Extending Hardware Transactional
Memory to Support Non-busy Waiting
and Non-transactional Actions

Craig Zilles and Lee Baugh
University of Illinois at Urbana-Champaign

paper available at:




Two main TM thrusts

@ HW-cenftric
common-case performance, strong atomicity
implicit (avoid re-compile of libraries)
simple semantics

handling overflow




Two main TM thrusts

@ HW-cenftric
common-case performance, strong atomicity
implicit (avoid re-compile of libraries)
simple semantics

handling overflow

@ SW-cenftric
flexibility/extensibility, richer semantics
tighter integration with language/run-time
lower performance, weak atomicity
explicit (code includes transaction info)




This Paper

@ HW-cenftric
common-case performance, strong atomicity
implicit (avoid re-compile of libraries)
simple semantics
handling overflow

@ SW-cenftric
flexibility/extensibility, richer semantics
tighter integration with iaiguage/run-time
lower performance, weak atomicity
explicit (code includes transaction info)




Outline

@ Background: Virtual Transactional Memory (VTM)

@ Waiting w/o spinning:
@ "retry”
@ due to conflict (much like semaphores)

@ Pausing as a transactional loop-hole
@ accesses to contended data
@ performing non-transactional actions
@ retaining state across an abort




Virtual Transactional Memory

@ Goals:
@ Small XACT: entirely in cache, no overhead

@ Large XACT: ownership/undo state stored in-
memory, can persist across time-slice

@ Allow both kinds to co-exist

@ Eager conflict defection, versioning

® Transactional status word (XSW)
@ Holds transaction state (active, commit, abort)
@ Pointed fo by ownership records
@ Monitored by running transaction




Retry

@ Avoid “lost wake-up” bugs

® Composable means of “wait for multiple objects”

element *get element to process() {
TRANSACTION BEGIN;
for (int i = 0 ; i < NUM LISTS ; ++ i) {
if (list[i] .has_element()) {
element *e = list[i].get element();
TRANSACTION END;
return e;




Implementation

1. Ensure retry’ed transaction loses conflicts
2. Want to de-schedule thread until conflict
® VTM already supports persistent transactions

@ Main challenge is making sure wake-up occurs




Ensuring Wake-up

@ Race condition between de-scheduling and being
aborted

@ Atomically transfer responsibility of waking thread
@ After marking thread as blocked,
® Add marker to XSW with compare-and-swap
@ If fails, re-schedule thread (already aborted)




Wait on contention

Tl a N T2

accesses D
(successfully)

® Three outcomes:

A AbOI’"i' tries to

access D

o Spi n X____ conflict!

® De-schedule

@ For long transactions with low contention
@ Mitigates worst case behavior
@ Corresponds to O/S semaphores




Implementation

T3 LTSS

T1 task_struct T2 task_struct T3 task_struct

I I
RUNNING BLOCKED BLOCKED ‘

@ Build a list of who waits on who

@ Deterministic contention manager -> no cycles
® Annotated XSW indicates there are waiters

@ Same ftrick fo transfer wake-up responsibility




Pausing Transactions

@ Providing a transactional loop-hole
® HTM default is that everything is transactional

@ Enable violating transactions isolation
@ To avoid conflicts on highly-contended data
@ For performing non-fransactional actions

@ Logging abort conditions, exceptions, tools




transaction {

Simple Example:

++ statistic;

xact_begin % | (try transaction)

xact_pause

register compensation action

xact_unpause <J—

_:'>§ increment statistic atomically (using CAS)
I
|

| decrement statistic atomically (using CAS)

xact_begin % - deallocate compensation data

j (retry transaction) _
transactional | non-transactional

ABORT! —|> % (perform compensation)




Implementation

® Paused modifier to transaction state
@ Distinct from “swapped”

@ Load/stores not added to read/write set
@ Strong atomicity, buf...
@ Allow reads to footprint (passing arguments)

@ Handling writes fo footprint?

@ Clean semantics demand write through
@ Common occurrences (e.g., stack) don't




Implementation, cont.

@ No atomicity/isolation guarantees
® Must conventionally synchronize

@ Support registering compensation in software
@ Register function and arguments
@ Performed after commit/abort (+/- atomically)

typedef struct comp_lists_: 1 = : ypedef struct comp_act|on_s {
comp_action_t *abort_actions; , struct comp_action_s *next;
comp_action_t *commit_actions; ' 3 ' . comp_function_t comp_func;
} comp_lists_t; . : - ; // data for compensation

comp_action_t;
e

typedef void (*comp_function_t)(struct comp_action_s *ca, bool do_action);




Implementation, cont.

@ Non-isomorphic to "non-xact load/store”
@ No (asynchronous) aborts in paused region
@ Must release locks, insert compensation




Support Malloc/Free

& dlmalloc uses mmap/munmap for large allocations
@ even HTM shouldnt absorb kernel activity

® aborted mmap leaks virtual address space
@& munmap shouldnt be performed until commit

@ free implementation: pause, query xact state
@ if no-xact: do operation
@ if xact: register commit action, unpause




Pause vs. Open Nesting

® Can be used for some of the same tasks

@ Open Nesting
® More overhead (nesting in hardware?)
@ Stronger guarantees (transaction)
@ Not always necessary
@ Isolated data items (use CAS)
@ Thread-local data




Conclusion

® Shown two extensions to HTM system
@ Support non-busy waiting by transactions
@ Support non-transactional work in transaction

@ Minimal impact on hardware
@ extension of existing XSW
@ calling of software handlers through exceptions




