
UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 1

Nesting Transactions:

Why and What do we need?

 J. Eliot B. Moss
University of Massachusetts

moss@cs.umass.edu
Reporting joint work with Tony Hosking (Purdue)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 2

Transactions are Good
 Dealing with concurrency

 Atomic txns avoid problems with locks
 Deadlock, wrong lock, priority inversion, etc.

 Handle recovery
 Retry in case of conflict
 Cleanup in face of exceptions/errors

Much more practical for ordinary programmers
to code robust concurrent systems

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 3

About Transaction Semantics
 They offer ACI of database ACID properties:

 Atomicity: all or nothing
 Consistency: each txn preserves invariant
 Isolation: intermediate states invisible

 In sum, serializability, in face of concurrent
execution and transaction failures

 Can be provided by Transactional Memory
 Hardware, software, or hybrid

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 4

Simple Transactions for Java
Following Harris and Fraser, we might offer:

atomic { S }
 Atomic: Execute S entirely or not at all
 Isolated: No other atomic action can see

state in the middle, only before S or after
 Consistent: All other atomic actions happen

logically before S or after S
Implement with r/w locking/logging, on words

or whole objects; optimistic, pessimistic, etc.

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 5

Why is this better than locking?
 Abstract: Expresses intent without over- or

under-specifying how to achieve it: correct
 Allows unwind and retry: More flexible

response to conflict: prevents deadlock
 Allows priority without deadlock: Avoids

priority inversion (still need to avoid livelock)
 Allows more concurrency: synchronizes on

exact data accessed rather than an object lock

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 6

Limitations of simple transactions
 Isolation ⇒ no communication
 Long/large transactions either reduce

concurrency or are unlikely to commit
 Data structures often have false conflicts

 Reorganizing B-tree nodes
 Can’t do Conditional Critical Regions (CCRs):

 Insert in buffer if/when there is room, etc.
 Do not themselves provide concurrency

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 7

Closed Nesting
Model proposed in 1981 (Moss PhD):

 Each subtxn builds its own read/write set
 On commit, merge with its parent’s sets
 On abort, discard its set
 Subtxn never conflicts with ancestors

 Conflicts with non-ancestors
 Can see ancestors’ intermediate state, etc.

 Requires keeping values at each nesting
level that writes a data item

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 8

Closed Nesting Helps: Partial Rollback
 When actions conflict, one will be rolled back
 With closed nesting, roll back only up through

the youngest conflicting ancestor
 This reduces the amount of work that must be

redone when retrying

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 9

Closed Nesting Helps: CCRs
Partial rollback helps Conditional Critical

Regions:
Harris and Fraser’s construct:

atomic (P) { S }
 Evaluate P, and if true, do S – all atomically
 If P is false, retry
 Can “busy wait”, or be smarter: wait until

something P depends on changes
 Detect via conflict (give self lowest priority)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 10

Closed Nesting Helps: Alternatives
One can try alternatives:
 When an action fails in a non-retriable way
 After some number of retries
Sample syntax:

atomic { S1 } else { S2 }

atomic (retries<5) { S1 } else { S2 }

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 11

Closed Nesting Helps: Concurrency
Subtransactions provide safe concurrency within

an enclosing transaction
 Subtxns apply suitable concurrency control
 Subtxns fail and retry independently
 Great for mostly non-conflicting subactions

 Tiles of a large array
 Irregular concurrency computations
 Replication in distributed systems

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 12

Limitations of Closed Nesting
Limitations of closed nesting derive from the

non-nested semantics:
 Aggregates larger and larger conflict sets

 Still hard to complete long/large txns
 Synchronizes at physical level

 Gives false conflicts
 Isolation still strict

 No communication, so fails to address a
whole class of concurrent systems

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 13

Open nesting to the rescue!
A concept and theory developed in the 1980s

 Comes from the database community

 Partly an explanation/justification of certain
real strategies

 Partly an approach to generalizing those
strategies

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 14

Conceptual Backdrop of Open Nesting
 Closed nesting has just one level of abstraction:

Memory contents
 Basis for concurrency control
 Basis for rollback

 Open nesting has more levels of abstraction
 Each level may have a distinct:

 Concurrency control model (style of locks)
 Recovery model (operations for undoing)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 15

Open Nested Actions
 While running, a leaf open nested action

Operates at the memory word level
 When it commits:

 Its memory changes are permanent
Concurrency control and recovery switch

levels
Give up memory level “locks”:

acquire abstract locks
Give up memory level unwind

unwind with inverse operation (undo)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 16

Non-Leaf Open Nested Actions
 A non-leaf open nested action

 Operates at the memory word level, and
 May accumulate abstract locks and undos from

committed children
 When it commits:

 Its memory changes are permanent
 Concurrency control and recovery switch levels

 Give up memory level “locks” and child locks:
acquire abstract locks for new level

 Give up memory level unwind and child undos
unwind with inverse (undo) for new level

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 17

Open Nesting and Data Abstraction
Open nested naturally fits types, not code chunks
 For safety, memory state accessed by an open

action generally must not be accessed by
closed actions

 Abstract data types neatly encapsulate state
 Data types also tend to provide inverses
 Abstract locks match abstract state/operations

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 18

Simple application: Phone directory
 Employee phone directory

 Name-to-number lookup
 All names in a range
 All entries in a department

 Structure
 B-tree to map names to records
 B-tree to map depts to sets of records

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 19

Layers of abstraction
 Phone directory: top (most abstract) layer

 Insert must create record, add to 2 B-trees
 Delete must remove from 2 B-trees
 Desire high concurrency

 (Indexed) set of records: middle layer
 Central notion: presence/absence of

records in sets
 B-tree: lowest layer:

 B-tree nodes and pointers to records

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 20

A scenario: Concurrent insertions
 Two transactions, inserting different names
 Close in alphabet, so same B-tree node
 Conflict at level of read/write sets (words)
 “Early commit” of the two B-tree inserts ok

 Each insert is atomic: if not, break B-tree!
 Different names, so no abstract conflict

That is, at the level of a set of (key,value) pairs
 But … entails some obligations

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 21

123

Open actions need abstract undo

B-tree node

Sloan Smith Smythe

Start: “Sloan” in node
Open action 1 adds “Smith”, commits
Open action 2 adds “Smythe”, commits
Parent of 1 aborts, smashes node!

1

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 22

1223

Same example with abstract undo

B-tree node

Sloan Smith Smythe

Start: “Sloan” in node
Open action 1 adds “Smith”, commits
Open action 2 adds “Smythe”, commits
Parent of 1 aborts, deletes “Smith”

Smythe

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 23

What is a correct undo?
 Consider abstract state

 Here: set of (name,phone) pairs
 Ordered by name in B-tree node
 Etc.

 Insert: goes from “without name” to “with”
 Undo must restore pre-insert (abstract)

state when presented with the post-insert
(abstract) state

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 24

What is a good correct undo?
 One that minimizes concurrency conflicts
 So, in this case, concerned only with

presence/absence of the inserted name
 Thus: delete(…) is a good undo here

But wait! There’s more ….. !

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 25

12

A different scenario

B-tree node

Sloan Smith

Start: “Sloan” in node
Open action 1 adds “Smith”, commits
Open action 2 sees “Smith”, commits
Parent of 1 aborts, removes “Smith”

1

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 26

The concurrency control obligation
Problem: Allowed uncommitted data to be seen:

too much concurrency!

Why is this a problem?
Txn 2 saw a “phantom” value

This is not serializable!

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 27

How to regain (abstract) serializability
 Tx holds an abstract lock to indicate that the

entry is in doubt until Tx commits
 Ty (child) says what this lock should be;

the level shifts as Ty commits
 Might add a “pending” flag to records

 Check it when accessing/deleting a record
 Similar technique needed for deletes

This almost works, but ….

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 28

12

Another concurrency scenario

B-tree node

Sloan Smith

Start: “Sloan” in node
Open action 1 sees “Smith” is absent
Top action (2) adds “Smith”, commits
Open action 1 sees “Smith” is present

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 29

Concurrency control is subtle!
No transaction isolation!
Action 1 should have “locked” absence of “Smith”

In general, need an abstract lock data structure

Here, remember locked keys in a side table
S (share) and X (exclusive) modes

Failing lookup locks “Smith”, so insert conflicts

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 30

1

11

Another concurrency scenario

B-tree node

Sloan

Start: “Sloan” in node
Open action 1 sees “Smith” is absent
Open action 2 desires to add “Smith”
Tries to lock “Smith” X mode — fails

Smith S

Abstract locks

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 31

Putting it together
To insert “Smith”:

1. Acquire X mode lock on key “Smith”
2. Insert in by-name B-tree
3. Insert in department B-tree

 To commit:
 Release abstract lock

 To abort:
 Delete from dept B-tree, then by-name
 Release abstract lock

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 32

Looking up a name
To look up “Smith”:

1. Acquire S mode lock on key “Smith”
2. Look up in by-name B-tree

Returns null if absent, record if present
 To commit:

 Release abstract lock
 To abort:

 Release abstract lock

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 33

End result
 Insertions, etc., can be “pipelined”

 Good concurrency, yet B-tree is safe
 Can also pipeline through layers of B-tree

(lock coupling, not shown)
 Inherent, i.e., abstract, conflicts respected

 Concurrency control now at abstract level
 Undos also at abstract level

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 34

Primer on abstract state
 Some (not all) concrete states s are valid

 Example: B-tree ordered, no duplicates
 Every valid concrete s maps to an abstract S

 Example: B-tree maps to {(key,value)}
 Abstraction map defines equivalence classes

 Concrete states that map to same S
 Helpful to design in terms of abstraction map,

if only informally, and to document it

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 35

Abstract Serializability
 Lock parts of abstract state
 Undo in the abstract

Result is abstract serializability

 Undo restores changed part of abstract state
 Lock must prevent conflicting forward ops
 Lock must insure undo remains applicable

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 36

Pieces fit with each other
Data type works correctly as a whole:

 Protected concrete state
 Clearly understood abstract state
 Abstract locks, in terms of abstract state
 Abstract undos, in terms of abstract ops

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 37

How to implement open nesting?
 Parent maintains abort, commit, and done

action lists
 Commit of an open nested action adds:

 Undo to the abort list
 Unlock to the done list
 Cleanups (if any) to the commit list

Sometimes better to change state lazily;
e.g., delete late to hold space until sure

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 38

Commit and abort semantics
 When parent commits:

 Run commit actions, then
 Run done actions (and do r/w sets)

 When parent aborts:
 Run abort actions, then
 Run done actions (and do r/w sets)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 39

“The log is the truth”
Aborting is a little more subtle …
 An undo should be applied in the state that

held when its forward action committed
 Consider:

memory A, open B, memory C, open D
 State for D-1 should see A and C
 State for B-1 should see A but not C
 Abort = D-1, undo C, B-1, undo A

Can do this using levels of closed nesting

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 40

Thinking at the memory level
 Open nested action builds up r/w sets just

like a closed nested action
 If open nested action aborts, discard sets,

just like closed nested action
 If open nested action commits:

 Install its writes, immediately, into the
“global committed value”

 If any ancestor holds that word, update its
value, too (ancestor keeps r/w set entry)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 41

Properties of this rule
 Immediacy of update:

 Ancestors (and others) see new value
 No concurrency surprises

 Ancestors retain r/w sets (with new value)
 Note: Parent does not normally share global

data with open nested child (encapsulation)
 Example: B-tree nodes visible only to B-

tree operations

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 42

What might the programmer write?
Something like:

atomic { S }
 onabort { A } oncommit { C }
 ondone { D }

 Open semantics implied by onabort, etc.
 Glossing over details: not a complete design

Need to deal with binding of variables, etc.

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 43

Bending the Rules
 Can use “improper” abstract locking to offer

controlled communication
 Can probably simulate Java wait/notify, e.g.

 Can use “improper” undo to cause truly
permanent effect
 Logging attempt to use a stolen credit card
 Rolling back the rest of the transaction

 A general loophole: handy, but admittedly a
dangerous “power tool”: use sparingly!

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 44

Can ordinary programmers use this?
 Single-level and closed nesting usually enough
 Open nesting good for library classes

 High concurrency, or special semantics
 Our experience is:

 Undos are usually trivial to provide
 Other clauses not often necessary

 Assuming lock release is implied
 Abstract locking takes getting used to

 Fertile ground for library work

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 45

Recap: Why nest?
 To allow nesting of program constructs

 Can just merge inner into outer …
 But may induce more retry work

 To support multiple rollback/retry points
 To implement alternate strategies
 To increase concurrency (open)
 To offer selective permanence (open)
 To provide a general “escape hatch” (open)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 46

Parting Shots
 Nesting is desirable, open nesting needed
 Need to integrate:

 Desired semantics
 Language design (with exceptions, etc.)
 Run-time support
 Memory level semantics
 Hardware implementation

