Chapter 1

Introduction

In this book we shall introduce four of the main approaches to program
analysis: Data Flow Analysis, Constraint Based Analysis, Abstract Interpre-
tation, and Type and Effect Systems. Each of Chapters 2 to 5 deals with one
of these approaches at some length and generally treats the more advanced
material in later sections. Throughout the book we aim at stressing the many
similarities between what may at a first glance appear to be very unrelated
approaches. To help to get this idea across, and to serve as a gentle intro-
duction, this chapter treats all of the approaches at the level of examples.
The techmical details are worked out but it may be difficult to apply the
techniques to related examples until some of the material of later chapters
has been studied.

1.1 The Nature of Program Analysis

Program analysis offers static compile-time techniques for predicting safe
and computable approximations to the set of values or behaviours arising
dynamically at run-time when executing a program on a computer. A main
application is to allow compilers to generate code avoiding redundant com-
putations, e.g. by reusing available results or by moving loop invariant com-
putations out of loops, or avoiding superfluous computations, e.g. of results
known to be not needed or of results known already at compile-time. Among
the more recent applications is the validation of software (possibly purchased
from sub-contractors) to reduce the likelihood of malicious or unintended be-
haviour. Common for these applications is the need to combine information
from different parts of the program.

A main aim of this book is to give an overview of a numiber of approaches to
program analysis, all of which have a quite extensive literature, and to show

2 1 Introduction

true answer
{dla""dﬂ.} {d'n+la"'7dN}

A

/
/

~ J

{d1,---,dny-+,dnim}
safe answer

Figure 1.1: The nature of approximation: erring on the safe side.

that there is a large amount of commonality among the approaches. This
should help in cultivating the ability to choose the right approach for the
right task and in exploiting insights developed in one approach to enhance
the power of other approaches.

One common theme behind all approaches to program analysis is that in
order to remain computable one can only provide approrimate answers. As
an example consider a simple language of statements and the program

read(x); (if x>0 then y:=1 else (y:=2;5)); z:=y

where S is some statement that does not contain an assignment to y. Intu-
itively, the values of y that can reach z:=y will be 1 or 2.

Now suppose an analysis claims that the only value for y that can reach z:=y
is in fact 1. While this seems intuitively wrong, it is in fact correct in the
case where S is known never to terminate for x < 0 and y = 2. But since
it is undecidable whether or not S terminates, we normally do not expect
our analysis to attempt to detect this situation. So in general, we expect the
program analysis to produce a possibly larger set of possibilities than what
will ever happen during execution of the program. This means that we shall
also accept a program analysis claiming that the values of y reaching z:=y
are among 1, 2 or 27, although we will clearly prefer the analysis that gives
the more precise answer that the values are among 1 or 2. This notion of
safe approximation is illustrated in Figure 1.1. Clearly the challenge is not to

1.2 Setting the Scene 3

produce the safe “{d;,---,dn}" too often as the analysis will then be utterly
useless. Note, that although the analysis does not give precise information it
may still give useful information: knowing that the value of y is one of 1, 2
and 27 just before the assignment z:=y still tells us that z will be positive,
and that z will fit within 1 byte of storage etc. To avoid confusion it may
help to be precise in the use of terminology: it is better to say “the values
of y possible at z:=y are among 1 and 2” than the slightly shorter and more
frequently used “the values of y possible at z:=y are 1 and 2”.

Another common theme, to be stressed throughout this book, is that all
program analyses should be semantics based: this means that the information
obtained from the analysis can be proved to be safe (or correct) with respect
to a semantics of the programming language. It is a sad fact that new program
analyses often contain subtle bugs, and a formal justification of the program
analysis will help finding these bugs sooner rather than later. However, we
should stress that we do not suggest that program analyses be semantics
directed: this would mean that the structure of the program analysis should
reflect the structure of the semantics and this will be the case only for a few
approaches which are not covered in this book.

1.2 Setting the Scene

Syntax of the WHILE language. We shall consider a simple im-
perative language called WHILE. A program in WHILE is just a statement
which may be, and normally will be, a sequence of statements. In the interest
of simplicity, we will associate data flow information with single assignment
statements, the tests that appear in conditionals and loops, and skip state-
ments. We will require a method to identify these. The most convenient
way of doing this is to work with a labelled program - as indicated in the
syntax below. We will often refer to the labelled items (assignments, tests
and skip statements) as elementary blocks. In this chapter we will assume
that distinct elementary blocks are initially assigned distinct labels; we could
drop this requirement, in which case some of the examples would need to be
slightly reformulated and the resultant analyses would be less accurate.

We use the following syntactic categories:

a € AExp arithmetic expressions
b € BExp boolean expressions
S € Stmt statements

We assume some countable set of variables is given; numerals and labels will
not be further defined and neither will the operators:

z,y € Var variables
n € Num numerals
¢ € Lab labels

4 1 Introduction

RDentry(€) RD ¢zt (€)
(x,7), (v, (2,7) (x,7),(y,1),(2,7)
(), (v,1),(2,7) (x,7),(y,1),(2,2)

(x,7),(y,1), (y,5), (2, 2),(2,4) | (x,7),(y,1),(y,5),(2,2),(2,4)
(x, ?)’ (Y’ 1)1 (y’ 5)’ (z? 2)7 (z’ 4) (x’ ?)1 (Y’ 1)? (Y1 5)’ (z’ 4)
(x,7),(y,1),(y,5), (z,4) (x,7),(y,5),(2,4)
=",(3,1),,5),(2,2),(z4) | (x,7),(7,6),(2,2),(z,4)

UGB W N S

Table 1.1: Reaching Definitions information for the factorial program.

op, € Op, arithmetic operators
op, € Op, boolean operators
op, € Op, relational operators

The syntax of the language is given by the following abstract syntaz:

a == z|n|a op, a2
b := true| false|notb| b, op, bs | a1 op, a2
S u= |[z:=a]*|[skip]®| S$1;S2 |

if [b] then S; else S, | while [b]’ do S

One way to think of the abstract syntax is as specifying the parse trees of
the language; it will then be the purpose of the concrete syntaxr to provide
sufficient information to enable unique parse trees to be constructed. In this
book we shall not be concerned with concrete syntax: whenever we talk about
some syntactic entity we will always be talking about the abstract syntax so
there will be no ambiguity with respect to the form of the entity. We shall
use a textual representation of the abstract syntax and to disambiguate it
we shall use parentheses. For statements one often writes begin --- end or
{---} for this but we shall feel free to use (---). Similarly, we use brackets
(- - -) to resolve ambiguities in other syntactic categories. To cut down on the
number of brackets needed we shall use the familiar relative precedences of
arithmetic, boolean and relational operators.

Example 1.1 An example of a program written in this language is the
following which computes the factorial of the number stored in x and leaves
the result in z:

[y:=x]"; [z:=1]% while [y>1]° do ([z:=zsy]*; [y:=y-1]°); [y:=0]°

Reaching Definitions Analysis. The use of distinct labels allows
us to identify the primitive constructs of a program without explicitly con-
structing a flow graph (or flow chart). It also allows us to introduce a program
analysis to be used throughout the chapter: Reaching Definitions Analysis,
or as it should be called more properly, reaching assignments analysis:

1.3 Data Flow Analysis 5

An assignment (called a definition in the classical literature) of
the form [z := a]’ may reach a certain program point (typically
the entry or exit of an elementary block) if there is an execution
of the program where = was last assigned a value at ¢ when the
program point is reached.

Consider the factorial program of Example 1.1. Here [y:=x|' reaches the
entry to [z:=1]%; to allow a more succinct presentation we shall say that
(y,1) reaches the entry to 2. Also we shall say that (x,?) reaches the entry to
2: here “?” is a special label not appearing in the program and it is used to
record the possibility of an uninitialised variable reaching a certain program
point.

Full information about reaching definitions for the factorial program is then
given by the pair RD = (RDentry, RDezit) of functions in Table 1.1. Careful
inspection of this table reveals that the entry and exit information agree for
elementary blocks of the form [b]¢ whereas for elementary blocks of the form
[:= a]’ they may differ on pairs (z,¢'). We shall come back to this when
formulating the analysis in subsequent sections.

Returning to the discussion of safe approximation note that if we modify
Table 1.1 to include the pair (z,2) in RD¢ptry(5) and RDegit(5) we still have
safe information about reaching definitions but the information is more ap-
proximate. However, if we remove (z,2) from RDcptry(6) and RDegi (6) then
the information will no longer be safe — there exists a run of the factorial pro-
gram where the set {(x,?),(y,6),(z,4)} does not correctly describe the reaching
definitions at the exit of label 6.

1.3 Data Flow Analysis

In Data Flow Analysis it is customary to think of a program as a graph: the
nodes are the elementary blocks and the edges describe how control might
pass from one elementary block to another. Figure 1.2 shows the flow graph
for the factorial program of Example 1.1. We shall first illustrate the more
common equational approach to Data Flow Analysis and then a constraint
based approach that will serve as a stepping stone to Section 1.4.

1.3.1 The Equational Approach

The equation system. An analysis like Reaching Definitions can be
specified by extracting a number of equations from a program. There are two
classes of equations. One class of equations relate exit information of a node
to entry information for the same node. For the factorial program

[y:=x]’; [z:=1]% while [y>1]* do ([z:=zxy]*; [y:=y-11°); [y:=0)°

6 1 Introduction

[y:=x]'

A

[z:=1)2

— |

[y>1]° |—— | [y:=0}°

v l

A

[zemzxy)?

[y:=y-1]°
|

Figure 1.2: Flow graph for the factorial program.

we obtain the following six equations:

RDesit(1) = (RDentry(1)\{(y,€) | £ € Lab}) U {(y, 1)}
RDezit(2) = (RDentry(2)\{(z,¢) | £ € Lab}) U {(z,2)}
RDezit(3) = RDentry(3)

RDezit(4) = (RDentv‘y(4)\{(z, f)|Lte Lab}) U {(z’ 4)}
RDesit(5) = (RDentry(5)\{(y,€) | £ € Lab})U {(y,5)}
RDezit(6) = (RDentry(6)\{(y,¢)|¢ € Lab})U {(y,6)}

These are instances of the following schema: for an assignment [z := a]’
we exclude all pairs (z, €) from RDepry (¢') and add (z,€’) in order to obtain
RDezit(€') — this reflects that z is redefined at ¢. For all other elementary
blocks |- - ~]el we let RD it (€') equal RDeptry (€') — reflecting that no variables
are changed.

The other class of equations relate entry information of a node to exit in-
formation of nodes from which there is an edge to the node of interest; that
is, entry information is obtained from all the exit information where control
could have come from. For the example program we obtain the following
equations:

RDentry(2) = RDegit(1)

e

———

1.3 Data Flow Analysis 7

RDentry(3) = RDegit(2) U RDzir(5)
RDcntry(4) RDczit(3)
RDentry(5) = RDesit(4)
RDentry(6) = RDerit(3)

In general, we write RDentry(€) = RDezit(£1) U - - - U RDegie(€r) if £y, -+, €0
are all the labels from which control might pass to £. We shall consider more
precise ways of explaining this in Chapter 2. Finally, let us consider the
equation

RDentry(1) = {(x,?) | z is a variable in the program}
that makes it clear that the label “?” is to be used for uninitialised variables;
80 in our case
RDentT‘y(l) = {(x’ ?)v (Yv 7, (za ?)}

The least solution. The above system of equations defines the twelve

sets
RDentfy(l)’ Tt RDC-T“(G)

in terms of each other. Writing RD for this twelve-tuple of sets we can regard
the equation system as defining a function F' and demanding that:

RD = F(RD)
To be more specific we can write
F(RD) = (Fentry (1)(RD), Fezit (1)(RD), - - -, Fentry (6)(RD), Fezst (6)(RD))
where e.g.:
Fentry(3)(-++,RDezit(2), -+, RDezst(5), -) = RD it (2) U RD i (5)

It should be clear that F' operates over twelve-tuples of sets of pairs of vari-
ables and labels; this can be written as

F : (P(Var, x Lab,))!? — (P(Var, x Lab,))!?

where it might be natural to take Var, = Var and Lab, = Lab. However,
it will simplify the presentation in this chapter to let Var, be a finite subset
of Var that contains the variables occurring in the program S, of interest

and similarly for Lab,. So for the example program we might have Var, =
{x,y,2z} and Lab, = {1,---,6,7}.

It is immediate that (P(Var, x Lab,))!? can be partially ordered by setting

ROCRB iff Vi:RD; CRD!

8 1 Introduction

where RD = (RDy,---,RD;2) and similarly RD = (RD/,--,RD),). This
turns (P(Var, x Lab,))!? into a complete lattice (see Appendix A) with
least element

b=(,---,0)

and binary least upper bounds given by:
RBURB = (RD; URD),---,RD12 URD/,)

It is easy to show that F is in fact a monotone function (see Appendix A)
meaning that:

RBCRD implies F(RD)C F(RD)
This involves calculations like

RDezit(2) C RD’em‘t(z) and RDezi(5) C RDIezit (5)

imply
RDe¢zit(2) URD s (5) € RD%,,,(2) URD’,,,(5)

exit
and the details are left to the reader.

Consider the sequence (F"(ﬁ))n and note that § C F(ﬁ). Since F is mono-
tone, a straightforward mathematical induction (see Appendix B) gives that
Fn(0) C F"*1(@) for all n. All the elements of the sequence will be in

(P(Var, x Lab,))!? and since this is a finite set it cannot be the case that
all elements of the sequence are distinct so there must be some n such that:

Fntl (@) . (@')

But since F"“(@) = F(F"(@‘)) this just says that F"(ﬁ) is a fired point of F

and hence that F™ (ﬁ) is a solution to the above equation system.
In fact we have obtained the least solution to the equation system. To see
this suppose that RD is some other solution, i.e. RD = F(@). Then a

straightforward mathematical induction shows that F" ((3) C RD. Hence

the solution F™(@) contains the fewest pairs of reaching definitions that is
consistent with the program, and intuitively, this is also the solution we want:
while we can add additional pairs of reaching definitions without making
the analysis semantically unsound, this will make the analysis less usable as
discussed in Section 1.1. In Exercise 1.7 we shall see that the least solution
is in fact the one displayed in Table 1.1.

1.3.2 The Constraint Based Approach

The constraint system. An alternative to the equational approach
above is to use a constraint based approach. The idea is here to extract a
number of inclusions (or inequations or constraints) out of a program. We

1.3 Data Flow Analysis 9

shall present the constraint system for Reaching Definitions in such a way
that the relationship to the equational approach becomes apparent; however,
it is not a general phenomenon that the constraints are naturally divided into
two classes as was the case for the equations.

For the factorial program
[y:=x]"; [z:=1]2; while [y>1]3 do ([z:=z*y]4; [y:=y-1]5); [y:=0]6

we obtain the following constraints for expressing the effect of elementary
blocks:

RDezit(1) 2 RDentry (1)\{(y,¢) | £ € Lab}
RDezit(l) 2 {(Y9 1)}

RDezit(2) 2 RDentry(2)\{(z,¢) | £ € Lab}
RDexit(z) :_) {(Z, 2)}

RDeu‘t (3) 2 RDentr‘y (3)

RDesit(4) 2 RDentry(4)\{(z,¢) | £ € Lab}
RDesit(4) 2 {(z,4)}

RDczit(5) 2 RDentry(5)\{(y,%) | £ € Lab}
RDesit(5) 2 {(y.5)}

RDezit(6) 2 RDentry(6)\{(y,¢) | £ € Lab}
RDesit(6) 2 {(y.6)}

By considering this system a certain methodology emerges: for an assignment
[z := a]® we have one constraint that excludes all pairs (z, £) from RD ¢ty (£)
in reaching RD.,;;(#') and we have one constraint for incorporating (z,¢’);
for all other elementary blocks [- -] we just have one constraint that allows
everything in RD.,s (¢') to reach RD gt (€').

Next consider the constraints for more directly expressing how control may
flow through the program. For the example program we obtain the con-
straints:

RDentry(2) 2 RDezit(1)
RDentry(3) 2 RDesit(2)
RDeniry(3) 2 RDesit(5)
RDentry(s) 2 RDem’t (4)
RDeniry(6) 2 RDaut(3)

In general, we have a constraint RDeptry (£) 2 RDegit(¢') if it is possible for
control to pass from ¢ to £. Finally, the constraint

RDentry(l) 2 {(x’ ?)’ (Y, ?)’ (z’ ?)}

records that we cannot be sure about the definition point of uninitialised
variables.

10 1 Introduction

The least solution revisited. It is not hard to see that a solution
to the equation system presented previously will also be a solution to the
above constraint system. To make this connection more transparent we can
rearrange the constraints by collecting all constraints with the same left hand
side. This means that for example

RDezit(1) 2 RDentry(1\{(y,¢) | £ € Lab}
RDezit(l) 2 {(y’l)}

will be replaced by

RDezit(l) 2 (RDent‘ry(l)\{(y’ Z) | 4 € Lab}) U {(Ya 1)}

and clearly this has no consequence for whether or not RD is a solution. In
other words we obtain a version of the previous equation system except that
all equalities have been replaced by inclusions. Formally, whereas the equa-
tional approach demands that RD = F(@), the constraint based approach
demands that RD J F(ﬁﬁ) for the same function F'. It is therefore immedi-
ate that a solution to the equation system is also a solution to the constraint
system whereas the converse is not necessarily the case.

Luckily we can show that both the equation system and the constraint system
have the same least solution. Recall that the least solution to RD = F(ﬁ)
is constructed as F"(@) for a value of n such that F"(@) = Fn+1(@). If RD
is a solution to the constraint system, that is RD 3 F(Iﬁ), then @ C RD is
immediate and the monotonicity of F and mathematical induction then gives
F~(®) C RD. Since F" ((3) is a solution to the constraint system this shows
that it is also the least solution to the constraint system.

In sunimary, we have thus seen a very strong connection between the equa-
tional approach and the constraint based approach. This connection is not
always as apparent as it is here: one of the characteristics of the constraint
based approach is that often constraints with the same left hand side are gen-
erated at many different places in the program and therefore it may require
serious work to collect them.

1.4 Constraint Based Analysis

The purpose of Control Flow Analysis is to determine information about
what “elementary blocks” may lead to what other “elementary blocks”. This
information is immediately available for the WHILE language unlike what is
the case for more advanced imperative, functional and object-oriented lan-
guages. Often Control Flow Analysis is expressed as a Constraint Based
Analysis as will be illustrated in this section.

Consider the following functional program:

1.4 Constraint Based Analysis 11

let f =fn x => x 1;
g = fny => y+2;
h =fn z => z+3

in (f g + (£ h)

It defines a higher-order function £ with formal parameter x and body x 1,
then it defines two functions g and h that are given as actual parameters to
f in the body of the let-construct. Semantically, x will be bound to each
of these two functions in turn so both g and h will be applied to 1 and the
result of the computation will be the value 7.

An application of £ will transfer control to the body of £, i.e. to x 1, and
this application of x will transfer control to the body of x. The problem is
that we cannot immediately point to the body of x: we need to know what
parameters f will be called with. This is exactly the information that the
Control Flow Analysis gives us:

For each function application, which functions may be applied.

As is typical of functional languages, the labelling scheme used would seem
to have a very different character than the one employed for imperative lan-
guages because the “elementary blocks” may be nested. We shall therefore
label all subexpressions as in the following simple program that will be used
to illustrate the analysis.

Example 1.2 Consider the program:
[[fn x => [x]']? [fn y => [y]’]*]°

It calls the identity function fn x => x on the argument fn y => y and
clearly evaluates to fn y => y itself (omitting all [- - -J¢). .

We shall now be interested in associating information with the labels them-
selves, rather than with the entries and exits of the labels — thereby we exploit
the fact that there are no side-effects in our simple functional language. The
Control Flow Analysis will be specified by a pair (C, p) of functions where
6(3) is supposed to contain the values that the subexpression (or “elemen-

tary block”) labelled £ may evaluate to and p(x) contain the values that the
variable x can be bound to.

The constraint system. One way to specify the Control Flow Anal-
ysis then is by means of a collection of constraints and we shall illustrate this
for the program of Example 1.2. There are three classes of constraints. One
class of constraints relate the values of function abstractions to their labels:

{fo x = [x]'} C(2)
{fa y => [y]*} € C(4)

12 1 Introduction

These constraints state that a function abstraction evaluates to a closure
containing the abstraction itself. So the general pattern is that an occurrence
of [fn z => €]’ in the program gives rise to a constraint {fn z => e} C C(¢).

The second class of constraints relate the values of variables to their labels:
p(x) € C(1)
ply) € C(3)

The constraints state that a variable always evaluates to its value. So for
each occurrence of [z]¢ in the program we will have a constraint p(x) C C(o).

The third class of constraints concerns function application: for each applica-
tion point [e; e5)¢, and for each possible function [fn x => €]¢ that could be
called at this point, we will have: (i) a constraint expressing that the formal
parameter of the function is bound to the actual parameter at the application
point, and (ii) a constraint expressing that the result obtained by evaluating
the body of the function is a possible result of the application.

Our example program has just one application [[- -]2 [---]*]%, but there are
two candidates for the function, i.e. C(2) is a subset of the set {fn x => [x]!,
fn y = [y]3} If the function fn x => [x]! is applied then the two con-

straints are C(4) C p(x) and C(l) C C(5). We express this as conditional
constraints:

{fn x => [x|'} € C(2) = C(4) C Alx)
{fa x => [x]'} € C(2) = C(1) c C(5)

Alternatively, the function being applied could be fn y => [y]® and the cor-
responding conditional constraints are:

{fa y = [y]3} C(2) = C(4) C Ay)
{fn y = [y} c C(2) = C(3) c C(5)

The least solution. As in Section 1.3 we shall be interested in the
least solution to this set of constraints: the smaller the sets of values given
by C and p, p, the more precise the analysis is in predicting which functions are
applied. In Exercise 1.2 we show that the following choice of Candp p gives a
solution to the above constraints:

C(1) = {fny = [%}
E(z) = {fn x => [x]'}
c3) = 0

C4) = {fny = [y}
C(5) = {fny = [y}
plx) = {fny => [y]’}

ply) = 0

1.5 Abstract Interpretation 13

Among other things this tells us that the function abstraction fn y => y is
never applied (since p(y) = @) and that the program may only evaluate to

the function abstraction fn y => y (since 6(5) = {fn y => [y]3}).

Note the similarities between the constraint based approaches to Data Flow
Analysis and Constraint Based Analysis: in both cases the syntactic structure
of the program gives rise to a set of constraints whose least solution is desired.
The main difference is that the constraints for the Constraint Based Analysis
have a more complex structure than those for the Data Flow Analysis.

1.5 Abstract Interpretation

The theory of Abstract Interpretation is a general methodology for calculat-
ing analyses rather than just specifying them and then relying on a posteriori
validation. To some extent the application of Abstract Interpretation is in-
dependent of the specification style used for presenting the program analysis
and so applies not only to the Data Flow Analysis formulation to be used
here.

Collecting semantics. As a preliminary step we shall formulate a so-
called collecting semantics that records the set of traces tr that can reach a
given program point:

tr € Trace = (Var x Lab)*

Intuitively, a trace will record where the variables have obtained their values
in the course of the computation. So for the factorial program

[y:=x]’; [z:=1]% while [y>1]° do ([z:=zxy]*; [y:=y-11°); [y:=0)°
we will for example have the trace

((x’ ?)’ (y’ ?)’ (z7 ?)’ (y7 1)’ (27 2)7 (z’ 4)1 (Yv 5)’ (Z’ 4)’ (Y’ 5)’ (Y’ 6))

corresponding to a run of the program where the body of the while-loop is
executed twice.

The traces contain sufficient information that we can extract a set of seman-
tically reaching definitions:

SRD(tr)(x) = ¢ iff the rightmost pair (z,¢') in tr has £ = ¢’
We shall write DOM(tr) for the set of variables for which SRD(¢r) is defined,
i.e. x € DOM(¢tr) iff some pair (z,£) occurs in tr.

In order for the Reaching Definitions Analysis to be correct (or safe) we shall
require that it captures the semantic reaching definitions, that is, if tr is a

14 1 Introduction

possible trace just before entering the elementary block labelled ¢ then we
shall demand that

Vz € DOM(tr) : (z,SRD(¢r)(x)) € RDentry(£)

in order to trust the information in RDcnsry(¢) about the set of definitions
that may reach the entry to £. In later chapters, we will conduct proofs of
results like this.

The collecting semantics will specify a superset of the possible traces at the
various program points. We shall specify the collecting semantics CS in the
style of the Reaching Definitions Analysis in Section 1.3; more precisely, we
shall specify a twelve-tuple of elements from (P(Trace))!? by means of a set
of equations. First we have

Csea:it(l) = {tT‘ : (y’ 1) I ir € Csentry(l)}
CSezit(2) {tr: (2,2) | tr € CSentry(2)}
CSezit(3) CSeniry(3)

CSezit(4) = {tr:(z,4)| tr € CSenury(4)}
CSezit(5) {tr : (y,5) | tr € CSentry(5)}
CSezit(6) = {tr:(y,6) | tr € CSentry(6)}

showing how the assignment statements give rise to extensions of the traces.
Here we write tr : (z,{) for appending an element (z,¢) to a list ¢r, that
is ((x1,41)," "+, (Zn,€n)) : (z,£) equals ((z1,41), -, (Tn,n), (z,£)). Further-
more, we have

CSeniry(2) = CSezit(1)

CSentry(3) = CSezit(2) U CSezit(5)

CSentry(4) = CSezit(3)

CSentry(8) = CSezit(4)

CSentry(6) = CSezit(3)
corresponding to the flow of control in the program; more detailed infor-
mation about the values of the variables would allow us to define the sets

CSentry(4) and CScnery(6) more precisely but the above definitions are suffi-
cient for illustrating the approach. Finally, we take

CSentry(1) = {((x,7),(3: 7 (2,7))}

corresponding to the fact that all variables are uninitialised in the beginning.

In the manner of the previous sections we can rewrite the above system of
equations in the form

S = G(C9)

1.5 Abstract Interpretation 15

Figure 1.3: The adjunction (a,).

where CS is a twelve-tuple of elements from (P(Trace))!? and where G is a
monotone function of functionality:

G : (P(Trace))'? — (P(Trace))!?

As is explained in Appendix A there is a body of general theory that ensures
that the equation system in fact has a least solution; we shall write it as
Ifp(G). However, since (P(Trace))!? is not finite we cannot simply use the
methods of the previous sections in order to construct Ifp(G).

Galois connections. As we have seen the collecting semantics operates
on sets of traces whereas the Reaching Definitions Analysis operates on sets of
pairs of variables and labels. To relate these “worlds” we define an abstraction
function a and a concretisation function v as illustrated in:

v

P(Trace) ___, P(Var x Lab)
a

The idea is that the abstraction function a extracts the reachability informa-
tion present in a set of traces; it is natural to define

a(X) = {(z,SRD(tr)(z)) | £ € DOM(tr) Atr € X}

where we exploit the notion of semantically reaching definitions.

The concretisation function - then produces all traces ¢r that are consistent
with the given reachability information:

Y(Y) = {tr | Vz € DOM(¢tr) : (z,SRD(tr)(z)) € Y}

Often it is demanded that a and v satisfy the condition
a(X)CY & X CH(Y)

16 1 Introduction

and we shall say that (e, «) is an adjunction, or a Galois connection, whenever
this condition is satisfied; this is illustrated in Figure 1.3. We shall leave it
to the reader to verify that (a,<y) as defined above does in fact fulfil this
condition.

Induced analysis. We shall now show how the collecting semantics
can be used to calculate (as opposed to “guess”) an analysis like the one in
Section 1.3; we shall say that the analysis is an induced analysis. For this we

define

(X1, -+, X12) = (X1), -, a(X12))
’7(}/1""7},12) = (7(Yl)""a7(}/l2))

where a and « are as above and we consider the function @ o G o 4 of func-
tionality:

(@oGo7): (P(Var x Lab))'? — (P(Var x Lab))!2

This function defines a Reaching Definitions analysis in an indirect way. Since
G is specified by a set of equations (over P(Trace)) we can use @o G o ¥ to
calculate a new set of equations (over P(Var x Lab)). We shall illustrate
this for one of the equations:

CSezit(4) = {tr : (2,4) | tr € CSeniry(4)}
The corresponding clause in the definition of G is:
Gezit(4)(- -+, CSentry(4),---) = {tr : (z,4) | tr € CSeniry(4)}
We can now calculate the corresponding clause in the definition of @ o G 0 ¥:

@(Gezit(4)(7(- - -, RDentry (4),- - 1))
= o({tr: (z,4) | tr € ¥(RDentry(4))})
= {(z,SRD(tr : (z,4))(z))
| z € DOM(tr : (z,4)),
Vy € DOM(tr) : (y,SRD(tr)(y)) € RDenery(4)}
= {(z,SRD(tr : (z,4))(z))
| z # z, x € DOM(tr : (z,4)),
Yy € DOM(tr) : (y,SRD(tr)(y)) € RDentry(4)}
U{(z,SRD(tr : (z,4))(z))
| z = 2z, x € DOM(tr : (z,4)),
Vy € DOM(tr) : (y,SRD(tr)(y)) € RDeniry(4)}
= {(z, SRD(tr)(z))
| z # z, z € DOM(tr),
Vy € DOM(tr) : (y,SRD(tr)(y)) € RDentry(4)}
u{(z,4)
| Vy € DOM(tr) : (y,SRD(tr)(y)) € RDentry(4)}
= (RDentry(4) \ {(2,¢) | £ € Lab}) U {(z,4)}

1.6 Type and Effect Systems 17

The resulting equation
RDerit(4) = (RDentry(4) \ {(2,€) | £ € Lab}) U {(z,4)}

is as in Section 1.3. Similar calculations can be performed for the other
equations.

The least solution. As explained in Appendix A the equation system
RB = (@0Go%)(RD)

has a least solution; we shall write it as Ifp(@ o G o 4). It is interesting to
note that if one replaces the infinite sets Var and Lab with finite sets Var,
and Lab, as before, then the least fixed point of & o G o 4 can be obtained

-

as (@ o G o0 ¥)"™(0) just as was the case for F previously.

In Exercise 1.4 we shall show that @0 G o5 C F and that &(G"(0)) C
(@ o Go4)"(9) C F™(0) holds for all n. In fact it will be the case that

a(Ifp(G)) T lfp(di o G o 7) E Ifp(F)

and this just says that the least solution to the equation system defined by
aoGo# is correct with respect to the collecting semantics, and similarly that
the least solution to the equation system of Section 1.3 is also correct with
respect to the collecting semantics. Thus it follows that we will only need to
show that the collecting semantics is correct — the correctness of the induced
analysis will follow for free.

For some analyses one is able to prove the stronger result @0 Goq = F.
Then the analysis is optimal (given the choice of approximate properties it
operates on) and clearly lfp(@ o G o 4) = Ifp(F). In Exercise 1.4 we shall
study whether or not this is the case here.

1.6 Type and Effect Systems

A simple type system. The ideal setting for explaining Type and
Effect Systems is to consider a typed functional or imperative language.
However, even our simple toy language can be considered to be typed: a
statement S maps a state to a state (in case it terminates) and may therefore
be considered to have type ¥ — X where ¥ denotes the type of states; we
write this as the judgement:

S:¥-%

One way to formalise this is by the following utterly trivial system of axioms
and inference rules:

