
Lowering the Overhead of Nonblocking
Software Transactional Memory

Virendra J. Marathe
Michael F. Spear
Christopher Heriot

Athul Acharya
David Eisenstat

William N. Scherer III
Michael L. Scott

Lowering the Overhead of Nonblocking STM 2

Background

• Hardware support for managed code STMs is a
daunting task

• C/C++ users need a fast nonblocking STM
library

• The larger community needs STM libraries that
are free and unencumbered by license
restrictions

• RSTM: a fast, free, pthreads STM library

Lowering the Overhead of Nonblocking STM 3

Outline

• Reducing indirection
• Limiting heap use
• Fast, flexible conflict detection
• Performance
• Future work
• Conclusions

Lowering the Overhead of Nonblocking STM 4

Indirection Costs

Data
(new)

Data
(old)TMObject

New

Old

Owner

Locator

State
Descriptor

• Basic DSTM / ASTM / SXM organization
– Adds 2 levels of indirection
– Adds 3 pointer dereferences to access data

• Up to 4 cache misses to determine valid version

Lowering the Overhead of Nonblocking STM 5

Reducing Indirection

• Adds up to 2 levels of indirection
• Adds up to 3 dereferences

– Unacquired objects: 1 dereference
– Committed owner: 2 dereferences
– Aborted owner: 3 dereferences

Header Data
(new)

Old

Owner State Transaction Descriptor

Data
(old)

Old

Ownerreaders

Clean Bit
never accessed

4 cache misses
only on dirty, aborted
owner

Lowering the Overhead of Nonblocking STM 6

Reusing Heap Objects

• Reference counting descriptors risks a cache
miss on every decrement

• At transaction end, RSTM cleans up all pointers
to the descriptor
– If abort, install clean header pointing to old object
– If commit, install clean header pointing to new object
– Most headers will be in cache
– Appropriate data objects marked for lazy

reclamation

Data
(new)

Old

Owner State

Data
(old)

Old

Ownerreaders

Lowering the Overhead of Nonblocking STM 7

Preallocation

• Initial read/write sets are fields in descriptor
– Dynamic allocation only if set > 64 items

• Sets optimized for iteration
– Every method that may do a lookup also does a full

validation
– Predict result of lookup, then verify it during the

validation
– High locality during iteration
– Similar to McRT’s Sequential Store Buffers [PPoPP 06]

size 64 element array

Lowering the Overhead of Nonblocking STM 8

Conflict Detection

• “Eager” and “Lazy” acquire are straightforward
• What about “Visible” readers?

– Saves validation overhead, allows writer-reader
arbitration

– Typical implementation is as field in locator; visible
reader list is modified atomically as part of header

• Increases heap use and takes time to get memory, construct
locator, and CAS it in

• Simpler solution via bitmap
– Limits # visible readers
– Allows (rare) spurious aborts
– No memory management required

Lowering the Overhead of Nonblocking STM 9

COMMITTED

RSTM Visible Readers

1. Get ReaderID
2. On open_RO(),

set bit
3. On commit/abort,

clear read bits

2n CAS instrs to
read n objects

ACTIVE
2

Data

Old

Owner

00000000

0

00000100

Data

Old

Owner

00100000

0
00100100

Data

Old

Owner

11000000

0

11000100

?
CAS

CAS

CAS

CAS

Read IDs
T1

2: avail2: T1

Lowering the Overhead of Nonblocking STM 10

RSTM Performance

• Tests conducted on 16-processor SunFire 6800
• Always outperforms Java ASTM
• C++ ASTM implementation shows that language

is less important than metadata and conflict
detection policy

• No single conflict detection policy is best

Lowering the Overhead of Nonblocking STM 11

HashTable (embarrassingly parallel)

Java ASTM
C++ ASTM
RSTM VE
RSTM IE
RSTM IL
RSTM VL
CGL

Few conflicts == strategy doesn’t matter much

Metadata is the only difference
between C++ ASTM and RSTM

Eager has slightly
less overhead

Lowering the Overhead of Nonblocking STM 12

RBTree (some conflicts)

Visible reads force tree head to
bounce between cache lines

Java ASTM
C++ ASTM
RSTM VE
RSTM IE
RSTM IL
RSTM VL
CGL

2500 @ 1 thread

Lowering the Overhead of Nonblocking STM 13

LFUCache (no parallelism)

No natural parallelism; Lazy
conflicts don’t impede progress

Java ASTM
C++ ASTM
RSTM VE
RSTM IE
RSTM IL
RSTM VL
CGL

4500 @ 1 thread

Lowering the Overhead of Nonblocking STM 14

RandomGraph (torture test)

Visible reads dramatically
reduce validation

Eager acquire
leads to livelock

Java ASTM
C++ ASTM
RSTM VE
RSTM IE
RSTM IL
RSTM VL
CGL

Log scale, Tx/sec

Lowering the Overhead of Nonblocking STM 15

Future Work

• Adaptation between lazy and eager, visible and
invisible
– Architectural implications…Intel Xeon, Sun Niagara

have very different CAS overheads
• Avoiding validation with heuristics
• Mixed invalidation
• Hardware assistance

Lowering the Overhead of Nonblocking STM 16

Summary

• Better metadata organization reduces cache
misses

• Limiting dynamic memory management helps
• Conflict detection is workload dependent
• Download RSTM for SPARC/Solaris at

http://www.cs.rochester.edu/research/synchronization/rstm/

(check back soon for x86/Linux version)

Supplemental Material

Lowering the Overhead of Nonblocking STM 18

Linked List with Early Release

Java ASTM
C++ ASTM
RSTM VE
RSTM IE
RSTM IL
RSTM VL
CGL
FGL

FGL cache & preemption effects

C++ ASTM is best
(no writer cleanup)

Visible reads: 2 CASes
in rapid succession

