
Transactional memory with dataTransactional memory with data
invariants: or invariants: or ““putting the C backputting the C back
in ACIDin ACID””
Tim Harris, Simon Peyton JonesTim Harris, Simon Peyton Jones

IntroductionIntroduction

Time

•• ““List XYZ remains in sorted orderList XYZ remains in sorted order””

[]

[10,20]

[10]

[5,10,20]

[20,10,5]

thread1thread1

thread2thread2

thread3thread3

URK! But how to detect this: Find
and instrument all updates?

Distinguish sorted/unsorted lists in
the type system?

Transactions to the rescueTransactions to the rescue

•• Write Write executable invariants executable invariants to check theto check the
properties weproperties we’’re interested inre interested in

•• Invariants fit in really nicely with transactions:Invariants fit in really nicely with transactions:

–– Of course, the DB folk knew this long ago :-)Of course, the DB folk knew this long ago :-)

–– Every transaction must preserve every invariantEvery transaction must preserve every invariant

–– Transactions define updates between Transactions define updates between consistent consistent statesstates

–– Invariants can (must!) be broken within transactionsInvariants can (must!) be broken within transactions

–– It doesnIt doesn’’t matter if an update is to the spine of the listt matter if an update is to the spine of the list
or to a key that it contains (unlike much related work,or to a key that it contains (unlike much related work,
e.g. Eiffel and Spec#)e.g. Eiffel and Spec#)

A sorted list using invariantsA sorted list using invariants

newSortedListnewSortedList = do { = do {
 r <- r <- newListnewList();();
 check (check (isSortedisSorted r); r);
 return r; return r;
}}

Defining a function ‘newSortedList’
in Haskell-ish pseudo-code

Construct an ordinary
mutable list as usual

Assert that the list is sorted
now, and every update to the

list must keep it sorted

Return the list
we created

•• The runtime system keeps track of the invariantThe runtime system keeps track of the invariant
and ensures transactions donand ensures transactions don’’t violate it t violate it –– the type the type
system treats it as any other listsystem treats it as any other list

SemanticsSemantics

•• The invariant is an STM actionThe invariant is an STM action…… so [in so [in

Haskell] itHaskell] it’’s guaranteed not to do I/Os guaranteed not to do I/O

–– But what if it loops?But what if it loops?

–– What if it updates or allocates transactional state?What if it updates or allocates transactional state?

–– What if it calls What if it calls check check to add yet another invariant?to add yet another invariant?

–– What if it uses condition synchronization and blocksWhat if it uses condition synchronization and blocks

the transaction?the transaction?

First design choice: overviewFirst design choice: overview

•• Run invariants in [closed] nested Run invariants in [closed] nested txtx (so they see (so they see
the tentative updates), check they succeed (donthe tentative updates), check they succeed (don’’tt
throw an exception), then roll back each nested throw an exception), then roll back each nested txtx

•• All this happens atomically with the user All this happens atomically with the user txtx

User’s
transaction

Nested tx check invariants
and are then aborted (so no
interference with user tx)

Whole lot occurs
atomically

Time

First design choice: semanticsFirst design choice: semantics

•• The invariant is an arbitrary STM actionThe invariant is an arbitrary STM action……

–– What if it loops?What if it loops?

–– What if it updates trans state?What if it updates trans state?

–– What if it calls What if it calls checkcheck??

–– What if it blocks?What if it blocks?

Can use them
internally, but

updates discarded

Checked at that call,
but then discarded

The user’s tx blocks until
the invariant can complete

Your program
loops…

STM HaskellSTM Haskell

newTVarnewTVar :: a -> STM (:: a -> STM (TVarTVar a) a)

readTVarreadTVar :: :: TVarTVar a -> STM a a -> STM a

writeTVarwriteTVar :: :: TVarTVar a -> a -> STM () a -> a -> STM ()

atomic :: STM a -> IO aatomic :: STM a -> IO a

incTincT :: :: TVarTVar IntInt -> -> STMSTM () ()

incTincT r = do { v <- r = do { v <- readTVarreadTVar r r
; ; writeTVarwriteTVar r (v+1) } r (v+1) }

main = do { r <- atomic (main = do { r <- atomic (newTVarnewTVar 0) 0)
; fork (atomic (; fork (atomic (incTincT r)) r))
; atomic (; atomic (incTincT r) r)
; ... }; ... }

Transactional state is held in TVars

The type system distinguishes
transactional code (types like “STM a”)
from general imperative code (types like

“IO a”)

Sequential composition of
STM actions

Second design choice: restrict to readsSecond design choice: restrict to reads

•• We can distinguish between STM actions that justWe can distinguish between STM actions that just
read from the heap from STM actions that performread from the heap from STM actions that perform
updates / create updates / create TVarsTVars / block / add invariants / block / add invariants

data data ReadOnlyReadOnly
data Effectdata Effect

type STM e a = type STM e a = ……

readTVarreadTVar :: :: TVarTVar a -> STM e a a -> STM e a
writeTVarwriteTVar :: a -> :: a -> TVarTVar a -> STM Effect a a -> STM Effect a

atomic :: STM e a -> IO aatomic :: STM e a -> IO a
check :: STM check :: STM ReadOnlyReadOnly a -> STM Effect () a -> STM Effect ()

An STM action where “e” may be forced to
be unified with phantom types “Pure” or

“Effect”. Sequencing “STM e a” and
“STM f b” defined to require a==b.

writeTVar forces “e” to
be unified with “Effect”

readTVar can be sequentially
composed with any kind of STM action

Combinators express
their constraints (if any)

Invariants over state pairsInvariants over state pairs

•• Exciting observation from the Spec# groupExciting observation from the Spec# group

•• Suppose we want invariants over state pairsSuppose we want invariants over state pairs
rather than single statesrather than single states
–– ““Value of x never decreasesValue of x never decreases””

–– versus versus ““Value of x is always positiveValue of x is always positive””

old :: STM old :: STM ReadOnlyReadOnly a -> STM e a a -> STM e a

Take an STM action and
run it in the pre-

transactional state

check (do { cur <- check (do { cur <- readTVarreadTVar x; x;
prevprev <- old (<- old (readTVarreadTVar x); x);
assert (assert (prevprev <= cur); }) <= cur); })

ImplementationImplementation

•• IsnIsn’’t it slow checking every invariant upon everyt it slow checking every invariant upon every

transaction?transaction?

–– It would be if we actually checked them allIt would be if we actually checked them all

–– When invariant checking is enabled we dynamically trackWhen invariant checking is enabled we dynamically track
dependencies from dependencies from TVarsTVars to invariants that depend on them to invariants that depend on them

–– ““Pay for playPay for play”” (same wake-up mechanism we use for condition (same wake-up mechanism we use for condition
synchronization)synchronization)

–– These are the only references to the data structures used toThese are the only references to the data structures used to
represent invariants: the GC reclaims these structures whenrepresent invariants: the GC reclaims these structures when
they are unreachablethey are unreachable

–– (But note that the extra links may extend the lifetime of(But note that the extra links may extend the lifetime of
individual objects individual objects –– the invariant and everything reachable the invariant and everything reachable
from it will be retained while at least one from it will be retained while at least one TVarTVar it depends on is it depends on is
reachable)reachable)

Implementation (2)Implementation (2)

TVarTVar’’ss contents contents

v123v123

TVarTVar’’ss
contentscontents

v75v75

Next wait-q entryNext wait-q entry

InvariantInvariant’’s closures closure

TxTx record from last execution record from last execution

Next wait-q entryNext wait-q entry

ConclusionsConclusions

•• First system to integrate invariants withFirst system to integrate invariants with
transactional memorytransactional memory

•• ““Putting the C back in ACIDPutting the C back in ACID””

•• Many of the ideas have a long history; bothMany of the ideas have a long history; both
semantically and in the implementationsemantically and in the implementation

•• Do we want some kind of Do we want some kind of ““triggertrigger””-like-like
construct too?construct too?

•• Workloads Workloads workloadsworkloads workloadsworkloads

PapersPapers

•• ““Transactional memory with data invariantsTransactional memory with data invariants”” TRANSACT TRANSACT
20062006

•• ““Lock-free data structures using STM in HaskellLock-free data structures using STM in Haskell”” FLOPS FLOPS
2006 2006 –– larger examples and SMP performance larger examples and SMP performance evaleval

•• ““Composable memory transactionsComposable memory transactions”” PPoPPPPoPP 2005 2005 –– software software
transactions in Haskelltransactions in Haskell

•• ““Haskell on a shared-memory multiprocessorHaskell on a shared-memory multiprocessor”” Haskell 2005 Haskell 2005
–– parallel parallel thunkthunk evaluation evaluation

•• ““Exceptions and side-effects in atomic blocksExceptions and side-effects in atomic blocks”” CSJP 2004 CSJP 2004 ––
integration of transactional memory and external resourceintegration of transactional memory and external resource
managersmanagers

•• ““Optimizing memory transactionsOptimizing memory transactions”” PLDI 2006 PLDI 2006 –– C# work C# work
with MSR Redmondwith MSR Redmond

•• ““Concurrent programming without locksConcurrent programming without locks”” under submission under submission
–– algorithmic gore for scalable STM algorithmic gore for scalable STM

Backup slides

STM HaskellSTM Haskell

retry :: STM aretry :: STM a

tryDecTtryDecT :: :: TVarTVar IntInt -> -> STMSTM () ()

tryDecTtryDecT r = do { r = do {
 v <- v <- readTVarreadTVar r; r;

if (v == 0)if (v == 0)
retryretry

elseelse
writeTVarwriteTVar r (v-1); } r (v-1); }

•• ““retryretry”” for condition synchronization for condition synchronization
•• Semantics: abort the Semantics: abort the txtx (all the way out), re- (all the way out), re-

execute itexecute it
•• Implementation: smarter, block the thread untilImplementation: smarter, block the thread until

itit’’s worth trying re-executions worth trying re-execution

(Some axes of) the design space(Some axes of) the design space

Checked automatically

Refer to
arbitrary data

Always
Maintained

SPEC# – invariants
can refer to state of

‘rep’ objects

Eiffel – invariants
checked on entry/exit

to public methods

Euclid – invariants
intended for checks by

formal methods

Our goal: all three
properties, “better

assertions”

•• YMMV: e.g. another axis would be YMMV: e.g. another axis would be ““could be checked staticallycould be checked statically””

