Transactional memory with data
invariants: or “putting the C back
in ACID”

Tim Harris, Simon Peyton Jones




Introduction

e "“List XYZ remains in sorted order”

threadl n m

thread?2

thread3




Transactions to the rescue

o Write executable invariants to check the
properties we're interested in

e Invariants fit in really nicely with transactions:
Of course, the DB folk knew this long ago :-)
Every transaction must preserve every invariant
Transactions define updates between consistent states
Invariants can (must!) be broken within transactions

It doesn’t matter if an update is to the spine of the list
or to a key that it contains (unlike much related work,
e.g. Eiffel and Spec#)

0SOft’

Mﬁesearch




A sorted list using invariants

Defining a function ‘newSortedList’
in Haskell-ish pseudo-code

newSortedList = do { Construct an ordinary

. mutable list as usual
r <- newList();

check (isSorted r); Assert that the list is sorted
return r: now, and every update to the
’ list must keep it sorted
}

Return the list
we created

e The runtime system keeps track of the invariant
and ensures transactions don’t violate it — the type
system treats it as any other list

0SOft’

Mﬁesearch




Semantics

e The invariant is an STM action... so [in
Haskell] it's guaranteed not to do I/0O

But what if it loops?
What if it updates or allocates transactional state?
What if it calls check to add yet another invariant?

What if it uses condition synchronization and blocks

the transaction?




First design choice: overview

e Run invariants in [closed] nested tx (so they see
the tentative updates), check they succeed (don't
throw an exception), then roll back each nested tx

e All this happens atomically with the user tx

Nested tx check invariants

User’s: and are then aborted (so no
transaction interference with user tx)

N

—

Whole lot occurs
atomicall




First design choice: semantics

e The invariant is an arbitrary STM action...

What if it loops?

What if it updates trans state?

Can use them

o 5 internally, but
What if it calls check: updates discarded

What if it blocks? Checked at that call,
but then discarded

The user’s tx blocks until
the invariant can complete

Mijcrosoft’
Research




STM Haskell

Transactional state is held in TVars

The type system distinguishes
transactional code (types like “STM a”)
from general imperative code (types like

“IO a”

Sequential composition of
STM actions

0soft’

Mﬁesearch



Second design choice: restrict to reads

e We can distinguish between STM actions that just
read from the heap from STM actions that perform

updates / create TVars / block / add invariants

An STM action where “e” may be forced to
be unified with phantom types “"Pure” or
“Effect”. Sequencing "STM e a” and
“STM f b"” defined to require a==b.

readTVar can be sequentially
composed with any kind of STM action

writeTVar forces “e” to
be unified with “Effect”

Combinators express
their constraints (if any)

0soft’

Mﬁesearch



Invariants over state pairs

e Exciting observation from the Spec# group

e Suppose we want invariants over state pairs
rather than single states

— "“Value of x never decreases”

— versus “Value of x is always positive”

Take an STM action and
run it in the pre-
transactional state

Mijcrosoft’
Research




Implementation

e Isn’t it slow checking every invariant upon every
transaction?

It would be if we actually checked them all

When invariant checking is enabled we dynamically track
dependencies from TVars to invariants that depend on them

“Pay for play” (same wake-up mechanism we use for condition
synchronization)

These are the only references to the data structures used to
represent invariants: the GC reclaims these structures when
they are unreachable

(But note that the extra links may extend the lifetime of
individual objects - the invariant and everything reachable
from it will be retained while at least one TVar it depends on is
reachable)

0SOft’

Mﬁesearch




Implementation (2)

» TVar’'s contents

Next wait-g entry

Invariant’s closure

Tx record from last execution
TVar’'s
contents

Next wait-g entry




Conclusions

e First system to integrate invariants with
transactional memory

e "Putting the C back in ACID"
e Many of the ideas have a long history; both

semantically and in the implementation

e Do we want some kind of “trigger”-like
construct too?

e Workloads workloads workloads




Papers

“Transactional memory with data invariants” TRANSACT
2006

“Lock-free data structures using STM in Haskell” FLOPS
2006 - larger examples and SMP performance eval

“Composable memory transactions” PPoPP 2005 - software
transactions in Haskell

“Haskell on a shared-memory multiprocessor” Haskell 2005
— parallel thunk evaluation

“Exceptions and side-effects in atomic blocks” CSJP 2004 -
integration of transactional memory and external resource
managers

“Optimizing memory transactions” PLDI 2006 — C# work
with MSR Redmond

“Concurrent programming without locks” under submission
— algorithmic gore for scalable STM

Mijcrosoft’
Research




Backup slides




STM Haskell

“retry” for condition synchronization

Semantics: abort the tx (all the way out), re-
execute it

Implementation: smarter, block the thread until
it’s worth trying re-execution




(Some axes of) the design space

Refer to

arbitrary data
Always

Maintained ’

bace— —

5‘\
ﬁ-}:ﬂﬁiﬁﬁa i*!-*ﬁ-:-

o
S
:

?-‘«* ii 5‘\ :
,ﬁ-}:ﬂgﬁﬁs %ﬁzﬁﬁg s

%E%EﬁggE%ﬁ%%EﬁggE%ﬁ%%E%%gﬁ,




