Nesting Transactions:
Why and What do we need?

J. Eliot B. Moss
University of Massachusetts

Reporting joint work with Tony Hosking (Purdue)

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Transactions are Good

= Dealing with concurrency

Atomic txns avoid problems with locks
Deadlock, wrong lock, priority inversion, etc.

= Handle recovery
Retry in case of conflict
Cleanup in face of exceptions/errors

Much more practical for ordinary programmers
to code robust concurrent systems

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Compute

About Transaction Semantics

= They offer ACI of database ACID properties:
Atomicity: all or nothing
Consistency: each txn preserves invariant
Isolation: intermediate states invisible

= In sum, serializability, in face of concurrent
execution and transaction failures

= Can be provided by Transactional Memory
Hardware, software, or hybrid

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of. Computer Science

Simple Transactions for Java

Following Harris and Fraser, we might offer:
atomic { S}
= Atomic: Execute S entirely or not at all

" |solated: No other atomic action can see
state in the middle, only before S or after

= Consistent: All other atomic actions happen
logically before S or after S

Implement with r/w locking/logging, on words
or whole objects; optimistic, pessimistic, etc.

Why is this better than locking?

= Absftract: Expresses intent without over- or
under-specifying how to achieve it: correct

= Allows unwind and retry: More flexible
response to conflict: prevents deadlock

= Allows priority without deadlock: Avoids
priority inversion (still need to avoid livelock)

= Allows more concurrency: synchronizes on

exact data accessed rather than an object lock

Limitations of simple transactions

= |solation = no communication

= Long/large transactions either reduce
concurrency or are unlikely to commit

= Data structures often have false conflicts
Reorganizing B-tree nodes

= Can’'t do Conditional Critical Regions (CCRs):
Insert in buffer iffwhen there is room, etc.

= Do not themselves provide concurrency

Closed Nesting

Model proposed in 1981 (Moss PhD):
= Each subtxn builds its own read/write set
= On commit, merge with its parent’s sets
= On abort, discard its set

= Subtxn never conflicts with ancestors
= Conflicts with non-ancestors

= Can see ancestors’ intermediate state, etc.

= Requires keeping values at each nesting
level that writes a data item

Closed Nesting Helps: Partial Rollback

= When actions conflict, one will be rolled back

= With closed nesting, roll back only up through
the youngest conflicting ancestor

= [his reduces the amount of work that must be
redone when retrying

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Closed Nesting Helps: CCRs

Partial rollback helps Conditional Critical
Regions:

Harris and Fraser’'s construct:

atomic (P) { S }
= Evaluate P, and if true, do S — all atomically
= If P is false, retry

= Can "busy wait”, or be smarter: wait until
something P depends on changes

= Detect via conflict (give self lowest priority)

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Co

Closed Nesting Helps: Alternatives

One can try alternatives:
= When an action fails in a non-retriable way
= After some number of retries

Sample syntax:
atomic { S1 } else { S2}

atomic (retries<5) { S1 } else { S2 }

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Closed Nesting Helps: Concurrency

Subtransactions provide safe concurrency within
an enclosing transaction

= Subtxns apply suitable concurrency control
= Subtxns fail and retry independently
= Great for mostly non-conflicting subactions
= Tiles of a large array
= lrregular concurrency computations
= Replication in distributed systems

Limitations of Closed Nesting

Limitations of closed nesting derive from the
non-nested semantics:

= Agqgreqates larger and larger conflict sets
= Still hard to complete long/large txns

= Synchronizes at physical level
= Gives false conflicts

= [solation still strict

= No communication, so fails to address a
whole class of concurrent systems

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Open nesting to the rescue!
A concept and theory developed in the 1980s

= Comes from the database community

= Partly an explanation/justification of certain
real strategies

= Partly an approach to generalizing those
strategies

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Conceptual Backdrop of Open Nesting

= Closed nesting has just one level of abstraction:
Memory contents
Basis for concurrency control
Basis for rollback
= Open nesting has more levels of abstraction
= Each level may have a distinct:
Concurrency control model (style of locks)
Recovery model (operations for undoing)

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Compute

Open Nested Actions

= While running, a leaf open nested action
Operates at the memory word level

= When it commits:
Its memory changes are permanent

Concurrency control and recovery switch
levels

Give up memory level “locks™:
acquire abstract locks
Give up memory level unwind
unwind with inverse operation (undo)

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Compute

Non-Leaf Open Nested Actions

= A non-leaf open nested action
Operates at the memory word level, and

May accumulate abstract locks and undos from
committed children

= When it commits:
Its memory changes are permanent

Concurrency control and recovery switch levels
Give up memory level “locks” and child locks:
acquire abstract locks for new level
Give up memory level unwind and child undos
unwind with inverse (undo) for new level

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Compute

Open Nesting and Data Abstraction

Open nested naturally fits types, not code chunks

= For safety, memory state accessed by an open

action generally must not be accessed by
closed actions

= Abstract data types neatly encapsulate state
= Data types also tend to provide inverses
= Abstract locks match abstract state/operations

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Co

Simple application: Phone directory

= Employee phone directory
Name-to-number lookup
All names in a range
All entries in a department

= Structure
B-tree to map names to records
B-tree to map depts to sets of records

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Layers of abstraction

= Phone directory: top (most abstract) layer
Insert must create record, add to 2 B-trees
Delete must remove from 2 B-trees
Desire high concurrency

= (Indexed) set of records: middle layer

Central notion: presence/absence of
records in sets

= B-free: lowest layer:
B-tree nodes and pointers to records

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of. Computer Science

A scenario: Concurrent insertions

= Two transactions, inserting different names

= Close in alphabet, so same B-tree node

= Conflict at level of read/write sets (words)

= "Early commit” of the two B-tree inserts ok
Each insert is atomic: if not, break B-tree!
Different names, so no abstract conflict

That is, at the level of a set of (key,value) pairs
= But ... entails some obligations

Open actions need abstract undo

Start: “Sloan” in node
Open action 1 adds “Smith”, commits

Open action 2 adds "Smythe”, commits
Parent of 1 aborts, smashes node!

2 [Sloan | Smith | Smythe

B-tree node

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Same example with abstract undo

Start: “Sloan” in node
Open action 1 adds “Smith”, commits

Open action 2 adds "Smythe”, commits
Parent of 1 aborts, deletes “"Smith”

2 | Sloan | 8mjthe| Smythe

B-tree node

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

What is a correct undo?

Consider abstract state
Here: set of (name,phone) pairs
Ordered by name in B-tree node
Etc.

Insert. goes from “without name” to “with”

Undo must restore pre-insert (abstract)
state when presented with the post-insert
(abstract) state

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of. Computer Science

What is a good correct undo?

= One that minimizes concurrency conflicts

= SO0, in this case, concerned only with
presence/absence of the inserted name

= Thus: delete(...) is a good undo here

But wait! There’'s more !

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

A different scenario

Start: “Sloan” in node
Open action 1 adds “Smith”, commits

Open action 2 sees “Smith”, commits
Parent of 1 aborts, removes “Smith”

2 | Sloan | Smith

B-tree node

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

The concurrency control obligation

Problem: Allowed uncommitted data to be seen:
too much concurrency!

Why is this a problem?
Txn 2 saw a “phantom” value

This Is not serializable!

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

How to regain (abstract) serializability

s [x holds an abstract lock to indicate that the
entry is in doubt until Tx commits

Ty (child) says what this lock should be;
the level shifts as Ty commits
= Might add a “pending” flag to records
Check it when accessing/deleting a record
= Similar technique needed for deletes

This almost works, but

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of. Computer Science

Another concurrency scenario

Start: “Sloan” in node
Open action 1 sees “Smith” is absent

Top action (2) adds “Smith”, commits
Open action 1 sees “"Smith” is present

2 | Sloan | Smith

B-tree node

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Concurrency control is subtle!

No transaction isolation!
Action 1 should have “locked” absence of “Smith”

In general, need an abstract lock data structure
Here, remember locked keys in a side table

S (share) and X (exclusive) modes
Failing lookup locks “Smith”, so insert conflicts

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Compute

Another concurrency scenario

Start: “Sloan” in node
Open action 1 sees “Smith” is absent

Open action 2 desires to add “Smith”
Tries to lock “Smith” X mode — fails

1 | Sloan

B-tree node 1 |Smith| S

Abstract locks

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Putting it together

To insert “Smith™:
1. Acquire X mode lock on key “Smith”
2. Insert in by-name B-tree
3. Insert in department B-tree
= [ocommit:
Release abstract lock
= [0 abort:
Delete from dept B-tree, then by-name
Release abstract lock

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Looking up a name

To look up “Smith”:
1. Acquire S mode lock on key “Smith”
2. Look up in by-name B-tree
Returns null if absent, record if present
= [ocommit:
Release abstract lock
= [0 abort:
Release abstract lock

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

End result

= Insertions, etc., can be “pipelined”
Good concurrency, yet B-tree is safe

Can also pipeline through layers of B-tree
(lock coupling, not shown)

Inherent, i.e., abstract, conflicts respected
= Concurrency control now at abstract level
= Undos also at abstract level

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Compute

Primer on abstract state

= Some (not all) concrete states s are valid
Example: B-tree ordered, no duplicates

= Every valid concrete s maps to an abstract S
Example: B-tree maps to {(key,value)}

= Abstraction map defines equivalence classes
Concrete states that map to same S

= Helpful to design in terms of abstraction map,
if only informally, and to document it

Abstract Serializability

= Lock parts of abstract state
= Undo in the abstract

Result is abstract serializability

= Undo restores changed part of abstract state
= Lock must prevent conflicting forward ops
_ock must insure undo remains applicable

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Pieces fit with each other

Data type works correctly as a whole:

= Protected concrete state

= Clearly understood abstract state

s Abstract locks, in terms of abstract state
= Abstract undos, in terms of abstract ops

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

How to implement open nesting?

s Parent maintains abort, commit, and done
action lists

= Commit of an open nested action adds:
Undo to the abort list
Unlock to the done list
Cleanups (if any) to the commit list
Sometimes better to change state lazily;
e.g., delete late to hold space until sure

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Compute

Commit and abort semantics

= When parent commits:
Run commit actions, then
Run done actions (and do r/w sets)

= When parent aborts:
Run abort actions, then
Run done actions (and do r/w sets)

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

“The log is the truth”

Aborting is a little more subtle ...

= An undo should be applied in the state that
held when its forward action committed

= Consider:
memory A, open B, memory C, open D
= State for D! should see A and C
= State for B-' should see A but not C
= Abort = D', undo C, B-', undo A
Can do this using levels of closed nesting

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of. Computer Science

Thinking at the memory level

= Open nested action builds up r/w sets just
like a closed nested action

= If open nested action aborts, discard sets,
just like closed nested action

= If open nested action commits:

Install its writes, immediately, into the
“global committed value”

If any ancestor holds that word, update its
value, too (ancestor keeps r/w set entry)

Properties of this rule

= Immediacy of update:
Ancestors (and others) see new value
= No concurrency surprises
Ancestors retain r/w sets (with new value)

= Note: Parent does not normally share global
data with open nested child (encapsulation)

Example: B-tree nodes visible only to B-
tree operations

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Compute

What might the programmer write?

Something like:
atomic { S}
onabort { A} oncommit { C }
ondone { D }

= Open semantics implied by onabort, etc.
= Glossing over details: not a complete design
Need to deal with binding of variables, etc.

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Bending the Rules

= Can use “improper” abstract locking to offer
controlled communication

Can probably simulate Java wait/notify, e.g.

= Can use “improper” undo to cause truly
permanent effect

Logging attempt to use a stolen credit card
Rolling back the rest of the transaction

= A general loophole: handy, but admittedly a
dangerous “power tool”: use sparingly!

Can ordinary programmers use this?

= Single-level and closed nesting usually enough
= Open nesting good for library classes

High concurrency, or special semantics
= Our experience is:

Undos are usually trivial to provide

Other clauses not often necessary
Assuming lock release is implied

Abstract locking takes getting used to
Fertile ground for library work

Recap: Why nest?
= 10 allow nesting of program constructs
Can just merge inner into outer ...
But may induce more retry work
= [To support multiple rollback/retry points
= [0 Implement alternate strateqgies
= To Increase concurrency (open)
= To offer selective permanence (open)
= To provide a general “escape hatch” (open)

Parting Shots

= Nesting is desirable, open nesting needed
= Need to integrate:
Desired semantics
Language design (with exceptions, etc.)
Run-time support
Memory level semantics
Hardware implementation

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

