
62 COMMUNICATIONS OF THE ACM | AUGUST 2019 | VOL. 62 | NO. 8

contributed articles

STATIC ANALYSIS TOOLS are programs that examine, and
attempt to draw conclusions about, the source of other
programs without running them. At Facebook, we
have been investing in advanced static analysis tools
that employ reasoning techniques similar to those
from program verification. The tools we describe in
this article (Infer and Zoncolan) target issues related
to crashes and to the security of our services, they
perform sometimes complex reasoning spanning
many procedures or files, and they are integrated into
engineering workflows in a way that attempts to bring
value while minimizing friction.

These tools run on code modifications, participating
as bots during the code review process. Infer targets
our mobile apps as well as our backend C++ code,
codebases with 10s of millions of lines; it has seen
over 100 thousand reported issues fixed by developers
before code reaches production. Zoncolan targets the
100-million lines of Hack code, and is additionally

integrated in the workflow used by se-
curity engineers. It has led to thousands
of fixes of security and privacy bugs, out-
performing any other detection method
used at Facebook for such vulnerabili-
ties. We will describe the human and
technical challenges encountered and
lessons we have learned in developing
and deploying these analyses.

There has been a tremendous
amount of work on static analysis,
both in industry and academia, and we
will not attempt to survey that material
here. Rather, we present our rationale
for, and results from, using techniques
similar to ones that might be encoun-
tered at the edge of the research litera-
ture, not only simple techniques that
are much easier to make scale. Our
goal is to complement other reports
on industrial static analysis and formal
methods,1,6,13,17 and we hope that such
perspectives can provide input both to
future research and to further indus-
trial use of static analysis.

Next, we discuss the three dimen-
sions that drive our work: bugs that
matter, people, and actioned/missed
bugs. The remainder of the article de-
scribes our experience developing and
deploying the analyses, their impact,
and the techniques that underpin our
tools.

Context for Static
Analysis at Facebook
Bugs that Matter. We use static analysis to
prevent bugs that would affect our prod-
ucts, and we rely on our engineers’ judg-
ment as well as data from production to
tell us the bugs that matter the most.

Scaling Static
Analyses
at Facebook

DOI:10.1145/3338112

Key lessons for designing static analyses tools
deployed to find bugs in hundreds of millions
of lines of code.

BY DINO DISTEFANO, MANUEL FÄHNDRICH,
FRANCESCO LOGOZZO, AND PETER W. O’HEARN

 key insights
˽˽ Advanced static analysis techniques

performing deep reasoning about
source code can scale to large
industrial codebases, for example, with
100-million LOC.

˽˽ Static analyses should strike a balance
between missed bugs (false negatives)
and un-actioned reports (false positives).

˽˽ A “diff time” deployment, where issues
are given to developers promptly as part
of code review, is important to catching
bugs early and getting high fix rates.

http://dx.doi.org/10.1145/3338112

AUGUST 2019 | VOL. 62 | NO. 8 | COMMUNICATIONS OF THE ACM 63

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 S
H

U
T

T
E

R
S

T
O

C
K

It is important for a static analysis
developer to realize that not all bugs
are the same: different bugs can have
different levels of importance or sever-
ity depending on the context and the
nature. A memory leak on a seldom-
used service might not be as important
as a vulnerability that would allow at-
tackers to gain access to unauthorized
information. Additionally, the frequency
of a bug type can affect the decision of
how important it is to go after. If a cer-
tain kind of crash, such as a null point-
er error in Java, were happening hourly,
then it might be more important to tar-
get than a bug of similar severity that
occurs only once a year.

We have several means to collect
data on the bugs that matter. First of
all, Facebook maintains statistics on
crashes and other errors that hap-
pen in production. Second, we have a
“bug bounty” program, where people
outside the company can report vul-

nerabilities on Facebook, or on apps
of the Facebook family; for example,
Messenger, Instagram, or WhatsApp.
Third, we have an internal initiative
for tracking the most severe bugs
(SEV) that occur.

Our understanding of Bugs that
Matter at Facebook drives our focus
on advanced analyses. For contrast, a
recent paper states: “All of the static
analyses deployed widely at Google
are relatively simple, although some
teams work on project-specific analysis
frameworks for limited domains (such
as Android apps) that do interproce-
dural analysis”17 and they give their en-
tirely logical reasons. Here, we explain
why Facebook made the decision to
deploy interprocedural analysis (span-
ning multiple procedures) widely.

People and deployments. While
not all bugs are the same, neither are
all users; therefore, we use different
deployment models depending on the

intended audience (that is, the people
the analysis tool will be deployed to).

For classes of bugs intended for all
or a wide variety of engineers on a given
platform, we have gravitated toward a
“diff time” deployment, where analyz-
ers participate as bots in code review,
making automatic comments when
an engineer submits a code modifica-
tion. Later, we recount a striking situ-
ation where the diff time deployment
saw a 70% fix rate, where a more tradi-
tional “offline” or “batch” deployment
(where bug lists are presented to engi-
neers, outside their workflow) saw a 0%
fix rate.

In case the intended audience is the
much smaller collection of domain se-
curity experts in the company, we use
two additional deployment models. At
“diff time,” security related issues are
pushed to the security engineer on-call,
so she can comment on an in-progress
code change when necessary. Addition-

64 COMMUNICATIONS OF THE ACM | AUGUST 2019 | VOL. 62 | NO. 8

contributed articles

crashes and app not-responding events
that occur on mobile devices.

The actioned reports and missed
bugs are related to the classic concepts
of true positives and false negatives from
the academic static analysis literature. A
true positive is a report of a potential bug
that can happen in a run of the program
in question (whether or not it will hap-
pen in practice); a false positive is one
that cannot happen. Common wisdom
in static analysis is that it is important
to keep control of the false positives be-
cause they can negatively impact engi-
neers who use the tools, as they tend to
lead to apathy toward reported alarms.
This has been emphasized, for instance,
in previous Communications’ articles on
industrial static analysis.1,17 False nega-
tives, on the other hand, are potentially
harmful bugs that may remain unde-
tected for a long time. An undetected
bug affecting security or privacy can lead
to undetected exploits. In practice, fewer
false positives often (though not always)
implies more false negatives, and vice
versa, fewer false negatives implies
more false positives. For instance, one
way to reign in false positives is to fail
to report when you are less than sure a
bug will be real; but silencing an analy-
sis in this way (say, by ignoring paths
or by heuristic filtering) has the effect of
missing bugs. And, if you want to discov-
er and report more bugs you might also
add more spurious behaviors.

The reason we are interested in
advanced static analyses at Facebook
might be understood in classic terms
as saying: false negatives matter to us.
However, it is important to note the
number of false negatives is notori-
ously difficult to quantify (how many
unknown bugs are there?). Equally,

though less recognized, the false posi-
tive rate is challenging to measure for
a large, rapidly changing codebase: it
would be extremely time consuming
for humans to judge all reports as false
or true as the code is changing.

Although true positives and false
negatives are valuable concepts, we
don’t make claims about their rates
and pay more attention to the action
rate and the (observed) missed bugs.

Challenges: Speed, scale, and accuracy. A
first challenge is presented by the sheer
scale of Facebook’s codebases, and the
rate of change they see. For the server-
side, we have over 100-million lines of
Hack code, which Zoncolan can process
in less than 30 minutes. Additionally,
we have 10s of millions of both mobile
(Android and Objective C) code and
backend C++ code. Infer processes the
code modifications quickly (within 15
minutes on average) in its diff time de-
ployment. All codebases see thousands
of code modifications each day and our
tools run on each code change. For Zon-
colan, this can amount to analyzing one
trillion lines of code (LOC) per day.

It is relatively straightforward to
scale program analyses that do simple
checks on a procedure-local basis only.
The simplest form is linters, which give
syntactic style advice (for example, “the
method you called is to be deprecated,
please consider rewriting”). Such simple
checks provide value and are in wide de-
ployment in major companies including
Facebook; we will not comment on them
further in this article. But for more rea-
soning going beyond local checks, such
as one would find in the academic litera-
ture on static analysis, scaling to 10s or
100s of millions of LOC is a challenge, as
is the incremental scalability needed to
support diff time reporting.

Infer and Zoncolan both use tech-
niques similar to some of what one
might find at the edge of the research
literature. Infer, as we will discuss,
uses one analysis based on the theory
of Separation Logic,16 with a novel the-
orem prover that implements an infer-
ence technique that guesses assump-
tions.5 Another Infer analysis involves
recently published research results on
concurrency analysis.2,10 Zoncolan im-
plements a new modular parallel taint
analysis algorithm.

But how can Infer and Zoncolan
scale? The core technical features they

ally, for finding all instances of a given
bug in the codebase or for historical ex-
ploration, offline inspection provides
a user interface for querying, filtering,
and triaging all alarms.

In all cases, our deployments focus
on the people our tools serve and the
way they work.

Actioned reports and missed bugs.
The goal of an industrial static analysis
tool is to help people: at Facebook, this
means the engineers, directly, and the
people who use our products, indirect-
ly. We have seen how the deployment
model can influence whether a tool
is successful. Two concepts we use to
understand this in more detail, and to
help us improve our tools, are actioned
reports and observable missed bugs.

The kind of action taken as a result
of a reported bug depends on the de-
ployment model as well as the type of
bug. At diff time an action is an up-
date to the diff that removes a static
analysis report. In Zoncolan’s offline
deployment a report can trigger the
security expert to create a task for the
product engineer if the issue is im-
portant enough to follow up with the
product team. Zoncolan catches more
SEVs than either manual security re-
views or bug bounty reports. We mea-
sured that 43.3% of the severe security
bugs are detected via Zoncolan. At
press time, Zoncolan’s “action rate” is
above 80% and we observed about 11
“missed bugs.”

A missed bug is one that has been
observed in some way, but that was not
reported by an analysis. The means of
observation can depend on the kind of
bug. For security vulnerabilities we have
bug bounty reports, security reviews, or
SEV reviews. For our mobile apps we log

Figure 1. Continuous development.

Code Reviewers

Diff Time Post Land

Developer CI System CI System ProductCode Review

AUGUST 2019 | VOL. 62 | NO. 8 | COMMUNICATIONS OF THE ACM 65

contributed articles

WhatsApp—are mostly written in Objec-
tive-C and Java. C++ is the main language
of choice for backend services. There are
10s of millions of lines each of mobile
and backend code.

While they use the same develop-
ment models, the website and mobile
products are deployed differently. This
affects what bugs are considered most
important, and the way that bugs can be
fixed. For the website, Facebook directly
deploys new code to its own datacenters,
and bug fixes can be shipped directly to
our datacenters frequently, several times
daily and immediately when necessary.
For the mobile apps, Facebook relies
on people to download new versions to
from the Android or the Apple store; new
versions are shipped weekly, but mobile
bugs are less under our control because
even if a fix is shipped it might not be
downloaded to some people’s phones.

Common runtime errors—for exam-
ple, null pointer exceptions, division by
zero—are more difficult to get fixed on
mobile than on the server. On the other
hand, server-side security and privacy
bugs can severely impact both the users
of the Web version of Facebook as well
as our mobile users, since the privacy
checks are performed on the server-side.
As a consequence, Facebook invests in
tools to make the mobile apps more re-
liable and server-side code more secure.

Moving Fast with Infer
Infer is a static analysis tool applied
to Java, Objective C, and C++ code at
Facebook.4 It reports errors related to
memory safety, to concurrency, to se-
curity (information flow), and many
more specialized errors suggested by
Facebook developers. Infer is run inter-
nally on the Android and iOS apps for
Facebook, Instagram, Messenger, and
WhatsApp, as well as on our backend
C++ and Java code.

Infer has its roots in academic re-
search on program analysis with sepa-
ration logic,5 research, which led to a
startup company (Monoidics Ltd.) that
was acquired by Facebook in 2013. In-
fer was open sourced in 2015 (www.
fbinfer.com) and is used at Amazon,
Spotify, Mozilla, and other companies.

Diff-time continuous reasoning. In-
fer’s main deployment model is based
on fast incremental analysis of code
changes. When a diff is submitted to
code review an instance of Infer is run

share are compositionality and careful-
ly crafted abstractions. For most of this
article we will concentrate on what one
gets from applying Infer and Zoncolan,
rather than on their technical proper-
ties, but we outline their foundations
later and provide more technical de-
tails in an online appendix (https://
dl.acm.org/citation.cfm?doid=333811
2&picked=formats).

The challenge related to accuracy is
intimately related to actioned reports
and missed bugs. We try to strike a bal-
ance between these issues, informed
by the desires based on the class of
bugs and the intended audience. The
more severe a potentially missed issue
is, the lower the tolerance for missed
bugs. Thus, for issues that indicate a
potential crash or performance regres-
sion in a mobile app such as Messen-
ger, WhatsApp, Instagram, or Face-
book, our tolerance for missed bugs is
lower than, for example, stylistic lint
suggestions (for example, don’t use
deprecated method). For issues that
could affect the security of our infra-
structure or the privacy of the people
using our products, our tolerance for
false positives is higher still.

Software Development at Facebook
Facebook practices continuous soft-
ware development,9 where a main
codebase (master) is altered by thou-
sands of programmers submitting
code modifications (diffs). Master and
diffs are the analogues of, respectively,
GitHub master branch and pull re-
quests. The developers share access to
a codebase and they land, or commit, a
diff to the codebase after passing code
review. A continuous integration system
(CI system) is used to ensure code con-
tinues to build and passes certain tests.
Analyses run on the code modification
and participate by commenting their
findings directly in the code review tool.

The Facebook website was originally
written in PHP, and then ported to Hack,
a gradually typed version of PHP devel-
oped at Facebook (https://hacklang.
org/). The Hack codebase spans over 100
million lines. It includes the Web fron-
tend, the internal web tools, the APIs to
access the social graph from first- and
third-party apps, the privacy-aware data
abstractions, and the privacy control log-
ic for viewers and apps. Mobile apps—
for Facebook, Messenger, Instagram and

The reason
we are interested
in advanced static
analyses
at Facebook might
be understood in
classic terms:
false negatives
matter to us.

66 COMMUNICATIONS OF THE ACM | AUGUST 2019 | VOL. 62 | NO. 8

contributed articles

assigned them to the developers we
thought best able to resolve them.

The response was stunning: we were
greeted by near silence. We assigned
20–30 issues to developers, and almost
none of them were acted on. We had
worked hard to get the false positive
rate down to what we thought was less
than 20%, and yet the fix rate—the pro-
portion of reported issues that devel-
opers resolved—was near zero.

Next, we switched Infer on at diff
time. The response of engineers was just
as stunning: the fix rate rocketed to over
70%. The same program analysis, with
same false positive rate, had much great-
er impact when deployed at diff time.

While this situation was surprising
to the static analysis experts on the
Infer team, it came as no surprise to
Facebook’s developers. Explanations
they offered us may be summarized in
the following terms:

One problem that diff-time deploy-
ment addresses is the mental effort of
context switch. If a developer is working
on one problem, and they are confront-
ed with a report on a separate problem,
then they must swap out the mental con-
text of the first problem and swap in the
second, and this can be time consum-
ing and disruptive. By participating as a
bot in code review, the context switch
problem is largely solved: program-
mers come to the review tool to dis-
cuss their code with human reviewers,
with mental context already swapped
in. This also illustrates how important
timeliness is: if a bot were to run for an
hour or more on a diff it could be too
late to participate effectively.

A second problem that diff-time de-
ployment addresses is relevance. When

an issue is discovered in the codebase,
it can be nontrivial to assign it to the
right person. In the extreme, somebody
who has left the company might have
caused the issue. Furthermore, even
if you think you have found someone
familiar with the codebase, the issue
might not be relevant to any of their
past or current work. But, if we com-
ment on a diff that introduces an issue
then there is a pretty good (but not per-
fect) chance that it is relevant.

Mental context switch has been
the subject of psychological studies,12
and it is, along with the importance
of relevance, part of the received col-
lective wisdom impressed upon us by
Facebook’s engineers. Note that others
have also remarked on the benefits of
reporting during code review.17

At Facebook, we are working actively
on moving other testing technologies to
diff time when possible. We are also sup-
porting academics on researching incre-
mental fuzzing and symbolic execution
techniques for diff time reporting.

Interprocedural bugs. Many of the
bugs that Infer finds involve reasoning
that spans multiple procedures or files.
An example from OpenSSL illustrates:

apps/ca.c:2780: NULL _ DEREFERENCE

pointer ‘revtm’ last assigned on line

2778 could be null

and is dereferenced at line 2780, col-

umn 6

2778. revtm = X509 _ gmtime _ adj(NULL, 0);

2779.

2780. i = revtm->length + 1;

The issue is that the procedure
X509 _ gmtime _ adj() can return
null in some circumstances. Overall,

in Facebook’s internal CI system (Fig-
ure 1). Infer does not need to process
the entire codebase in order to analyze
a diff, and so is fast.

An aim has been for Infer to run in
15min–20min on a diff on average,
and this includes time to check out the
source repository, to build the diff, and
to run on base and (possibly) parent
commits. It has typically done so, but
we constantly monitor performance
to detect regressions that makes it
take longer, in which case we work to
bring the running time back down. Af-
ter running on a diff, Infer then writes
comments to the code review system.
In the default mode used most often
it reports only regressions: new issues
introduced by a diff. The “new” issues
are calculated using a bug equivalence
notion that uses a hash involving the
bug type and location-independent
information about the error message,
and which is sensitive to file moves and
line number changes cause by refactor-
ing, deleting, or adding code; the aim is
to avoid presenting warnings that de-
velopers might regard as pre-existing.
Fast reporting is important to keep in
tune with the developers’ workflows.
In contrast, when Infer is run in whole-
program mode it can take more than an
hour (depending on the app)—too slow
for diff-time at Facebook.

Human factors. The significance of
the diff-time reasoning of Infer is best
understood by contrast with a failure.
The first deployment was batch rather
than continuous. In this mode Infer
would be run once per night on the
entire Facebook Android codebase,
and it would generate a list of issues.
We manually looked at the issues, and

Figure 2. A simple example capturing a common safety pattern used in Android apps.

Threading information is used to limit the amount of synchronization required. As a comment
from the original code explains: “mCount is written to only by the main thread with the lock held,
read from the main thread with no lock held, or read from any other thread with the lock held.”
Bottom: unsafe additions to RaceWithMainThread .java.

AUGUST 2019 | VOL. 62 | NO. 8 | COMMUNICATIONS OF THE ACM 67

contributed articles

neers—it had to be fast, with actionable
reports, and not too many missed bugs
on product code (but not on infrastruc-
ture code).2,15 The tool borrowed ideas
from concurrent separation logic, but
we gave up on the ideal of proving ab-
solute race freedom. Instead, we estab-
lished a ‘completeness’ theorem saying
that, under certain assumptions, a the-
oretical variant of the analyzer reports
only true positives.10

The analysis checks for data races in
Java programs—two concurrent memo-
ry accesses, one of which is a write. The
example in Figure 2 (top) illustrates: If
we run the Infer on this code it doesn’t
find a problem. The unprotected read
and the protected write do not race be-
cause they are on the same thread. But,
if we include additional methods that
do conflict, then Infer will report races,
as in Figure 2, bottom.

Impact. Since 2014, Facebook’s devel-
opers have resolved over 100,000 issues
flagged by Infer. The majority of Infer’s
impact comes from the diff-time deploy-
ment, but it is also run batch to track is-
sues in master, issues addressed in fix-
athons and other periodic initiatives.

The RacerD data race detector saw
over 2,500 fixes in the year to March
2018. It supported the conversion of
Facebook’s Android app from a single-
threaded to a multithreaded architec-
ture by searching for potential data rac-
es, without the programmers needing
to insert annotations for saying which
pieces of memory are guarded by what
locks. This conversion led to an im-
provement in scroll performance and,
speaking about the role of the analyzer,
Benjamin Jaeger, an Android engineer at
Facebook, stated:b “without Infer, multi-
threading in News Feed would not have
been tenable.” As of March 2018, no An-
droid data race bugs missed by Infer had
been observed in the previous year (mod-
ulo 3 analyzer implementation errors.)2

The fix rate for the concurrency
analysis to March 2018 was roughly
50%, lower than for the previous gen-
eral diff analysis. Our de velopers have
emphasized that they appreciate the
reports because concurrency errors are
difficult to debug. This illustrates our
earlier points about balancing action
rates and bug severity. See Blackshear
et al.2 for more discussion on fix rates.

b	 https://bit.ly/2xurbMl

the error trace found by Infer has 61
steps, and the source of null, the call to
X509 _ gmtime _ adj() goes five pro-
cedures deep and it eventually encoun-
ters a return of null at call-depth 4. This
bug was one of 15 that we reported to
OpenSSL which were all fixed.

Infer finds this bug by performing
compositional reasoning, which al-
lows covering interprocedural bugs
while still scaling to millions of LOC.
It deduces a precondition/postcondi-
tion specification approximating the
behavior of X509 _ gmtime _ adj,
and then uses that specification when
reasoning about its calls. The specifi-
cation includes 0 as one of the return
values, and this triggers the error.

In 2017, we looked at bug fixes in
several categories and found that for
some (null dereferences, data races,
and security issues) over 50% of the
fixes were for bugs with traces that were
interprocedural.a The interprocedural
bugs would be missed bugs if we only
deployed procedure-local analyses.

Concurrency. A concurrency capabili-
ty recently added to Infer, the RacerD
analysis, provides an example of the ben-
efit of feedback between program analy-
sis researchers and product engineers.2,15
Development of the analysis started in
early 2016, motivated by Concurrent Sep-
aration Logic.3 After 10 months of work
on the project, engineers from News
Feed on Android caught wind of what
we were doing and reached out. They
were planning to convert part of Face-
book’s Android app from a sequential
to a multithreaded architecture. Hun-
dreds of classes written for a single-
threaded architecture had to be used
now in a concurrent context: the trans-
formation could introduce concurrency
errors. They asked for interprocedural
capabilities because Android UI is ar-
ranged in trees with one class per node.
Races could happen via interprocedural
call chains sometimes spanning several
classes, and mutations almost never
happened at the top level: procedural lo-
cal analysis would miss most races.

We had been planning to launch the
proof tool we were working on in a year’s
time, but the Android engineers were
starting their project and needed help
sooner. So we pivoted to a minimum via-
ble product, which would serve the engi-

a	 https://bit.ly/2WloBVj

Advanced static
analyses, like
those found in the
research literature,
can be deployed
at scale and
deliver value for
general code.

68 COMMUNICATIONS OF THE ACM | AUGUST 2019 | VOL. 62 | NO. 8

contributed articles

to enable more powerful analysis of
the core Facebook codebase. Zoncol-
an is the static analysis tool we built
to find code and data paths that may
cause a security or a privacy violation
in our Hack codebase.

The code in Figure 3 is an example
of a vulnerability prevented by Zoncol-
an. If the member_id variable on line
21 contains the value ../../users/
delete_user/, it is possible to redi-
rect this form into any other form on
Facebook. On submission of the form,
it will invoke a request to https://face-
book.com/groups/add_member/../../
users/delete_user/ that will delete

the user’s account. The root cause of
the vulnerability in Figure 3 is that
the attacker controls the value of the
member_id variable which is used in
the action field of the <form> element.
Zoncolan follows the interprocedural
flow of untrusted data (for example, user
input) to sensitive parts of the codebase.
Virtual calls do make interprocedural
analysis difficult since the tool gener-
ally does not know the precise type of an
object. To avoid missing paths (and thus
bugs), Zoncolan must consider all the
possible functions a call may resolve to.

SEV-oriented static analysis develop-
ment. We designed and developed Zon-
colan in collaboration with the Facebook
App Security team. Alarms reported by
Zoncolan are inspired by security bugs
uncovered by the App Security team.

The initial design of Zoncolan began
with a list of SEVs that were provided to
us by security engineers. For each bug
we asked ourselves: “How could we have
caught it with static analysis?” Most of
those historical bugs were no longer
relevant because the programming lan-
guage or a secure framework prevented
them from recurring—for instance, the
widespread adoption of XHP made it
possible to build XSS-free Web pages by
construction. We realized the remain-
ing bugs involved interprocedural flows
of untrusted data, either directly or indi-
rectly, into some privileged APIs. Detect-
ing such bugs can be automated with
static taint flow analysis,18 which tracks
how the data originating from some un-
trusted sources reaches or influences
the data reaching some sensitive parts
of the codebase (sinks).

When a security engineer discovers a
new vulnerability, we evaluate whether
that class of vulnerability is amenable to
static analysis. If it is, we prototype the
new rule, iterating with the feedback of
the engineer in order to refine results
to strike the right balance of false posi-
tives/false negatives. When we believe
the rule is good enough, it is enabled
on all runs of Zoncolan in production.
We adopt the standard Facebook App
Security severity framework, which as-
sociates to each vulnerability an impact
level, in a scale from 1 (best-practice) to
5 (SEV-worthy). A security impact level
of 3 or more is considered severe.

Scaling the analysis. A main chal-
lenge was to scale Zoncolan to a code-
base of more than 100 millions of LOC

Overall, Infer reports on over 30 types
of issues, ranging from deep inter-pro-
cedural checks to simple procedure-
local checks and lint rules. Concurrency
support includes checks for deadlocks
and starvation, with hundreds of “app
not-responding”’ bugs being fixed in the
past year. Infer has also recently imple-
mented a security analysis (a ‘taint’ anal-
ysis), which has been applied to Java and
C++ code; it gained this facility by bor-
rowing ideas from Zoncolan.

Staying Secure with Zoncolan
One of the original reasons for the de-
velopment and adoption of Hack was

Figure 4. Funneled deployment of Zoncolan

bot

Diff-time
analysis

Master
analysis

on callsecurity
reviews

Figure 3. Example of a bug that Zoncolan prevents. It may cause the attacker to delete a
user account. The attacker can provide an input on line 5 that causes a redirection to any
other form on Facebook at line 20.

AUGUST 2019 | VOL. 62 | NO. 8 | COMMUNICATIONS OF THE ACM 69

contributed articles

Impact. Zoncolan has been de-
ployed for more than two years at Face-
book, first to security engineers, then
to software engineers. It has prevented
thousands of vulnerabilities from be-
ing introduced to Facebook’s code-
base. Figure 5 compares the number
of SEVs, such as bugs of severity 3-to-5,
prevented by Zoncolan, in a six-month
period, to the traditional programs ad-
opted by security engineers, such as
manual code reviews/pentesting and
bug bounty reports. The bars show that
at Facebook, Zoncolan catches more
SEVs than either manual security re-
views or bug bounty reports. We mea-
sured that 43.3% of the severe security
bugs are detected via Zoncolan.

The graph in Figure 6 shows the dis-
tribution of the actioned bugs found by
Zoncolan at different stages of the de-
ployment funnel, according to the se-
curity impact level. The largest number
of categories is enabled for the master
analysis, so it is not unexpected that it
is the largest bucket. However, when re-
stricting to SEVs, the diff analysis large-
ly overtakes the master analysis—211
severe issues are prevented at diff-time,
versus 122 detected on master. Overall,
we measured the ratio of Zoncolan ac-
tioned bugs to be close to 80%.

We also use the traditional secu-
rity programs to measure missed bugs
(that is, the vulnerabilities for which
there is a Zoncolan category), but the

code. Thanks to a new parallel, compo-
sitional, non-uniform static analysis
that we designed, Zoncolan performs
the full analysis of the code base in less
than 30 minutes on a 24-core server.

Zoncolan builds a dependency graph
that relates methods to their potential
callers. It uses this graph to schedule
parallel analyses of individual methods.
In the case of mutually recursive meth-
ods, the scheduler iterates the analysis of
the methods until it stabilizes, that is, no
more flows are discovered. Suitable oper-
ators (called widenings in the static anal-
ysis literature7) ensure the convergence
of the iterations. It is worth mentioning
that, even though the concept of taint
analysis is well established in Academia,
we had to develop new algorithms in or-
der to scale to the size of our codebase.

Funneled deployment. Figure 4
provides a graphical representation
of the Zoncolan deployment model.
This funneled deployment model op-
timizes bug detection with the goal of
supporting security of Facebook: The
Zoncolan master analysis finds all ex-
isting instances of a newly discovered
vulnerability. The Zoncolan diff analy-
sis avoids vulnerabilities from being
(re-)introduced in the codebase.

Zoncolan periodically analyzes the
entire Facebook Hack codebase to up-
date the master list. The target audi-
ence is security engineers performing
security reviews. In the master analysis,
we expose all alarms found. Security
engineers are interested in all existing
alarms for a given project or a given
category. They triage alarms via a dash-
board, which enables filtering by proj-
ect, code location, source and/or des-
tination of the data, length or features
of the trace. When a security engineer
finds a bug, he/she files a task for the
product group and provides guidance
on how to make the code secure. When
an alarm is a false positive, he/she files
a task for the developers of Zoncolan
with an explanation of why the alarm is
false. The Zoncolan developers then re-
fine the tool to improve the precision of
the analysis. After a category has been
extensively tested, the Zoncolan team,
in conjunction with the App security
team, evaluates if it can be promoted
for diff analysis. Often promotion in-
volves improving the signal by filtering
the output according to, for example,
the length of the inter-procedutal trace,

the visibility of the endpoint (external
or internal?), and so on. At press time,
circa 1/3 of the Zoncolan categories are
enabled for diff analysis.

Zoncolan analyzes every Hack code
modification and reports alarms if a diff
introduces new security vulnerabilities.
The target audience is: the author and
the reviewers of the diff (Facebook soft-
ware engineers who are not security ex-
perts), and the security engineer in the
on-call rotation (who has a limited time
budget). When appropriate, the on-call
validates the alarm reported, blocks
the diff, and provides support to write
the code in a secure way. For categories
with very high signal, Zoncolan acts as a
security bot: it bypasses the security on-
call and instead comments directly on
the diff. It provides a detailed explana-
tion on the security vulnerability, how it
can be exploited, and includes referenc-
es to past incidents, for example, SEVs.

Finally, note the funneled deploy-
ment model makes it possible to scale
up the security fixes, without reducing
the overall coverage Zoncolan achieves
(that is, without missing bugs): If Zon-
colan determines a new issue is not
high-signal enough for autocomment-
ing on the diff, but needs to be looked
at by an expert, it pushes it to the on-
call queue. If the alarm makes neither
of these cuts, the issue will end up in
the Zoncolan master analysis after the
diff is committed.

Figure 5. Comparison of severe bugs reported by Zoncolan with respect to security
reviews and bug bounty, in a six-month period (darker implies more severe).

0

WhiteHat

Security Reviews

Zoncolan

50 100 150 200 250 300 350 400

Figure 6. Distribution of all the bugs fixed, in a six-month period, based on Zoncolan’s
funneled deployment and bug severity (darker implies more severe).

0

master

on call

bot

20 40 60 80 100 120 140 160 180 200

70 COMMUNICATIONS OF THE ACM | AUGUST 2019 | VOL. 62 | NO. 8

contributed articles

gether with crafted abstract domains
can scale: each procedure only needs
to be visited a few times, and many of
the procedures in a codebase can be
analyzed independently, thus open-
ing opportunities for parallelism. A
compositional analysis can even have
a runtime that is (modulo mutual re-
cursion) a linear combination of the
times to analyze the individual proce-
dures. For this to be effective, a suit-
able abstract domain, for instance
limiting or avoiding disjunctions,
should also contain the cost of analyz-
ing a single procedure.

Finally, compositional analyses are
naturally incremental—changing one
procedure does not necessitate re-ana-
lyzing all other procedures. This is im-
portant for fast diff-time analysis.

Conclusion
This article described how we, as static
analysis people working at Facebook,
have developed program analyses in re-
sponse to the needs that arise from pro-
duction code and engineers’ requests.
Facebook has enough important code
and problems that it is worthwhile to
have embedded teams of analysis ex-
perts, and we have seen (for example, in
the use of Infer to support multithread-
ed Android News Feed, and in the evo-
lution of Zoncolan to detect SEV-worthy
issues) how this can impact the compa-
ny. Although our primary responsibil-
ity is to serve the company, we believe
that our experiences and techniques
can be generalize beyond the specific
industrial context. For example, In-
fer is used at other companies such as
Amazon, Mozilla, and Spotify; we have
produced new scientific results,2,10 and
proposed new scientific problems.11,14
Indeed, our impression as (former) re-
searchers working in an engineering
organization is that having science and
engineering playing off one another in
a tight feedback loop is possible, even
advantageous, when practicing static
analysis in industry.

To industry professionals we say:
advanced static analyses, like those
found in the research literature, can be
deployed at scale and deliver value for
general code. And to academics we say:
from an industrial point of view the sub-
ject appears to have many unexplored
avenues, and this provides research op-
portunities to inform future tools.

Acknowledgments
Special thanks to Ibrahim Mohamed
for being a tireless advocate for Zoncol-
an among security engineers, to Cris-
tiano Calcagno for leading Infer’s tech-
nical development for several years,
and to our many teammates and other
collaborators at Facebook for their
contributions to our collective work on
scaling static analysis.	

Readers interested in more technical details of this work
are encouraged to review the online appendix; (https://
dl.acm.org/citation.cfm?doid=3338112&picked=formats).

References
1.	 Bessey, A. et al. A few billion lines of code later: using

static analysis to find bugs in the real world. Commun.
ACM 53, 2 (Feb. 2010), 66–75.

2.	 Blackshear, S., Gorogiannis, N., Sergey, I. and O’Hearn,
P. Racerd: Compositional static race detection. In
Proceedings of OOPSLA, 2018.

3.	 Brookes, S. and O’Hearn, P.W. Concurrent separation
logic. SIGLOG News 3, 3 (2016), 47–65.

4.	 Calcagno, C. et al. Moving fast with software
verification. In Proceedings of NASA Formal Methods
Symposium, 2015, 3–11.

5.	 Calcagno, C., Distefano, D. O’Hearn, P.W and Yang,
H. Compositional shape analysis by means of bi-
abduction. J. ACM 58, 6 (2011), 26.

6.	 Cook, B. Formal reasoning about the security of
Amazon Web services. LICS (2018), 38–47.

7.	 Cousot, P. and Cousot, R. Abstract interpretation: A
unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In
Proceedings of the 4th POPL, 1977, 238–252.

8.	 Cousot, P. and Cousot, R. Modular static program
analysis. In Proceedings of 2002 CC, 159–178.

9.	 Feitelson, D.G., Frachtenberg, E. and Beck, K.L.
Development and deployment at Facebook. IEEE
Internet Computing 17, 4 (2013), 8–17.

10.	 Gorogiannis, N., Sergey, I. and O’Hearn, P. A true
positives theorem for a static race detector. In
Proceedings of the 2019 POPL.

11.	 Harman, M. and O’Hearn, P. From start-ups to scale-
ups: Open problems and challenges in static and
dynamic program analysis for testing and verification).
In Proceedings of SCAM, 2018.

12.	 Iqbal, S.T and Horvitz, E. Disruption and recovery of
computing tasks: Field study, analysis, and directions.
In Proceedings of 2007 CHI, 677–686.

13.	 Larus, J.R. et al. Righting software. IEEE Software 21,
3 (2004), 92–100.

14.	 O’Hearn, P. Continuous reasoning: Scaling the impact
of formal methods. LICS, 2018.

15.	 O’Hearn, P.W. Experience developing and deploying
concurrency analysis at Facebook. SAS, 2018, 56–70.

16.	 O’Hearn, P.W. Separation logic. Comm. ACM 62, 2 (Feb
2019), 86–95.

17.	 Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon,
L. and Jaspan, C. Lessons from building static analysis
tools at Google. Commun. ACM 61, 4 (Apr. 2018), 58–66.

18.	 Xie, Y. and Aiken, A. Static detection of security
vulnerabilities in scripting languages. In Proceedings
of USENIX Security Symposium, 2006.

19.	 Yorsh, G., Yahav, E. and Chandra, S. Generating precise
and concise procedure summaries. In Proceedings of
2008 POPL.

Dino Distefano is a research scientist at Facebook,
London, U.K., and a professor of computer science at
Queen Mary University of London, U.K.

Manuel Fähndrich is a software engineer at Facebook
Research, Seattle, WA, USA.

Francesco Logozzo is a software engineer at Facebook
Research, Seattle, WA, USA.

Peter W. O’Hearn is a research scientist at Facebook,
London, U.K. and a professor of computer science at
University College London, U.K.

Copyright held by authors/owners.

tool failed to report them. To date, we
have had about 11 missed bugs, some
of them caused by a bug in the tool or
incomplete modeling.

Compositionality and Abstraction
The technical features that under-
pin our analyses are compositional-
ity and abstraction.

The notion of compositionality comes
from language semantics: A semantics is
compositional if the meaning of a com-
pound phrase is defined in terms of the
meanings of its parts and a means of
combining them. The same idea can be
applied to program analysis.5,8 A program
analysis is compositional if the analysis
result of a composite program is defined
in terms of the analysis results of its parts
and a means of combining them. When
applying compositionality in program
analysis, there are two key questions:

a.	 How to represent the meaning of
a procedure concisely?

b.	 How to combine the meanings in
an effective way?

For (a) we need to approximate the
meaning of a component by abstracting
away the full behavior of the procedure
and to focusing only on the properties
relevant for the analysis. For instance, for
security analysis, one may be only inter-
ested that a function returns a user-con-
trolled value, when the input argument
contains a user-controlled string, dis-
carding the effective value of the string.
More formally, the designer of the static
analysis defines an appropriate math-
ematical structure, called the abstract
domain,7 which allows us to approxi-
mate this large function space much
more succinctly. The design of a static
analysis relies on abstract domains pre-
cise enough to capture the properties of
interest and coarse enough to make the
problem computationally tractable. The
‘abstraction of a procedure meaning’ is
often called a procedure summary in the
analysis literature.19

The answer to question (b) mostly
depends on the specific abstract do-
main chosen for the representation of
summaries. Further information on
the abstractions supported by Infer
and Zoncolan, as well as brief infor-
mation on recursion, fixpoints, and
analysis algorithms, may be found in
the online technical appendix. It is
worth discussing the intuitive reason
for why compositional analysis to-

