
A True Positives Theorem
for a Static Race Detector

Presentation by Julia Belyakova and Artem Pelenitsyn

For CS 7580 (instructor: Jan Vitek), 10/30/2019

A subset of slides is taken from Ilya Sergey’s web page

Static Analyses  

for Program Validation

 7

C p
α

e

program  
execution

property 
of interest

“abstraction”

 8

The Essence of Static Analysis

e1

p

α

e2 α

 9

concreteSem(c) =

p2

p3

p4

p1

e2

e3

e1

e4e6

e5

Static Analysis

 10

p2

p3

p4

p1

}
}

“has bugs”

e6

e2

e3

e1

e4

e5
“correct”

Static Analysis

concreteSem(c) =

 11

Verifier  

or a  

Bug Detector?

 12

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

Program Verifier

true negative

true positive

true negative

false positive

 13

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

Sound Program Verifier

true negative

true positive

true negative

false positive

 14

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

Sound Program Verifier

<

abstract over-approximation

false positive

true negative

true positive

true negative

 15

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

Sound Program Verifier

<

abstract over-approximation

true negative

true positive

true negative

false positive

 16

p2

p3

p4

p1

e2

e3

e1

e4

e5

Sound Program Verifier

e6

 if (n == VERY_UNLIKELY_VALUE) {

 bug.explode();

 } else {

 // do nothing

 }

true positive

true negative

true positive

false positive

 17

Developer:

Go away, that never happens!

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

Unsound Program “Verifier”

 if (n == VERY_UNLIKELY_VALUE) {

 bug.explode();

 } else {

 // do nothing

 }

false negative

true negative

true positive

false positive

 18

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

false negative

e6

“Sound” Program Verifier

false positive

true negative

true positive

 19

e6

p2

p3

p1

e2

e3

e1

e4

e5

“Sound” Program Verifier

<

concrete under-approximation abstract over-approximation

true negative

true positive

false positive

 20

• False negatives (bugs missed) are bad

• False positives (non-bugs reported) are okay

• Constructed as over-approximation (of under-approximation)

• Soundness Theorem:  
Under certain assumptions about the programs, the analyser has no false negatives.

Sound Static Verifiers

 21

p2

p3

p4

p1

}
}

“has bugs”

e6

e2

e3

e1

e4

e5
“correct”

 22

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

Static Bug Finder

true negative

false negative

true positive

false positive

 23

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

Unsound Static Bug Finder

false positive

true negative

false negative

true positive

 24

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

<

abstract under-approximation

Sound (but imprecise) Static Bug Finder

false negative

true negative

false negative

true positive

 25

if (n != VERY_UNLIKELY_VALUE) {

 // bug happens here

 } else {

 // normal execution

 }

Loss of Precision in Static Bug Finders

e2

e3

Idea: over-approximate in concrete semantics!

 26

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

false negative

Sound (but Imprecise) Static Bug Finder

Let’s consider these two equivalent!
Let’s merge these executions into

one that subsumes both!

true negative

false negative

true positive

 27

false negativee2

e3

p2

p3

p4

p1

e6

e1

e4

e5

true positive
e23

p2

 if (*) {

 // bug happens here

 } else {

 // normal execution

 }

1. overApproxConcreteSem(c) =

true negative

false negative

true positive

 28

e23
true positivep2

p3

p4

p1

e6

e1

e4

e5

true positive

true negative

false negative

Sound Static Bug Finder
 if (*) {

 // bug happens here

 } else {

 // normal execution

 }

<

abstract under-approximationconcrete over-approximation

1. overApproxConcreteSem(c) =

 29

• False negatives (bugs missed) are okay

• False positives (non-bugs reported) are bad

• Constructed as under-approximation of over-approximation

• Soundness (True Positives) Theorem:  
Under certain assumptions about the programs, the analyser has no false positives.

Towards Sound Static Bug Finders
(this work)

 30

A True Positives Theorem  

for a Static Race Detector

Ilya SergeyNikos Gorogiannis Peter O’Hearn

 2

Unsound (and incomplete) static analyses can be principled,

satisfying meaningful theorems  

that help to understand their behaviour and guide their design

One can have an unsound but effective static analysis,  

which has significant industrial impact,  

and which is supported by a meaningful theorem.

Key Messages

Context

 5

1. We had a demonstrably-effective industrial analysis:  

RacerD (OOPSLA'18); >3k fixes in Facebook Java

2. No soundness theorem

3. Architecture: compositional abstract interpreter

4. No heuristic alarm filtering

Just ad hoc?

Our reaction:  

Semantics/theory should understand/explain, not lecture.

Case Study: RacerDX

• A provably TP-Sound version of Facebook’s RacerD concurrency analyser  

(Blackshear et al., OOPSLA’18)

• Buggy executions: data races in lock-based concurrent programs

• Syntactic assumptions:  

Java programs with well-scoped locking (synchronised), no recursion,

reflection, dynamic class loading; global variables are ignored.

• Concrete over-approximation:  

Loops and conditionals are non-deterministic.

 32

Formal Result

RacerDX enjoys the True Positives Theorem

wrt. Data Race Detection

(Details in the paper)

 38

Static Analysis
with True Positives Theorem*

Goal: to build a static analysis s.t.
 if the analysis reports a bug,

 it is a true bug

For an Idealized Language

1

True bug can be exhibited

The race reported

by the analysis

for program P

is a true race

There exists

an execution of P

that exhibits

the race

2

Ingredients
of the formalism

● program

● execution

● race

● analysis

● proof
For an Idealized Language

3

Ingredients of a data race

lock()
println(b.f)
unlock()

b.f := 42

path

4

Racy Program:

b = new Bloop()
u = new Burble()

u.meps(b) || u.reps(b)

parallel composition

Concurrent program syntax

5

Single-threaded
program C:
concrete semantics

● State

(command, stack, heap, locks)

● Trace (list of states)

● Concrete semantics

(set of traces)

6

Concrete semantics of commands

7

Concrete semantics of commands

empty trace

top stack frame

location pointed by π given stack s & heap h

value of var x

command

stack heap

of locks

8

Concrete semantics of compound statements

(1) run C, get all its traces (2) take the last state of each trace

(3) run c from the last state, get its traces(4) glue traces of C and c together

9

Concrete trace example

a p1

(p1, f) p2

(p2, _) 666

lock()
a.f := 5
unlock()

Stack s0

Heap h0 [
 〈lock(), s0, h0, 1〉,

(p1, f) p2

(p2, _) 5

Heap h1

Initial state:
 〈skip, s0, h0, 0〉

program execution trace

memory location

no lock

 〈a.f:=5, s0, h1, 1〉,
 〈unlock(), s0, h1, 0〉
]

10

Two-threaded
program C

1
။C

2
:

concrete semantics

● State

● Trace

● Concrete semantics

c။ε or ε။c

11

2-threaded program interleaves single traces

(1) run components individually

(2) interleave all individual traces
(full and partial)

12

Concurrent traces example

lock()
x := 5
unlock()
print(1)

lock()
x := 777
unlock()
print(2)

lock() ။ ε
x := 5 ။ ε
unlock() ။ ε
print(1) ။ ε
ε ။ lock()
ε ။ y := 777
ε ။ unlock()
ε ။ print(2)

lock()
x := 5
unlock()
lock()
y := 777
unlock()
print(1)

lock()
x := 5
lock()

lock()
y := 777
unlock()
print(2)
lock()
…

…

interleave
(taking care of locks)

13

Data race means concurrent access to location

14

Data race means concurrent access to location

print(1)
lock()
a.f := 5
unlock()

print(2)
y := a.f

print(1) ။ ε
 ε ။ print(2)
lock() ။ ε

 ε ။ y := a.fa.f := 5 ။ ε

concurrent Write ။ Read to the same location

no lock!

print(1) ။ ε
 ε ။ print(2)
lock() ။ ε
a.f := 5 ။ ε

print(1) ။ ε
 ε ။ print(2)
lock() ။ ε
 ε ။ y := a.f

…

15

Can we identify
a data race
without building
the traces?

16

Abstract Semantics
● Abstract State

(wobblies, locks, path accesses)

● Abstraction of a set of

concrete single-threaded traces

tracks accesses
to memory locations

helps identify
true races

17

=

Wobblies can evade data races (produce false positives)

same path b.f refers to different locations

18

Abstraction keeps track of accesses and wobblies

(1) abstract the beginning of the trace

𝜏 without heap, stack, locks substitution (needed for method calls)

(2) remember access to π(3) mark x & π as wobbly

abstract set of traces using exec

discard substitution
19

Why reading is wobbly?

lock()
a.f.n := 5
unlock()

x := a
// a.f.n
x.f := new …
y := a.f.n

(p1, f) p4

(p2, n) p3

(p4, n) p5

(p1, f) p2

(p2, n) p3

a p1
same path a.f.n

refers to different locations,
so there is no race

20

Abstract access captures concrete access

If a path access is recorded in the abstract state,
there is a concrete trace exhibiting the access

21

Stable path preserves memory location

If a good path is not wobbly,
it preserves memory location along a trace

〈skip, s, h, L〉

 …

〈c, s’, h’, L’〉

π

π

… …

… p

Heap h

… …

… p

… …

Heap h’

22

Static Analysis

Galois connection

● Does not need traces

● Compositional

● Complete wrt. abstraction

operates in
abstract domain

enjoys benefits
of the abstraction

23

True Positives Theorem

access the same path π
in W။W or W။R or R။W

and π is not wobbly

π refers to the same location in C1 & C2 in the initial state,
and it still refers to the same location when concurrently accessed

24

Evaluation

What is the price to pay for

having the TP Theorem?

(Reporting no bugs whatsoever is TP-Sound)

 39

RacerD vs RacerDX

Target LOC D CPU DX CPU CPU ±% D Reps DX Reps Reps ±% D

avrora 76k 103 102 0.4% 143 92 36%

Chronicle-Map 45k 196 196 0.1% 2 2 0%

jvm-tools 33k 106 109 -3.6% 30 26 13%

RxJava 273k 76 69 9.2% 166 134 19%

sun"ow 25k 44 44 -1.4% 97 42 57%

xalan-j 175k 144 137 5.0% 326 295 10%

(b) Evaluation results. CPU columns are in seconds; Reps are distinct reports;

 40

RacerD vs RacerDX

Target LOC D CPU DX CPU CPU ±% D Reps DX Reps Reps ±% D

avrora 76k 103 102 0.4% 143 92 36%

Chronicle-Map 45k 196 196 0.1% 2 2 0%

jvm-tools 33k 106 109 -3.6% 30 26 13%

RxJava 273k 76 69 9.2% 166 134 19%

sun"ow 25k 44 44 -1.4% 97 42 57%

xalan-j 175k 144 137 5.0% 326 295 10%

(b) Evaluation results. CPU columns are in seconds; Reps are distinct reports;

 41

RacerD vs RacerDX

Target LOC D CPU DX CPU CPU ±% D Reps DX Reps Reps ±% D

avrora 76k 103 102 0.4% 143 92 36%

Chronicle-Map 45k 196 196 0.1% 2 2 0%

jvm-tools 33k 106 109 -3.6% 30 26 13%

RxJava 273k 76 69 9.2% 166 134 19%

sun"ow 25k 44 44 -1.4% 97 42 57%

xalan-j 175k 144 137 5.0% 326 295 10%

(b) Evaluation results. CPU columns are in seconds; Reps are distinct reports;

 42

The Artifact

At Glance

Contents of Artifact

● Data: 6 packages source code

● Facebook’s Infer package (OCaml code, Git repo): holds RacerD

● RacerDX Patch

● Set of Bash scripts to:

○ clean up

○ run vanilla Infer

○ patch and ran patched Infer,

○ collect stats.

● README: dependencies, entry points to run scripts, etc.

6 packages (incl. 2 invalid) by Build Technology

● Ant: 3 pkgs (avrora, sunflow, xalan-j)

● Gradle: 1 pkg (RxJava)

● Maven: 2 pkgs (Chronicle-Map, jvm-tools) — the invalid ones

Reproduction & reanalysis

War Stories

Repetition

● First try — failed with too new Java (noted in README):

○ error: as of release 9, '_' is a keyword, and may not be used as an identifier

● Second try — failed: unrecognized parameter to cloc (not noted in the README).

● Third try — partial success: numbers for RacerD are slightly off — ???

○ Reason: Missing native dependency

● Finally, numbers for 4 packages did reproduce.

What’s Wrong with Maven?

Authors’ words (README)

Since submission of the paper for review, the sources of two of the projects (Chronicle-Map and
jvm-tools) we used for evaluation became uncompilable (due to how maven works -- it always
downloads dependencies from the internet, and it seems the newer versions are breaking the
build of the version we originally tested).

Dependencies? This should have to do with the build scripts!

pom.xml of Chronicle-map

Remember: “always downloads dependencies from the internet”…

Release Artifact

pom.xml of jvm-tools (I)

Release Artifact

pom.xml of jvm-tools (II)

Infer’s bug in management of pom.xml

● Error message like the one in the artifact (when enabling stderr):

Error while running epilogue restoring Maven's pom.xml to its original state:

(Unix.Unix_error "No such file or directory"

rename "((src /data/videoRecorder/videoRecorder-rpm/pom.xml.infer-orig)

 (dst /data/videoRecorder/videoRecorder-rpm/pom.xml))").

● There’s a fix also!

The Fix

Happy End with Repetition

After

● Applying the Infer fix (kudos to the authors for preserving the Git repo)

● Checking out released versions of Maven-based packages

We were able to get the numbers from the paper.

Our Experiments (mostly support the claims)

● Full aws-sdk-java died with disk overflow (hundreds of gigabytes of reports)
○ Just one module (aws-java-sdk-s3):

○ test-aws-sdk-java, 3’847’035, 666, 639, 64, 48

● spring-kafka — success, equal results:
○ test-spring-kafka, 30’461, 31, 31, 16,16

● azkaban — success, equal, zeroes:
○ test-azkaban, 76’156, 0, 0, 0, 0

Race Report Example

Report Subsets

RacerDRacerDX

Takeaways: How NOT To Make an Artifact

● No Environment Management (e.g. a VM, Docker, Nix, etc.):

a. a bunch of source codes (sometimes non-released versions; not tracked by a VCS, e.g. Git)

b. (lose) description of dependencies (some dependencies didn’t have corresponding versions, e.g. cloc)

c. No way to account for transitive deps of tools, esp. native deps (e.g. sqlite3-dev)

● Clearing the $PATH -- poor man’s env management

● Piping stdout and stderr (!!!) to /dev/null

