals.

We use each object in the TM model to represent a reference to a
higher-level object, and require that (1) the pointer value passed to
write is always new (created in the current transaction), and (2) the
data to which it refers is never modified after the writing transaction
commits or aborts.

To avoid wasting work in a transaction that is doomed to fail,
we provide an acquire(o, d, t) operation that does what write
does, but returns a Boolean status. If the status is false, the TM has
determined (via eager conflict detection) that a subsequent commit
is guaranteed to fail. The transaction may then choose to call abort
immediately, rather than proceeding. In a similar vein, open(o,

t) takes the place of read, and returns nil (distinct from ⊥) if a
subsequent commit is doomed to fail.

To eliminate the prohibition against multiple calls to write in a
single transaction, we implement an open w(o) operation:

if open w has already been called on o in this transaction
return what it returned last time

else
d1 := read(o)
d2 := pointer to new data

initialized to be a copy of *d1
if ! acquire(o, d2, t) then d2 := nil
return d2

The intent here is that changes to program data will be made indi-
rectly through the reference returned by open w. The penultimate
line eliminates the need for explicit calls to acquire.

By analogy to open w, we provide a memoizing open r(o):

if open r or open w has already been called on o in this
transaction

return what it returned last time
else return read(o)

Clearly, calls to open r always return the same value in the same
transaction.

Validation. While Theorem 1 ensures that successful transac-
tions see a sequentially consistent view of memory, it does not en-
sure that values read from different objects in a failed transaction
will be mutually consistent—there may be no point in the serialized
history at which those values were simultaneously valid. Absent
complete sandboxing of transactional operations (implemented via
compiler support or binary rewriting), inter-object inconsistency
can compromise program correctness in potentially catastrophic
ways. In particular, use of an invalid code or data pointer can lead
to modification of an arbitrary (nontransactional) data location, or
execution of arbitrary code.

We posit a validate(o, d) operation, implemented as return
(read(o) = d), that can be used to verify that a value is still
valid. DSTM, ASTM, and RSTM ensure consistency automatically
and incrementally, by having open r and open w call validate for
every previously-opened object. OSTM requires the programmer
to insert such calls by hand whenever the use of inconsistent data
might lead to unacceptable behavior.

7. Conclusions
In this note we have suggested that transactional memory be viewed
not merely as a means of implementing concurrent objects, but as
a concurrent object in its own right. Toward that end we consid-
ered the sequential specification of transactional memory seman-
tics. We suggested that any intuitively acceptable specification of
TM consist of all and only those histories in which all read op-
erations of successful transactions return the “right” value, and no
commit operation fails unless provided an excuse to do so by some
well-defined conflict function, optionally augmented with an arbi-
tration function. We presented a collection of conflict functions that
overlap in nontrivial ways, inducing a rich collection of sequential
specifications. We noted that deferring the work of an arbitration
function to the implementation corresponds to the notion of con-
tention management in obstruction-free STM.

Several of our sequential specifications capture the semantics
of published TM systems. The formalization exercise also leads us
to suggest that mixed invalidation-based TM (eager detection of
write-write conflicts, lazy detection of read-write conflicts) might
be an option worth exploring in future TM systems. Regarding the
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formalization itself, our work suggests a variety of open questions,
among them:

• Should we extend the notion of consistency to allow a read in a
successful transaction to return a stale or, conversely, a not-yet-
committed value?

• Can we characterize the circumstances under which a read in
a failed or aborted transaction is permitted to return an “incor-
rect” value?

• How sophisticated an arbitration function can realistically be
embedded in a sequential specification? Are there any advan-
tages to including it there, rather than leaving it to the imple-
mentation?

• Can we characterize the conflict and arbitration functions that
do or do not lead to blocking or livelock-admitting specifica-
tions?

• Can we develop a meaningful notion of probabilistic arbitration
functions?

• Can we create an arbitration function that precludes starvation,
or would this require extensions to the model of Section 1 (e.g.,
to allow the specification of continuations)?

• Is there any potential benefit to extending the definition of
conflict function to allow two non-overlapping transactions to
conflict? This might, among other things, allow certain isolated
transactions to fail.

• Is there any call for a weaker notion of “validity-ensuring con-
flict function” that would exploit value-restoring (ABA) writes?
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