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Revealing the Secrets of Our Microbial Planet

Courtesy of the Tree of Life project



Phylogeny (evolutionary tree)
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How did life evolve on earth?
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Metagenomics:
Venter et al., Exploring the Sargasso Sea:

Scientists Discover One Million New Genes in
Ocean Microbes




Major Challenges

* Phylogenetic analyses: standard methods have poor
accuracy on even moderately large datasets, and the most
accurate methods are enormously computationally
intensive (weeks or months, high memory requirements)

« Metagenomic analyses: methods for species
classification of short reads have poor sensitivity. Efficient
high throughput is necessary (millions of reads).



Phylogenetic “boosters”
(meta-methods)

Goal: improve accuracy, speed, robustness, or theoretical guarantees of
base methods

Examples:

« DCM-boosting for distance-based methods (1999)
 DCM-boosting for heuristics for NP-hard problems (1999)
« SATeé-boosting for alignment methods (2009)

« SuperFine-boosting for supertree methods (2011)

 DACTAL-boosting: almost alignment-free phylogeny estimation
methods (2011)

« SEPP-boosting for phylogenetic placement of short sequences (2012)
« TIPP-boosting for metagenomic taxon identification (2013)



DNA Sequence Evolution
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Deletion

Substitution
..ACGGTGCAGTTACCA...
N f '”zer“on ..ACGGTGCAGTTACC-A...
..ACCAGTCACCTA.. ..AC----CAGTCACCTA..

The true multiple alignment

— Reflects historical substitution, insertion, and deletion
events

— Defined using transitive closure of pairwise alignments
computed on edges of the true tree
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Input: unalighed sequences

AGGCTATCACCTGACCTCCA

= TAGCTATCACGACCGC

TAGCTGACCGC

= TCACGACCGACA



Phase 1: Multiple Sequence

Alignment
S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--

S3 TAGCTGACCGC S3 = TAG-CT---—---- GACCGC--
S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA



Phase 2: Construct tree

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--

S3 = TAGCTGACCGC S3 = TAG-CT--—-———-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA
S1 S2

S4 S3



Simulation Studies

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA
Unaligned
Sequences
S1 = —AGGCTATCACCTGACCTCCA S1 = —AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC-- S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT------- GACCGC-- S3 = TAG-C--T-----GACCGC--
S4 = —————-- TCAC--GACCGACH| S4 = T---C-A-CGACCGA----CA|
s1 s2 <€ s1 s4
>_< Compare
S4 S3 S2 S3

True tree and
alignment

Estimated tree and
alignment
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TRUE TREE

FN: false negative
(missing edge)

FP: false positive
(incorrect edge)

50% error rate
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ERROR RATE

Statistical consistency and
convergence rates
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Part I. “Fast-Converging Methods”

« Basic question: how much data does a
phylogeny estimation method need to
produce the true tree with high
probability?



Neighbor joining has poor performance on large
diameter trees [Nakhleh et al. ISMB 2001]
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Disk-Covering Methods (DCMs)
(starting in 1998)
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DCM1-boosting distance-based methods
[Nakhleh et al. ISMB 2001]
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Part Il: SATe

Simultaneous Alignment and Tree Estimation

Liu, Nelesen, Raghavan, Linder, and Warnow,
Science, 19 June 2009, pp. 1561-1564.

Liu et al., Systematic Biology 2012

Public software distribution (open source)
through the Mark Holder’s group at the
University of Kansas



Two-phase estimation

Alignment methods Phyloqeny methods

« Clustal T
POY (and POY*) « Bayesian MCMC
Probcons (and Probtree) e Maximum parsimony
Probalign : : :
MAFFTg ¢ MaX|mum I|kel|h00d
E/l_uslc_;le  Neighbor joining

 Di-align

. T-Coffee - FastME
Prank (PNAS 2005, Science 2008) « UPGMA

Opal (ISMB and Bioinf. 2007)

FSA (PLoS Comp. Bio. 2009) *
Infernal (Bioinf. 2009) .
Etc.

Quartet puzzling
Etc.

RAXML.: heuristic for large-scale ML optimization
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Problems

« Large datasets with high rates of evolution are hard to
align accurately, and phylogeny estimation methods
produce poor trees when alignments are poor.

* Many phylogeny estimation methods have poor accuracy
on large datasets (even if given correct alignments)

« Potentially useful genes are often discarded if they are
difficult to align.

These issues seriously impact large-scale phylogeny
estimation (and Tree of Life projects)



SATé Algorithm

Obtain initial alignment
and estimated ML tree

>  Tree




SATé Algorithm

Obtain initial alignment
and estimated ML tree

>  Tree

Alignment

Use tree to
compute new
alignment



SATé Algorithm

Obtain initial alignment
and estimated ML tree

> Tree
| Use tree to
Estimate ML tree on compute new
new alignment alignment

Alignment




Re-aligning on a tree
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Missing Branch Rate (%)
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1000 taxon models, ordered by difficulty

24 hour SATé analysis, on desktop machines

(Similar improvements for biological datasets)




Missing Branch Rate (%)

Alignment SP-FN Error
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Limitations

Decompose >
dataset
<( W [c][e]

Align
Na‘problems

U B

N
stimate ML /

ABCD M.erge sub-

alignments

tree on merged
alignment




Part lll: DACTAL

(Divide-And-Conquer Trees (Almost) without
alignments)

* Input: set S of unaligned sequences
» Qutput: tree on S (but no alignment)

Nelesen, Liu, Wang, Linder, and Warnow,
ISMB 2012 and Bioinformatics 2012
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Average of 3 Largest
CRW Datasets

CRW: Comparative RNA database,

Three 16S datasets with 6,323 to 27,643
sequences

Reference alignments based on
secondary structure

Reference trees are 75% RAxXML
bootstrap trees

DACTAL (shown in red) run for 5
iterations starting from FT(Part)

FastTree (FT) and RAXML are ML
methods

Missing branch rate

Runtime (h)
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Part lll: SEPP

« SEPP: SATe-enabled Phylogenetic
Placement, by Mirarab, Nguyen, and Warnow

« Pacific Symposium on Biocomputing, 2012
(special session on the Human Microbiome)



Phylogenetic Placement

Input: Backbone alignment and tree on full-
length sequences, and a set of query
sequences (short fragments)

Output: Placement of query sequences on
backbone tree

Phylogenetic placement can be used for taxon
identification, but it has general applications
for phylogenetic analyses of NGS data.



Phylogenetic Placement

. Align each query sequence to
backbone alignment

. Place each query sequence into
backbone tree, using extended
alignment



S1
S2
S3
sS4

Q1

Align Sequence

= —AGGCTATCACCTGACCTCCA-AA
= TAG-CTATCAC--GACCGC--GCA

= TAG-CT-—-————- GACCGC—--GCT
= TAC-——-TCAC--GACCGACAGCT
= TAAAAC
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S1
S2
S3
sS4

Q1

Align Sequence

= —AGGCTATCACCTGACCTCCA-AA
= TAG-CTATCAC--GACCGC--GCA

TAG-CT-—————- GACCGC--GCT
TAC----TCAC--GACCGACAGCT
——————— T-A--AAAC-——————-
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7
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S1
S2
S3
sS4

Q1

Place Sequence

= —AGGCTATCACCTGACCTCCA-AA
= TAG-CTATCAC--GACCGC--GCA

TAG-CT-—————- GACCGC--GCT
TAC----TCAC--GACCGACAGCT
——————— T-A--AAAC-——————-

S1

S4

S2

N
A

Q1

7
AN

S3



Phylogenetic Placement

« Align each query sequence to backbone alignment
— HMMALIGN (Eddy, Bioinformatics 1998)
— PaPaRa (Berger and Stamatakis, Bioinformatics 2011)

« Place each query sequence into backbone tree
— Pplacer (Matsen et al., BMC Bioinformatics, 2011)
— EPA (Berger and Stamatakis, Systematic Biology 2011)

Note: pplacer and EPA use maximum likelihood



HMMER vs. PaPaRa

7

B HMMER-+pplacer
|_|PaPaRa+pplacer
6
5_
w
>
8/4_
S
@
D
(|
2_
1_
0.0
0
M4 M3 M2

Model Condition
Increasing rate of evolution



Insights from SATé
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Insights from SATé
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Insights from SATé



Insights from SATé



SEPP Parameter Exploration

. Alignment subset size and placement
subset size impact the accuracy, running
time, and memory of SEPP

. 10% rule (subset sizes 10% of
backbone) had best overall performance



SEPP (10%-rule) on simulated data
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SEPP (10%) on Biological Data
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SEPP (10%) on Biological Data
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Part |V:
Taxon ldentification

Obijective: classify short reads in a metagenomic
sample

Kingdom.......Animalial
Phylum........ Chordata[
Class........ Mammalial
Order............ Cetaceal
Family....Delphinidae|

Genus..........0rcinus

Species...........orca




Metagenomic data analysis

NGS data produce fragmentary sequence data

Metagenomic analyses include unknown
species

Taxon identification: given short sequences,
identify the species for each fragment

Applications: Human Microbiome
Issues: accuracy and speed



TIPP: Taxon Identification by
Phylogenetic Placement

‘Fragmentary Unknown Reads: "Known FL_J” length Sequences,
«and an alignment and a tree

*(60-200 bp long) +(500-10,000 bp long)

ACC

CGA
-CGGG\
-GGCT

*TAG
GGGGG
*TCGAG
-GGC
GGG

-ACCT eAGG...GCATeTAGC...CCA ¢TAGA...CTT eAGC...ACAsACT..TAGA..A
o (speciesl) e(species2) e (species3) e (species4» (species5)



TIPP: Taxon ldentification using
Phylogenetic Placement - Version 1

Given a set Q of query sequences for some gene, a
taxonomy T, and a set of full-length sequences for the
gene,
e Compute reference alignment and tree on the full-
length sequences, using SATe
 Use SEPP to place each query sequence into the
taxonomy (alignment subsets computed on the
reference alignment/tree, then inserted into

taxonomy T)



TIPP version 2- considering
uncertainty

TIPP version 1 too aggressive (over-
classification)

TIPP version 2 dramatically reduces false
positive rate with small reduction in true
positive rate, by considering
uncertainty, using statistical techniques.



60bp error-free reads on rpsB marker gene
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Results on 30 marker genes,
leave-one-out experiment with lllumina errors

Classification
Correct
Incorrect
Unclassified
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Results on 30 marker genes,
leave-one-out experiment with 454 errors

Classification
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Five “Boosters”

*DCM: distance-based tree estimation

*SATé: co-estimation of alignments and trees
*DACTAL.: large trees without full alignments
*SEPP: phylogenetic placement of short reads
*TIPP: taxon identification of fragmentary data

Algorithmic strategies: divide-and-conquer and iteration to
improve the accuracy and scalability of a base method



General Observations - Part |

» Relative performance of methods can
change dramatically with dataset size

o Statistical inference methods often do
not scale well



Observations - Part Il

Meta-methods can improve accuracy
and even speed

Hidden Markov Models (HMMs) can be
improved by making a set of HMMs
instead of a single HMM

Algorithmic parameters let you explore
sensitivity/specificity
Parallelism is easily exploited



Overall message

 When data are difficult to analyze, develop
better methods - don’t throw out the data.

 BIGDATA problems in biology are an

opportunity for computer scientists to have a
big impact!



Discussion points

Applicability to other machine learning
problems? Classification and clustering
problems, in particular?

Space issues can arise if multiple solutions
are maintained.

Enabling plug-ins?

How to enable parameter exploration?
Statistically sound parameter selection?
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