
Systematic Approaches for Increasing
Soundness and Precision of Static Analyzers

Esben Sparre Andreasen
Aarhus University, Denmark

esbena@cs.au.dk

Anders Møller
Aarhus University, Denmark

amoeller@cs.au.dk

Benjamin Barslev Nielsen
Aarhus University, Denmark

barslev@cs.au.dk

Abstract
Building static analyzers for modern programming languages
is difficult. Often soundness is a requirement, perhaps with
some well-defined exceptions, and precision must be ade-
quate for producing useful results on realistic input programs.
Formally proving such properties of a complex static analysis
implementation is rarely an option in practice, which raises
the challenge of how to identify causes and importance of
soundness and precision problems.

Through a series of examples, we present our experience
with semi-automated methods based on delta debugging and
dynamic analysis for increasing soundness and precision of
a static analyzer for JavaScript. The individual methods are
well known, but to our knowledge rarely used systematically
and in combination.

CCS Concepts •Theory of computation → Program
analysis

Keywords Static Analysis, Soundness, Testing, JavaScript

1. Introduction
Analysis soundness Static analysis of programs written
in mainstream programming languages inevitably involves
approximation. Analysis designers often strive toward sound-
ness, meaning that the analysis should consider every possible
execution of the program being analyzed. Practically all ana-
lyzers deliberately treat some language features unsoundly,
for example regarding reflection or native code [11]. How-
ever, unsoundness may also be caused by errors in the design
or the implementation of the analysis. Such errors are easily
overlooked—the analysis may produce a result, quickly and
with good precision, but nevertheless a wrong result. How
can the developer of a static analyzer detect such errors?

One way to ensure soundness is to make a formal proof.
Sometimes this is done for key parts of the analysis design,

but rarely for the entire analysis, and even more rarely for the
actual implementation. One notable exception is the Verasco
analyzer [8], which has been specified and proven sound
using Coq. Despite the relative simplicity of that analyzer,
the proof burden was massive, and the approach is hardly
feasible for static analysis development in general.

Instead of requiring analyzers to be provably sound, we
aim for making them probably sound, which can be achieved
using thorough, automated testing. One such approach is
property-based testing (i.e., quickchecking), which has been
shown in previous work [12] to be an effective technique for
detecting errors in static analyzers, by exploiting the generic
algebraic properties of lattices and dataflow constraints. In
this paper, we describe our experience with another pragmatic
technique that we call soundness testing. The idea is simple
and unsurprising: after a program has been analyzed statically,
we compare the analysis results with the concrete states that
are observed by a dynamic analysis of the program. If the
information produced by the static analysis does not over-
approximate the information obtained from the executions, a
soundness error has been detected.
Analysis precision Another important aspect of static
analysis design is precision. As approximation is inevitable
and higher precision generally implies higher worst-case
complexity, the right choice of abstractions can only be
determined experimentally. Analysis precision is usually
measured using some analysis client, for example the ability
to prove absence of certain kinds of errors in the programs
being analyzed. However, internal analysis metrics, such as
sizes of points-to sets or degrees of suspiciousness of abstract
values [1] may also provide valuable hints to where it may
be advantageous to improve the analysis abstractions. In this
paper we focus on another technique to investigate analysis
precision problems, which is inspired by the work on blended
analysis [4, 16]. A blended analysis is a static analysis that
uses observations from a dynamic analysis to unsoundly
approximate the program behavior. Tuned static analysis [10]
is a related technique that uses unsound static pre-analysis
instead of dynamic analysis. The previous work on blended
and tuned analysis is about specific analysis algorithms
that increase precision (by sacrificing soundness), whereas
our goal here is to systematically identify opportunities for
improving an analysis design.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SOAP’17, June 18, 2017, Barcelona, Spain
c© 2017 ACM. 978-1-4503-5072-3/17/06...$15.00

http://dx.doi.org/10.1145/3088515.3088521

31

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3088515.3088521&domain=pdf&date_stamp=2017-06-18

Although our approach is inspired by blended analysis,
it is also related to the recently proposed process called
root-cause localization and remediation [17] for supporting
the design of JavaScript analyses. That process involves a
static analysis that automatically identifies where it looses
precision, and a mechanism for suggesting alternative context
sensitivities for those locations based on dynamic analysis.
Delta debugging In addition to the use of soundness test-
ing and blended analysis, soundness problems and precision
problems are both amenable to delta debugging [18]. This is
an effective technique to reduce the size of inputs (e.g. pro-
grams to be analyzed) while preserving problematic behavior,
which in our case is unsoundness or low precision.
Contributions In this paper we briefly describe our experi-
ence with soundness testing and blended analysis as methods
for increasing soundness and precision of the TAJS [1, 7]
static analyzer for JavaScript. Both of these techniques rely
on information recorded by the same dynamic analysis. We
have used both soundness testing and blended analysis in
combination with delta debugging to identify causes and im-
portance of soundness and precision problems. The methods
are semi-automated and tightly integrated into the TAJS in-
frastructure, and they have become essential tools for guiding
our continuous development of the analyzer.
TAJS We believe the techniques we present are broadly
applicable to static analysis development in general, but we
here focus on the TAJS analyzer.1 In brief, TAJS is a whole-
program dataflow analyzer for JavaScript, aiming to infer
type-related properties involving the flow of primitive values,
objects, and functions in the programs being analyzed. It
supports most ECMAScript 5 features, including the native
library and large parts of modern browser API and HTML
DOM functionality.

Regarding soundness, we face several challenges. The
language itself is extremely complex, there is a substantial
native library specified in the ECMAScript standard, and the
browser API and HTML DOM are not only massive but also
poorly documented and constantly evolving. Tiny errors in
the models can easily cause serious soundness issues that
may affect validity of experimental results if not detected.

Regarding precision, we (and many others) have found
that some programming patterns that are common in widely
used JavaScript libraries require extraordinary analysis pre-
cision, and that inadequate precision often renders even
small programs unanalyzable due to avalanches of spuri-
ous dataflow [1, 9, 10, 14, 17]. Here, “unanalyzable” means,
for example, that the analysis (spuriously) finds that eval is
called with an unknown string as argument.

2. Basic Techniques
In this section we briefly describe the three basic techniques
with examples of how we have used them in our ongoing
development of TAJS.

1 TAJS is available at http://www.brics.dk/TAJS/.

1 var a, b, x;
2 a = {p: 0, q: 0};
3 b = [];
4 for (var p in a)
5 b.push(p);
6 x = b[0]
7 a[x] = b[x];
8 a.p();

(a) Reduced program for 5
versions of underscore.js.

1 var a, x;
2 a = {};
3 a.p = 0;
4 b.q = 0;
5 for (var i = 0; i++) {
6 x = Object.keys(a)[i];
7 this[x] = a[x];
8 }

(b) Reduced program for 11
versions of lodash.js.

Figure 1: Delta debugging precision problems.

2.1 Delta Debugging
Delta debugging [18] is a technique for automated debugging
of programs. The essence of the technique is that a large in-
put is reduced systematically while preserving some specific
buggy behavior. The output is valuable because it makes it
easier to understand why the buggy behavior arises. A delta
debugging session takes two inputs: (1) an input program to
reduce, and (2) a predicate that determines if the (reduced)
program exhibits some specific behavior. The output is a
smaller program exhibiting this behavior. We will use the
term “delta debugging” throughout this text, although a more
appropriate name is the generalized concept of “cause reduc-
tion” [6]. The difference is that we are using the technique to
identify causes of a wide range of analysis behaviors, and not
just buggy behaviors.
Example While further developing our static determinacy
analysis technique [1], we observed that several utility li-
braries2, each consisting of thousands lines of code, were
unanalyzable. To investigate whether the libraries contained
common patterns that were problematic for TAJS to ana-
lyze, we applied delta debugging using the predicate that
TAJS should not be able to analyze the library within 5 min-
utes. Manually inspecting the outputs that were produced
for the different versions of the libraries quickly revealed
a small, common pattern for each library. Figure 1a shows
the resulting reduced program that was common to all five
different versions of the underscore.js library. The manage-
able size (only 8 lines) made it possible to determine the root
cause of the critical precision loss: The entries of an array are
mixed together since the iteration order of for-in loops is
implementation-specific according to the ECMAScript stan-
dard. The lost precision eventually causes spurious dataflow
to a large number of native functions at the method call in
line 8. A similar reduced program for a common pattern in
11 versions of the lodash.js library can be seen in Figure 1b.
Delta debugging in practice The JavaScript delta debug-
ger JSDelta3 has been used by several JavaScript research
groups. JSDelta systematically simplifies a JavaScript pro-
gram by performing statement deletion, sub-expression sim-
plification, and general purpose program optimizations, such
as function inlining.

2 http://underscorejs.org/, https://lodash.com/, among others
3 https://github.com/wala/jsdelta

32

http://www.brics.dk/TAJS/
http://underscorejs.org/
https://lodash.com/
https://github.com/wala/jsdelta

JSDelta is integrated with TAJS through a simple Java in-
terface. To start delta debugging, a predicate is implemented
in 5–10 lines of Java code, and the delta debugging main
method is executed through the IDE with the predicate and
some input program. This often reduces a few thousand lines
of code to less than 20 within a few hours, fully automati-
cally. The integration through Java also enables highly spe-
cialized predicates. As an example, a specialized predicate
has been used to understand surprising differences between
two slightly different analysis configurations. This predicate
was defined to determine whether one configuration would
lead to a particular kind of flow graph node being processed
significantly more often than with the other configuration.

Although a delta debugger in principle can produce output
that contains problems that are not present in the input, we
have found that situation to be rare. In practice, the output
usually exhibits the problem that was also present in the input,
which makes the approach useful for understanding analysis
limitations.
2.2 Soundness Testing
We use the term soundness testing to denote the process
of checking whether observations in a concrete execution
of a program are subsumed by the results computed by the
static analysis. Soundness testing has been applied in various
ways to many static analyzers. A notable example of this is a
study of the consequences of deliberate unsoundness in the
Clousot analyzer [3]. An interesting conclusion in that work
is that Clousot often encounters unsoundness in practice but
nevertheless rarely misses alarms.
Value logging An important design choice when perform-
ing soundness testing is deciding what information to include
from the dynamic executions. We have chosen a simple ap-
proach based on value logs, which consist of the values of
expressions that are computed during the execution of a pro-
gram. Other options include recording the call graph [17],
statement traces [16], or state snapshots [5, 13]. We have
found the simpler value logs sufficient for our purposes.

An example program and (a simplified version of) its value
log produced by our tool can be seen in Figure 2. The property
access on line 2 of the program is represented by the first two
lines of the value log. It has been logged that the property
access occurred on the object allocated at position 1:8 in the
program (BASE), and that the result is the string “foo,bar”
(PROP). Similarly, the call to split on line 3, is represented
by the three last lines of the value log.

A notable design choice for our value logs is that we ab-
stract away from execution order. This allows us to eliminate
duplicate entries, which leads to a considerable reduction of
the sizes of the logs.

Another important choice is that the value logs do not
contain information about call stacks or scope chains of
function objects. As mentioned, TAJS is partly context-
sensitive, but it is extremely difficult to implement a faithful
mapping from, for example, runtime call stacks to the abstract

1 var o = { p: ’foo,bar’ };
2 var s = o.p;
3 var a = s.split(’,’);

f.js:2:9 BASE OBJECT(f.js:1:8)
f.js:2.9 PROP STRING("foo,bar")
f.js:3:9 BASE STRING("foo,bar")
f.js:3:9 CALLEE BUILTIN(String.prototype.split)
f.js:3:9 ARG0 STRING(",")

Figure 2: A program (top) and its value log (bottom).

notion of contexts used by the static analysis. This means
that when checking subsumption of the concrete values and
the abstract values, we can only report a soundness error if a
given concrete value is not subsumed by the corresponding
abstract values for all contexts.
Value logging in practice We obtain value logs with
a dynamic analysis implemented using Jalangi [15]. The
program of interest is instrumented and executed such that
observations about runtime values are recorded. When the
execution ends, the observations are post-processed into a
value log, which is then persisted for reuse. The value log also
contains metadata, for example a checksum of the program
code so that we can easily detect if the program has been
modified and the value log should be recreated.

The logging mechanism also supports different envi-
ronments, enabling the creation of value logs for plain
ECMAScript applications, Node.js applications, and browser-
based applications. For example, if a log file is missing for a
browser-based application, a browser is spawned to load the
instrumented application, making it easy to manually interact
with it and decide when to stop recording.
Example As an example of a failing soundness test, con-
sider the code and the value log in Figure 2. If the analysis is
missing a model for the split property of string objects, then
our soundness testing tool fails with the following report:

Soundness testing failed for 1/5 checks:
- CALLEE on program line 3:
- concrete: BUILTIN(String.prototype.split)
- abstract: {undefined}

In this case, it is easy for the analysis designer to spot and
fix the root cause of the unsoundness. All that is needed is a
model of the built-in function String.prototype.split.

Soundness errors can easily spread in less obvious ways: a
missing assignment to a field can cause the soundness check
of the subsequent reads of that field to fail because of an
unsound value rather than missing dataflow. Such extraneous
soundness errors can make it harder to deduce the root cause
of unsoundness. Furthermore, there may be multiple root
causes of a failing soundness test, which can also make it
harder to identify a single one of them. In Section 3.1 we
present a technique for remedying these situations.
Soundness testing in practice Soundness testing is inte-
grated into TAJS’ regression test system and has been suc-
cessful in uncovering many subtle soundness bugs. Initially,

33

we found bugs in the core parts of the analysis, but recently
mostly in the models of the huge, complex, and constantly
evolving native libraries. For this reason we are planning to
apply deeper checks of values originating from the native
libraries, for example, not just checking that a value expected
to be an object (rather than a primitive value) really is an
object, but also that the object has the right properties.

Soundness errors sometimes result in highly inaccurate
analysis results, which may be difficult to notice without
soundness testing. However, as also observed by Christakis
et al. [3], unsoundness can be benign, in the sense that it
sometimes influences only a few nearby statements and not
the remainder of the program, nor the analysis output.

In TAJS, we maintain a catalog of known soundness errors,
which are then ignored when running the soundness tests.
Most of these known errors have been added to the catalog
because they have been classified as benign. This catalog
helps to document the unsoundness in TAJS, as advocated
by the soundiness manifesto [11]. It also helps prioritizing
which soundness errors to fix.

At the time of writing, the main regression test suite
of TAJS contains approximately 2 200 successfully sound-
ness tested JavaScript programs, comprising 900 000 individ-
ual soundness checks for 100 000 syntactic locations. Only
around 100 of the soundness checks fail, due to around 20
different soundness bugs that are caused by, for example,
inadequate modeling of the HTML DOM.

2.3 Blended Analysis
An easy way to increase the precision of a static analysis
is to replace parts of the abstract states with concrete states
obtained by a dynamic analysis. While this is obviously not
sound in general, it is sound relative to the execution path
taken by the dynamic analysis.

The idea is not new. Blended analysis [4, 16] for Java and
JavaScript allows the analysis to follow the control flow of
the concrete execution. The TamiFlex tool [2] uses the same
approach to handle Java reflection. Dynamic determinacy
analysis [14] for JavaScript is based on a similar idea but
retains soundness by only using dynamic information that is
valid for all executions.

We apply this technique by leveraging the value logs
that we already have from soundness testing as described
in Section 2.2. When analyzing a program, the associated
value log can be queried for the concrete values at a program
location. The abstract value for that program location can then
be refined by intersecting (technically, applying the greatest
lower bound) with the abstraction of the concrete values.
Another option would be to replace the abstract value with
the abstraction of the concrete values, but since the value
logs do not record any control flow information, that would
generally be less precise.

In practice, our value logs are more detailed than presented
in Section 2.2. We record some relational information, for
example, at a property write, we log the base object, the

1 var message = x == y ? "Same" : "Different";
2 var code = "print(’" + message + "’)";
3 eval(code);

f.js:3:1 ARG0 STRING("print(’Same’)")

Figure 3: A program with eval and a line from its value log.

property value, and the value to be written. Thereby, when
refining, for example, the abstract value being written, we
can ignore concrete values that apply to other abstract objects
and other property values, which increases precision.
Example As a TamiFlex-like example, a static analysis
for JavaScript can use blended analysis for the argument to
eval.4 Consider the program and its associated value log in
Figure 3. Without having support for determining that the
variables x and y always have the same value, the analysis is
able to evaluate the eval call as the code print(’Same’).

A similar use of blended analysis that enables focused
prototype analysis design is to obtain call and points-to graphs
from the value log instead of approximating them soundly.
Blended analysis in practice The use of blended analysis
makes it possible to circumvent challenging language or
library features, allowing the analysis designer to proceed
with other aspects of the analysis.

We mostly use blended analysis in combination with other
techniques, as we describe in Sections 3.2 to 3.4. However,
we have also used the approach to investigate “best-case
scenarios” for analyzing large JavaScript applications that
are beyond reach of all existing sound JavaScript analyzers.
By applying blended analysis aggressively—at all program
locations—we can test the analyzer for fundamental scalabil-
ity problems and logical implementation errors. Any errors
that are detected in such a scenario also exist without enabling
blended analysis but may be more difficult to find without it.

3. Combining the Basic Techniques
The basic techniques introduced in the previous section can
be combined to create some particularly powerful techniques
that guide the design of static analyses.

3.1 Soundness Testing and Delta Debugging
As stated in Section 2.2, soundness testing can expose sound-
ness bugs, but it is often difficult to locate the cause of a
failing soundness test if the program being analyzed is large
or if the bug causes many soundness checks to fail. Delta
debugging is extremely useful in these cases. Each iteration
of this delta debugging process works as follows. (1) run
the program concretely to obtain a value log, (2) analyze the
program, (3) perform soundness testing of the result from
step 2 using the value log from step 1. The delta debugging
predicate is that step 3 results in one or more failing sound-
ness checks. Delta debugging then automatically produces a
small program containing a soundness error.

4 We note that TAJS is able to handle some common occurrences of eval.

34

1 var i, s;
2 i = "0";
3 s = i++;

Soundness testing failed:
- VAR ’s’ on program line 3:
- concrete: NUMBER (0)
- abstract: {STRING ("0")}

Figure 4: Reduced program with a subtle soundness error.

If one wants to target a specific soundness error, then the
predicate can be refined to consider only that particular error.
Nevertheless, any reduced program with a soundness error is
valuable even after the error has been fixed, since their small
sizes make them useful as fast regression tests.
Example Figure 4 shows a reduced version of an un-
soundly analyzed program, together with the failing sound-
ness test. This small program was produced starting from a
large program that at that time had thousands of soundness
failures. The reduced program exposed that the value of a
postfix expression in JavaScript is, perhaps surprisingly, the
number-coerced value and not the original value. In this exam-
ple, it turned out that the exposed soundness bug was benign,
and after fixing it the original program still had thousands of
soundness failures. However, repeating the process quickly
revealed that those failures all had the same root cause and
could also easily be fixed.

3.2 Soundness Testing and Blended Analysis
By combining soundness testing and blended analysis, it is
possible to detect soundness errors even in programs that are
unanalyzable (in the sense described in Section 1) when using
the ordinary analysis! Using the same dynamic information
for the two purposes, any failures that are detected during the
soundness testing must be due to unsoundness in the analysis,
and not due to the under-approximation introduced by the
use of blended analysis.
Example Consider the soundness error below:

Soundness testing failed for 43/3932 checks:
- PROP on program line 542:
- concrete: BUILTIN(Symbol.unscopables)
- abstract: {undefined}

It reveals that the program being analyzed uses the Symbol
ECMAScript 6 feature, which was not yet fully modeled in
TAJS at the time this test was run. Without the use of blended
analysis, the program was unanalyzable due to inadequate
analysis precision, and it would have been difficult to tell that
the feature was not just encountered due to spurious dataflow.

3.3 Delta Debugging and Blended Analysis
We can also combine delta debugging and blended analysis.
This time, delta debugging is not instantiated with a program,
but instead with a set of program locations where blended
analysis is allowed. This combination of techniques gives
a way of finding a minimal set of locations that need to be
handled precisely by the static analysis.

Delta debugging is initiated with the set of all locations

1 _.mixin = function(obj) {
2 _.each(_.functions(obj), function(name) {
3 var func = _[name] = obj[name];
4 _.prototype[name] = function() {
5 func.apply(_, arguments);
6 };});};
7 _.mixin(_);

Figure 5: Excerpt from problematic underscore.js code.

in the program to be analyzed and the predicate that TAJS
can analyze the program, for example within one minute, by
applying blended analysis in the current set of locations. The
outcome is a reduced set of locations where blended analysis
is critical. Manually inspecting those locations often gives
good hints for improving the analysis design.

We find that the resulting number of locations is usually
below 5, which supports the claim that few root causes of
imprecision can render the analysis result useless [17].
Examples Using this technique to investigate causes of
precision problems when analyzing various small applica-
tions of the underscore.js library resulted in the following
automatically generated report.

underscore -1.8.3. js needs more precision at:
- PROPERTY WRITE at line 3

The relevant piece of code is shown in Figure 5 (line numbers
have been modified to match the figure). Blended analysis
was only needed in a single location, which means that
improving TAJS to be able to handle this particular location
precisely was the key to analyze the entire program. TAJS’
problem with underscore.js was that the abstract value of
name was an unknown string, so each property of obj was
conservatively written to each property of the library object,
thereby introducing a critical loss of precision.

Further in our investigation involving a more complicated
application of the library, we got this report:

underscore -1.8.3. js needs more precision at:
- PROPERTY WRITE at line 3
- CALL at line 5

This time, one additional location needed more precision.
The problem was that func could be every element in obj,
which would cause TAJS to conservativly model calls to every
function of obj, making the program unanalyzable.

Using this technique to systematically investigate preci-
sion problems with a range of applications of the library, we
obtained an overview of the various precision bottlenecks,
which was useful for prioritizing our effort and designing
useful improvements of the analysis abstractions.

3.4 Combining All Three Techniques
As discussed in Section 3.2, combining blended analysis and
soundness testing makes it possible to detect soundness errors
even with programs that cannot be analyzed by TAJS. It is
not always easy to identify the root cause of such a soundness
error, but again we can make use of delta debugging to
automatically produce a small program that is analyzed

35

1 function f(){
2 return arguments;
3 }
4 f().p;

Soundness testing failed:
- PROP on program line 4:

- concrete: UNDEFINED
- abstract: {}

Figure 6: Identifying the cause of unsoundness from an
unanalyzable program.

unsoundly. Compared to the combination of soundness testing
and delta debugging described in Section 3.1, we now use the
value log that is created in each delta debugging step both for
soundness testing and for blended analysis.
Example As mentioned in Section 3.3, TAJS could not an-
alyze simple applications of the underscore.js library, mean-
ing that without blended analysis, we could not use those
JavaScript programs to detect soundness errors. By combin-
ing the three techniques we not only detected a soundness
error, but we also obtained a reduced program containing
the error. The reduced program and the soundness test re-
port are shown in Figure 6. It turned out that the analysis
did not properly support accessing properties of the special
arguments object outside of its declaring function. The re-
duced program made it easy to locate the cause. The single
fix reduced thousands of failing soundness checks to zero,
since the soundness error influenced the dataflow in the rest
of the program.

4. Conclusion
We have presented our experience with soundness testing,
blended analysis, and delta debugging for systematically
guiding improvements of soundness and precision of the
TAJS static analyzer. Both soundness testing and blended
analysis build on top of value logs obtained by dynamic
analysis. Other useful techniques, such as quickchecking and
suspiciousness metrics, are described elsewhere [1, 12],

Our experience can be summarized as the following
recommendations to static analysis developers:

• Use dynamic analysis to record value logs for all bench-
mark programs. The value logs are useful for improving
both soundness and precision as the analysis design and
implementation evolves.

• Use soundness testing as an integrated part of the develop-
ment, and maintain a catalog of known soundness issues.
When soundness errors appear, use delta debugging to
quickly identify the cause.

• When precision problems appear, use blended analysis
to investigate how alternative analysis abstractions may
help. Combining blended analysis with delta debugging
can often automatically locate the critical places where
extra precision is needed.

• By combining soundness testing, blended analysis, and
delta debugging, it is possible to quickly identify sound-
ness errors even for programs that are unanalyzable due
to insufficient analysis precision.

Acknowledgments
This work was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No 647544).

References
[1] Esben Andreasen and Anders Møller. 2014. Determinacy in

static analysis for jQuery. In OOPSLA.
[2] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and

Mira Mezini. 2011. Taming reflection: aiding static analysis in
the presence of reflection and custom class loaders. In ICSE.

[3] Maria Christakis, Peter Müller, and Valentin Wüstholz. 2015.
An experimental evaluation of deliberate unsoundness in a
static program analyzer. In VMCAI.

[4] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. 2007.
Blended analysis for performance understanding of framework-
based applications. In ISSTA.

[5] Asger Feldthaus and Anders Møller. 2014. Checking cor-
rectness of TypeScript interfaces for JavaScript libraries. In
OOPSLA.

[6] Alex Groce, Mohammad Amin Alipour, Chaoqiang Zhang,
Yang Chen, and John Regehr. 2016. Cause reduction: delta
debugging, even without bugs. STVR (2016).

[7] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009.
Type analysis for JavaScript. In SAS.

[8] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy,
Xavier Leroy, and David Pichardie. 2015. A formally-verified
C static analyzer. In POPL.

[9] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wag-
ner, Kevin Gibbons, John Sarracino, Ben Wiedermann, and
Ben Hardekopf. 2014. JSAI: a static analysis platform for
JavaScript. In ESEC/FSE.

[10] Yoonseok Ko, Hongki Lee, Julian Dolby, and Sukyoung Ryu.
2015. Practically tunable static analysis framework for large-
scale JavaScript applications. In ASE.

[11] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis,
Ondrej Lhoták, José Nelson Amaral, Bor-Yuh Evan Chang,
Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and
Dimitrios Vardoulakis. 2015. In defense of soundiness: a
manifesto. Commun. ACM (2015).

[12] Jan Midtgaard and Anders Møller. 2015. Quickchecking static
analysis properties. In ICST.

[13] Joonyoung Park, Inho Lim, and Sukyoung Ryu. 2016. Bat-
tles with false positives in static analysis of JavaScript web
applications in the wild. In ICSE SEIP.

[14] Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip.
2013. Dynamic determinacy analysis. In PLDI.

[15] Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and
Simon Gibbs. 2013. Jalangi: a selective record-replay and
dynamic analysis framework for JavaScript. In ESEC/FSE.

[16] Shiyi Wei and Barbara G. Ryder. 2013. Practical blended taint
analysis for JavaScript. In ISSTA.

[17] Shiyi Wei, Omer Tripp, Barbara G. Ryder, and Julian Dolby.
2016. Revamping JavaScript static analysis via localization
and remediation of root causes of imprecision. In ESEC/FSE.

[18] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and
isolating failure-inducing input. STE (2002).

36

	*-1mmIntroduction
	*-1mmBasic Techniques
	*-1mmDelta Debugging
	Soundness Testing
	*-1mmBlended Analysis

	*-1mmCombining the Basic Techniques
	*-1mmSoundness Testing and Delta Debugging
	*-1mmSoundness Testing and Blended Analysis
	*-1mmDelta Debugging and Blended Analysis
	*-1mmCombining All Three Techniques

	*-1mmConclusion

