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Background

• Hardware support for managed code STMs is a
daunting task

• C/C++ users need a fast nonblocking STM
library

• The larger community needs STM libraries that
are free and unencumbered by license
restrictions

• RSTM:  a fast, free, pthreads STM library
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Outline

• Reducing indirection
• Limiting heap use
• Fast, flexible conflict detection
• Performance
• Future work
• Conclusions
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Indirection Costs

Data
(new)

Data
(old)TMObject

New

Old

Owner

Locator

State
Descriptor

• Basic DSTM / ASTM / SXM organization
– Adds 2 levels of indirection
– Adds 3 pointer dereferences to access data

• Up to 4 cache misses to determine valid version
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Reducing Indirection

• Adds up to 2 levels of indirection
• Adds up to 3 dereferences

– Unacquired objects: 1 dereference
– Committed owner: 2 dereferences
– Aborted owner: 3 dereferences

Header Data
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Clean Bit
never accessed

4 cache misses
only on dirty, aborted
owner



Lowering the Overhead of Nonblocking STM 6

Reusing Heap Objects

• Reference counting descriptors risks a cache
miss on every decrement

• At transaction end, RSTM cleans up all pointers
to the descriptor
– If abort, install clean header pointing to old object
– If commit, install clean header pointing to new object
– Most headers will be in cache
– Appropriate data objects marked for lazy

reclamation
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Preallocation

• Initial read/write sets are fields in descriptor
– Dynamic allocation only if set > 64 items

• Sets optimized for iteration
– Every method that may do a lookup also does a full

validation
– Predict result of lookup, then verify it during the

validation
– High locality during iteration
– Similar to McRT’s Sequential Store Buffers [PPoPP 06]

size 64 element array
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Conflict Detection

• “Eager” and “Lazy” acquire are straightforward
• What about “Visible” readers?

– Saves validation overhead, allows writer-reader
arbitration

– Typical implementation is as field in locator; visible
reader list is modified atomically as part of header

• Increases heap use and takes time to get memory, construct
locator, and CAS it in

• Simpler solution via bitmap
– Limits # visible readers
– Allows (rare) spurious aborts
– No memory management required
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COMMITTED

RSTM Visible Readers

1. Get ReaderID
2. On open_RO(),

set bit
3. On commit/abort,

clear read bits
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RSTM Performance

• Tests conducted on 16-processor SunFire 6800
• Always outperforms Java ASTM
• C++ ASTM implementation shows that language

is less important than metadata and conflict
detection policy

• No single conflict detection policy is best
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HashTable (embarrassingly parallel)

Java ASTM
C++ ASTM
RSTM VE
RSTM IE
RSTM IL
RSTM VL
CGL

Few conflicts == strategy doesn’t matter much

Metadata is the only difference
between C++ ASTM and RSTM

Eager has slightly
less overhead
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RBTree (some conflicts)

Visible reads force tree head to 
bounce between cache lines

Java ASTM
C++ ASTM
RSTM VE
RSTM IE
RSTM IL
RSTM VL
CGL

2500 @ 1 thread
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LFUCache (no parallelism)

No natural parallelism; Lazy 
conflicts don’t impede progress

Java ASTM
C++ ASTM
RSTM VE
RSTM IE
RSTM IL
RSTM VL
CGL

4500 @ 1 thread
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RandomGraph (torture test)

Visible reads dramatically
reduce validation

Eager acquire
leads to livelock

Java ASTM
C++ ASTM
RSTM VE
RSTM IE
RSTM IL
RSTM VL
CGL

Log scale, Tx/sec
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Future Work

• Adaptation between lazy and eager, visible and
invisible
– Architectural implications…Intel Xeon, Sun Niagara

have very different CAS overheads
• Avoiding validation with heuristics
• Mixed invalidation
• Hardware assistance
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Summary

• Better metadata organization reduces cache
misses

• Limiting dynamic memory management helps
• Conflict detection is workload dependent
• Download RSTM for SPARC/Solaris at

http://www.cs.rochester.edu/research/synchronization/rstm/

(check back soon for x86/Linux version)



Supplemental Material
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Linked List with Early Release

Java ASTM
C++ ASTM
RSTM VE
RSTM IE
RSTM IL
RSTM VL
CGL
FGL

FGL cache & preemption effects 

C++ ASTM is best 
(no writer cleanup)

Visible reads:  2 CASes
in rapid succession


