
Extending Hardware Transactional
Memory to Support Non-busy Waiting

and Non-transactional Actions

Craig Zilles and Lee Baugh
University of Illinois at Urbana-Champaign

paper available at:
http://www-faculty.cs.uiuc.edu/~zilles/papers/non_transact.transact2006.pdf

Two main TM thrusts
HW-centric

common-case performance, strong atomicity
implicit (avoid re-compile of libraries)
simple semantics
handling overflow

Two main TM thrusts
HW-centric

common-case performance, strong atomicity
implicit (avoid re-compile of libraries)
simple semantics
handling overflow

SW-centric
flexibility/extensibility, richer semantics
tighter integration with language/run-time
lower performance, weak atomicity
explicit (code includes transaction info)

This Paper
HW-centric

common-case performance, strong atomicity
implicit (avoid re-compile of libraries)
simple semantics
handling overflow

SW-centric
flexibility/extensibility, richer semantics
tighter integration with language/run-time
lower performance, weak atomicity
explicit (code includes transaction info)

Outline
Background: Virtual Transactional Memory (VTM)

Waiting w/o spinning:
“retry”
due to conflict (much like semaphores)

Pausing as a transactional loop-hole
accesses to contended data
performing non-transactional actions
retaining state across an abort

Virtual Transactional Memory
Goals:

Small XACT: entirely in cache, no overhead
Large XACT: ownership/undo state stored in-
memory, can persist across time-slice
Allow both kinds to co-exist

Eager conflict detection, versioning

Transactional status word (XSW)
Holds transaction state (active, commit, abort)
Pointed to by ownership records
Monitored by running transaction

Retry
Avoid “lost wake-up” bugs
Composable means of “wait for multiple objects”

element *get_element_to_process() {
 TRANSACTION_BEGIN;
 for (int i = 0 ; i < NUM_LISTS ; ++ i) {
 if (list[i].has_element()) {
 element *e = list[i].get_element();
 TRANSACTION_END;
 return e;
 }
 }
 retry;
}

Implementation

1. Ensure retry’ed transaction loses conflicts

2. Want to de-schedule thread until conflict

VTM already supports persistent transactions

Main challenge is making sure wake-up occurs

Ensuring Wake-up

Race condition between de-scheduling and being
aborted

Atomically transfer responsibility of waking thread
After marking thread as blocked,
Add marker to XSW with compare-and-swap
If fails, re-schedule thread (already aborted)

Wait on contention

Three outcomes:
Abort
Spin
De-schedule

For long transactions with low contention
Mitigates worst case behavior
Corresponds to O/S semaphores

accesses D

(successfully)

X

ti
m

e

T1 T2

tries to

access D
conflict!

Implementation

Build a list of who waits on who
Deterministic contention manager -> no cycles
Annotated XSW indicates there are waiters
Same trick to transfer wake-up responsibility

XSW

waiters

w_prev

w_next

task

XSW

waiters

w_prev

w_next

task

XSW

waiters

w_prev

w_next

task

T1 LTSS T2 LTSS T3 LTSS

RUNNING

T1 task_struct

BLOCKED

T2 task_struct

BLOCKED

T3 task_struct

Pausing Transactions

Providing a transactional loop-hole
HTM default is that everything is transactional

Enable violating transaction’s isolation
To avoid conflicts on highly-contended data
For performing non-transactional actions
Logging abort conditions, exceptions, tools

Simple Example:

xact_begin

xact_pause

xact_unpause

ABORT! X

xact_begin

increment statistic atomically (using CAS)
register compensation action

(perform compensation)
decrement statistic atomically (using CAS)
deallocate compensation data
(retry transaction)

(try transaction)

transactional non-transactional

...
transaction {
 ...
 ...
 ++ statistic;
 ...
}
...

Implementation

Paused modifier to transaction state
Distinct from “swapped”

Load/stores not added to read/write set
Strong atomicity, but...
Allow reads to footprint (passing arguments)

Handling writes to footprint?
Clean semantics demand write through
Common occurrences (e.g., stack) don’t

Implementation, cont.

No atomicity/isolation guarantees
Must conventionally synchronize

Support registering compensation in software
Register function and arguments
Performed after commit/abort (+/- atomically)

typedef struct comp_action_s {

 struct comp_action_s *next;

 comp_function_t comp_func;

 // data for compensation

} comp_action_t;

typedef struct comp_lists_s {

 comp_action_t *abort_actions;

 comp_action_t *commit_actions;

} comp_lists_t;

typedef void (*comp_function_t)(struct comp_action_s *ca, bool do_action);

func1

data1a

func2

data2

data1b

Implementation, cont.

Non-isomorphic to “non-xact load/store”
No (asynchronous) aborts in paused region

Must release locks, insert compensation

Support Malloc/Free

dlmalloc uses mmap/munmap for large allocations
even HTM shouldn’t absorb kernel activity

aborted mmap leaks virtual address space
munmap shouldn’t be performed until commit

free implementation: pause, query xact state
if no-xact: do operation
if xact: register commit action, unpause

Pause vs. Open Nesting

Can be used for some of the same tasks

Open Nesting
More overhead (nesting in hardware?)
Stronger guarantees (transaction)

Not always necessary
Isolated data items (use CAS)
Thread-local data

Conclusion

Shown two extensions to HTM system
Support non-busy waiting by transactions
Support non-transactional work in transaction

Minimal impact on hardware
extension of existing XSW
calling of software handlers through exceptions

