
Analysis of Pointers and Structures 

David R. Chase* 
Mark Wegmanl 

F. Kenneth Zadeckj 

1 Introduction 
High-level languages could be optimized significantly if com- 
pilers could determine automatically how pointers and heap 
allocated structures are used. Setter knowledge of aliasing 
can improve classical optimizations applied to scalars (com- 
mon sub-expression elimination, loop-invariant code motion, 
reduction in st.rength, constant propagation) by permitting 
less conservative assumptions about what is affected by an 
update to stor,age, and can aid in dependence analysis for 
purposes of parallelization. In addition, information about 
the shape and use of linked data structures can be used to 
apply storage overwriting and allocation optimizations (for 
instance, reusing storage instead of making a copy). 

This problem is a complex one, in part because it is 
possible to construct unbounded data structures that must 
necessarily be represented in some finite way. As with almost 
all program a:lalysis and optimization problems, one must 
limit the kinds of information one tries to collect, because 
exact information is generally undecidable or at least very 
difficult to compute. Our work follows that of Jones and 
Muchnick [Jbl81] who summarize the data structures al- 
located in a heap by making a graph, in which one node 
corresponds to possibly many nodes in the heap. The major 
issue is how to choose which heap cells to associate with 
which nodes. We view the program as a generator for data 
structures. Each symbolic execution of X +- cons (A, X) 
adds a new node to the data structure. As the data structure 
grows, it must be compressed by making one node stand for 
many. We difler from other works principally in the kind of 
information we use to do the compression. 

Most work to date [Sch75a, Sch75b, JM81, Rug87, 
RM88, LH88, Lar89, HPR89] does this compression by 
bounding acyclic path length in the modeled data structures; 
this is known as k-bounded approximation. They limit the 
length of (acyclic) paths to k by truncating long paths with 
summary nodes containing all paths occurring in the origi- 
nal. The (path-length) k-b ounded approaches have several 
flaws: they are potentially very slow (unless k is very small), 
unbounded structures lose all structure beyond depth k, and 
information provided by the program structure is ignored. 

- 

*1160 Laurel Street #2, Menlo Park, CA 94025. 

tIBM T. J. Watson Research Center, P.O. Box 704, Yorktown 
Heights, NY 10598. 

icomputer Science Dept., P.O. Box 1910, Brown University, 
Providence, RX 02912. 
Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct com- 
mercial advantage, the ACM copyright notice and the title of the 
publication ant1 its date appear, and notice is given that copying is 
by permission of the Association for Computing Machinery. To copy 
otherwise, or tcb republish, requires a fee and/or specific permission. 

@1990 ACRl 0-89791-364-7/90/0006/0296 $1.50 

Proceedings of the ACM SIGPLAN’SO Conference on 

White Plains, New York, June 20-22, 1990. 

We propose a different way of summarizing linked data 
structures that has better worst case time bounds, allows 
a particularly efficient implementation for the sparse (ex- 
pected) case, preserves information about unbounded data 
structures, and takes advantage of information provided by 
the structure of the program. Rather than try to match 
one part of the data structure with another (in essence 
solving some variant of the subgraph isomorphism problem), 
we look at the program for hints about which parts of the 
data structure are related, and then match those parts. In 
addition, a simple extension of this analysis discovers data 
structures that are “true lists” and “true trees”; that is, it 
discovers data structures within which there is no aliasing at 
all. Earlier program analyzers and optimizers make good use 
of this information [Lar89], but must rely on assertions made 
by the programmer to obtain it. The analysis presented here 
obtains this useful information automatically. 

In Section 2, we describe the abstract model for pro- 
grams we can analyze and describe the information our 
algorithm determines. In Section 3, we present a simple 
though inefficient algorithm that demonstrates some of the 
aspects of our technique. In Section 4, we extend the 
technique in Section 3 to discover more information, such 
as whether a data structure is a list or tree. In Section 5, 
we construct an efficient algorithm that obtains the same 
results as our simple algorithm. In Section 6, we extend our 
algorithm interprocedurally, and in Section 7, we compare 
our results to those in the literature. 

2 Background 
We describe below the simplified language for programs that 
our algorithm accepts and the model of program storage that 
our algorithm constructs. 

2.1 The Model of the Program 
The algorithms presented here handle programs containing 
Lisp-like structures. All our examples are written in pidgin 
Algol with Lisp-like data structures. The standard operators 
such as car, cdr and cans are supported; X. car means (car 
X) .l Furthermore, the side-effecting operators rplaca and 
rplacd are supported; these are written as assignments to 
the car and cdr fields on the left side of the assignment 
operator (e.g. X.car + . ..). 

In our framework, pointers are simply references to 
nodes with a fixed number of fields, some of which are point- 
ers. Our examples use cons cells. We consider only three 
operation on pointers: allocate new, update specific field, 
and select specific field.2 We do not allow the unrestricted 
pointer arithmetic that is possible in languages such as C, 

‘The Pascal notation for this would be X 1 .car. In C, X + 
car or (*X) . car. 

2Checking for pointer equality is also allowed but is irrelevant 
to this analysis. 

296 



and we do not deal with aliasing between variables. We 
assume that some form of type checking (either static or 
dynamic) is performed to assure that pointers are used only 
in this way. 

Program structure is modeled by a control flow graph 
(CFG). Programs can be composed of most common con- 
trol structures, including those that give rise to irreducible 
control flow graphs. Interprocedural analysis is discussed 
in Section 6. The structures that cannot be handled in this 
framework are those that rely on label or procedure variables 
and self-modifying code. 

For convenience, we require that the statements in the 
program contain only simple binary expressions and binary 
access paths. Complicated expressions must be broken into a 
series of binary expressions that assign to unique temporary 
names, as shown in Figure 1. Because of this simplification 
of expressions, access paths are also very simple. An access 
path has the form A .B where A is a simple variable name and 
B is a field name (either car or cdr in our examples). We 
also break statements so that any statement that allocates 
storage must assign it to a simple variable. Furthermore, we 
separate the allocation of new storage from its initialization. 

A+B+C Yl + A + B; T1 + C 
x.car.cdr T2 + x.car; T2.cdr 

cons (cons(X ,Y) 2) T3 + cons.0; 
T3.car + X; 

T3.cdr + Y; 

T4 + consO; 
T4.car + T3; 
T4.cdr + Z; 

Z.car + cons(X,Y) T5 + consO; 
T5.car + X; 
T5.cdr - Y; 

Z.car +T5 

Figure 1. Complicated and simplified expressions. 

Sections 4 and 5 utilize features of static single assign- 
ment (SSA) form [CFR+89a, CFR+89b]. Here we give a 
brief review. 

The transformation of a program into SSA form retains 
the semantics of the original program and has two useful 
properties: 

1. Each programmer-specified use of a variable is reached 
by exactly one assignment to that variable. 

2. The program contains &functions that distinguish val- 
ues of variables transmitted on distinct incoming control 
flow edges. 

A &function has the form U + q+(V,W, . ..). where 
U, V, W, . . . are variables and the number of operands V, W, .,. 
is the number of control flow predecessors of the point where 
the &function occurs, The control flow predecessors of 
each point in the program are listed in some arbitrary fixed 
order, and the j-th operand of 4 is associated with the j- 
th predecessor. If control reaches the &function from its 
j-th predecessor, then U is assigned the value of the j-th 
operand. Each execution of a &function uses only one of 
the operands, but which one depends on the flow of control 
just before the &function. 

The transformed program is defined to be in SSA form 
if, for every original variable V, &functions for V have 
been inserted and each mention of V has been changed to a 
mention of a new name V; such that the following conditions 
hold: 

If a CFG node Z is the first node common to two 
nonnull paths X f Z and Y f Z that start at nodes X 
and Y containing assignments to V, then a &function 
for V has been inserted at entrance to Z. 

Each new name K for V is the target of exactly one 
assignment statement in the program text. 

Along any control flow path, consider any use of a new 
name Vi for V (in the transformed program) and the 
corresponding use of V (in the original program). Then 
V and Vi have the same value. 

2.2 The Storage Shape Graph 
For each statement in the program, we construct a storage 
shape graph (SSG). When the analysis is complete, each SSG 
is a finite, conservative summary of all pointer paths into 
and through allocated storage that could arise by executing 
any path to (terminating after execution of) the statement 
for which the SSG was computed. All SSGs for a program 
contain a set of nodes: one node for each simple variable 
(variable nodes), nodes corresponding to heap allocated 
storage (heap nodes 

31 
and a special node representing all 

atoms including nil . Reap storage is typically allocated by 
statements such as new in Pascal and cons in Lisp. Each 
node contains fields reflecting the record structure of the 
memory allocated by the program; for the purposes of this 
paper, these are cons nodes with fields car and cdr. Variable 
nodes and fields of heap nodes in the SSG model locations 
in run-time data structures where pointers may be stored. 

Edges in an SSG model pointer values. Edges in an 
SSG are directed towards heap nodes from variable nodes 
and from fields within heap nodes. Edges are not directed 
from fields toward variable nodes, and variable nodes do not 
contain fields. Generally, more than one edge can leave a 
field or variable because the pointer(s) that edges model 
can have different values corresponding to different paths 
through the program. 

The SSG after s models the heap for all paths ending at 
s. For any particular path ending in s, there may be nodes 
and edges in the SSG after s that are not required for that 
path. The edges represent the information content of the 
analysis. The SSG contains the following information about 
data structures at run time: if two access paths through the 
SSG end in different places they cannot end in the same place 
in the actual heap. The useful information is the negative 
information; one SSG is more precise than another if it lacks 
an edge. 

Note that in general more than one graph can satisfy 
these properties; different graphs can have different sizes 
and can preserve different information. Choice of the right 
graph is not a well-defined problem, since there is always 
the possibly that adding one more node will preserve some 
crucial piece of information. 

Cycles in an SSG may represent cycles in a run-time 
data structure, but they may also represent an unbounded 
acyclic data structure. The SSG in Figure 2 describes the 
data structures possibly addressed by variables W and X after 
executing Statement 8 of the program in that figure. This 
SSG shows that a data structure addressed by W at that 
point in the program could be a list of even length or a 
cycle of even length (or any other data structure that can 
be summarized by this graph). In either case, it is known 
that the even and odd cons cells on the spine of the data 
structure are not aliased, and that the car fields of those 
cons cells point alternately to 1 and 2. It is possible, but 

3Merging all atoms does not affect the quality of alias analysis. 

297 



not certain, that X and W.cdr point to cells that are abased. 
In fact, inspection of the program reveals that X and U.&r 
always point to the same cell at this location, and the data 
structure is in fact a list, but here the SSG does not provide 
that much information. In Section 4.3 we show how to obtain 
that information. 

1 Y + nil 

2 while (.. .> 
3 X + cons() 
4 x.car <- 1 
5 x.cdr .- w 
6 W + cons0 
7 Y.car ‘- 2 
8 w.cdr s- x 
9 end 
10 Z+W 

1 
nil 

11 while (. , .> 
/ 

12 Y 6 z.cdr 
13 z + Y,cdr 
14 end 

Figure 2. Twccelement alternating list and its SSG after 
Statement 8. 

The following three operations are the only ways to 
construct an SSG: (1) nodes may be added, (2) edges may 
be added or (3) nodes may be merged. When two nodes are 
merged, all edges pointing into either of them point into the 
merged node and, field by field, all edges pointing out of 
them must point out of the merged node. 

3 The Simple Algorithm 
In our simple algorithm, all SSGs for a program contain the 
same set of nodes: one node for each simple variable (variable 
nodes) and one node for each statement in the program that 
allocates a data structure, such as new in Pascal and cons 
in Lisp (heap nodes). A naive representation of the graphs 
built for a pro,;ram of S statements will contain S SSGs, 
and each of these will contain O(S f V) nodes, for a total of 
O(S2 + V x S) nodes. A more efficient representation (for 
typical programs) is described in Section 5. 

In this simple algorithm, the SSG G for a statement sr 
contains the fo’llowing information about data structures at 
run time: 

l 

l 

If A is a variable and B is the heap node corresponding 
to statement ~2, and if there is an edge from A to B in 
G, then after some execution of sr the variable A may 
point to some data structure allocated at statement SZ. 

If there is no such edge, then after all executions of sr 
the variable A cannot point to any structure allocated 
at statemclnt 32. 

If A is field F in the heap node corresponding to 
statement s2 and B is the heap node corresponding to 
statement 33, and if there is an edge from A to B, then 
after some execution of sr the F field of some structure 
allocated at sz may contain a pointer to some structure 
allocated at 33. 

If there is, no such edge, then after all executions of 
sr there i:r no structure allocated at 92 whose F field 
contains a pointer to any structure allocated at ~3. 

Each statement modifies edges in the graph in a manner 
reflecting the semantics of that particular statement. For 
assignment to a simple variable, the semantics are to replace 
the edges leaving the variable with the r-value for the state- 
ment. This type of assignment is called a strong update. For 
assignment to a field of a node addressed by a variable (e.g., 
X.cdr + Y assigns to the cdr field of nodes addressed by 
X), the semantics are to add the r-value to the sets of edges 
that are directed from fields addressed by the left hand side. 
Assignment in this fashion is called weak update, since edges 
directed from the addressed fields are not deleted before the 
assignment occurs. Under appropriate conditions, strong 
updates can be performed on assignment to fields so as to 
yield better information, as discussed in Section 4.2. 

The motiTration behind never merging nodes from dif- Some intuition for why this technique works well can be 
ferent cons statements is that nodes allocated in different gained by considering type schemes. While the principal use 

places probably are going to be treated differently, while all 
nodes allocated at a given place will probably be updated 
similarly. 

3.1 The Simple Fixed-Point Algorithm 
The initial, optimistic approximation for a statement’s SSG 
is the graph containing all the nodes allocated in the pro- 
gram, but with no edges leaving any of them. So, each SSG 
is originally identical with the same set of nodes. The most 
conservative approximation (and the one containing the least 
information) is the graph with all possible edges (this is 
the complete graph, except that edges cannot be directed 
from fields to variable nodes). The analysis proceeds by 
adding edges to the SSGs, and its goal is to find the SSG 
with the smallest number of edges that is still a conservative 
approximation to the actual storage; i.e., the SSG that has 
every edge it needs, but no more. 

The algorithm presented here is a modification of Weg- 
breit’s iterative data flow analysis technique [Weg75]. We 
start out with a worklist that is initialized to contain the 
entry statement in the program. At each step we take a 
statement off the worklist and attempt to evaluate it. If the 
statement can be evaluated and some new edges are added 
to its SSG, we put the successors of the statement onto 
the worklist. The algorithm terminates when the worklist 
becomes empty. 

If the statement is a join point in the program (i.e., if 
two or more statements have this statement as a successor), 
then each node in the SSG entering this statement will have, 
as its edge set, the union of the edge sets for the correspond- 
ing nodes in the SSGs for the predecessor statements. 

If the right hand side of an assignment is a variable X, 
the r-value is the set of nodes reached by edges leaving X. 
If the right hand side of an assignment is a field X.cdr, the 
r-value is the set of nodes reached by edges leaving fields in 
I-ualue(X.cdr). halue(X.A) is the set of fields labeled A in 
nodes reached by edges leaving the variable X, as shown in 
Figure 3. If the right hand side of a statement is a cons, the 
r-value is the heap node corresponding to that statement. 

0 X 1 l-value@. cdr) (a set of fields) 

Figure 3. Example of l-value and r-value. 

298 



of type schemes is to detect errors at compile time, they have 
also been used by compilers for simple alias analysis. The 
idea is that a modification to one type of structure cannot 
be applied to a structure with a different type. If a pointer 
can point to only one type, then an update from that pointer 
cannot modify any objects of different type. 

In a language like Pascal, each type corresponds to a 
disjoint set of nodes. The set of nodes corresponds to the 
locations at which a type can be allocated. An allocate 
statement in Pascal takes a pointer as an argument; since 
a pointer can point to only one type, the set of nodes is 
disjoint. The problem we face in designing a pointer analysis 
scheme is choosing which nodes to merge and which not to 
merge. By choosing to merge only nodes that come from the 
same allocation site, we do not merge nodes that would (or 
could) be given different type declarations. 

In Pascal, a declaration limits the number of different 
types a pointer can point to, and compile time analysis 
checks that they cannot point to additional types. In our 
algorithm, we discover at compile time the set of nodes a 
given pointer can point to. Any program that would cause 
our algorithm to add an edge in the SSG between a node 
within the set for one type to a node of a type which it cannot 
point to would be flagged as an error by a Pascal compiler. 
Thus, if at the end of our analysis, all nodes of a given type 
were merged, there would be no more edges between them 
than those specified by a Pascal type declaration. 

Type declarations often give a good description of the 
shape of data structures. Our SSGs differ principally in that 
there is a different SSG for each statement in a program, and 
it would be impractical to have the programmer include new 
declarations of types for each statement. 

4 Extensions to the Simple Algorithm 
In this section, we present several synergistic extensions to 
the simple algorithm: allowing more than one SSG node 
to be kept per allocation statement (Section 4.1); allowing 
strong update to be done to SSG nodes in certain cases 
(Section 4.2); and associating reference counts with the SSG 
nodes to allow us, for example, to detect tree-like structures 
(Section 4.3). 

4.1 Maintaining MultipIe Instances of a 
cons Node 

In the simple algorithm (Section 3), we assumed that the 
SSGs contain only one node for each cons statement. While 
we can distinguish structures composed of elements allocated 
at different cons statements, we need additional detail to 
determine other information. We cannot deduce that the 
data structure is acyclic, and thus the cons cells pointed to 
by X on different iterations of the loop are always different. 

Our solution is to allow SSGs to contain multiple nodes 
from a single cons statement. Each of these nodes is called 
an instance of that cons statement. The execution of a cons 
statement causes a new instance to be created, and a pointer 
to that instance is assigned to the target of the left hand side 
of the assignment statement. 

A natural question is, “How many instances are 
enough?” The answer depends on the context. What is 
desired is to keep only the interesting instances. 

We classify variables into two categories: (1) a deter- 
ministic variable points to one SSG node and may possibly 
point to nil, and (2) a non-deterministic variable points to 
more than one SSG node. Being deterministic is an impor- 
tant property for variables to have. Section 4.2 exploits this 
property to perform strong update. 

We call an SSG node interesting if it is pointed to by a 
deterministic variable. We apply the rule that uninteresting 

instances are merged as soon as they become uninteresting. 
We use the cons statement to generate new instances and 
the assignment statements and meet operations to merge 
instances. We still require that only instances of the same 
cons statement can be merged together. There can be 
at most as many SSG nodes with deterministic variables 
pointing into them as there are variables in the program. For 
each cons statement there can be at most one instance not 
pointed to by a deterministic variable. We call this instance 
the summary node. Thus, the total number of nodes in any 
SSG is bounded by the sum of the number of allocation 
statements and the number of variables. 

Variables can change their values at two places: sssign- 
ments and join points. At these points, an SSG node that 
no longer is pointed to by a variable becomes uninteresting 
and the SSG node may be merged. 

4.1.1 Merging After Assignments 
An SSG node n becomes uninteresting after an assign- 

ment statement s assigning to variable V if (1) before evalu- 
ation of s, V was a deterministic variable pointing to n and 
(2) after evaluation of s, no deterministic variable points to 
It. 

If n has just become uninteresting and there are any 
other uninteresting instances of the cons statement of which 
n is an instance, they are merged. 

4.1.2 Merging At Join Points 
The meet operation is performed at any join point in the 

program. A very naive meet would union the sets of nodes 
from the entering SSGs and fix up the variables to point to 
the union of the nodes they pointed to in the entering SSGs. 
Unfortunately, this meet is unacceptable, since the number 
of nodes in the SSGs will grow without bound. Therefore, 
SSG nodes must be merged when performing the meet. 

1. 

2. 

3. 

4. 

5. 

Our goals in constructing this merging scheme are: 

The number of SSG nodes is bounded. In particular, 
at the end of the merge, there is at most one instance 
of a cons statement without a deterministic variable 
pointing to it. 

The largest number of deterministic variables are pre- 
served. 

As few edges as possible are added to the graph. 

The matching can be performed efficiently. 

Preserve information can be used to perform strong 
updates to fields (see Section 4.2). 

We wish to form a meet between the two SSGs in 
Figure 4, and we wish to choose the “best” merge. The 
choice in Figure 5 is unacceptable both because general ap- 
plication of this strategy leads to unbounded graph growth, 
and because all variables are made non-deterministic. The 
two choices in Figures 6 and 7 are better, but without 
additional information an arbitrary choice must be made. 
Figure 6 keeps X and Y deterministic, while Figure 7 keeps 
Z deterministic. One way to choose is to impose an order 
on the variables and always perform SSG node merges in 
the same (variable-by-variable) order. Another choice is to 
give up, and use Figure 8. We suggest another heuristic, 
however, that we believe is more appropriate. 

At a join point at which SSG nodes are being merged, 
psuedo-assignments (&functions) are also inserted for vari- 
ables. The variables that deterministically reference SSG 
nodes at the CFG predecessors can be separated into those 
that are arguments of &functions at the join point and those 

299 



X- 

Y- 

z/ 
5i 

X 

Y 

Z 

% 

Figure 4. Two graphs to merge. Fx 
Y wr Z 

Figure 5. A large, unacceptable merge. 

Figure 6. X and Y remain deterministic. 

Figure 7. Z remains deterministic. 

X 

Y 

Z % 

Figure 8. No deterministic variables. 

that are not’. If references to SSG nodes from variables in- 
volved in psue&assignments are ignored, merging conflicts 
will not arise. 

Therefore, the first step in merging two SSGs is to 
pair up SSG nodes in the CFG predecessors on a per- 
allocation-site, per-variable basis for the variables that are 
deterministic and not involved in psuedo-assignments. Do- 
ing this will not lead to any conflicts, but it may cause some 
other variables to become non-deterministic. For example, 

‘For the sake of simplicity, assume that the #-functions for 
variables were discovered in a pre-pass, not by the incremental 
algorithm described in Section 5. 

Figure 6 results if X and Y are not involved in psuedo- 
assignments but Z is; X and Y remain deterministic, but 
Z becomes non-deterministic. Figure 7 results if Z is not 
involved in a psuedo-assignment. Figure 8 results if all three 
variables are involved in a psuedo-assignment. 

The second step examines any SSG nodes pointed to by 
deterministic variables not paired by the first step; that is, 
those that occur in d-functions. Ignoring non-deterministic 
variables, two SSG nodes “left and n,.ight allocated at the 

same statement may be paired up if the sets of variables5 
referencing nl,jt and nright are identical. If the sets of 
variables are not identical, but the differing variables do 
not point to any node in the other SSG (that is, they are 
nil, atom, or empty), then the two nodes may be paired up. 
For example (or as a special case), if a variable is the sole 
reference to a node n in one SSG and nil in the other SSG, 
then n is not merged into its corresponding summary node. 

After all those SSG nodes have been paired up and 
merged, all the remaining SSG nodes are merged into their 
summary nodes on a per-statement basis. 

The above merging conditions ensure that only one 
instance of an allocation site’s nodes is not referenced by 
any deterministic variables (that is, in any SSG there can be 
at most one cons instance for each variable and one cons 
instance for each statement). This does not imply that 
the number of instances cannot grow at the merge point. 
Consider the example in Figure 9. As the loop (a join 
point) is entered from above, both X and Y are redefined 
in &functions. In the SSG transmitted from the preceding 
statements, X addresses a cons node (call it nl) and Y is nil. 
In the SSG transmitted from the end of the loop, X is nil 
and Y addresses a cons node (call it nz). Should nl and nl 
be paired up, merged into a summary for their allocation 
statement, or left separate? By the meet given above, 
they remain separate, even though both nodes model the 
same run-time location. This is counterintuitive but correct, 
because at the top of the loop X and Y never simultaneously 
refer to the same address (unless it is nil). 

X + cons0 
Y + nil 
while0 

Y+X 
X + nil 

end 

Figure 9. Program in which the number of instances after 
the join is greater than before the join. 

4.2 Strong Updates 
An update statement can either be a weak update or a strong 
update operation. In strong update, the field that has been 
changed must point to a new set of locations rather than 
the old. In weak update, the field that has been changed 
points to the new set of locations in addition to the old. 
It is desirable that as many as possible of the updates be 
strong since a strong update provides better information. 
Unfortunately, while it is always correct to perform a weak 
update, it is not always correct to perform a strong update. 

Strong update can be applied in two situations. First, 
an assignment statement can perform a strong update if 
(1) its l-value is a single SSG node and (2) that node 

5T~ be precise, the sets of SSA variables with renaming sub- 
scripts stripped off. 

300 



corresponds, on all execution paths, to at most one location 
in the heap. If our algorithm cannot guarantee that both 
these conditions are met, a weak update must be performed. 

Condition (1) is satisfied if the assignment is to a 
variable or if the assignment is to a SSG node reached via a 
deterministic variable. 

Condition (2) is satisfied for SSG nodes that represent 
single heap nodes. A node in the SSG corresponds to a single 
heap node unless on some esecution path it has been merged 
with another SSG node. 

Careful treatment of merges allows detection of SSG 
nodes that represent single heap instances. All instances are 
flagged as either single instance nodes or multiple instance 
nodes. A single instance is guaranteed to correspond to 
at most one heap location. Multiple instance nodes may 
correspond to any number of heap locations. 

An instance is generated at a cons statement, at which 
point it corresponds to a single heap location. An instance 
can become a multiple instance node only if it is merged 
under certain conditions. If instances ni and nr are merged 
to form instance na, na is a multiple instance node if any of 
the following conditions hold: 

l Instances ni and na are merged after an assignment 
statement (i.e., not at a join statement). 

l At least one of rzr and nz is already marked as multiple 
instance nodes. 

l Instailces nl and na were associated with the same 
entering CFG edge at a join point. 

The second situation in which strong updates can be 
applied arises when a variable V points to several SSG nodes 
and there are no other edges into any of those SSG nodes.6 
The collection of SSG nodes models a run time situation 
in which one SSG node is referenced by V and the rest are 
unreachable (e.g., garbage for the collector). Whatever node 
V references will change, and the rest are not observable, so 
it is safe to update all nodes referenced by V. 

Our propagation algorithm is organized around a work- 
list. In order to deal with strong updates, the order in which 
the statements are processed must be handled carefully. 
Two invariants are maintained: (1) when a statement is 
visited, at least one of its immediate predecessors has already 
been visited, and (2) an edge, once added to a statement’s 
SSG, is never deleted. Because an SSG contains a finite 
number of edges, the second condition allows a trivial proof 
of termination. 

X + cons0 

if FirstTime 
then do 

Y+X 
FirstTime + false 

end 
x.car + . . . 
Y.car + . . . 

Figure 10. Program containing a legal use of an 
uninitialized variable. 

To maintain the second invariant in the presence of 
strong update, processing of some update statements must 

sBec,use of the meet rules, these conditions are satisfied only 
when each of the SSG nodes comes from a different cons statement 
and each of the SSG nodes is a single instance node. 

block temporarily. In some cases, it is not possible to 
evaluate the l-value of a statement of the form Y. car because 
Y may have no value or the value nil. This situation arises 
only if the program is errant or if the algorithm will later 
discover a path on which Y has a different value.’ 

A strong update to a node n stops edges leaving n 
from propagating from an earlier SSG to a later SSG. Any 
right hand side of the form Y. car, where Y has no value or 
has the value nil, is the site of a potential strong update. 
Rather than allow edges to be propagated past a statement 
that may later perform a stong update, we defer evaluation 
until Y is given a value. This problem arises when the 
iteration has taken a path through the program in which 
an uninitialized variable is accessed; as shown in Figure 10, 
this can happen in a correct program. Such fragments can 
commonly be found inside subroutines and loops. Most 
static analysis techniques (including this one) ignore the 
values of predicates. They are unable to understand that 
the FirstTime flag assures that the assignment to Y .car is 
safe. 

A traversal of the program in Figure 10 might reason- 
ably start by processing it as if FirstTime were false; first the 
assignment to X, then the if test, and then the statements 
following the if. On such a traversal, interpretation of the 
assignment to X. car would add some edges to the SSG node 
of the first statement. This is followed by the assignment to 
Y .car, but here processing must block because Y still has no 
edges leaving it. 

Interpretation proceeds on some other path, and at 
some later point the if-true branch will be processed, causing 
Y to become defined. The statements following the if are 
added to the worklist (again), but this time Y .car can be 
correctly evaluated. 

If the algorithm terminates without visiting a statement 
s, then all executions of the program that include a path 
through s will raise an error (or have undefined behavior.)’ 

We keep extra instances of SSG nodes that have vari- 
ables pointing to them because these instances correspond 
to the heap cells that the program can manipulate easily. 
By keeping these instances separate, strong updates can be 
performed on them and their references determined before 
they are merged with the other nodes. 

4.3 Heap Reference Counting 
Additional information about storage structure can be ob- 
tained by following the storage-shape analysis presented 
here with a reference counting analysis similar to that of 
Hudak [Hud86] and Boehm and Hederman [BH88, Hed88] 
(Barth uses a somewhat similar analysis for “compile-time 
garbage collection” [Bar77].) The combined analysis can 
discover that a list is a “true list”, and thus makes possi- 
ble optimizations like those described and implemented by 
Larus [Lar89], without requiring programmer declarations. 

Heap reference counting statically approximates the 
number of references to a heap cell from other heap cells; 
that is, it models a run-time count of heap references without 
counting references from variables9 . The goal of heap refer- 
ence counting is to discover portions of the storage shape 

‘An update to a deterministic variable may attempt to update 
nil. In this case, the heap location cannot be modified and 
the strong update would appear to be unjustified. However, any 
attempt to update nil is necessarily an error and we do not worry 
about getting correct results on errant programs. 

‘Note that the algorithm will not detect all errors of this sort. 
We think that the subset it does detect is probably uninteresting. 

‘This is similar to the actual reference counting schemes de- 
scribed by Deutsch and Bobrow [DB76] and Rovner [RovSS]. 

301 



graph that model lists or trees (as opposed to graphs with 
sharing or cycles); that is, the goal is to discover portions 
of the graph in which all nodes have heap reference count 
equal to one. 

The rzfen:nce count lattice is (0, 1, oo} with meet oper- 
ation max. Each SSG node has an associated heap reference 
count (HRC). Th e reference count of a node n is modified 
whenever a field of an SSG node is updated to point to n. If 
the update adds a pointer to n, the HRC for n is incremented 
(co + 1 + oo) We do not attempt to reduce heap reference 
counts. Whenever two nodes are merged (at either a join 
point or an assignment), the HRC for the joined node is the 
maximum of the HRCs for the nodes that were joined. 

HRC becomes a more powerful tool when combined with 
the use of multiple instances, as shown in Figure 11. This 
example builds a list in the usual way, by allocating new 
SSG nodes and using the previous list as the cdr of the new 
list. With this storage shape graph, we can annotate each 
node with a HRC (shown above each node). 

After statement (2) X addresses either nil or the most 
recently alloca.ted cons cell, which has a reference count of 
zero. The older cells each have a reference count of one. 

Statemew: (3) allocates a new cell and the SSG gets 
bigger. Since X and T point to different nodes, neither is 
merged with the summary node. The new node, lacking any 
heap references, has a reference count of zero. 

Statemen’; (4) assigns the head of the old list into the 
cdr field of the new cons cell; this increments its referenke 
count in the resulting graph. 

Statemen; (5) makes X point to the newly allocated cell. 
After statement (5) has been executed, no variables point to 
the middle cons cell, and it is merged with the summary 
node. The maximum (meet) of one and one is one, so the 
reference count of the summary is unchanged. 

Notice th,zt the graph referenced by X. cdr (if not nil) 
has reference count of one throughout. Any reachable nodes 
are unshared i.f a subgraph of the storage shape graph has 
the following properties: 

1. The root of the subgraph is not reachable from the other 
SSG nodes in the subgraph; 

2. all SSG nodes except the root have HRC = 1. 

The intuition behind this is that if all nodes in a connected 
graph have H:RC = 1, then the graph is either a tree or a 
simple cycle. If the root node is not part of a cycle, then what 
is reachable (i.e., has real reference count not equal to zero) 
must be a tree. Given a storage shape graph annotated with 
reference counts, a correctly rooted path that lies within a 
region of HRC = 1 nodes is guaranteed to be a noncyclic at 
run time. Not,: that this is not the case for paths whose first 
edge is from a variable directly into the non-rooted subgraph; 
these may be cyclic (but the presence of a reference from 
a variable does not invalidate the property for a correctly 
rooted path). 

This analysis is capable of discovering that a Yree” 
built from the top down (as opposed to the bottom-up 
construction in the example here) is in fact a tree, and 
Can also discover that the destructive concatenation of two 
proper lists is also a proper list. 

Further &inements of reference counting can be used 
to extend these results. Each node can also maintain a 
count for the n.umber of references from a specific field of any 
node allocated. at a given statement; that is, an additional 
count for each valid statement-field combination. With this 
extension, it is possible to discover non-cyclic paths through 
cyclic structures. For example, a doubly linked list is cyclic, 
but paths through the “nexIt” field are not cyclic. For nodes 

Statement 
Graph and reference counts after execution 

(1) X + nil 

X -C nil 

(2) while 0 do 

X -+ nil 
I / Y 

t t 
nil nil 

(3) T + cons0 

X -c nil 
L 

HRC = 0 :HRC = 0 
I 

! I 
t t 

nil nil 

(4) T.cdr t X 

X + nil 
\ 

,HRC= 0 ',HRC= 1 

T I l I 

+ 

I 1 

+ t 

nil nil nil 

(5) X+-T 

(‘3) end 

Figure 11. List builder and reference counts. 

modeling this list, the count of references from next fields 
will be one, and as long as paths traverse only edges rooted 
at next fields, different paths (rooted in a cycle-free node, 
as above) will address different nodes. 

The meet of two of these counts is m&x, and a count is 
incremented whenever a reference from a corresponding field 
is created by an update. If counts are recorded only when 
they exceed zero”, then only a linear increase in space will 
result since there will always be at least as many edges as 
counts. 

5 An Efficient Implementation 
“I’he simple conceptual version of our algorithm presented 
in Section 3 may be too slow for practical use. Before 
we present our efficient algorithm, however, it is useful to 
analyse the simple algorithm. 

if a program has S statements, then there can be as 
many as S allocation statements and S summary nodes. 
A variable can deterministically point to only one node, so 

“Actually, these counts need be maintained only when they 
exceed one, since no edges from fields-of-nodes-from-a-given- 
statement means zero, some edges means one, and more is a 
special case. 

302 



there can be 2 x V non-summary nodes in the SSG, where 
V is the number of variables. Thus, the number of nodes in 
each SSG is bounded by 5’ + V. We denote the maximum 
of the in-degree of a node and the maximum out-degree of 
fields within nodes and variables by T, and thus the number 
of edges in each SSG is bounded by (S + 2 x V) x T. In the 
worst case T = S+ V. Since there are S different SSGs, the 
storage required can be O(S x (S + V) x T). 

Each statement can be visited as many times as it has 
edges in its SSG, O((S + V) x T). Every time a join node is 
visited, the SSGs from the two entering edges are merged”, 
so the work involved can be 0( (S + V) x T). There are d\S) 
statements, and hence the total work can be O(Sx (S+V) x 
2”). While other work is done, this is the dominant cost. 

We improve the algorithm in two ways: 

1. ‘We modify the data structures so that they take ad- 
vantage of any sparseness in the SSGs, as described in 
Section 5.1. 

2. We modify the algorithm so that changes to the SSG are 
propagated directly to where the information is used, as 
described in Section 5.2. 

Each of these modifications allows us to replace a factor of 
S by a smaller term. Figures 12 through 17 contain pseudo- 
code for the algorithm. 

5.1 Using Sparseness 
The SSGs are sparse in two ways: 

1. Each SSG is likely to be sparse. Empirical studies of 
heap allocated structures have found that the reference 
counts of over 90% of the cells never exceed one [CG77], 
and systems relying on this assumption have worked 
well [DB76, SCN84, Rov85]. Thus, one expects that 
an SSG should also be sparse. Given that the SSG is 
adequately sparse, we can assume that T is O(1). 

2. All SSGs have the same nodes and differ only in their 
edges. Because each SSG is sparse, an update tends 
to change only a small number of nodes. Hence, the 
edge set of an SSG is very similar to that of the SSG’s 
preceding statements. 

So far, the data structure used to represent the in- 
formation algorithm has one graph per statement. Each 
graph has the same set of nodes, but the set of edges 
leaving corresponding nodes differs. Here we invert that 
representation using only one set of nodes. Each node has 
a list of its different edge sets. Associated with each edge 
set is the location (the statement) at which that set is valid. 
A node has an edge set at a location 1 if the edge set for 
that node differs from any of the edge sets of the immediate 
predecessors of I in the control flow graph. 

The question is: which statements need edge sets at 
which SSG nodes? In straight-line code, this is easy to 
answer: the only statements that need edge sets are the 
updates to that SSG node. Real programs contain branches 
and joins, however, and to handle them, we use an idea 
borrowed from SSA form. In translating to SSA form, a 
d-function for variable V is inserted at any join point that 
different assignments to V reach. Here, we treat each SSG 
node as if it were an SSA variable. An update to an SSG 
node can be thought of as an assignment to an SSA variable. 
At the control flow graph join points, where differentupdates 

l1 We assume for simplicity that no more than two edges come 
into a join node. 

to the SSG node meet, the edge sets must be unioned 
together. In SSA form a &function would be inserted to join 
the differing assignments. Here, a new edge set is inserted 
to represent the union of the incoming edge sets. We call 
these new edge sets &functions, a.3 in SSA form. 

Just as in SSA form, it is desirable to insert the min- 
imum number of &functions. Unfortunately, the efficient 
SSA calculation algorithm cannot be directly used here. 
In computing SSA form, the side effects are visible before 
the computation begins, and an assignment to a variable 
modifies that variable only. Here, however, side effects are 
discovered as the analysis proceeds; an assignment to a field 
in one SSG node (e.g., x. car) may later be an assignment to 
the same field of other nodes. Because of this, &functions 
will be inserted on the fly as side-effects are discovered. 

Some aspects of the SSA algorithm are used. The 
dominance frontieris computed and used to determine where 
to locate the &functions. The dominance frontier DF(X) 
of a CFG node X is the set of all CFG nodes Y such that X 
dominates a predecessor of Y but does not strictly dominate 
Y. In SSA form, the defining assignment dominates all 
of the regular uses, and dominates all of the immediate 
predecessors of &function uses. 

The algorithm for computing SSA form connects. uses 
to definitions in a single pass over the program. We do not 
want to make a pass over the program every time we discover 
a new assignment, so a new data structure is required. After 
&functions have been inserted, the defining assignment for 
a use can be located by searching up the dominator tree for 
the nearest assignment. A new data structure is used to 
make this search efficient. 

Let T be a tree, which we call a master tree, with a 
set of nodes N. T’ is a skeleton tree for T if (1) the set 
of nodes N’ in T’ is a subset of N and (2) the parent of n 
in T’ is the closest ancestor of n in T that is in N’. We 
need to perform several operations on skeleton trees: insert 
a new node, find parent, find all children. These operations 
can all be performed in a straightforward mannerI’ in time 
O(] N’ I), or in time O(log(] N’ I)) time using the techniques 
in [CWZSO]. 

In this algorithm, the master tree is the dominator tree 
of the control flow graph. For each node in the SSG, we 
maintain a skeleton tree containing the use and definition 
locations of the node. Each definition point in this tree 
contains an SSG edge set. This tree is also used to find the 
uses reachable from any definition. To determine the edges 
at a use, the nearest definition point is located by walking 
up the skeleton tree from the use point until the edge set is 
found. 

Each SSG has the same set of nodes. To take advantage 
of sparseness, we require that the value of a node in the SSG 
for statement S can usually be derived from the value of 
the corresponding node in the ,SSG<(o) for the CFG prede- 
cessor(s) of S. The corresponding node can be easily found 
in the simple algorithm because each SSG node corresponds 
to a single cons statement. 

We allocate for the whole program a fixed set of SSG 
nodes, one SSG node for each cons site to hold the summary, 
one SSG node for each variable, and one SSG node for 
each variable to point to deterministically, which we call 

12Find parent and find all children are trivial. Insert can be 
done as foLlows: by using a preorder numbering of the master tree 
and a count of the number of descendants of a node in the master 
tree, one can in unit time tell whether one node is a descendant 
of the other. To insert a node in the skeleton tree, walk down 
from the root of the skeletal tree until you find a node that is the 
parent of the node you are inserting. 



that variable’s cons cell. Each allocation site has a single 
summary node. The summary nodes and the SSG nodes 
correspon&ng ‘:o variables match up in a one-to-one manner 
between slaternents. In the variable’s cons cell, the cor- 
respondence is not straightforward. Consider the following 
code sequence: 

1 x + COll.Sl 
2 Y+X 
3 X 4- cons3 

In statement (l), X’ s cons cell holds the value of consl. 
In statement (:I) X and Y must point to the same cell, and 
we choose (somewhat arbitrarily) to use X’s cons cell, since 
the value is already there. In statement (3) X’s cons cell 
must be used f’or the value of cons3. The value produced 
by cons1 is now stored in Y’s cons cell. To move the cell 
from X’s cons 1;o Y’s cons requires copying the values from 
cons to Y’s cons, finding all pointers to X’s cons cell, moving 
those pointers to Y’s cell, and initializing all of the fields in 
X’s cons cell. 

Thus, certain operations on one SSG node may bring 
about a causing a certain amount of shuffling in the SSG 
nodes that are deterministically pointed to. The variables 
and SSG nodes that point to shuffled SSG nodes must 
actually be updated to reflect the change. These updates are 
treated like all other updates to variables’ SSG nodes and 
their impact must be propagated throughout the program. 
This shuffling effect can happen not only at assignments but 
also when instances are merged. 

To perforrn the shuffle operation, we need to find all 
nodes pointing at a given node. To find them efficiently, a 
list can be maintained for each node of every reference to 
that node. Every time a reference is added to that node, 
this list needs KO be updated. The list can be treated as an 
extra field of a node, and maintained on a skeleton tree. At 
a skeleton tree node for this field, a new copy of the list is 
maintained with whatever changes are appropriate. 

When an assignment to a variable takes place, and 
that variable no longer deterministically points to its former 
cons cell, that cell must either be shuffled to a different 
variables cons cell or merged with the summary node. A 
pass is made over the list to see if any variables point 
to it deterministically, and the first one found is choosen. 
All changes tc various fields caused by the shuffling are 
propagated in .the normal manner. 

At a join point, a variable may become non- 
deterministic. This forces a shuffle if a node was stored in 
that variable’s cons cell. A shuffle in the statements leading 
to a join point may also trigger a shuffle at the join point. 
But it is also possible at a join point to have the node stored 
in different variable’s cons cells on different entering CFG 
edges. In that case, one of the cons cells is chosen at the 
join point (if one had been chosen from one of the entering 
CFG edge’s, and the other CFG edge changes, we stay with 
the old choice). For this SSG a forwarding pointer is kept 
from the node not chosen to the one which is chosen. When 
a change is propagated to the node not choosen, rather than 
update that node, the algorithm must recognize that there 
is a forwarding pointer and update the node pointed to by 
the forwarding pointer. If a shuffle is performed at the join 
point, moving a node, all forwarding pointers to the node 
must also move. 

Heuristics may improve shuffling behavior. Some pos- 
sibilities incluc!e an arbitrary ordering of the variables to 
determine which is chosen at a shuffle, and a preference for 
shufl’ling to variables not involved in pseudo-assignments. 

5.2 The Propagation Algorithm 
In the simple algorithm, whenever the evaluation of an 
assignment changes the edge set for the target, the control 
flow graph successors of the basic block are added to the 
worklist for future reevaluation. In the efficient algorithm, 
on the other hand, only the statements using the values com- 
puted at the assignment are queued for reevaluation. Thus 
the reevaluation need not be done on statements between 
the definition site and the uses. 

Strong update causes a problem: a basic block con- 
taining an apparently erroneous update is treated as not 
executable, and attributes do not propagate through it. A 
technique borrowed from constant propagation [WZ88] is 
used to mimic the careful evaluation required by strong up- 
dates. The incremental algorithm has two global worklibts, 
and elements are chosen from whichever one has elements of 
work that need to be done. The first worklist contains basic 
blocks; the second worklist contains uses whose values may 
have changed since they were last visited. 

We track whether a basic block has ever been visited 
and whether it has been successfully executed to completion. 
When a basic block is pulled off the worklist it is marked as 
“visited” and is traversed statement by statement, locating 
uses and definitions within the basic block and queueing uses 
onto the second worklist. In certain situations (specifically, 
field selection through an uninitialized variable), processing 
cannot proceed and the basic block must be marked as 
“visited” but not completed. If processing reaches the end 
of a basic block, the basic block is flagged as successfully 
executed to completion. When a basic block is successfully 
completed, its CFG successors are placed in the first work- 
list. 

When a definition is discovered, &functions must be 
inserted at the blocks in its dominance frontier. This 
insertion is deferred until an error-free path is found from 
the definition site to the block in the frontier. The deferred 
insertion is accomplished by queueing &functions in a per- 
block worklist at the predecessor(s) of the block in the 
frontier. If the predecessor executes to completion, then a 
path has been found and the deferred #-functions can be 
inserted. 

When an item is pulled off the second global worklist 
it is tested to see if it is the same as before; if not, the 
effect of its new value is propagated. Any updates done as 
part of this statement cause additional items to be placed 
on the second worklist. If a previously uninitialized variable 
appearing in a selection becomes defined, then a previously 
stuck statement may become executable and the basic block 
may be executed to completion and its successors added to 
the first worklist. 

When merging SSG nodes n1 and na, not only are nl 
and ns treated as being updated, but so are the nodes that 
point into nl and n2. 

One important property of this analysis is that the 
number of basic blocks flagged as visited and successfully 
executed increases monotonically as the algorithm proceeds; 
thus, the efficient/incremental algorithm may be freely used 
without regard for order of execution. This is insured 
(partially) by placing on the second worklist only those uses 
that can be reached by some simulated path through the 
CFG. A more subtle property is also required to insure 
convergence of the efficient algorithm: weak updates without 
intervening uses may be performed in any order because a 
weak update can only add edges, and conversion of a strong 
update into a weak update cannot delete any edges from any 
SSG. 

The algorithm presented here consists of a driver, a 
subroutine to process basic blocks from the worklist, a 

304 



do 
WORK + {ROOT} 
visited + {ROOT} 
thru + {} 

while WORK not empty do 
take item from WORK 
case item in 

BLOCK : DoBlock(item) 
USE : Douse (item) 

endcase 
end 

end 

Figure 12. Driver. 

Douse (use> 
(oldval, definer, stmt, type, key) + use 
delta + evalcdef iner, stmt) - oldval 
if delta not empty then 

case type in 
LHSSEL : 

forall n in delta do 
forall f in 

addx(n.sel(lhs(stmt)) ,stmt) do 
AddDef (f , stmt , 

eval (rhs (stmt > , key) > 
end 

end 
if previously there were no fields 

in the l-value of stmt and nov 
there is at least one, 

then 
add stmt’s block to WORK. 

endif 
RHSSEL : 

f oral1 n in delta do 
forall f in 

addx(n.sel(rhs(stmt~),stmt) do 
AddUse(f, stmt , RHS, stmt) 

end 
end 

RHS, PHI : 
forall f in ad&(lhs(stmt) , stmt) do 

f oral1 u in defs(f 1 (atrat> .uses do 
add u to YORK 

end 
end 

endcase 
endif 

end Douse 

Figure 13. Uses. 

subroutine to process uses of changed definitions, and sub- 
routines to insert new uses, new definitions, and new d- 
functions. The insertion subroutines also schedule items 
onto the worklist as necessary; a new use propagates a 
value forward, and new definitions can affect the values 
seen at existing uses. AddPhi and AddDef are mutually 
recursive; a new definition must propagate to $-functions 
at its dominance frontier, but $-functions are definitions. 

DoBlock (B) 
S + nextstmt(B) 
stuck + false 
while S not equal last(B) and not stuck do 

case rhs(S) in 
‘I’ : AddUse(x, S, RHS, S) 
‘x-a’ : AddUse(x, S, RHSSEL, S> 

forall y in addx(x.a.S) 
AddUse(y, S, RHS, S) 

I4’ : ignore it 
endcase 
case lhs(S) in 

‘I’ : AddDef (x, S, eval(rhs(S) ,S>> 
‘x.a’ : AddUse(x, S, LHSSEL. S) 

if no edges leaving x 
then stuck + true 
else 

forall y in addr(lhs(S) ,S) 
AddDef(y, S, eval(rhs(S),S)) 

endif 
endcase 
if not stuck then S +- successor(S) endif 

end 
if stuck 
then nextstmt(B) + S 
else 

thxu + thru + B 
forall (N,C) in queue(B) do 

AddPhi(N, B, C) 
end 
forall C in succ(B) - visited do 

add B to WORK 
add B to visited 

end 
endif 

end DoBlock 

Figure 14. Blocks. 

The algorithm uses the following terms: 

df (x) Dominance frontier of x (a set of block-to-block 
edges). 

defs(x) Definitions for x. Def s(x) (p) is the definition for x 
reaching point p. A definition is a triple (stmt , value, 
uses) + 

WORK A list of uses and blocks. Basic blocks on the list 
are eligible for execution; uses on the list have changed 
definitions. Execution of a basic block B begins at 
nextstmt (B). For simplicity, each basic block has empty 
statements first(B) and last(B) where &functions 
may be attached. 

use A “use” is a quadruple (value, stmt , type, key), 
where value is the most recently computed “value” 
(nodes addressed) seen at this use, stmt is the statement 
at which the use occurs, type is the type of use, and key 
is the statement with which the use is associated (and 
differs from stmt only for uses in &functions). 

ROOT The first basic block in the program. 

305 



AddUse(fit!ld, stmt, type, key) 
(dstmt, dvalue, duses) - 

defs(field, stmt) 
defs(fic!ld, dstmt) + 

(dstmt, dvalue, duses + (stmt, type, key)) 
create 2~ use u = 

(evall:f ield, key), stmt, type, key) 
add u to YORK. 

end AddUsc! 

Figure 15. AddUse. 

AddPhi(fic!ld, defb, web) 
if defb not in thru then 

add (field, web) to queuecdefb) 
else if 4 for field in useb then 

AddUse(field, firstcuseb), 
PHI, last(defb)) 

else 
neanodes + {} 
forall B in pred(useb) intersect thru do 

Add&e (f ield, first (useb) , PHI, last (B) ) 
nev:nodes c eval(f ield, last(B)) 
end 

AddDcE(field, useb, nevnodes) 
endif 

end AddPhi 

Figure 16. AddPhi. 

visited The basic blocks that have been placed on the 
queue at least once. 

thru The basic blocks that have been executed to comple- 
tion. 

lhs(s) Lhs expression of s. 

rhs(s) Rhs expression of s. 

pfx(e> Prefix Iof a selection expression. 

gel(e) Selector of a selection expression. A useful abuse of 
notation aill be “addr(x.sel(lhs(stmt)))“, meaning 
“use the field selector occurring in the left-hand side of 
stmt to pick a field of the SSG node x”. 

addr (e , S> Fie’lds/variables addressed by an expression. 

deref (f , S) Nodes reached by traversing arrows leaving the 
field or variable f. 

eval(e,S) {deref(f,S)lf E addr(e,S)}. 

Note that the parameter S is necessary to indicate the 
statement at which the expression, field, or variable 
is being evaluated. As an abuse of typing, singleton 
sets and single elements are used interchangeably where 
convenient. 

5.3 :I$. Bounds for the Efficient Algo- 

The size of the inverted data structure is dependent on the 
product of the number of nodes in the SSG (O(S f V)) 
and the size of the structures under them. Each assignment 
statement to a heap element (e.g. X.car + . . . ) can update 

AddDefcfield, stmt, value) 
(dstm, dval, duses) +- defscfield, stmt) 
uses + (u in duses I stmt dominates u} 
defstfield, dstm) 6 

(dstm, dval. duses-uses) 
defscfield, stmt> + (stmt, value, uses) 
forall u in uses do 

add u to YORK. 
end 
forall edges (bl,b2) in dfcstmt) do 

if def of field at stmt reaches last(b1) 
then AddPhi(field, bl, b2) 
endif 

end 
end AddDef 

Figure 17. AddDef. 

no more than O(T) nodes. An assignment to a variable can 
cause a merge of two nodes, which causes an update of all 
O(T + 1) nodes pointing to it. Each actual update may 
cause &functions to be added to the skeleton tree. These 
are at the dominance frontier of the update and recursively 
to the dominance frontiers of those &functions. This is 
exactly like adding an assignment to a program in SSA form 
and seeing how many more pseudo-assignments are added. 
Results in [CFR+ 89a, CFR+ 89b] show that in practice the 
number of pseudo-assignments per assignment tends to be 
a small constant. However, since in the worst. case it could 
be O(S), we call the average number of potential updates 
added P. The number of SSG nodes in all of the skeleton 
trees will be O(S x T x P). 

Since the number of edges is proportional to the overall 
running time of the algorithm and inversely proportional to 
the quality of the information gathered, it may be perfectly 
reasonable to abort the algorithm if the total number of 
edges approaches becoming quadratic, since the information 
would be quite poor. This can help ensure that T remains 
small. 

The cost of adding an update or potential update has 
two parts: updating the immediate node and propagating 
the effects to all new uses of the node. The most expensive 
part of updating a node is the potential insertion in the 
skeleton tree. With the sophisticated insertion algorithm, 
this takes O(log(S)), and thus the cost of update only for a 
node is O(S log(S) x T x P). Updating a variable can cause 
a merge and updates of nodes pointing at the merged node. 
The cost of updating the nodes pointing to the merged node 
is O(S log(S) XT x P); the cost of the merge itself depends on 
the number of fields Fin the node and is O(Slog(S) x FxP). 

The uses of a new edge can be found in time O(T x 

the number of uses of that node). For each use, if a variable 
node has just been updated, O(T) steps are done on the LHS 
and O(max(Tlog(S),T*)) on the right hand side to recom- 
pute the new set of nodes pointed to. If a heap node has just 
been updated, O(max(log(s), T)) steps are required. A node 
can be updated at most O(T) times. The O(S uses of vari- 
ables in the program contribute O(max(S x 4 ), ‘s lO.dS) x 
T*)) work. There are potentially O(S x T) uses of nodes, 
and they contribute O(max(S x p),Slog(S) x 57’)) work 
as well. Thus the time bound is O(max((Slog(S) x T x 
P),(Slog(S) x F x P),(S xp),Slog(S) xT2)). 

306 



6 Interprocedural Analysis 
Our method for interprocedural analysis is straightforward: 
we model procedure calls with a branch to get to the 
procedure, a labeled branch to return and assignments to 
model parameter passing. In this section we examine the 
details and the consequences of analyzing a program as a 
single procedure. 

A call becomes an assignment to a label, some assign- 
ments to model parameter passing and an assignment to 
a label variable of the location immediately following the 
call. A return is simply a case statement using the label 
and a jump. Thus, in each branch of the case statement 
in the flow graph, the case statement has edges leading to 
all locations following calls to the procedure, and we lose 
the information that a return is associated with a call. We 
have a different labeled variable for each procedure, and our 
graph reflects the fact that the return from procedure “f oo” 
cannot return to the statement following a call to a different 
procedure “bar”. (This is why we use a case statement 
rather than a labeled jump.) Modeling value or value returns 
via assignments is straightforward. The assignments for the 
return can be put in the case statement. 

At first one might think reference parameters should 
be modeled with pointers: any variable that is passed by 
reference becomes a pointer to a node holding the actual 
value that the programmer associates with the variable. 
Unfortunately, this interferes with our heuristics for keeping 
multiple copies of a node (see Section 4.1), so we suggest 
a different technique based on the observation (in [WZSS]) 
that, at least for the purposes of analysis, call by reference 
can be modeled by call by value-result and some extra 
assignments. There are three cases: 

1. If the call by reference parameter is never aliased with 
any other variable, then it can be replaced by a call by 
value-return parameter. 

2. If the call by reference parameter is always aliased with 
a set of variables, then it can be replaced by a call 
by value-return parameter. Any assignment to one of 
those variables is replaced by assignments to all of them; 
wherever possible, these assignments may be done using 
strong updates. 

3. If the call by reference parameter may sometimes be 
aliased with a set of variables, then for the purposes of 
analysis it can ‘be replaced by a call by value-return 
parameter. An assignment to one variable can be 
replaced by a may assignment to the other variables. 
For our analysis here, an assignment to one variable can 
be modeled as a weak update to all the other variables. 
At runtime, this must still be implemented as call by 
reference. 

The analysis to determine which parameters can be aliased 
can be performed by techniques given in [Bar78, Ban79, 
Bur87, CK88, Mye81, WZ88]: 

A major drawback of this analysis is that a procedure, 
which may be called from several places, may allocate cons 
nodes. Those nodes all come from the same static allocation 
statement and hence we have a single summary node for all 
of them. We can hope that the calling procedures all use the 
nodes in the same way and update them in similar ways, so 
that the analysis of one program section does not create an 
SSG more general than is needed by a different section. 

If a procedure allocates nodes and keeps those nodes 
pointed to by variables, the heuristics in Section 4.1 may 
keep those nodes separated from the summary node for that 
allocation site. This requires that the calling program also 

use variables to separate the nodes. However, there will still 
be only one summary node for all the nodes allocated in the 
called procedure. 

Procedures may be integrated into the program. This 
is particularly sensible where they are small and where they 
allocate only a few cons cells. The entities our technique 
analyzes are the individual cons sites. Consider a leaf 
procedure called from many places whose main purpose 
is to allocate (and possibly initialize) a piece of storage 
that is returned. We lose information if we don’t integrate 
the procedure. In the worst case, if the cons procedure 
itself is not integrated, then all distinction between different 
allocation sites will be lost. 

Interprocedural analysis algorithms have tended to use 
the following framework [Bar78, Ban79, Mye81, Bur87, 
Ca188, CK89]: 

1. A summary is built of each procedure that describes 
the effects of calling that procedure on the parameters 
and global variables. These summaries are generally 
pow-insensitive, i.e., they discard all of the information 
about paths within the procedure. 

2. A call graph is constructed. A call graph is a directed 
multigraph in which the nodes represent the procedures 
and there is an edge from procedure X to procedure Y 
for each call from X to Y. 

3. A data flow analysis problem is solved over the call 
graph using the summary information as the initial 
conditions. 

4. The interprocedural information computed in the pre- 
vious step is used to optimize each procedure. 

This framework has been justified through two assump 
tions: (1) little information is lost during by summarizing, 
and (2) even if the loss is substantial, you could not afford to 
do otherwise. While historically correct, we feel that these 
assumptions need to be reassessed. 

Our analysis associates the information with the indi- 
vidual cons sites on the assumption that memory from 
different cons sites is used in different ways. Flow- 
insensitive summaries destroy such knowledge. 

Most modern machines have substantial amounts of real 
memory and extremely large virtual address spaces. On 
such machines, performing summarization to save space 
is unnecessary. 

Algorithms based on propagating bit-vectors have 
quadratic time bounds at best (the width of the bit 
vector times the number of nodes in the call graph). 
With nonlinear algorithms, care must be taken to limit 
growth in the significant parameters. We expect our 
algorithm to be much more efficient than previous 
algorithms; thus the number of nodes can grow in 
a reasonable way without the performance becoming 
unreasonable. 

In order to take advantage of the expected sparseness 
in the information, our algorithm uses explicit lists 
of edges rather than bit-vectors. The speed of our 
algorithm (and the quality of the information gathered) 
is inversely proportional to total size of these lists: the 
smaller the list, the faster the algorithm runs (and the 
better the information discovered). This has the follow- 
ing counterintuitive property: an algorithm using the 
non-summarized version (which may be considerably 



larger than a summarized version) may actually perform 
better because the higher-quality fixed point is closer to 
the initial conditions. 

While we generally expect our algorithm to be linear, 
one case raises some concern: if one kind of data structure 
that has been allocated at many points in the program is 
manipulated by a single function, that function may be 
expensive to analyze. This is because the variables within 
that function may point to a large number of nodes, each of 
which has beer. allocated at a different allocate statement. 

7 Comparison With Other Work 
Extant techniques view the program as a generator of data 
structures. Each cons statement in the program adds nodes 
to the data structure. When the size of the data structure ex- 
ceeds some bound, these nodes are combined into summary 
nodes. The limit on graph size is often based on a bound, 
k, on the maximum acyclic path length [Sch75a, Sch75b, 
JM81, Rug87, RM88, LH88, Lar89, HPR89], hence these 
are called k-bounded techniques. If the data structures being 
analyzed are recursive, the size of the data structure will be 
unbounded. Therefore, graphs for programs with recursive 
data structures; must contain summarized components. 

As an example, consider the first loop in the program in 
Figure 2 with the path length bounded to three cons nodes. 
At the end of the second iteration of the loop, a summary is 
required. The i;raph before summary is shown in Figure 18. 
Summarization must discover a shorter representation for 

-2 
w 2 1 
X nil 

2 

%siz 
1 
nil 

Figure 18. Before summary. 

-+2 

w 

s- 
X 

ELF 

1 
nil 

Figure 19. Two possible truncations. 

this list that still contains all paths in this list. Figure 19 
shows two possible truncations of this list. Existing trunca- 
tion processes shorten the list as little as possible, and hence 
end up with the right-hand alternative. However, the left- 
hand alternative (which is what we obtain) contains more 
useful information because it retains the periodic structure 
of the list. 

The k-bounded techniques have several disadvantages: 

l Choosing to limit path length or node label size to k 
makes possible a blowup exponential in k; a complete 
binary tree of depth k contains 2k - 1 nodes. In practice 
k is chosen very small (2 or 3) so blowup is not a 
problem, but this choice greatly reduces the amount of 
information that can be retained. 

Choosing to summarize together all nodes deeper than 
k in a data structure ignores any hints provided by 
program structure. When summarizing, it is useful to 
combine nodes with similar attributes so that as little 
information as possible is lost in their meet. Two nodes 
allocated at the same statement are more likely (we 
believe) to be similar than two nodes occurring deep 
within a data structure, and the analysis should take 
advantage of this. 

k-bounded truncation makes it difficult to maintain 
information about the elements of a list. Truncation 
is typically done at the deepest node in the structure: 
all nodes deeper than k are merged into their immediate 
ancestor. When this ancestor is a node in the spine of 
the list, the structure and abasing of the elements of 
the list are summarized with the structure and aliasing 
of the list spine. The result provides little information 
about list or element structure. 

For example, consider truncation of the graph shown 
in Figure 20, where the deepest cons node is 
X.cdr.cclr.car. A naive truncation of that tree, shown 
in Figure 21, summarizes the node with its parent, in- 
troducing a cycle to describe a structure that is not only 
acyclic but also of small bounded size. Any differences 
in the attributes of the list spine and the list elements 
are also lost. Figure 22 shows the final summary after 
continued growth of the list. 

Figure 20. List before summary. 

Figure 21. A bad summary. 

Figure 22. Summary after additional growth. 

The process of truncation is fairly complex (and differs 
greatly among those papers that use the technique). 

The method described in this paper has none of these .~ 
drawbacks. Nodes combined in the same summary are alIo- 
cated at the same site (thus exploiting program structure); 
the elements of a list are (typically) summarized separately 
from the spine of the list; the truncation process is simple. 

Jones and Muchnick [JM82] were the first to describe 
a method for analysis of unbounded data structures based 

308 



on summarizing multiple nodes in a data structure into a 
single node based on a fixed node set. However, their model 
does not include updates. In one example, they, like us, 
choose summary nodes based on points in the program. 
They attempt to get information that is more precise than 
ours, but at a substantial time cost. 

Work by Chase [Cha87] uses similar techniques for 
choosing nodes for summaries, but does not provide an 
efficient algorithm (O(n’) for programs with side effects, 
where n is the number of statements in the program), 
and does not address strong updates or the association of 
additional attributes with graph nodes. Ruggieri [Rug871 
provides a complexity result of O(lVl” x ISI x n), where 
S is the number of allocation sites, n is the number of 
statements in a program, and V is the number of variables 
and “subvariables” (but in the worst case IV1 is exponential 
in a parameter k). 

k-bounded methods described by Larus [LH88, Lar89] 
can obtain strong updates in some situations. His conditions 
for strong update are similar to ours; he does not discuss the 
constraints placed by strong update on the order in which 
statements are processed. Other work appears not to discuss 
strong updates. 

For languages with side effects, only Hendren’s tech- 
nique [HN89] automatically discovers that recursive data 
structures are unshared (i.e., lists and trees). This informa- 
tion is very important; given declarations identifying true 
lists and trees, Larus has performed additional analysis and 
useful optimizations on Lisp functions manipulating linked 
data structures [Lar89]. Hendren’s work discovers trees and 
DAGs for use in dependence analysis. It is not clear whether 
her work can be easily extended to provide lifetime analysis 
or to allow value approximation within heap cells, or if it 
can obtain the information provided by extended models of 
references counting. 

Deutsch [DeuSO] describes a similar analysis for strict 
higher-order functional languages with lexical scoping, poly- 
morphism, and first-class continuations. He does not treat 
side-effects (there are none) and doesn’t address efficiency of 
analysis. 

Stransky also proposes a similar analysis in his the- 
sis [Str88], but we are unable to compare our work with 
his because our French is not adequate. His work appears 
not to address strong updates, tree detection, or efficient 
algorithms. 

8 Future Work 
While there are many aspects of the analysis problem that 
we have addressed, we realize that there are still many 
unresolved issues: 

Implementation: We have made some assumptions 
about the sparseness of certain structures. Based on these 
assumptions, we have developed techniques and data struc- 
tures that we feel may perform well in practice. Mea- 
surements of real programs are necessary to prove these 
assumptions. 

Enhancements to the information: Programs often 
take a pre-existing data structure and modify it. For ex- 
ample, we do not get very good information when analyzing 
a program that reverses a list in place. There are at least 
two problems. (1) We h ave restricted ourselves to using 
only one summary node. As the list is reversed, we need 
to have one summary node for the elements that we have 
finished processing and one for those we have yet to start 
processing. These two nodes cannot be merged and retain 
the information we want. (2) We need to make strong 
updates to the node whose fields we are reversing in this 

iteration of the loop. Doing so requires a single-instance 
node. We need a mechanism for unmerging a summary node 
into a summary and a single-instance node. 

While we can fit multiple summaries and unmerging 
into our framework, we must develop the mechanisms that 
trigger their use in a wide variety of programs. We have 
developed mechanisms which work on isolated examples, but 
a good general mechanism has so far eluded us. 

Telling the programmer: The information that we au- 
tomatically collect may help programmers understand what 
their program does. Currently data structure editors help 
give an idea of what a dynamically produced data structure 
looks like. It is possible that an editor could be built on 
top of the technology discussed in this paper to look at all 
possible data structures buildable by a program. 

9 Conclusion 

The analysis presented above obtains useful information 
about linked data structures. We summarize unbounded 
data structures by taking advantage of structure present 
in the original program. The worst-case time bounds for 
a naive algorithm are high-degree polynomial, but for the 
expected (sparse) case we have an efficient algorithm. Pre- 
vious work has addressed time bounds rarely, and efficient 
algorithms not at all. 

The quality of information obtained by this analysis 
appears to be (generally) better than what is obtained by 
existing techniques. A simple extension obtains abasing 
information for entire data structures that previously could 
be obtained only through declarations. Previous work by 
Larus has shown that this information allows worthwhile 
optimization. 

We believe that practical analyses based on this work 
can be used in compilers for languages that provide linked 
data structures. 

References 

[Ban791 

[Bar771 

[Bar781 

[BH88] 

[Bur87] 

[CalSS] 

J. B. Banning. An efficient way to find the 
side effects of procedure calls and the aliases 
of variables. Conf. Rec. Sixth ACM Symp. on 
Principles of Programming Languages, pages 
29-41, January 1979. 
J. M. Barth. Shifting garbage collection over- 
head to compile time. Comm. ACM, 20(7):513- 
518, July 1977. 

J. M. Barth. A practical interprocedural 
data flow analysis algorithm. Comm. ACM, 
21(9):724-736, September 1978. 

H.-J. Boehm and L. Hederman. Storage allo- 
cation optimization in a compiler for Russell. 
Submitted for publication, July 1988. 

M. Burke. An interval-based approach to ex- 
haustive and incremental data flow analysis. 
Technical Report 12702, IBM, Yorktown Hts., 
New York, September 1987. 

D. Callahan. The program summary graph and 
flow-sensitive interprocedural data flow analy- 
sis. Proc. SIGPLAN’88 Symp. on Compiler 
Construction, 23(7):47-56, July 1988. 

[CFR+89a] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Weg- 
man, and F. K. Zadeck. An efficient method of 
computing static single assignment form. Conf. 
Rec. Sixteenth ACM Symp. on Principles of 
Programming Languages, pages 25-35, January 
1989. 

309 



[CFRt89b] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Weg- 
man, and F. K. Zadeck. Efficiently computing 

[CG77] 

[Cha87] 

[CK88] 

[CK89] 

[CWZSO] 

[DB76] 

[DeuSO] 

[Wed881 

[HN89] 

[HPRSS] 

[Hud86] 

[JM81] 

[JM82] 

[Lar89] 

static single assignment form and the control 
dependence graph. Technical Report RC 14756, 
IBM, July 1989. 

D. W. Clark and C. C. Green. An empirical 
study of list structure in LISP. Comm. ACM, 
20(:2):78-87, February 1977. 

D. R. Chase. Garbage Collection and Other 
O~timitotions. PhD thesis, Dept. of Computer 
Sci., Rice U., August 1987. 

K. D. Cooper and K. Kennedy. Interproce- 
du:ral side-effect analysis in linear time. Proc. 
SIGPLA N’88 Symp. on Compiler Construction, 
pages 57-66, June 1988. Published as SIG- 
PLAN Notices Vol. 23, Num. 7. 

K. D. Cooper and K. W. Kennedy. Fast inter- 
procedural alias analysis. Conf. Rec. Sizteenth 
ACM Symp. on Principles of Programming Lan- 
guages, pages 49-59, January 1989. Austin, 
Te:uas. 

D. R. Chase, W. Wegman, and F. K. Zadeck. 
Fast insertion, deletion, and lookup in sparse 
ansestor trees. Technical Report CS-90-07, 
Dept. of Computer Sci., Brown U., March 1990. 

L. Peter Deutsch and Daniel G. Bobrow. An 
efficient, incremental, automatic garbage collec- 
to1. Comm. ACM, 19(9):522-526, September 
1976. 

A. Deutsch. On determining lifetime and alias- 
in@, of dynamically allocated data in higher- 
order functional specifications. Conf. Rec. Seu- 
en teenth ACM Symp. on Principles of Program- 
ming Languages, pages 157-168, January 1990. 

L. Hederman. Compile time garbage collection. 
Master’s thesis, Dept. of Computer Sci., Rice 
U., 1988. 
L. J. Hendren and A. Nicolau. Parallelizing 
programs with recursive data structures. Proc. 
1989 International Conf. on Parallel Process- 
ing, 11:49-56, 1989. 

S. Horwitz, P. Pfeiffer, and T. Reps. De- 
pe:ndence analysis for pointer variables. Proc. 
SIGPLAN’89 Symp. on Compiler Construction, 
June 1989. Published as SIGPLAN Notices Vol. 
24. Num. 7. 

P. Hudak. A semantic model of reference count- 
ing and its abstraction. In SIGPLAN Sym- 
posium on LISP and Functional Programming, 
pages 351-363, 1986. 

N. D. Jones and S. S. Muchnick. Flow analysis 
and optimization of LISP-like structures. In 
S. S. Muchnick and N. D. Jones, editors, Pro- 
grtrm Flow Analysis, chapter 4, pages 102-131. 
Prentice-Hall, 1981. 

N. D. Jones and S. S. Muchnick. A flexible 
approach to interprocedural data flow analysis 
and programs with recursive data structures. 
Conf. Rec. Ninth ACM Symp. on Principles of 
Programming Languages, January 1982. 

J. R. Larus. Restructuring symbolic programs 
for, concurrent execution on multiprocessors. 
Technical Report UCB/CSD 89/502, Computer 
Sci. Dept., U. of California at Berkeley, Berke- 
ley; CA, May 1989. 

[LH88] 

[My4 

[RM88] 

[Rov85] 

PWW 

[Sch75a] 

[Sch75b] 

[SCN84] 

[Str88] 

Weg751 

[WZ88] 

J. R. Larus and P. N. Hilfinger. Detecting 
conflicts between structure accesses. Proc. 
SIGPLA N’88 Symp. on Compiler Construction, 
pages 21-34, July 1988. Published as SIGPLAN 
Notices Vol. 23, Num. 7. 
E. W. Myers. A precise interprocedural data 
flow algorithm. Conf. Rec. Eighth ACM Symp. 
on Principles of Programming Languages, pages 
219-230, January 1981. 
C. Ruggieri and T. P. Murtagh. Lifetime analy- 
sis of dynamically allocated objects. Conf. Rec. 
Fifteenth ACM Symp. on Principles of Pro- 
gramming Languages, pages 285-293, January 
1988. 
P. Rovner. On adding garbage collection and 
runtime types to a strongly-typed, statically 
checked, concurrent language. Technical Report 
CSL-84-7, Xerox Palo Alto Research Center, 
Palo Alto, Ca. 94304, 1985. 
C. Ruggieri. Dynamic Memory Allocation Tech- 
niques Based on the Lifetimes of Objects. PhD 
thesis, Purdue University, August 1987. 
J. T. Schwartz. Optimization of very high level 
languages-I: Value transmission and its corol- 
laries. Computer Languages, 1:161-194, 1975. 
J. T. Schwartz. Optimization of very high level 
languages-II: Deducing relationships of inclu- 
sion and membership. Computer Languages, 
1:197-218, 1975. 
W. R. Stoye, T. J. W. Clarke, and A. C. 
Norman. Some practical methods for rapid 
combinator reduction. SIGPLAN Symposium 
on LISP and Functional Programming, pages 
159-166, 1984. 
J. Stransky. Analyse skmantique de structures 
de donne’es dynomiques auec application au cas 
particulier de langages LISPiens. PhD thesis, 
UniversitC de Paris-Sud, Centre d’orsay, June 
1988. 
B. Wegbreit. Property extraction in well- 
founded property sets. IEEE Trans. on Soft- 
ware Engineering, SE-1(3):270-285, September 
1975. 
M. N. Wegman and F. K. Zadeck. Constant 
propagation with conditional branches. Techni- 
cal Report CS-88-02, Dept. of Computer Sci., 
Brown U., February 1988. 

310 


