
44    COMMUNICATIONS OF THE ACM    |   FEBRUARY 2015  |   VOL.  58  |   NO.  2

V
viewpoints

Viewpoint  
In Defense of Soundiness:  
A Manifesto 
Soundy is the new sound. 

dominant practice is one of treating 
soundness as an engineering choice.

In all, we are faced with a paradox: 
on the one hand we have the ubiquity 
of unsoundness in any practical whole-
program analysis tool that has a claim 
to precision and scalability; on the 
other, we have a research community 
that, outside a small group of experts, 
is oblivious to any unsoundness, let 
alone its preponderance in practice.

Our observation is that the paradox 
can be reconciled. The state of the art 
in realistic analyses exhibits consistent 
traits, while also integrating a sharp 
discontinuity. On the one hand, typical 

S
TATIC PROGRAM ANALYSIS  is 
a key component of many 
software development tools, 
including compilers, devel-
opment environments, and 

verification tools. Practical applications 
of static analysis have grown in recent 
years to include tools by companies such 
as Coverity, Fortify, GrammaTech, IBM, 
and others. Analyses are often expected 
to be sound in that their result models 
all possible executions of the program 
under analysis. Soundness implies the 
analysis computes an over-approxima-
tion in order to stay tractable; the analy-
sis result will also model behaviors that 
do not actually occur in any program 
execution. The precision of an analysis 
is the degree to which it avoids such 
spurious results. Users expect analyses 
to be sound as a matter of course, and 
desire analyses to be as precise as pos-
sible, while being able to scale to large 
programs.

Soundness would seem essential 
for any kind of static program analy-
sis. Soundness is also widely empha-
sized in the academic literature. Yet, 
in practice, soundness is commonly 
eschewed: we are not aware of a single 
realistic whole-programa analysis tool 
(for example, tools widely used for bug 
detection, refactoring assistance, pro-
gramming automation, and so forth) 

a	 We draw a distinction between whole pro-
gram analyses, which need to model shared 
data, such as the heap, and modular analy-
ses—for example, type systems. Although this 
space is a continuum, the distinction is typi-
cally well understood.

that does not purposely make unsound 
choices. Similarly, virtually all pub-
lished whole-program analyses are un-
sound and omit conservative handling 
of common language features when 
applied to real programming languages.

The typical reasons for such choices 
are engineering compromises: imple-
menters of such tools are well aware 
of how they could handle complex lan-
guage features soundly (for example, 
assuming that a complex language fea-
ture can exhibit any behavior), but do 
not do so because this would make the 
analysis unscalable or imprecise to the 
point of being useless. Therefore, the 

DOI:10.1145/2644805	 Benjamin Livshits et al. 

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

/S
H

U
T

T
E

R
S

T
O

C
K

http://dx.doi.org/10.1145/2644805


FEBRUARY 2015  |   VOL.  58  |   NO.  2  |   COMMUNICATIONS OF THE ACM     45

viewpoints

V
viewpoints

realistic analysis implementations have 
a sound core: most common language 
features are over-approximated, model-
ing all their possible behaviors. Every 
time there are multiple options (for ex-
ample, branches of a conditional state-
ment, multiple data flows) the analysis 
models all of them. On the other hand, 
some specific language features, well 
known to experts in the area, are best 
under-approximated. Effectively, every 
analysis pretends perfectly possible be-
haviors cannot happen. For instance, it 
is conventional for an otherwise sound 
static analysis to treat highly dynamic 
language constructs, such as Java reflec-
tion or eval in JavaScript, under-approx-
imately. A practical analysis, therefore, 
may pretend that eval does nothing, 
unless it can precisely resolve its string 
argument at compile time.

We introduce the term soundy for 
such analyses. The concept of soundi-
ness attempts to capture the balance, 
prevalent in practice, of over-approxi-
mated handling of most language fea-
tures, yet deliberately under-approxi-
mated handling of a feature subset well 
recognized by experts. Soundiness is in 
fact what is meant in many papers that 
claim to describe a sound analysis. A 
soundy analysis aims to be as sound as 
possible without excessively compro-
mising precision and/or scalability.

Our message here is threefold:
˲˲ We bring forward the ubiquity of, 

and engineering need for, unsound-
ness in the static program analysis 
practice. For static analysis research-
ers, this may come as no surprise. For 
the rest of the community, which ex-
pects to use analyses as a black box, 
this unsoundness is less understood. 

˲˲ We draw a distinction between anal-
yses that are soundy—mostly sound, 
with specific, well-identified unsound 
choices—and analyses that do not con-
cern themselves with soundness. 

˲˲ We issue a call to the community 
to identify clearly the nature and extent 
of unsoundness in static analyses. Cur-
rently, in published papers, sources of 
unsoundness often lurk in the shad-
ows, with caveats only mentioned in 
an off-hand manner in an implemen-
tation or evaluation section. This can 
lead a casual reader to erroneously con-
clude the analysis is sound. Even worse, 
elided details of how tricky language 
constructs are handled could have a 

profound impact on how the paper’s 
results should be interpreted, since 
an unsound handling could lead to 
much of the program’s behavior being 
ignored (consider analyzing large pro-
grams, such as the Eclipse IDE, with-
out understanding at least something 
about reflection; most of the program 
will likely be omitted from analysis).

Unsoundness: Inevitable 
and, Perhaps, Desirable?
The typical (published) whole-pro-
gram analysis extolls its scalabil-
ity virtues and briefly mentions its 
soundness caveats. For instance, an 
analysis for Java will typically mention 
that reflection is handled “as in past 
work,” while dynamic loading will 
be (silently) assumed away, as will be 
any behavior of opaque, non-analyzed 
code (mainly native code) that may 
violate the analysis’ assumptions. 
Similar “standard assumptions” hold 
for other languages. Indeed, many 
analyses for C and C++ do not support 
casting into pointers, and most ignore 
complex features such as setjmp/
longjmp. For JavaScript the list of 
caveats grows even longer, to include 
the with construct, dynamically com-
puted fields (called properties), as well 
as the notorious eval construct.

Can these language features be 
ignored without significant conse-
quence? Realistically, most of the time 
the answer is no. These language fea-
tures are nearly ubiquitous in practice. 
Assuming the features away excludes 
the majority of input programs. For 
example, very few JavaScript programs 
larger than a certain size omit at least 
occasional calls to eval.

Could all these features be modeled 

Soundness is not 
even necessary 
for most modern 
analysis applications, 
however, as many 
clients can tolerate 
unsoundness.



46    COMMUNICATIONS OF THE ACM    |   FEBRUARY 2015  |   VOL.  58  |   NO.  2

viewpoints

Moving Forward 
We strongly feel that: 

˲˲ The programming language re-
search community should embrace 
soundy analysis techniques and tune 
its soundness expectations. The notion 
of soundiness can influence not only 
tool design but also that of program-
ming languages or type systems. For 
example, the type system of TypeScript 
is unsound, yet practically very useful 
for large-scale development. 

˲˲ Soundy is the new sound; de facto, 
given the research literature of the past 
decades. 

˲˲ Papers involving soundy analyses 
should both explain the general impli-
cations of their unsoundness and eval-
uate the implications for the bench-
marks being analyzed. 

˲˲ As a community, we should pro-
vide guidelines on how to write papers 
involving soundy analysis, perhaps 
varying per input language, emphasiz-
ing which features to consider han-
dling—or not handling.	

Benjamin Livshits (livshits@microsoft.com) is a research 
scientist at Microsoft Research.

Manu Sridharan (manu@sridharan.net) is a senior staff 
engineer at Samsung Research America.

Yannis Smaragdakis (smaragd@di.uoa.gr) is an associate 
professor at the University of Athens.

Ondr̆ej Lhoták (olhotak@uwaterloo.ca) is an associate 
professor at the University of Waterloo. 

J. Nelson Amaral (jamaral@ualberta.ca) is a professor at 
the University of Alberta.

Bor-Yuh Evan Chang (evan.chang@Colorado.EDU) is an 
assistant professor at the University of Colorado Boulder.

Samuel Z. Guyer (sguyer@cs.tufts.edu) is an associate 
professor at Tufts University.

Uday P. Khedker (uday@cse.iitb.ac.in) is a professor at 
the Indian Institute of Technology Bombay.

Anders Møller (amoeller@cs.au.dk) is an associate 
professor at Aarhus University.

Dimitrios Vardoulakis (dimvar@google.com) is a 
software engineer at Google Inc.

Copyright held by authors.

soundly? In principle, yes. In practice, 
however, we are not aware of a single 
sound whole-program static analysis 
tool applicable to industrial-strength 
programs written in a mainstream 
language! The reason is sound mod-
eling of all language features usually 
destroys the precision of the analysis 
because such modeling is usually high-
ly over-approximate. Imprecision, in 
turn, often destroys scalability because 
analysis techniques end up computing 
huge results—a typical modern analy-
sis achieves scalability by maintaining 
precision, thus minimizing the datas-
ets it manipulates. 

Soundness is not even necessary for 
most modern analysis applications, 
however, as many clients can tolerate 
unsoundness. Such clients include IDEs 
(auto-complete systems, code naviga-
tion), security analyses, general-purpose 
bug detectors (as opposed to program 
verifiers), and so forth. Even automat-
ed refactoring tools that perform code 
transformation are unsound in practice 
(especially when concurrency is consid-
ered), and yet they are still quite useful 
and implemented in most IDEs. Third-
party users of static analysis results—
including other research communities, 
such as software engineering, operating 
systems, or computer security—have 
been highly receptive of program analy-
ses that are unsound, yet useful.  

Evaluating Sources of 
Unsoundness by Language	
While an unsound analysis may take 
arbitrary shortcuts, a soundy analysis 
that attempts to do the right thing faces 
some formidable challenges. In par-
ticular, unsoundness frequently stems 
from difficult-to-model language fea-
tures. In the accompanying table, we 
list some of the sources of unsound-
ness, which we segregate by language. 

All features listed in the table can 
have significant consequences on the 
program, yet are commonly ignored at 
analysis time. For language features 
that are most often ignored in un-
sound analyses (reflection, setjmp/
longjmp, eval, and so forth), more 
studies should be published to char-
acterize how extensively these features 
are used in typical programs and how 
ignoring these features could affect 
standard program analysis clients. 
Recent work analyzes the use of eval 
in JavaScript. However, an informal 
email and in-person poll of recognized 
experts in static and runtime analysis 
failed to pinpoint a single reliable sur-
vey of the use of so-called dangerous 
features (pointer arithmetic, unsafe 
type casts, and so forth) in C and C++. 

Clearly, an improved evaluation 
methodology is required for these un-
sound analyses, to increase the com-
parability of different techniques. 
Perhaps, benchmarks or regression 
suites could be assembled to measure 
the effect of unsoundness. While fur-
ther work is required to devise such a 
methodology in full, we believe that, at 
the least, some effort should be made 
in experimental evaluations to com-
pare results of an unsound analysis 
with observable dynamic behaviors of 
the program. Such empirical evalua-
tion would indicate whether important 
behaviors are being captured. It really 
does not help the reader for the analy-
sis’ author to declare that their analy-
sis is sound modulo features X and 
Y, only to discover that these features 
are present in just about every real-life 
program! For instance, if a static analy-
sis for JavaScript claims to be “sound 
modulo eval,” a natural question to ask 
is whether the types of input program 
this analysis expects do indeed use eval 
in a way that is highly non-trivial.

Power consumption for typical components.Some of the sources of unsoundness, sorted by language.

Language Examples of commonly ignored features Consequences of not modeling these features

C/C++ setjmp/longjmp ignored

effects of pointer arithmetic

“manufactured” pointers

ignores arbitrary side effects to the program heap 

Java/C# Reflection

JNI

can render much of the codebase invisible for analysis

“invisible” code may  create invisible side effects in programs

JavaScript eval, dynamic code loading

data flow through the DOM

missing execution

missing data flow in program


