
Higher Order Combinators for Join
Patterns using STM

Satnam Singh, Microsoft

TRANSACT 2006

Overview

 Specifically: encoding an existing
concurrency idiom with STM

 very straightforward
 nothing clever

 More generally: what kind of existing
idioms can we sensibly encode with
STM?
 Or should we not bother?

Cω Concurrency
 Objects have both synchronous and asynchronous methods
 Values are passed by ordinary method calls:

 If the method is synchronous, the caller blocks until the
method returns some result (as usual)

 If the method is async, the call completes at once and returns
void

 A class defines a collection of chords (synchronization
patterns), which define what happens once a particular set of
methods have been invoked. One method may appear in
several chords.
 When pending method calls match a pattern, its body runs.
 If there is no match, the invocations are queued up.
 If there are several matches, an unspecified pattern is

selected.
 If a pattern containing only async methods fires, the body

runs in a new thread.

Cω asynchronous methods
using System ;

public class MainProgram
{ public class ArraySummer
 { public async sumArray (int[] intArray)
 { int sum = 0 ;
 foreach (int value in intArray)
 sum += value ;
 Console.WriteLine ("Sum = " + sum) ;
 }
 }

 static void Main()
 { Summer = new ArraySummer () ;
 Summer.sumArray (new int[] {1, 0, 6, 6, 1, 9, 6, 6}) ;
 Summer.sumArray (new int[] {3, 1, 4, 1, 5, 9, 2, 6}) ;
 Console.WriteLine ("Main method done.") ;
 }
}

Cω chords
using System ;

public class MainProgram
{ public class Buffer
 { public async Put (int value) ;
 public int Get () & Put(int value)
 { return value ; }
 }

 static void Main()
 { buf = new Buffer () ;
 buf.Put (42) ;
 buf.Put (66) ;
 Console.WriteLine (buf.Get() + " " + buf.Get()) ;
 }
}

Reader/Writer Locks
public class ReaderWriter {
 private async idle();
 private async s(int n);

 public ReaderWriter() {idle();}

 public void Exclusive() & idle() {}
 public void ReleaseExclusive() { idle(); }

 public void Shared() & idle() { s(1);}
 & s(int n) { s(n+1);}

 public void ReleaseShared() & s(int n) {
 if (n == 1) idle(); else s(n-1);
 }
}

“STM”s in Haskell
-- Running STM computations
atomically :: STM a -> IO a
retry :: STM a
orElse :: STM a -> STM a -> STM a

-- Transactional variables
data TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()
newTChan :: STM (TChan a)
writeTChan :: a -> TChan a -> STM ()
readTChan :: TChan a -> STM a

Haskell Crash Course

add :: Int -> Int -> Int
add a b = a + b

add 2 4 = 6
2 `add` 4 = 6

(&) a b = a + b
2 & 4 = 6

Haskell Crash Course

inc :: Int -> Int
inc x = x + 1

twice :: (Int -> Int) -> Int -> Int
twice f v = f (f v)

twice (inc) 6
twice (\ x -> x + 1) 6

One-Shot Synchronous Join
(&) :: TChan a -> TChan b -> STM (a, b)
(&) chan1 chan2
 = do a <- readTChan chan1
 b <- readTChan chan2
 return (a, b)

(>>>) :: STM a -> (a -> IO b) -> IO b
(>>>) joinPattern handler
 = do results <- atomically joinPattern
 handler results

example chan1 chan2
 = chan1 & chan2 >>>
 \ (a, b) -> putStrLn (show (a, b))

Repeating Asynchronous Join
(>!>) :: STM a -> (a -> IO ()) -> IO ()
(>!>) joins cont
 = do forkIO (asyncJoinLoop joins cont)
 return () -- discard thread ID

asyncJoinLoop :: (STM a) -> (a -> IO ()) -> IO ()
asyncJoinLoop joinPattern handler
 = do joinPattern >>> forkIO . handler
 asyncJoinLoop joinPattern handler

example chan1 chan2
 = chan1 & chan2 >!>
 \ (a, b) -> putStrLn (show ((a, b)))

Exploiting Overloading
class Joinable t1 t2 where
 (&) :: t1 a -> t2 b -> STM (a, b)

instance Joinable TChan TChan where
 (&) = join2

instance Joinable TChan STM where
 (&) = join2b

instance Joinable STM TChan where
 (&) a b = do (x,y) <- join2b b a
 return (y, x)

chan1 & chan2 & chan3 >>>
\ ((a, b), c) -> putStrLn (show (a,b,c))

Biased Synchronous Choice
(|+|) :: (STM a, a -> IO c) ->
 (STM b, b -> IO c) ->
 IO c
(|+|) (joina, action1) (joinb, action2)
 = do io <- atomically
 (do a <- joina
 return (action1 a)

 `orElse`
 do b <- joinb

 return (action2 b))
 io

 (chan1 & chan2 & chan3,
 \ ((a,b),c) -> putStrLn (show (a,b,c)))
|+|
 (chan1 & chan2,
 \ (a,b) -> putStrLn (show (a,b)))

Conditional Joins

(??) :: TChan a -> (a -> Bool) -> STM a
(??) chan predicate
 = do value <- readTChan chan
 if predicate value then
 return value
 else
 retry

(chan1 ?? \x -> x > 3) & chan2 >>>
 \ (a, b) -> putStrLn (show (a, b))

Dynamic Joins
example numSensors numSensors chan1 chan2 chan3
 = if numSensors = 2 then
 chan1 & chan2 >!> \ (a, b) ->
 putStrLn (show ((a, b)))
 else
 chan1 & chan2 & chan3 >!> \ (a, (b, c))
 -> putStrLn (show ((a, b, c)))

Transacted Handlers

(>%>) :: STM a -> (a -> STM b) -> IO b
(>%>) joinPattern handler
 = atomically (do results <- joinPattern
 handler results)

Non-Blocking Variants

nonBlockingJoin :: STM a ->
 STM (Maybe a)
nonBlockingJoin pattern
 = (do result <- pattern
 return (Just result))
 `orElse`
 (return Nothing)

Summary and Questions

 Straightforward encoding of Cω join
patterns using STM.

 Higher order combinators in Haskell act as
powerful “glue”.

 Model for understanding join patterns in
terms of STMs.

 A good literal implementation (?)
 Parallel execution?

 Joins as statements instead of declarations.
 Q: What other concurrency idioms can be

nicely modeled by STM with retry and
orElse?

Puzzle
main :: IO ()
main
 = do chan1 <- atomically $ newTChan
 atomically $ writeTChan chan1 42
 atomically $ writeTChan chan1 74
 chan1 & chan1 >>>
 \ (a, b) -> putStrLn (show (a,b))

Conditional Joins

(?) :: TChan a -> Bool -> STM a
(?) chan predicate
 = if predicate then
 readTChan chan
 else
 retry

(chan1 ? cond) & chan2 >>>
\ (a, b) -> putStrLn (show (a, b))

Conditional Joins

(?) :: TChan a -> STM Bool -> STM a
(?) chan predicate
 = do cond <- predicate
 if cond then
 readTChan chan
 else
 retry

The Buffer Over Time

Producer
Thread

b.put(“c”)
;

b.get();

b.get()& put(“a”){
 return “a”;
}

b.get()& put(“b”){
 return “b”;
}

Consumer
Thread

put(“a”)

put(“b”)

put(“b”),put(“c”)

put(“b”),put(“c)

put(“c”)

b.put(“b”)
;

b.put(“a”)
;

Ti
m

e

Buffer b

Backup

Backup

