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Road map of the talk

* Brief discussion of generalized linear models

* Examples of genome-scale inference
— eQTL enumeration [modest volume]
— dsQTL enumeration [high volume]
e Sensitivities and greedy tuning
* Holistic workflows: the burden of the past
 The MAMS principles (Multiply-Agnostic,
Multiply-Scalable) for statistical algorithm
deployments



1975] 587

Obituary

ROBERT WILLIAM MACLAGAN WEDDERBURN, 1947-1975

RoBERT WEDDERBURN, a Fellow of the Society since 1969, died suddenly and unexpectedly
in June 1975 while on holiday. He was born in Edinburgh. He attended Fettes College
from 1960 to 1965 and took his degree and the Diploma in Statistics at Cambridge. He
joined the Statistics Department at Rothamsted Experimental Station immediately
afterwards and worked there until his death. During this short period he established
himself within the Department as someone with a quite unusual width of knowledge. Not
only was he familiar with a great range of statistical theory, much of it far outside his
immediate interests, but he had also a substantial command of modern mathematics.
Further, this theoretical ability was combined with a sharp eye for the patterns in experi-
mental data, giving him the ideal equipment for a statistician. A voracious reader, he was
becoming much in demand as a referee because he could spot a false step in a proof
unerringly and, just as usefully, see how two pages of algebra could be condensed to a few
lines.



J. R. Statist. Soc. A, 370
(1972), 135, Part 3, p. 370

Generalized Linear Models

By J. A. NELDER and R. W. M. WEDDERBURN

Rothamsted Experimental Station, Harpenden, Herts

SUMMARY

The technique of iterative weighted linear regression can be used to obtain
maximum likelihood estimates of the parameters with observations distri-
buted according to some exponential family and systematic effects that can
be made linear by a suitable transformation. A generalization of the analysis
of variance is given for these models using log-likelihoods. These generalized
linear models are illustrated by examples relating to four distributions; the
Normal, Binomial (probit analysis, etc.), Poisson (contingency tables) and
gamma (variance components).

The implications of the approach in designing statistics courses are
discussed.



GLM: A productive unification of
statistical models, 1972

Scalar outcome variable Y has mean value
The mean is linked to a linear predictor

g(H) = o+ X8, + ... + X8,
The variance is a function of the mean
— Var(Y) = ¢oV(u)
Choices of g() and V() correspond to Gaussian, Logistic,
Poisson, Gamma regression procedures

Iteratively reweighted least squares can be used for
estimation; asymptotically statistically efficient under mild
assumptions

Reprinted in “Breakthroughs in statistics”, along with works
of Fisher, Student, Pearson, Wald, ....



1992: deployment as glm ()

'STATISTICAL
MODELS IN

John M. Chambers
Trevor J. Hastie
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> dimnames(glm.variances)

Ef1]3:

[1] "name" "yariance" "deviance"

L2113

[1] "constant" "mu(l-mu)" "mu" "mu” 2" "mu” 3"

We see that each column of glm.links is a link subfamily with five elements,
and each column of glm.variances is a variance subfamily with three elements.
The family generator functions, such as binomial () and poisson(), protect the user
against bad choices; for example, only logit, probit, and cloglog are permissible
links when constructing a binomial family.

There are several ways to modify the families and construct private ones:

e The quasi() function can be used to build a family from the supplied links
and variances whose names appear in the two lists above.

e Users can build their own link or variance subfamilies (by mimicking any of
the supplied ones). These can then be used to construct a family, either using
quasi() or the function make.family().



GLM: 40 years of theory, extension,

deployment
GENSTAT, GLIM: Numerical Algorithms Group

S, Splus —glm infrastructure includes
robust () family

R- stats::glm andbiglm: :bigglm
address “standard” and high-volume fitting
requirements (the latter with incremental QR)

Additional tailored deployments in
Bioconductor snpStats, limma, DESeq, edgeR
confront genetic and genomic requirements



Why so much time on GLM?

* |llustrates an aspect of algorithmic “holism”: a
single interface, focused infrastructure solves all
of a class of problems formerly treated piecemeal

* |llustrates the idea of an algorithm template that
can receive user-coded functions to modify
operations

 Has been re-implemented too often, and
examining causes for this can help define
requirements for enduring deployments



Questions

 |f statisticians had discovered GLM only today, what
would be a reasonable approach to implementation?
How to sidestep common assumptions

— “all data in memory”

— scalar execution of algorithm steps
— inputs are (mostly) floating point numbers and integers

 What languages and environments will support
streamlined implementations, maximizing efficient use
of available hardware/software?

 How will interactive data analysis capabilities be
achieved with high data volume and environment
complexity?
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Figure 1. Plausible sites of action for genetic determinants of mRNA
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stars), or there may be variations in the molecular machinery that interact

with cis-regulatory sequences and so act genetically in trans (blue stars).

Williams R et al. Genome Research 2007 vol. 17 (12) pp. 1707-1716



GSTT1 eQTL: Average expression varies by genotype
at nearby SNPs — why? [N=90 CEU HM phase 2;
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position/search chr20:32,658,728-35,808,088 gene size 3,149,361 bp.
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Summary

Transcriptome and SNP-ome are jointly measured
on a humber of individuals

— ~20000 transcripts, ~10 million SNP, ...

Models for additive genetic effects on transcript
levels are fit for all gene:snp pairs in cis

Humps and peaks in the series of association
statistics are found along the genome

Reliability of the procedure, interpretation of
results?
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d0i:10.1038/nature10808

DNase I sensitivity QTLs are a major determinant of
human expression variation

Jacob F. Degner"?*, Athma A. Pai'*, Roger Pique-Regi'*, Jean-Baptiste Veyrieras'*, Daniel J. Gaffney"*, Joseph K. Pickrell’,
Sherryl De Leon®, Katelyn Michelini*, Noah Lewellen’, Gregory E. Crawford™®, Matthew Stephens™’, Yoav Gilad'

& Jonathan K. Pritchard™*

The mapping of expression quantitative trait loci (eQTLs) has
emerged as an important tool for linking genetic variation to
changes in gene regulation’ °. However, it remains difficult to
identify the causal variants underlying eQTLs, and little is known
about the regulatory mechanisms by which they act. Here we show
that genetic variants that modify chromatin accessibility and tran-
scription factor binding are a major mechanism through which
genetic variation leads to gene expression differences among
humans. We used DNasel sequencing to measure chromatin
accessibility in 70 Yoruba lymphoblastoid cell lines, for which

genome-wide genotypes and estimates of gene expression levels
are alen availahle®® Wo ahtained a tatal af 2 7 hillinn unianelv

and enhancer-associated histone marks. Furthermore, bound tran-
scription factors protect the DNA sequence within a binding site from
DNasel cleavage, often producing recognizable ‘footprints’ of
decreased DNase I sensitivity''* "7,

We collected DNase-seq data for 70 HapMap Yoruba lymphoblastoid
cell lines for which gene expression data and genome-wide genotypes
were already available® *. We obtained an average of 39 million uniquely
mapped DNase-seq reads per sample, providing individual maps of
chromatin accessibility for each cell line (see Supplementary Informa-
tion for all analysis details). Our data allowed us to characterize the
distribution of DNasel cuts within individual hypersensitive sites at
ovtromely hich reenliitinn Ac synected the NHSe enincided ta a oreat



a Joint dsQTL-eQTL example

DHS regulating SLFN5 RNA-seq gene expression for SLFNS
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Tuned with
100bp window
top 5% sensitivity
4 PC removal

204 lanes (DNase-seq)
70 individuals

1 Map reads to hg18 using \
20bp-specific mapper

2.8 billion mapped
reads

2 Divide genome into

100bp windows
Calculate DNasel

<_  sensitivity for each
. window per individual

4 Select top 5% of sensitive .
windows

v

Matrix of individuals by
sensitivity in 1.5 million
DHS windows

Remove GC content bias

(each window/individual)
' /(i) Mean center and
. scale across individuals

J/
/i) Quantile normalize

. withinindividuals
Remove 4PCs to correct '

for confounders

v

Matrix of individuals by
normalized sensitivities




Matrix of individuals by
normalized sensitivities

Linear regression
between sensitivities

and genotypes at all /
SNPs within 40kb /,/

9,595 windows
associated at 10% FDR

/" Combine adjacent
windows associated
. with same SNP

8,902 “DNasel
sensitivity QTLs”

In heterozygote inds, \\

10



Greedy tuning for higher yield

Each normalization step improves power to detect dsQTLs

—— Raw sensitivity (Step 3)
8 | —— GC corrected (Step 5)
§ 1 —— Z-statistic (Step 6) )
—— Quantile normalized (Step 7)
— 2-PC
8 | — 4-PC (Step 8)
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FDR

: Power to detect dsQTLs improves with each normalization step performed. Here, we



Summary

e Feature space now a continuously scored tiling of
the genome
— Filtered to 1.5 million features but could be many
more, could consider as many as 37 million 1KG SNP
* Scope of genetic regulation seems more limited:
dropping cis search region from 40kb to 2kb does
not drastically affect yield of dsQTL

A number of ad hoc filtering steps might have
more important impacts



Distributions of norm. DHS over 70 individuals at most sensitive windows in vicinity of ORMDL3
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Greedy tuning of eQTL searches

* Yield can be affected by

— Choice of cis-interval size
— Depth of search into rare variants (lower bound on minor
allele frequency)

— Approach to removing non-biologic variation from
expression assay results (Stegle, Durbin, RECOMB 2008)

 Management of a single search is difficult, but multiple
searches or extensive metadata need to be retained so
that various calling policies can be compared

 We’ll consider combined analysis of CEU and YRI
founders (N=120)



Minor allele frequency determines
reliability of association inference
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Permutation distribution of maximum
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radius of cis search
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Upshots for eQTL

* Very large number of tests

* Evident sensitivity of yield to a number of
tuning parameters

* Thorough investigations require exploration of
the parameter space

 With GGtools R 2.15 the full 500kb radius,

MAF > 0.05 search took 3h on 88 commodity
cores



A holistic workflow?

 Computing plug-in FDR for the gene-centric null
hypotheses “mean expression of Gene g is not
associated with B allele frequency for any SNP
within R kb” involves

— Testing all cis associations for all genes, retaining
gene-specific maximum

— Developing multiple realizations of the permutation
distribution of the maximized association

* Four innovations made this feasible 2-3 years
ago: serialization, multicore, ff, snpStats




ff to reduce memory consumption

How the creation of n values effects the run-time virtual memory address space:

££f object: native R vector:
> £fOb <- ff (”"foo” ,8000000) > rObj <- numeric (8000000)
> aVal <- ££fOb[1:2000000] > aVal <- rObj[1:2000000]

H aoedg ssa.ppy Alowspy [enuiA

The amout of memory required The amout of memory required
by an ££ object. by a native R vector object. [] 512 kilobytes




Representing (uncertain) SNP genotypes: David
Clayton’s byte-sized encoding
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Comments

e ca. 2004 expression and genotype data could all
reside in main memory — burden of the past

* “Programming around” R with big data?

— Disk used as buffer for voluminous testing process,
written to by processes on multiple cores

— GLM rewrite for the byte representation of uncertain
genotypes?

* We can achieve data compactness, speed, and
ready access to statistics, visualization, genomic
annotation, and “everything is an object” (with
optional validity conditions)



Inputs

e Expression data and MACH-imputed genotype archives are
managed in R packages

» Self-describing eSet variants combine expr/snp/sample data

SnpMatrix-based genotype set:

number of samples: 90

number of chromosomes present: 1

annotation: illuminaHumanvl.db

Expression data dims: 47293 x 90

Total number of SNP: 305929

Phenodata: An object of class 'AnnotatedDataFrame'

sampleNames: NA18500 NA18501 ... NA19240 (90
total)
varLabels: fam samp ... isFounder (8 total)

varMetadata: labelDescription



Output

GGtools mcwBestCis instance. The call was:
GGtools:::combine2 (mcwl = fullrun, mcw2 = get(allob[i]))
Best loci for 21534 probes are recorded.

Top 4 probe:SNP combinations:

GRanges with 4 ranges and 5 metadata columns:

segnames ranges strand | score snpid

<Rle> <IRanges> <Rle> | <numeric> <character>

GI 28872735-A 10 [102246027, 103247272] * 89.78 rs2863095

GI 28872737-1 10 [102246027, 103247272] * 85.37 rs2863095

GI 20070185-S 10 [ 15978942, 17055744] * 78.91 rs1055340

GI 28872733-1 10 [102246027, 103247272] * 76.51 rs2863095
N snploc radiusUsed fdr
<integer> <numeric> <numeric>
GI 28872735-A 102746503 5e+05 0
GI 28872737-I 102746503 5e+05 0
GI 20070185-S 16555528 5e+05 0
GI_28872733-T 102746503 5e+05 0

The search intervals are bound to the gene-centric results with the IRanges
infrastructure supporting convenient comparison with other data linked to
genomic coordinates



Comments

The task may be broken up arbitrarily
— RAM consumption is controllable
— Dispatch of tasks to slaves

The outputs may be combined ad libitum,
when available

Managerial tasks may be programmed
(BatchJobs package and extensions...)

Repurposing to other genomic assays is
straightforward (dsQTL, meQTL, ...)



Multiply agnostic, multiply scalable

* Agnosticism in a statistical algorithm’s
implementation: Don’t know or care about

— data source, except that a data chunk can be acquired
on request

— data format, except that certain arithmetic operations
on the data tokens are well-defined

— execution environment

e Never command more RAM than is needed to
handle a chunk

* Permit as much asynchronous/independent
computation as possible



Small proof of concept (5 runs per point)
DS = ‘doubly scalable Fisher scoring’,
QRU is updated QR in biglm
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Choice of numerical constituents
makes a difference: RcppEigen

Douglas Bates, Dirk Eddelbuettel

Method Relative Elapsed User Sys

LDLt 1.00 1.18 1.17 0.00
LLt 1.01 1.19 1.17 0.00
SymmEig 2.76 3.25 2.70 0.52
QR 6.35 747 6.93 0.53

arma 6.60 7.76  25.69 4.47
PivQR 7.15 8.41 7.78 0.62

Im fit 11.68 13.74 2156 16.79
GESDD 12.58 14.79 4401 10.96
SVD 44 .48 52.30 51.38 0.80
GSL 150.46 176.95 210.52 149.86

Table 2: 1mBenchmark results on a desktop computer for the default size, 100, 000 x 40, full-
rank model matrix running 20 repetitions for each method. Times (Elapsed, User and Sys)
are in seconds. The BLAS in use is a locally-rebuilt version of the OpenBLAS library included
with Ubuntu 11.10.



What might a MAMS implementation
of Im () look like?

# step 1: sufficient quantities from data frame
chunk

Im.suffclo = function(fmla) function (df) {

i

# closure that obtains X'X and X'y implied by
#the bound fmla

# on all the relevant data in df; FIXME:
#dealing with NA

#
mm = model.matrix (fmla, df)
mr = model.response (model.frame (fmla, df))

list (xtx=crossprod (mm,mm), xty=crossprod
(mm,mr) )

}



Step 2

We'll use new facilities in Martin Morgan’s
Streamer package in Bioconductor

The Stream class defines an ordered collection
of Producer and Consumer components

A Team class defines a scheme for executing
(potentially concurrently) tasks on outputs of
the Producer immediately upstream

A yield() method on a Stream propagates yield
requests to the constituents



A mortal sin, but chunk-parallelized QR
not ready to hand

Im.suff = 1Im.suffclo( formula )
ssteam = Team( 1lm.suff, param=param ) #
#sufficient quantities

accum = Reducer ( function(x,y) 1list
(sxtx=xSsxtx+ySxtx, sxty=x$sxty+y
Sxty),
init = list (sxtx=0, sxty=0) )
ss = yield( Stream( data, ssteam,
accum ) )

beta = solve( ss[[1l]] ) %*% ss[[2]]



Upshots

* This addresses two aspects of MAMS: scalable
data acquisition (RAM usage control) and

parameterized (possibly concurrent) execution

e Agnosticism about data format could be
addressed via templating (see Runnalls CXXR
project for examples)

* To do: improve numerical method, exception
handling



Conclusions

e Users appreciate holistic workflows, and
performant versions of these are achievable for
eQTL; dsQTL addressable without conceptual
changes, but higher volume will compel more
work on performance to allow sensitivity analysis

* Innovative data representations/volume
demands should not compel duplicative
algorithm rewrites, but glm has been duplicated a
number of times; language design should reduce

the need to do this



Conclusions

e Reflection in R has been extremely useful in the
developments noted here

— Data/outputs can be self-descriptive at high level of detail,
including metadata on provenance

— Packages are not objects but can be interrogated in detail,
and can manage data decomposition

* Facilities for interrogating computing environments so
that execution strategies are well-chosen (and can be
programatically chosen) seem less well-developed

* These two concepts have been key to fostering
sensitivity analysis in genome-scale inference



