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STATIC ANALYSIS TOOLS are programs that examine, and 
attempt to draw conclusions about, the source of other 
programs without running them. At Facebook, we 
have been investing in advanced static analysis tools 
that employ reasoning techniques similar to those 
from program verification. The tools we describe in 
this article (Infer and Zoncolan) target issues related 
to crashes and to the security of our services, they 
perform sometimes complex reasoning spanning 
many procedures or files, and they are integrated into 
engineering workflows in a way that attempts to bring 
value while minimizing friction. 

These tools run on code modifications, participating 
as bots during the code review process. Infer targets 
our mobile apps as well as our backend C++ code, 
codebases with 10s of millions of lines; it has seen 
over 100 thousand reported issues fixed by developers 
before code reaches production. Zoncolan targets the 
100-million lines of Hack code, and is additionally 

integrated in the workflow used by se-
curity engineers. It has led to thousands 
of fixes of security and privacy bugs, out-
performing any other detection method 
used at Facebook for such vulnerabili-
ties. We will describe the human and 
technical challenges encountered and 
lessons we have learned in developing 
and deploying these analyses.

There has been a tremendous 
amount of work on static analysis, 
both in industry and academia, and we 
will not attempt to survey that material 
here. Rather, we present our rationale 
for, and results from, using techniques 
similar to ones that might be encoun-
tered at the edge of the research litera-
ture, not only simple techniques that 
are much easier to make scale. Our 
goal is to complement other reports 
on industrial static analysis and formal 
methods,1,6,13,17 and we hope that such 
perspectives can provide input both to 
future research and to further indus-
trial use of static analysis.

Next, we discuss the three dimen-
sions that drive our work: bugs that 
matter, people, and actioned/missed 
bugs. The remainder of the article de-
scribes our experience developing and 
deploying the analyses, their impact, 
and the techniques that underpin our 
tools.

Context for Static 
Analysis at Facebook
Bugs that Matter. We use static analysis to 
prevent bugs that would affect our prod-
ucts, and we rely on our engineers’ judg-
ment as well as data from production to 
tell us the bugs that matter the most.
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It is important for a static analysis 
developer to realize that not all bugs 
are the same: different bugs can have 
different levels of importance or sever-
ity depending on the context and the 
nature. A memory leak on a seldom-
used service might not be as important 
as a vulnerability that would allow at-
tackers to gain access to unauthorized 
information. Additionally, the frequency 
of a bug type can affect the decision of 
how important it is to go after. If a cer-
tain kind of crash, such as a null point-
er error in Java, were happening hourly, 
then it might be more important to tar-
get than a bug of similar severity that 
occurs only once a year.

We have several means to collect 
data on the bugs that matter. First of 
all, Facebook maintains statistics on 
crashes and other errors that hap-
pen in production. Second, we have a 
“bug bounty” program, where people 
outside the company can report vul-

nerabilities on Facebook, or on apps 
of the Facebook family; for example, 
Messenger, Instagram, or WhatsApp. 
Third, we have an internal initiative 
for tracking the most severe bugs 
(SEV) that occur.

Our understanding of Bugs that 
Matter at Facebook drives our focus 
on advanced analyses. For contrast, a 
recent paper states: “All of the static 
analyses deployed widely at Google 
are relatively simple, although some 
teams work on project-specific analysis 
frameworks for limited domains (such 
as Android apps) that do interproce-
dural analysis”17 and they give their en-
tirely logical reasons. Here, we explain 
why Facebook made the decision to 
deploy interprocedural analysis (span-
ning multiple procedures) widely.

People and deployments. While 
not all bugs are the same, neither are 
all users; therefore, we use different 
deployment models depending on the 

intended audience (that is, the people 
the analysis tool will be deployed to).

For classes of bugs intended for all 
or a wide variety of engineers on a given 
platform, we have gravitated toward a 
“diff time” deployment, where analyz-
ers participate as bots in code review, 
making automatic comments when 
an engineer submits a code modifica-
tion. Later, we recount a striking situ-
ation where the diff time deployment 
saw a 70% fix rate, where a more tradi-
tional “offline” or “batch” deployment 
(where bug lists are presented to engi-
neers, outside their workflow) saw a 0% 
fix rate.

In case the intended audience is the 
much smaller collection of domain se-
curity experts in the company, we use 
two additional deployment models. At 
“diff time,” security related issues are 
pushed to the security engineer on-call, 
so she can comment on an in-progress 
code change when necessary. Addition-
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crashes and app not-responding events 
that occur on mobile devices.

The actioned reports and missed 
bugs are related to the classic concepts 
of true positives and false negatives from 
the academic static analysis literature. A 
true positive is a report of a potential bug 
that can happen in a run of the program 
in question (whether or not it will hap-
pen in practice); a false positive is one 
that cannot happen. Common wisdom 
in static analysis is that it is important 
to keep control of the false positives be-
cause they can negatively impact engi-
neers who use the tools, as they tend to 
lead to apathy toward reported alarms. 
This has been emphasized, for instance, 
in previous Communications’ articles on 
industrial static analysis.1,17 False nega-
tives, on the other hand, are potentially 
harmful bugs that may remain unde-
tected for a long time. An undetected 
bug affecting security or privacy can lead 
to undetected exploits. In practice, fewer 
false positives often (though not always) 
implies more false negatives, and vice 
versa, fewer false negatives implies 
more false positives. For instance, one 
way to reign in false positives is to fail 
to report when you are less than sure a 
bug will be real; but silencing an analy-
sis in this way (say, by ignoring paths 
or by heuristic filtering) has the effect of 
missing bugs. And, if you want to discov-
er and report more bugs you might also 
add more spurious behaviors.

The reason we are interested in 
advanced static analyses at Facebook 
might be understood in classic terms 
as saying: false negatives matter to us. 
However, it is important to note the 
number of false negatives is notori-
ously difficult to quantify (how many 
unknown bugs are there?). Equally, 

though less recognized, the false posi-
tive rate is challenging to measure for 
a large, rapidly changing codebase: it 
would be extremely time consuming 
for humans to judge all reports as false 
or true as the code is changing.

Although true positives and false 
negatives are valuable concepts, we 
don’t make claims about their rates 
and pay more attention to the action 
rate and the (observed) missed bugs.

Challenges: Speed, scale, and accuracy. A 
first challenge is presented by the sheer 
scale of Facebook’s codebases, and the 
rate of change they see. For the server-
side, we have over 100-million lines of 
Hack code, which Zoncolan can process 
in less than 30 minutes. Additionally, 
we have 10s of millions of both mobile 
(Android and Objective C) code and 
backend C++ code. Infer processes the 
code modifications quickly (within 15 
minutes on average) in its diff time de-
ployment. All codebases see thousands 
of code modifications each day and our 
tools run on each code change. For Zon-
colan, this can amount to analyzing one 
trillion lines of code (LOC) per day.

It is relatively straightforward to 
scale program analyses that do simple 
checks on a procedure-local basis only. 
The simplest form is linters, which give 
syntactic style advice (for example, “the 
method you called is to be deprecated, 
please consider rewriting”). Such simple 
checks provide value and are in wide de-
ployment in major companies including 
Facebook; we will not comment on them 
further in this article. But for more rea-
soning going beyond local checks, such 
as one would find in the academic litera-
ture on static analysis, scaling to 10s or 
100s of millions of LOC is a challenge, as 
is the incremental scalability needed to 
support diff time reporting.

Infer and Zoncolan both use tech-
niques similar to some of what one 
might find at the edge of the research 
literature. Infer, as we will discuss, 
uses one analysis based on the theory 
of Separation Logic,16 with a novel the-
orem prover that implements an infer-
ence technique that guesses assump-
tions.5 Another Infer analysis involves 
recently published research results on 
concurrency analysis.2,10 Zoncolan im-
plements a new modular parallel taint 
analysis algorithm.

But how can Infer and Zoncolan 
scale? The core technical features they 

ally, for finding all instances of a given 
bug in the codebase or for historical ex-
ploration, offline inspection provides 
a user interface for querying, filtering, 
and triaging all alarms.

In all cases, our deployments focus 
on the people our tools serve and the 
way they work.

Actioned reports and missed bugs. 
The goal of an industrial static analysis 
tool is to help people: at Facebook, this 
means the engineers, directly, and the 
people who use our products, indirect-
ly. We have seen how the deployment 
model can influence whether a tool 
is successful. Two concepts we use to 
understand this in more detail, and to 
help us improve our tools, are actioned 
reports and observable missed bugs.

The kind of action taken as a result 
of a reported bug depends on the de-
ployment model as well as the type of 
bug. At diff time an action is an up-
date to the diff that removes a static 
analysis report. In Zoncolan’s offline 
deployment a report can trigger the 
security expert to create a task for the 
product engineer if the issue is im-
portant enough to follow up with the 
product team. Zoncolan catches more 
SEVs than either manual security re-
views or bug bounty reports. We mea-
sured that 43.3% of the severe security 
bugs are detected via Zoncolan. At 
press time, Zoncolan’s “action rate” is 
above 80% and we observed about 11 
“missed bugs.”

A missed bug is one that has been 
observed in some way, but that was not 
reported by an analysis. The means of 
observation can depend on the kind of 
bug. For security vulnerabilities we have 
bug bounty reports, security reviews, or 
SEV reviews. For our mobile apps we log 

Figure 1.  Continuous development.
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WhatsApp—are mostly written in Objec-
tive-C and Java. C++ is the main language 
of choice for backend services. There are 
10s of millions of lines each of mobile 
and backend code.

While they use the same develop-
ment models, the website and mobile 
products are deployed differently. This 
affects what bugs are considered most 
important, and the way that bugs can be 
fixed. For the website, Facebook directly 
deploys new code to its own datacenters, 
and bug fixes can be shipped directly to 
our datacenters frequently, several times 
daily and immediately when necessary. 
For the mobile apps, Facebook relies 
on people to download new versions to 
from the Android or the Apple store; new 
versions are shipped weekly, but mobile 
bugs are less under our control because 
even if a fix is shipped it might not be 
downloaded to some people’s phones.

Common runtime errors—for exam-
ple, null pointer exceptions, division by 
zero—are more difficult to get fixed on 
mobile than on the server. On the other 
hand, server-side security and privacy 
bugs can severely impact both the users 
of the Web version of Facebook as well 
as our mobile users, since the privacy 
checks are performed on the server-side. 
As a consequence, Facebook invests in 
tools to make the mobile apps more re-
liable and server-side code more secure.

Moving Fast with Infer
Infer is a static analysis tool applied 
to Java, Objective C, and C++ code at 
Facebook.4 It reports errors related to 
memory safety, to concurrency, to se-
curity (information flow), and many 
more specialized errors suggested by 
Facebook developers. Infer is run inter-
nally on the Android and iOS apps for 
Facebook, Instagram, Messenger, and 
WhatsApp, as well as on our backend 
C++ and Java code.

Infer has its roots in academic re-
search on program analysis with sepa-
ration logic,5 research, which led to a 
startup company (Monoidics Ltd.) that 
was acquired by Facebook in 2013. In-
fer was open sourced in 2015 (www.
fbinfer.com) and is used at Amazon, 
Spotify, Mozilla, and other companies.

Diff-time continuous reasoning. In-
fer’s main deployment model is based 
on fast incremental analysis of code 
changes. When a diff is submitted to 
code review an instance of Infer is run 

share are compositionality and careful-
ly crafted abstractions. For most of this 
article we will concentrate on what one 
gets from applying Infer and Zoncolan, 
rather than on their technical proper-
ties, but we outline their foundations 
later and provide more technical de-
tails in an online appendix (https://
dl.acm.org/citation.cfm?doid=333811
2&picked=formats).

The challenge related to accuracy is 
intimately related to actioned reports 
and missed bugs. We try to strike a bal-
ance between these issues, informed 
by the desires based on the class of 
bugs and the intended audience. The 
more severe a potentially missed issue 
is, the lower the tolerance for missed 
bugs. Thus, for issues that indicate a 
potential crash or performance regres-
sion in a mobile app such as Messen-
ger, WhatsApp, Instagram, or Face-
book, our tolerance for missed bugs is 
lower than, for example, stylistic lint 
suggestions (for example, don’t use 
deprecated method). For issues that 
could affect the security of our infra-
structure or the privacy of the people 
using our products, our tolerance for 
false positives is higher still.

Software Development at Facebook
Facebook practices continuous soft-
ware development,9 where a main 
codebase (master) is altered by thou-
sands of programmers submitting 
code modifications (diffs). Master and 
diffs are the analogues of, respectively, 
GitHub master branch and pull re-
quests. The developers share access to 
a codebase and they land, or commit, a 
diff to the codebase after passing code 
review. A continuous integration system 
(CI system) is used to ensure code con-
tinues to build and passes certain tests. 
Analyses run on the code modification 
and participate by commenting their 
findings directly in the code review tool.

The Facebook website was originally 
written in PHP, and then ported to Hack, 
a gradually typed version of PHP devel-
oped at Facebook (https://hacklang.
org/). The Hack codebase spans over 100 
million lines. It includes the Web fron-
tend, the internal web tools, the APIs to 
access the social graph from first- and 
third-party apps, the privacy-aware data 
abstractions, and the privacy control log-
ic for viewers and apps. Mobile apps—
for Facebook, Messenger, Instagram and 

The reason  
we are interested 
in advanced static 
analyses  
at Facebook might 
be understood in 
classic terms:  
false negatives 
matter to us.
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assigned them to the developers we 
thought best able to resolve them.

The response was stunning: we were 
greeted by near silence. We assigned 
20–30 issues to developers, and almost 
none of them were acted on. We had 
worked hard to get the false positive 
rate down to what we thought was less 
than 20%, and yet the fix rate—the pro-
portion of reported issues that devel-
opers resolved—was near zero.

Next, we switched Infer on at diff 
time. The response of engineers was just 
as stunning: the fix rate rocketed to over 
70%. The same program analysis, with 
same false positive rate, had much great-
er impact when deployed at diff time.

While this situation was surprising 
to the static analysis experts on the 
Infer team, it came as no surprise to 
Facebook’s developers. Explanations 
they offered us may be summarized in 
the following terms:

One problem that diff-time deploy-
ment addresses is the mental effort of 
context switch. If a developer is working 
on one problem, and they are confront-
ed with a report on a separate problem, 
then they must swap out the mental con-
text of the first problem and swap in the 
second, and this can be time consum-
ing and disruptive. By participating as a 
bot in code review, the context switch 
problem is largely solved: program-
mers come to the review tool to dis-
cuss their code with human reviewers, 
with mental context already swapped 
in. This also illustrates how important 
timeliness is: if a bot were to run for an 
hour or more on a diff it could be too 
late to participate effectively.

A second problem that diff-time de-
ployment addresses is relevance. When 

an issue is discovered in the codebase, 
it can be nontrivial to assign it to the 
right person. In the extreme, somebody 
who has left the company might have 
caused the issue. Furthermore, even 
if you think you have found someone 
familiar with the codebase, the issue 
might not be relevant to any of their 
past or current work. But, if we com-
ment on a diff that introduces an issue 
then there is a pretty good (but not per-
fect) chance that it is relevant.

Mental context switch has been 
the subject of psychological studies,12 
and it is, along with the importance 
of relevance, part of the received col-
lective wisdom impressed upon us by 
Facebook’s engineers. Note that others 
have also remarked on the benefits of 
reporting during code review.17

At Facebook, we are working actively 
on moving other testing technologies to 
diff time when possible. We are also sup-
porting academics on researching incre-
mental fuzzing and symbolic execution 
techniques for diff time reporting.

Interprocedural bugs. Many of the 
bugs that Infer finds involve reasoning 
that spans multiple procedures or files. 
An example from OpenSSL illustrates:

apps/ca.c:2780: NULL _ DEREFERENCE

pointer ‘revtm’ last assigned on line 

2778 could be null

and is dereferenced at line 2780, col-

umn 6

2778. revtm = X509 _ gmtime _ adj(NULL, 0);

2779.

2780. i = revtm->length + 1;

The issue is that the procedure 
X509 _ gmtime _ adj() can return 
null in some circumstances. Overall, 

in Facebook’s internal CI system (Fig-
ure 1). Infer does not need to process 
the entire codebase in order to analyze 
a diff, and so is fast.

An aim has been for Infer to run in 
15min–20min on a diff on average, 
and this includes time to check out the 
source repository, to build the diff, and 
to run on base and (possibly) parent 
commits. It has typically done so, but 
we constantly monitor performance 
to detect regressions that makes it 
take longer, in which case we work to 
bring the running time back down. Af-
ter running on a diff, Infer then writes 
comments to the code review system. 
In the default mode used most often 
it reports only regressions: new issues 
introduced by a diff. The “new” issues 
are calculated using a bug equivalence 
notion that uses a hash involving the 
bug type and location-independent 
information about the error message, 
and which is sensitive to file moves and 
line number changes cause by refactor-
ing, deleting, or adding code; the aim is 
to avoid presenting warnings that de-
velopers might regard as pre-existing. 
Fast reporting is important to keep in 
tune with the developers’ workflows. 
In contrast, when Infer is run in whole-
program mode it can take more than an 
hour (depending on the app)—too slow 
for diff-time at Facebook.

Human factors. The significance of 
the diff-time reasoning of Infer is best 
understood by contrast with a failure. 
The first deployment was batch rather 
than continuous. In this mode Infer 
would be run once per night on the 
entire Facebook Android codebase, 
and it would generate a list of issues. 
We manually looked at the issues, and 

Figure 2. A simple example capturing a common safety pattern used in Android apps. 

Threading information is used to limit the amount of synchronization required. As a comment  
from the original code explains: “mCount is written to only by the main thread with the lock held,  
read from the main thread with no lock held, or read from any other thread with the lock held.”  
Bottom: unsafe additions to RaceWithMainThread .java.
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neers—it had to be fast, with actionable 
reports, and not too many missed bugs 
on product code (but not on infrastruc-
ture code).2,15 The tool borrowed ideas 
from concurrent separation logic, but 
we gave up on the ideal of proving ab-
solute race freedom. Instead, we estab-
lished a ‘completeness’ theorem saying 
that, under certain assumptions, a the-
oretical variant of the analyzer reports 
only true positives.10

The analysis checks for data races in 
Java programs—two concurrent memo-
ry accesses, one of which is a write. The 
example in Figure 2 (top) illustrates: If 
we run the Infer on this code it doesn’t 
find a problem. The unprotected read 
and the protected write do not race be-
cause they are on the same thread. But, 
if we include additional methods that 
do conflict, then Infer will report races, 
as in Figure 2, bottom.

Impact. Since 2014, Facebook’s devel-
opers have resolved over 100,000 issues 
flagged by Infer. The majority of Infer’s 
impact comes from the diff-time deploy-
ment, but it is also run batch to track is-
sues in master, issues addressed in fix-
athons and other periodic initiatives.

The RacerD data race detector saw 
over 2,500 fixes in the year to March 
2018. It supported the conversion of 
Facebook’s Android app from a single-
threaded to a multithreaded architec-
ture by searching for potential data rac-
es, without the programmers needing 
to insert annotations for saying which 
pieces of memory are guarded by what 
locks. This conversion led to an im-
provement in scroll performance and, 
speaking about the role of the analyzer, 
Benjamin Jaeger, an Android engineer at 
Facebook, stated:b “without Infer, multi-
threading in News Feed would not have 
been tenable.” As of March 2018, no An-
droid data race bugs missed by Infer had 
been observed in the previous year (mod-
ulo 3 analyzer implementation errors.)2

The fix rate for the concurrency 
analysis to March 2018 was roughly 
50%, lower than for the previous gen-
eral diff analysis. Our de velopers have 
emphasized that they appreciate the 
reports because concurrency errors are 
difficult to debug. This illustrates our 
earlier points about balancing action 
rates and bug severity. See Blackshear 
et al.2 for more discussion on fix rates.

b	 https://bit.ly/2xurbMl

the error trace found by Infer has 61 
steps, and the source of null, the call to 
X509 _ gmtime _ adj() goes five pro-
cedures deep and it eventually encoun-
ters a return of null at call-depth 4. This 
bug was one of 15 that we reported to 
OpenSSL which were all fixed.

Infer finds this bug by performing 
compositional reasoning, which al-
lows covering interprocedural bugs 
while still scaling to millions of LOC. 
It deduces a precondition/postcondi-
tion specification approximating the 
behavior of X509 _ gmtime _ adj, 
and then uses that specification when 
reasoning about its calls. The specifi-
cation includes 0 as one of the return 
values, and this triggers the error.

In 2017, we looked at bug fixes in 
several categories and found that for 
some (null dereferences, data races, 
and security issues) over 50% of the 
fixes were for bugs with traces that were 
interprocedural.a The interprocedural 
bugs would be missed bugs if we only 
deployed procedure-local analyses.

Concurrency. A concurrency capabili-
ty recently added to Infer, the RacerD 
analysis, provides an example of the ben-
efit of feedback between program analy-
sis researchers and product engineers.2,15 
Development of the analysis started in 
early 2016, motivated by Concurrent Sep-
aration Logic.3 After 10 months of work 
on the project, engineers from News 
Feed on Android caught wind of what 
we were doing and reached out. They 
were planning to convert part of Face-
book’s Android app from a sequential 
to a multithreaded architecture. Hun-
dreds of classes written for a single-
threaded architecture had to be used 
now in a concurrent context: the trans-
formation could introduce concurrency 
errors. They asked for interprocedural 
capabilities because Android UI is ar-
ranged in trees with one class per node. 
Races could happen via interprocedural 
call chains sometimes spanning several 
classes, and mutations almost never 
happened at the top level: procedural lo-
cal analysis would miss most races.

We had been planning to launch the 
proof tool we were working on in a year’s 
time, but the Android engineers were 
starting their project and needed help 
sooner. So we pivoted to a minimum via-
ble product, which would serve the engi-

a	 https://bit.ly/2WloBVj

Advanced static 
analyses, like 
those found in the 
research literature, 
can be deployed  
at scale and  
deliver value for 
general code.
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to enable more powerful analysis of 
the core Facebook codebase. Zoncol-
an is the static analysis tool we built 
to find code and data paths that may 
cause a security or a privacy violation 
in our Hack codebase.

The code in Figure 3 is an example 
of a vulnerability prevented by Zoncol-
an. If the member_id variable on line 
21 contains the value ../../users/
delete_user/, it is possible to redi-
rect this form into any other form on 
Facebook. On submission of the form, 
it will invoke a request to https://face-
book.com/groups/add_member/../../ 
users/delete_user/ that will delete 

the user’s account. The root cause of 
the vulnerability in Figure 3 is that 
the attacker controls the value of the  
member_id variable which is used in 
the action field of the <form> element. 
Zoncolan follows the interprocedural 
flow of untrusted data (for example, user 
input) to sensitive parts of the codebase. 
Virtual calls do make interprocedural 
analysis difficult since the tool gener-
ally does not know the precise type of an 
object. To avoid missing paths (and thus 
bugs), Zoncolan must consider all the 
possible functions a call may resolve to.

SEV-oriented static analysis develop-
ment. We designed and developed Zon-
colan in collaboration with the Facebook 
App Security team. Alarms reported by 
Zoncolan are inspired by security bugs 
uncovered by the App Security team.

The initial design of Zoncolan began 
with a list of SEVs that were provided to 
us by security engineers. For each bug 
we asked ourselves: “How could we have 
caught it with static analysis?” Most of 
those historical bugs were no longer 
relevant because the programming lan-
guage or a secure framework prevented 
them from recurring—for instance, the 
widespread adoption of XHP made it 
possible to build XSS-free Web pages by 
construction. We realized the remain-
ing bugs involved interprocedural flows 
of untrusted data, either directly or indi-
rectly, into some privileged APIs. Detect-
ing such bugs can be automated with 
static taint flow analysis,18 which tracks 
how the data originating from some un-
trusted sources reaches or influences 
the data reaching some sensitive parts 
of the codebase (sinks).

When a security engineer discovers a 
new vulnerability, we evaluate whether 
that class of vulnerability is amenable to 
static analysis. If it is, we prototype the 
new rule, iterating with the feedback of 
the engineer in order to refine results 
to strike the right balance of false posi-
tives/false negatives. When we believe 
the rule is good enough, it is enabled 
on all runs of Zoncolan in production. 
We adopt the standard Facebook App 
Security severity framework, which as-
sociates to each vulnerability an impact 
level, in a scale from 1 (best-practice) to 
5 (SEV-worthy). A security impact level 
of 3 or more is considered severe.

Scaling the analysis. A main chal-
lenge was to scale Zoncolan to a code-
base of more than 100 millions of LOC 

Overall, Infer reports on over 30 types 
of issues, ranging from deep inter-pro-
cedural checks to simple procedure-
local checks and lint rules. Concurrency 
support includes checks for deadlocks 
and starvation, with hundreds of “app 
not-responding”’ bugs being fixed in the 
past year. Infer has also recently imple-
mented a security analysis (a ‘taint’ anal-
ysis), which has been applied to Java and 
C++ code; it gained this facility by bor-
rowing ideas from Zoncolan.

Staying Secure with Zoncolan
One of the original reasons for the de-
velopment and adoption of Hack was 

Figure 4. Funneled deployment of Zoncolan
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Diff-time
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Master
analysis

on callsecurity
reviews

Figure 3. Example of a bug that Zoncolan prevents. It may cause the attacker to delete a 
user account. The attacker can provide an input on line 5 that causes a redirection to any 
other form on Facebook at line 20.
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Impact. Zoncolan has been de-
ployed for more than two years at Face-
book, first to security engineers, then 
to software engineers. It has prevented 
thousands of vulnerabilities from be-
ing introduced to Facebook’s code-
base. Figure 5 compares the number 
of SEVs, such as bugs of severity 3-to-5, 
prevented by Zoncolan, in a six-month 
period, to the traditional programs ad-
opted by security engineers, such as 
manual code reviews/pentesting and 
bug bounty reports. The bars show that 
at Facebook, Zoncolan catches more 
SEVs than either manual security re-
views or bug bounty reports. We mea-
sured that 43.3% of the severe security 
bugs are detected via Zoncolan.

The graph in Figure 6 shows the dis-
tribution of the actioned bugs found by 
Zoncolan at different stages of the de-
ployment funnel, according to the se-
curity impact level. The largest number 
of categories is enabled for the master 
analysis, so it is not unexpected that it 
is the largest bucket. However, when re-
stricting to SEVs, the diff analysis large-
ly overtakes the master analysis—211 
severe issues are prevented at diff-time, 
versus 122 detected on master. Overall, 
we measured the ratio of Zoncolan ac-
tioned bugs to be close to 80%.

We also use the traditional secu-
rity programs to measure missed bugs 
(that is, the vulnerabilities for which 
there is a Zoncolan category), but the 

code. Thanks to a new parallel, compo-
sitional, non-uniform static analysis 
that we designed, Zoncolan performs 
the full analysis of the code base in less 
than 30 minutes on a 24-core server.

Zoncolan builds a dependency graph 
that relates methods to their potential 
callers. It uses this graph to schedule 
parallel analyses of individual methods. 
In the case of mutually recursive meth-
ods, the scheduler iterates the analysis of 
the methods until it stabilizes, that is, no 
more flows are discovered. Suitable oper-
ators (called widenings in the static anal-
ysis literature7) ensure the convergence 
of the iterations. It is worth mentioning 
that, even though the concept of taint 
analysis is well established in Academia, 
we had to develop new algorithms in or-
der to scale to the size of our codebase.

Funneled deployment. Figure 4 
provides a graphical representation 
of the Zoncolan deployment model. 
This funneled deployment model op-
timizes bug detection with the goal of 
supporting security of Facebook: The 
Zoncolan master analysis finds all ex-
isting instances of a newly discovered 
vulnerability. The Zoncolan diff analy-
sis avoids vulnerabilities from being 
(re-)introduced in the codebase.

Zoncolan periodically analyzes the 
entire Facebook Hack codebase to up-
date the master list. The target audi-
ence is security engineers performing 
security reviews. In the master analysis, 
we expose all alarms found. Security 
engineers are interested in all existing 
alarms for a given project or a given 
category. They triage alarms via a dash-
board, which enables filtering by proj-
ect, code location, source and/or des-
tination of the data, length or features 
of the trace. When a security engineer 
finds a bug, he/she files a task for the 
product group and provides guidance 
on how to make the code secure. When 
an alarm is a false positive, he/she files 
a task for the developers of Zoncolan 
with an explanation of why the alarm is 
false. The Zoncolan developers then re-
fine the tool to improve the precision of 
the analysis. After a category has been 
extensively tested, the Zoncolan team, 
in conjunction with the App security 
team, evaluates if it can be promoted 
for diff analysis. Often promotion in-
volves improving the signal by filtering 
the output according to, for example, 
the length of the inter-procedutal trace, 

the visibility of the endpoint (external 
or internal?), and so on. At press time, 
circa 1/3 of the Zoncolan categories are 
enabled for diff analysis.

Zoncolan analyzes every Hack code 
modification and reports alarms if a diff 
introduces new security vulnerabilities. 
The target audience is: the author and 
the reviewers of the diff (Facebook soft-
ware engineers who are not security ex-
perts), and the security engineer in the 
on-call rotation (who has a limited time 
budget). When appropriate, the on-call 
validates the alarm reported, blocks 
the diff, and provides support to write 
the code in a secure way. For categories 
with very high signal, Zoncolan acts as a 
security bot: it bypasses the security on-
call and instead comments directly on 
the diff. It provides a detailed explana-
tion on the security vulnerability, how it 
can be exploited, and includes referenc-
es to past incidents, for example, SEVs.

Finally, note the funneled deploy-
ment model makes it possible to scale 
up the security fixes, without reducing 
the overall coverage Zoncolan achieves 
(that is, without missing bugs): If Zon-
colan determines a new issue is not 
high-signal enough for autocomment-
ing on the diff, but needs to be looked 
at by an expert, it pushes it to the on-
call queue. If the alarm makes neither 
of these cuts, the issue will end up in 
the Zoncolan master analysis after the 
diff is committed.

Figure 5.  Comparison of severe bugs reported by Zoncolan with respect to security  
reviews and bug bounty, in a six-month period (darker implies more severe).
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Figure 6. Distribution of all the bugs fixed, in a six-month period, based on Zoncolan’s 
funneled deployment and bug severity (darker implies more severe).
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gether with crafted abstract domains 
can scale: each procedure only needs 
to be visited a few times, and many of 
the procedures in a codebase can be 
analyzed independently, thus open-
ing opportunities for parallelism. A 
compositional analysis can even have 
a runtime that is (modulo mutual re-
cursion) a linear combination of the 
times to analyze the individual proce-
dures. For this to be effective, a suit-
able abstract domain, for instance 
limiting or avoiding disjunctions, 
should also contain the cost of analyz-
ing a single procedure.

Finally, compositional analyses are 
naturally incremental—changing one 
procedure does not necessitate re-ana-
lyzing all other procedures. This is im-
portant for fast diff-time analysis.

Conclusion
This article described how we, as static 
analysis people working at Facebook, 
have developed program analyses in re-
sponse to the needs that arise from pro-
duction code and engineers’ requests. 
Facebook has enough important code 
and problems that it is worthwhile to 
have embedded teams of analysis ex-
perts, and we have seen (for example, in 
the use of Infer to support multithread-
ed Android News Feed, and in the evo-
lution of Zoncolan to detect SEV-worthy 
issues) how this can impact the compa-
ny. Although our primary responsibil-
ity is to serve the company, we believe 
that our experiences and techniques 
can be generalize beyond the specific 
industrial context. For example, In-
fer is used at other companies such as 
Amazon, Mozilla, and Spotify; we have 
produced new scientific results,2,10 and 
proposed new scientific problems.11,14 
Indeed, our impression as (former) re-
searchers working in an engineering 
organization is that having science and 
engineering playing off one another in 
a tight feedback loop is possible, even 
advantageous, when practicing static 
analysis in industry.

To industry professionals we say: 
advanced static analyses, like those 
found in the research literature, can be 
deployed at scale and deliver value for 
general code. And to academics we say: 
from an industrial point of view the sub-
ject appears to have many unexplored 
avenues, and this provides research op-
portunities to inform future tools.
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tool failed to report them. To date, we 
have had about 11 missed bugs, some 
of them caused by a bug in the tool or 
incomplete modeling.

Compositionality and Abstraction
The technical features that under-
pin our analyses are compositional-
ity and abstraction.

The notion of compositionality comes 
from language semantics: A semantics is 
compositional if the meaning of a com-
pound phrase is defined in terms of the 
meanings of its parts and a means of 
combining them. The same idea can be 
applied to program analysis.5,8 A program 
analysis is compositional if the analysis 
result of a composite program is defined 
in terms of the analysis results of its parts 
and a means of combining them. When 
applying compositionality in program 
analysis, there are two key questions:

a.	 How to represent the meaning of 
a procedure concisely?

b.	 How to combine the meanings in 
an effective way?

For (a) we need to approximate the 
meaning of a component by abstracting 
away the full behavior of the procedure 
and to focusing only on the properties 
relevant for the analysis. For instance, for 
security analysis, one may be only inter-
ested that a function returns a user-con-
trolled value, when the input argument 
contains a user-controlled string, dis-
carding the effective value of the string. 
More formally, the designer of the static 
analysis defines an appropriate math-
ematical structure, called the abstract 
domain,7 which allows us to approxi-
mate this large function space much 
more succinctly. The design of a static 
analysis relies on abstract domains pre-
cise enough to capture the properties of 
interest and coarse enough to make the 
problem computationally tractable. The 
‘abstraction of a procedure meaning’ is 
often called a procedure summary in the 
analysis literature.19 

The answer to question (b) mostly 
depends on the specific abstract do-
main chosen for the representation of 
summaries. Further information on 
the abstractions supported by Infer 
and Zoncolan, as well as brief infor-
mation on recursion, fixpoints, and 
analysis algorithms, may be found in 
the online technical appendix. It is 
worth discussing the intuitive reason 
for why compositional analysis to-




