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Challenges

•How do we program big data?

•What are the tools?

•What are the abstractions?

•How do we debug, visualize, tune big data?



Some big data infrastructures
Hadoop

Hive

RHIPE

Pig

Flume/Java

MapReduce X10



4 Myths

•Big data is big.

•Big data is speed.

•Big data is storage.

•Big data is hard.



Requirements

•Scale up vs. Scale down

•Rapid feedback, interaction with data, partial results

•Familiarity, ease of development

•Ease of deployment

•Portability and heterogeneity

•Robustness

•Efficiency



A tale of two communities

•Computer Scientists:  Fixed programs, transient data.
i.e. there will always be another input

•Data Scientists:  Fixed data, transient programs.
i.e. there will always be another query.

•This dichotomy leads to a different world view in terms of design. 
In CS, languages/tools are built around static code abstractions. In 
DS, everything is dynamic and lightweight.



High-level dynamic languages

•Programming is simplified by the language virtual machine

• memory management

• threading

• platform heterogeneity

•At a cost

• Performance

• Footprint



ReactoR… 

•… create an open source platform for data analytics at scale

•… built in collaboration by Purdue, INRIA, Stanford & Oracle



ReactoR Overview

R+BigVector

FastRO2

LLVM

Java

HotspotSubstrate

OracleDB HadoopNFS Web

}
}

DS in R

CS in R

} } }

Oracle Purdue INRIA

Native
Libraries



… language for data analysis and graphics

… open source

… books, conferences, user groups

… 4K+ packages

… 3mio users

 

Why R?



Scripting data
read data into variables
make plots
compute summaries
more intricate modeling
develop simple functions 
to automate analysis
… 



… portable 

… supports heterogenous platforms

… concurrent

… robust and stable

… fast enough

… books, conferences, user groups

… thousands of packages

… millions of developers

 

Why Java?



Scaling up… 

Current limitations of R on a single node:
• Speed
• Memory footprint
• Limited support for concurrency
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Python R

Name Input
S-1 Binary trees 16
S-2 Fankuch redux 10
S-3 Fasta 2.5M
S-4 Fasta redux 2.5M
S-5 K-nucleotide 50K
S-6 Mandelbrot 4K
S-7 N-body 500K
S-8 Pidigits 500
S-9 Regex-dna 2.5K
S-10 Rev. complement 5M
S-11 Spectral norm 640
S-12 Spectral norm alt 11K

Fig. 6. Slowdown of Python and R, normalized to C for the Shootout benchmarks.
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Fig. 7. Time breakdown of Bioconductor vignettes.

To understand where the
time is spent, we turn to more
representative R programs. Fig. 7
shows the breakdown of execu-
tion times in the Bioconductor
dataset obtained with ProfileR.
Each bar represents a Biocon-
ductor vignette. The key obser-
vation is that memory manage-
ment accounts for an average of
29% of execution time. Memory
management time was further
broken down into time spent in
garbage collection (18.7%), al-
locating cons-pairs (3.6%), vec-
tors (2.6%), and duplications
(4%) for call-by-value seman-
tics. The time spent in built-
in functions represents the true
computational work performed
by R, this is on average 38% of execution time. There are some interesting outliers.
The maximum spent in garbage collection is 70% and there is a program that spends
63% copying arguments. The lookup and match categories (4.3% and 1.8%) repre-
sent time spent looking up variables and matching parameters with arguments. Both of
these would be absent in a more static language like C as they are resolved at compile
time. Variable lookup will also be absent in Lisp or Scheme as, once bound, position
of variables in a frame are known. Given the nature of R, many of the core numerical
functions are written in C or Fortran. This can lead to the perception that execution time
is dominated by native libraries. Looking at the amount of time spent in calls to foreign

Performance relative to C

Shootout
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functions shows that this is clearly not the case. On average, the time spent in foreign
calls amounts to only 22% of the run-time.

6.2 Memory

Not only is R slow, but it also consumes significant amounts of memory. Unlike C
where data can be stack allocated, all user data in R must be heap allocated and garbage
collected. Fig. 8 compares heap memory usage in C (calls to malloc) and data allocated
by the R virtual machine. The R allocation is split between vectors (which are typically
user data) and lists (which are mostly used by the interpreter for, e.g., arguments to
functions). The graph clearly shows that R allocates orders of magnitude more data than
C. It also shows that, in many cases, the internal data required is more than the user data.
Call-by-value semantics are implemented by a copy-on-write (COW) mechanism. Thus,
under the covers, arguments are shared and only duplicated if there is actually a need
to. Avoiding duplication reduces memory footprint. Even though the COW algorithm is
really simple, on average only 37% of arguments are copied.
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Fig. 8. Heap allocated memory (MB log scale). C vs. R.

Lists are created by pairlist().
As mentioned above, they are
mostly used by the R VM. In
fact, the standard library only
has three calls to pairlist, the
whole CRAN code only eight,
and Bioconductor none. The R
VM uses them to represent code
and to pass and process func-
tion call arguments. It is inter-
esting to note that the time spent
on allocating lists is greater than
the time spent on vectors. Cons
cells are 56 byte long, and take
up 23 GB on average in the
Shootout benchmarks.

Another reason for the large
footprint is that all numeric data
has to be boxed into a vector.
Yet, 36% of vectors allocated in
the Bioconductor vignettes con-
tain only a single numeric value.
An empty vector is 40 bytes long; 10⇥ larger than a native integer. The costs involved
in allocating and freeing these vectors, and the fact that even simple arithmetic requires
following references in the heap, further impacts run-time.

Observations. R is clearly slow and memory inefficient. Much more so than other
dynamic languages. This is largely due to the combination of language features (call-
by-value, extreme dynamism, lazy evaluation) and the lack of efficient built-in types.
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FastR status

FastR is a new R virtual machine written in Java
• Aims for compatibility & completeness
• Abstract syntax tree interpreter (80% complete for core language)
• LLVM JIT compiler (30% complete)
• Substrate VM (10% complete)
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O2

O2 is self-organizing computational cloud for analytics.
• Written in Java for portability and ease of deployment
• Provides BigVectors as arraylets that can be distributed, moved, and 

swapped to disk
• Provides a Distributed Fork/Join framework for both local and 

remote concurrent computation



Distributed F/J

    for (int i : ntrees) 

       trees[i] = new Tree(_data,maxDepth,...);

      DRemoteTask.invokeAll(trees);

      print("Trees done in "+ timer);



Single node Random Forest (O2 v Fortran/R)

Distributed random forest in 3K lines of Java on O2

data rows size avg tree sz F J

iris .15K 8KB 8 2ms 8ms

chess 196K 3.7MB 8 140ms 200ms

stego 7.5K 11MB 557 440ms 2.4s

kaggle/cs 100K 4.3MB 5321 420ms 1s

kaggle/as 580K 1.7GB 45894 -- 25s

covtype 8.7M 72MB 95393 -- 3s

Tree build time



Conclusions

•Scaling data analytics is about making it easier to turn idea 
into software

• It  requires an integrated infrastructure that leverage 
advances in programming languages and compilers 
technology with a deep understanding of the  domain.

• Interactive exploration and time to solution are the most 
important factors


