
Higher Order Combinators for Join
Patterns using STM

Satnam Singh, Microsoft

TRANSACT 2006

Overview

 Specifically: encoding an existing
concurrency idiom with STM

 very straightforward
 nothing clever

 More generally: what kind of existing
idioms can we sensibly encode with
STM?
 Or should we not bother?

Cω Concurrency
 Objects have both synchronous and asynchronous methods
 Values are passed by ordinary method calls:

 If the method is synchronous, the caller blocks until the
method returns some result (as usual)

 If the method is async, the call completes at once and returns
void

 A class defines a collection of chords (synchronization
patterns), which define what happens once a particular set of
methods have been invoked. One method may appear in
several chords.
 When pending method calls match a pattern, its body runs.
 If there is no match, the invocations are queued up.
 If there are several matches, an unspecified pattern is

selected.
 If a pattern containing only async methods fires, the body

runs in a new thread.

Cω asynchronous methods
using System ;

public class MainProgram
{ public class ArraySummer
 { public async sumArray (int[] intArray)
 { int sum = 0 ;
 foreach (int value in intArray)
 sum += value ;
 Console.WriteLine ("Sum = " + sum) ;
 }
 }

 static void Main()
 { Summer = new ArraySummer () ;
 Summer.sumArray (new int[] {1, 0, 6, 6, 1, 9, 6, 6}) ;
 Summer.sumArray (new int[] {3, 1, 4, 1, 5, 9, 2, 6}) ;
 Console.WriteLine ("Main method done.") ;
 }
}

Cω chords
using System ;

public class MainProgram
{ public class Buffer
 { public async Put (int value) ;
 public int Get () & Put(int value)
 { return value ; }
 }

 static void Main()
 { buf = new Buffer () ;
 buf.Put (42) ;
 buf.Put (66) ;
 Console.WriteLine (buf.Get() + " " + buf.Get()) ;
 }
}

Reader/Writer Locks
public class ReaderWriter {
 private async idle();
 private async s(int n);

 public ReaderWriter() {idle();}

 public void Exclusive() & idle() {}
 public void ReleaseExclusive() { idle(); }

 public void Shared() & idle() { s(1);}
 & s(int n) { s(n+1);}

 public void ReleaseShared() & s(int n) {
 if (n == 1) idle(); else s(n-1);
 }
}

“STM”s in Haskell
-- Running STM computations
atomically :: STM a -> IO a
retry :: STM a
orElse :: STM a -> STM a -> STM a

-- Transactional variables
data TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()
newTChan :: STM (TChan a)
writeTChan :: a -> TChan a -> STM ()
readTChan :: TChan a -> STM a

Haskell Crash Course

add :: Int -> Int -> Int
add a b = a + b

add 2 4 = 6
2 `add` 4 = 6

(&) a b = a + b
2 & 4 = 6

Haskell Crash Course

inc :: Int -> Int
inc x = x + 1

twice :: (Int -> Int) -> Int -> Int
twice f v = f (f v)

twice (inc) 6
twice (\ x -> x + 1) 6

One-Shot Synchronous Join
(&) :: TChan a -> TChan b -> STM (a, b)
(&) chan1 chan2
 = do a <- readTChan chan1
 b <- readTChan chan2
 return (a, b)

(>>>) :: STM a -> (a -> IO b) -> IO b
(>>>) joinPattern handler
 = do results <- atomically joinPattern
 handler results

example chan1 chan2
 = chan1 & chan2 >>>
 \ (a, b) -> putStrLn (show (a, b))

Repeating Asynchronous Join
(>!>) :: STM a -> (a -> IO ()) -> IO ()
(>!>) joins cont
 = do forkIO (asyncJoinLoop joins cont)
 return () -- discard thread ID

asyncJoinLoop :: (STM a) -> (a -> IO ()) -> IO ()
asyncJoinLoop joinPattern handler
 = do joinPattern >>> forkIO . handler
 asyncJoinLoop joinPattern handler

example chan1 chan2
 = chan1 & chan2 >!>
 \ (a, b) -> putStrLn (show ((a, b)))

Exploiting Overloading
class Joinable t1 t2 where
 (&) :: t1 a -> t2 b -> STM (a, b)

instance Joinable TChan TChan where
 (&) = join2

instance Joinable TChan STM where
 (&) = join2b

instance Joinable STM TChan where
 (&) a b = do (x,y) <- join2b b a
 return (y, x)

chan1 & chan2 & chan3 >>>
\ ((a, b), c) -> putStrLn (show (a,b,c))

Biased Synchronous Choice
(|+|) :: (STM a, a -> IO c) ->
 (STM b, b -> IO c) ->
 IO c
(|+|) (joina, action1) (joinb, action2)
 = do io <- atomically
 (do a <- joina
 return (action1 a)

 `orElse`
 do b <- joinb

 return (action2 b))
 io

 (chan1 & chan2 & chan3,
 \ ((a,b),c) -> putStrLn (show (a,b,c)))
|+|
 (chan1 & chan2,
 \ (a,b) -> putStrLn (show (a,b)))

Conditional Joins

(??) :: TChan a -> (a -> Bool) -> STM a
(??) chan predicate
 = do value <- readTChan chan
 if predicate value then
 return value
 else
 retry

(chan1 ?? \x -> x > 3) & chan2 >>>
 \ (a, b) -> putStrLn (show (a, b))

Dynamic Joins
example numSensors numSensors chan1 chan2 chan3
 = if numSensors = 2 then
 chan1 & chan2 >!> \ (a, b) ->
 putStrLn (show ((a, b)))
 else
 chan1 & chan2 & chan3 >!> \ (a, (b, c))
 -> putStrLn (show ((a, b, c)))

Transacted Handlers

(>%>) :: STM a -> (a -> STM b) -> IO b
(>%>) joinPattern handler
 = atomically (do results <- joinPattern
 handler results)

Non-Blocking Variants

nonBlockingJoin :: STM a ->
 STM (Maybe a)
nonBlockingJoin pattern
 = (do result <- pattern
 return (Just result))
 `orElse`
 (return Nothing)

Summary and Questions

 Straightforward encoding of Cω join
patterns using STM.

 Higher order combinators in Haskell act as
powerful “glue”.

 Model for understanding join patterns in
terms of STMs.

 A good literal implementation (?)
 Parallel execution?

 Joins as statements instead of declarations.
 Q: What other concurrency idioms can be

nicely modeled by STM with retry and
orElse?

Puzzle
main :: IO ()
main
 = do chan1 <- atomically $ newTChan
 atomically $ writeTChan chan1 42
 atomically $ writeTChan chan1 74
 chan1 & chan1 >>>
 \ (a, b) -> putStrLn (show (a,b))

Conditional Joins

(?) :: TChan a -> Bool -> STM a
(?) chan predicate
 = if predicate then
 readTChan chan
 else
 retry

(chan1 ? cond) & chan2 >>>
\ (a, b) -> putStrLn (show (a, b))

Conditional Joins

(?) :: TChan a -> STM Bool -> STM a
(?) chan predicate
 = do cond <- predicate
 if cond then
 readTChan chan
 else
 retry

The Buffer Over Time

Producer
Thread

b.put(“c”)
;

b.get();

b.get()& put(“a”){
 return “a”;
}

b.get()& put(“b”){
 return “b”;
}

Consumer
Thread

put(“a”)

put(“b”)

put(“b”),put(“c”)

put(“b”),put(“c)

put(“c”)

b.put(“b”)
;

b.put(“a”)
;

Ti
m

e

Buffer b

Backup

Backup

