

Challenges

® How do we program big data’

¢ \What are the tools!

¢ \\/hat are the abstractions?

* How do we debug, visualize, tune big data’

Some big data Infrastructures

Hadoop

MapReduce X10
RHIPE

Pig Hive

Flume/Java

Big a
Big a
Big d

Big a

ata Is big.
ata Is speed.
ata Is storage.

ata Is hard.

4 Myths

Requirements

® Scale up vs. Scale down

Rapid feedback, interaction with data, partial results
-amiliarity, ease of development

—ase of deployment

Portability and heterogeneity

Robustness

—fficiency

A tale of two communities

e Computer Scientists: Fixed programs, transient data.
.e. there will always be another input

* Data Scientists: Fixed data, transient programs.
.e. there will always be another query.

® This dichotomy leads to a different world view in terms of design.
In CS, languages/tools are built around static code abstractions. In

DS, everything is dynamic and lightweight.

High-level dynamic languages

® Programming is simplified by the language virtual machine

® memory management
® threading

® platform heterogeneity
® At a cost

® Performance

® Footprint

ReactoR...

e ... create an open source platform for data analytics at scale

® ... bullt in collaboration by Purdue, INRIA, Stanford & Oracle

ReactoR Overview

} osin
FastR } CSinR
Substrate LLVM

Libraries

N —
Oracle Purdue INRIA

Native

{
{

Why R¢

. language for data analysis and graphics

. Open source
. books, conferences, user groups
. 4K+ packages

. 3MIO users

Scripting data 1

read data into variables
make plots

compute summaries

120

more Intricate modeling

develop simple functions
to automate analysis

20 40 60 80 100

0

VWhy java/l

. portable

. supports heterogenous platforms

. concurrent

. robust and stable

.. fast enough
. books, conferences, user groups
.. thousands of packages

. millions of developers

Scaling up...

Current limitations of R on a single node:
* Speed
* Memory footprint

* Limited support for concurrency

500

50

10

IIIII|II II

I
(0p]

I
w

I
0p]

B Python B R

I I I I I I
0p) 0p) 0p) 0p) 0p) 0p)

S-10
S-11
S-12

Performance relative to C

Shootout

02 03 04 05 06 07 08 09

0.1

OO0RO00O0OEOOEO

mm
alloc.cons
alloc.list
alloc.vector
duplicate
lookup
match
external
builtin

arith
special

100 1000 10000
| | |

10
|

m C

B R User data

E R internal

w

w

w

TS 2 Y ®2 9 73 09

w

o ~— Al

w w 1)) w w

S-1
S-1
S-1

Heap Memory
Shootout

FastR status

FastR I1s a new R virtual machine written in Java
* Aims for compatibility & completeness
* Abstract syntax tree interpreter (80% complete for core language)
° LLVM JIT compiler (30% complete)
* Substrate VM (10% complete)

Speedup of FASTR over GNU-R

(Janeq si Jabie|) dnpsaads anne|ay

rupxsbo.
subipid
Xnpa.Jeise}
l0iq|epueW
soealllieulq
yonyuue}
Apoqu
else)

wiioujeioads

O2

O2 Is self-organizing computational cloud for analytics.
* Written in Java for portability and ease of deployment

* Provides BigVectors as arraylets that can be distributed, moved, and
swapped to disk

* Provides a Distributed Fork/Join framework for both local and
remote concurrent computation

Distributed F/

for (int 1 : ntrees)
trees[1] = new Tree(_data,maxDepth,...);
DRemoteTask.1invokeAll(trees);

print("Trees done in "+ timer);

Single node Random Forest (O2 v Fortran/R)

Tree build time

data rows| size |avgtreesz F ||
iris .15K| 8KB 8 2ms 8ms
chess 196K| 3.7MB 8 140ms | 200ms
stego 7.5K| 11MB 557 440ms 2.4s
kaggle/cs |100K| 4.3MB | 5321 420ms ls
kaggle/as |580K| 1.7GB | 45894 —— 25s
covtype |[8.7M| 72MB 95393 —— 3s

Distributed random forest in 3K lines of Java on O2

Conclusions

® Scaling data analytics 1s about making it easier to turn idea
into software

* [t requires an integrated infrastructure that leverage
advances In programming languages and compilers
technology with a deep understanding of the domain.

* Interactive exploration and time to solution are the most
important factors

