Data Parallel Programming in R

David Padua

Department of Computer Science
University of Illinois at Urbana-Champaign
Outline

• Parallelism
• Data Parallel Programming and abstractions
• Hierarchically Tiled Arrays
• Future plans
I. Parallelism

• Parallelism is crucial for
 – Continued gains in performance
 – Maximum performance at any given time
 – Also the most natural way to program for reactive computing (but not the topic of this presentation)

• Main problem with parallelism is productivity.
• Need the right languages, libraries and tools
II. Data parallel programming

• In its simplest form is just the execution of the same operation on each element of an aggregate (array, set, database relation).
• Sequential execution across these operations
• Crucial issue is what should these operations should look like (research problem)
• There are numerous proposals
 – Array operations (Iversion ca. 1960)
 – MapReduce (Google, ca. 2000)
 – Galois (Pingali, ca. 2000)
II. Data parallel programming
Array Constructs

• Popular among scientists and engineers.
 – Fortran 90 and successors
 – MATLAB
 – R

• Parallelism not the reason for this notation.
II. Data parallel programming

Array Constructs

• Convenient notation
 – Compact
 – Higher level of abstraction

\[
\begin{align*}
do & \ i=1,n \\
do & \ j=1,n \\
C(i,j) &= A(i,j) + B(i,j) \\
end\ do & \\
end\ do &
\end{align*}
\]

\[
\begin{align*}
do & \ i=1,n \\
do & \ j=1,n \\
S &= S + A(i,j) \\
end\ do & \\
end\ do &
\end{align*}
\]

\[
C = A + B
\]

\[
S += \text{sum}(A)
\]
II. Data parallel programming
Array constructs

• Used in the past for parallelism: Illiac IV, Connection machine

• Today: Intel’s Cilk (mainly for microprocessor vector extensions)
II. Data parallel programming

Benefits - Programmability

• Data parallel programming is scalable
 – Scales with increasing number of processors by increasing the size of

• Data parallel programs using powerful operator resemble conventional, serial programs
 – Parallelism is encapsulated.
 – Parallelism is structured.

• Portable
 – Can run on any class of machine for which the appropriate operators are implemented
 • Shared/Distributed Memory
 • Vector Intrinsics, GPUs

• Interoperates with R

 Operations implemented as parallel loops in shared memory

 Operations implemented as messages if distributed memory

 Operations implemented with vector intrinsics for SIMD
II. Data parallel programming Completeness

• Can all problems be solved in the most efficient manner with data parallel programming?

• Most ? All ??
 – Other (lower level)forms must be there in the same way that we still use assembly language sometimes.
II. Data parallel programming Completeness

• Numerical computing

• Graph algorithms

• Database algorithms

• …
II. Data parallel programming
Translating to SPMD

• SPMD is the notation of choice for distribute memory machines (and GPUs).
• Easy to convert from array notation to SPMD form.
• This is an optimization.

```
real a, b, x(1000)
a = sin(b)
x(:) = x(:,)+a
```

```
real a, b, x(1000/p)
/* a and b are replicated */
a = sin(b)
x( :) = x( :) + a
```
III. Hierarchically Tiled Arrays: Our data parallel notation for array computations
Hierarchically Tiled Arrays

• Recognizes the importance of blocking/tiling for locality and parallel programming.
• Makes tiles first class objects.
 – Referenced explicitly.
 – Manipulated using array operations such as reductions, gather, etc..

Hierarchically Tiled Arrays
Vector Addressing

In general, $a(v_n)$

- $a(1:2,1:2)$
- $a(1,1:4)$
HTA Addressing
HTA Addressing

$h\{1,1:2\}$ (hta)

$h\{2,1\}$ (array)

hierarchical
HTA Addressing

\[h\{1,1:2\} \ (hta) \]

\[h\{2,1\} \ (array) \]

\[h(3,4) \leftrightarrow \text{scalar} \]

flattened
HTA Addressing

$h\{1,1:2\}$ (hta)

$h\{2,1\}$ (array)

hierarchical

$h(3,4) \leftrightarrow$ scalar

flattened

$h\{1:2,2\}(1:2,2) \leftrightarrow$ hta

hybrid
HTA Addressing

$h\{1,1:2\}$ (hta)

$h\{2,1\}$ (array)

$h\{i + j == 3\} \leftrightarrow \text{hta}$

$h(3,4) \leftrightarrow \text{scalar}$

$h\{1:2,2\}(1:2,2) \leftrightarrow \text{hta}$

hierarchical

logical indexing

flattened

hybrid
Higher level operations

\[\text{repmat}(h, [1, 3]) \]

\[\text{circshift}(h, [0, -1]) \]

\[\text{transpose}(h) \]
Higher Level Operations

• Many operators part of the library
 – reduce, circular shift, replicate, transpose, etc

• A map operation (hmap)
 – Applies user defined operators to each tile of the HTA
 • And corresponding tiles if multiple HTAs are passed as input
 – Application of operator occurs in parallel across tiles
User Defined Operations

HTA X(3,3)[10]
HTA Y(3,3)[10]
...
hmap(F(), X, Y)

F(HTA x, HTA y) {
 y[i] = x[i] * x[i] - 3
}

// 3x3 tiles of 10 elements

\[
\begin{array}{ccc}
F(...) & F(...) & F(\ldots) \\
F(...) & F(...) & F(\ldots) \\
F(...) & F(...) & F(\ldots) \\
\end{array}
\]
Cannon's Matrix Multiplication

Initial skew

Shift-multiply-add
Cannon's Matrix Multiplication

```matlab
%Main loop
for i = 1:n
    c = c + a * b;
    a = circshift( a, [0, -1] );
    b = circshift( b, [-1, 0] );
end
```
FT

\[u = \text{fft} \ (u, \ [], 1); \]
\[u = \text{fft} \ (u, \ [], 2); \]
\[u = \text{dpermute} (u, [3 \ 1 \ 2]); \]
\[u = \text{fft} (u, \ [], 1); \]
Advantages of tiling as a first class object for optimization

- HTAs have been implemented as C++ and MATLAB libraries.
 - For shared and distributed memory machines.
- Dense and sparse versions
- Implemented several benchmark suites.
- Performance is competitive with OpenMP, MPI, and TBB counterparts
- Furthermore, the HTA notation produces code more readable than other notations. It significantly reduces number of lines of code.
Advantages of tiling as a first class object
Performance Results

MG

FT

IS

CG

![Graphs showing performance results for different algorithms and hardware configurations.](image-url)
Plans

• We are considering extending ROpt (our extended R interpreter) with HTA operations and enable execution on distributed memory machines.

Work with Peng Wu (IBM Research) and Haichuan Wang (Illinois)
ROpt

- Extends R byte code interpreter using specialization.
 - New Op codes
 - For specific data types
 - For frequently occurring code sequences
 - Simpler data representation
 - Automatic optimization
Preliminary results with ROpt

• On a set of kernels containing mainly scalar operations
 – ROpt delivers average speedup of 3.56 over the bytecode R interpreter
 – ROpt is 12 times slower than C
 – The bytecode interpreter speedup over the original R interpreter is 2.6.

• On the shootout benchmarks
 – 2.07 speedup over the bytecode interpreter but 100 times slower than C.
 – The bytecode interpreter is 2.5 times faster than the original interpreter.