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a b s t r a c t 

Besides a git-based version control system, GitHub integrates several social coding features. Particularly, 

GitHub users can star a repository, presumably to manifest interest or satisfaction with an open source 

project. However, the real and practical meaning of starring a project was never the subject of an in- 

depth and well-founded empirical investigation. Therefore, we provide in this paper a throughout study 

on the meaning, characteristics, and dynamic growth of GitHub stars. First, by surveying 791 developers, 

we report that three out of four developers consider the number of stars before using or contributing 

to a GitHub project. Then, we report a quantitative analysis on the characteristics of the top-5,0 0 0 most 

starred GitHub repositories. We propose four patterns to describe stars growth, which are derived after 

clustering the time series representing the number of stars of the studied repositories; we also reveal 

the perception of 115 developers about these growth patterns. To conclude, we provide a list of recom- 

mendations to open source project managers (e.g., on the importance of social media promotion) and to 

GitHub users and Software Engineering researchers (e.g., on the risks faced when selecting projects by 

GitHub stars). 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W  

c

 

m  

p  

r  

u  

v  

d  

d  

d  

u  

m  

s  

p  

(  

p  

u  

s  
1. Introduction 

GitHub is the world’s largest collection of open source software,

with around 28 million users and 79 million repositories. 1 In addi-

tion to a git -based version control system, GitHub integrates sev-

eral features for social coding. For example, developers can fork

their own copy of a repository, work and improve the code lo-

cally, and then submit a pull request to integrate the changes in the

main repository ( Gousios et al., 2014; 2015; Yu et al., 2015; Gousios

et al., 2016 ). Inspired by the like button of modern social networks,

GitHub users can also star a repository, presumably to manifest in-

terest or satisfaction with the hosted project ( Begel et al., 2013 ).

However, the real and practical meaning of “starring a project” was

never the subject of an in-depth and well-founded empirical inves-

tigation. 

Furthermore, GitHub’s success contributed to the emergence of

a competitive open source market. As a result, it is common to see

projects competing for the same users. For example, AngularJS ,

React , and Vue.js compete for developers of JavaScript single-page
∗ Corresponding author. 

E-mail addresses: hsborges@dcc.ufmg.br (H. Borges), mtov@dcc.ufmg.br (M. Tulio 

Valente). 
1 https://github.com/search, verified on 03/05/2018. 
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eb applications. This fact increases the relevance of studying the

haracteristics and practical value of GitHub popularity metrics. 

Motivating survey: In order to provide initial evidence on the

ost useful metrics for measuring the popularity of GitHub

rojects, we conducted a survey with Stack Overflow users. We

ely on these participants because Stack Overflow is a widely pop-

lar programming forum, listing questions and answers about a

ariety of technologies, which are provided by practitioners with

ifferent profiles and background ( Vasilescu et al., 2013 ). We ran-

omly selected a sample of 400 Stack Overflow users, using a

ump of the site available on Google BigQuery. 2 We e-mailed these

sers asking then a single question: How useful are the following

etrics to assess the popularity of GitHub projects? We then pre-

ented three common metrics provided by GitHub, which are dis-

layed at the front page of any project: watchers, stars, and forks

see screenshot in Fig. 1 ). Although available on any repository,

roject owners do not have control over these metrics; any GitHub

ser can watch, star, or fork a repository, without asking permis-

ion to its owners. The survey participants were asked to rank the

sefulness of these metrics in a 4-point Likert scale; we also con-

gured the survey system to present the metrics in a random or-
2 https://cloud.google.com/bigquery/public-data/stackoverflow 

https://doi.org/10.1016/j.jss.2018.09.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.09.016&domain=pdf
mailto:hsborges@dcc.ufmg.br
mailto:mtov@dcc.ufmg.br
https://cloud.google.com/bigquery/public-data/stackoverflow
https://doi.org/10.1016/j.jss.2018.09.016
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Fig. 1. GitHub popularity metrics. 

Fig. 2. How useful are the following metrics to assess the popularity of GitHub 

projects? (1: not useful; 4: very useful). 
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er, to avoid a possible order effect bias. We received 54 answers,

hich corresponds to a response ratio of 13.5%. 

As presented in Fig. 2 , the results show that stars are viewed by

ractitioners as the most useful measure of popularity on GitHub,

ith 83% of answers with scores 3 (31%) or 4 (52%). It is followed

y forks with 72% of answers with scores 3–4 (35% and 37%, re-

pectively) and by watchers with 67% (37% and 30%, respectively).

herefore, this initial survey confirms the importance of GitHub

tars to practitioners, when compared to forks and watchers. Ad-

itionally, stars are often used by researchers to select GitHub

rojects for empirical studies in software engineering ( Ray et al.,

014; Padhye et al., 2014; Hilton et al., 2016; Mazinanian et al.,

017; Jiang et al., 2017; Nielebock et al., 2018; Rigger et al., 2018;

astro and Schots, 2018 ). Therefore, a throughout analysis of star-

ing practices can shed light on the properties and risks involved

n this selection. 

Proposed study: In a previous conference paper, we started an

nvestigation on the factors and patterns that govern the number

f stars of 2500 GitHub projects ( Borges et al., 2016b ). Our first

uantitative results indicate that: (i) repositories owned by orga-

izations have more stars than the ones owned by individuals;

ii) there is no correlation between stars and repository’s age; but

here is a correlation with forks; (iii) repositories tend to receive

ore stars right after their public release; after this initial period,

he growth rate tends to stabilize; (iv) there is an acceleration in

he number of stars gained after releases. Furthermore, we showed

hat the growth of the number of stars is explained by four pat-

erns, which we called slow, moderate, fast , and viral . 

In this paper, we extend this first study in three major direc-

ions: 

1. We increment the number of systems from 2500 to 50 0 0 public

GitHub repositories. 

2. We conduct two surveys to shed light on the quantitative re-

sults of the initial study. First, we perform a survey with 791

developers to reveal their motivations for starring projects. Ul-

timately, our intention is to understand why developers star

GitHub projects. We also conduct a second survey with 115

project owners to reveal their perceptions about the growth

patterns proposed in the first study. 

3. We investigate the endogenous factors (i.e., the ones that can

be extracted directly from a repository, like age) that affect the

classification of a project in a given growth pattern. We collect

31 factors along three dimensions and use a machine learn-

ing classifier to identify the factors that most distinguish the
projects across the proposed growth patterns. t  
Contributions: Our work leads to at least five contributions: 

1. To our knowledge, we are the first to provide solid empirical

evidence—both quantitative and qualitative—on the meaning of

the number of GitHub stars. Consequently, we recommend that

open source maintainers should monitor this metric, as they

monitor other project metrics, such as the number of pending

issues or pull requests. 

2. We reveal that active promotion, particularly on social media

sites, has a key importance to increase the number of stars

of open source projects. Since these projects are usually main-

tained by one or two contributors ( Avelino et al., 2016 ), they

should allocate time not only to write and maintain the code

(developers role) but also to promote the projects (marketing

role). 

3. We distill a list of threats faced by practitioners and researchers

when selecting GitHub projects based on the number of stars.

For example, this selection may favor projects with active mar-

keting and advertising strategies, instead of projects following

well-established software engineering practices. 

4. We implement an open source tool ( http://gittrends.io ) to ex-

plore and check our results, including the time series of stars

used in this paper and the proposed growth patterns. 

5. We provide a public dataset ( https://doi.org/10.5281/zenodo.

1183752 ) with the application domain of 50 0 0 GitHub reposito-

ries. This dataset can support research in a variety of Software

Engineering problems and contexts. 

Structure: Section 2 presents and characterizes the dataset used

n the study. Section 3 reports GitHub users’ major motivations for

tarring repositories. Section 4 presents a quantitative study on the

umber of stars of GitHub repositories. Section 5 documents the

atterns we propose to describe the growth of the number of stars

f GitHub systems. Section 6 investigates factors potentially affect-

ng the inclusion of a repository in the proposed growth patterns.

ection 7 describes project owners’ perceptions about the growth

atterns of their repositories. Threats to validity are discussed in

ection 8 and related work is presented in Section 9 . We conclude

y summarizing our findings and listing future work in Section 10 .

. Dataset 

The dataset used in this paper includes the top-5,0 0 0 public

epositories by number of stars on GitHub. We limit the study to

0 0 0 repositories for two major reasons. First, to focus on the char-

cteristics of the most starred GitHub projects. Second, because we

nvestigate the impact of application domain on number of stars,

hich demands a manual classification of each system domain. 

All data was obtained using the GitHub API, which provides

ervices to search public repositories and to retrieve specific data

bout them (e.g., stars, commits, contributors, and forks). The data

as collected on January 23rd, 2017. Besides retrieving the num-

er of stars for each system, we also relied on the GitHub API

o collect historical data about the number of stars. For this pur-

ose, we used a service from the API that returns all events of a

iven repository. For each star, these events store the date and the

ser who starred the repository. However, the GitHub API returns

t most 100 events by request (i.e., a page) and at most 400 pages.

or this reason, it is not possible to retrieve all stars events of sys-

ems with more than 40K stars, as is the case for 18 repositories,

http://gittrends.io
https://doi.org/10.5281/zenodo.1183752
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Fig. 3. Age, number of commits, number of contributors, and number of forks (outliers are omitted). 

Table 1 

Descriptive statistics on the number of stars of the repositories in 

our dataset. 

Min 1st quartile 2nd quartile 3rd quartile Max 

1,596 2085 2866 4541 224,136 
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such as FreeCodeCamp , Bootstrap , D3 , and Font-Awesome . There-

fore, these 18 systems are not considered in Sections 5, 6 , and 7 ,

since we depend on the complete time series to cluster and derive

stars growth patterns. 

Table 1 shows descriptive statistics on the number of stars

of the repositories in our dataset. The number of stars ranges

from 1596 (for mapnik/mapnik ) to 224,136 stars (for FreeCode-

Camp/FreeCodeCamp ). The median number of stars is 2,866. 

Age, Commits, Contributors, and Forks: Fig. 3 shows boxplots with

the distribution of the age (in number of weeks), number of com-

mits, number of contributors, and number of forks for the 50 0 0

systems in the dataset. For age, the first, second, and third quartiles

are 114, 186, and 272 weeks, respectively. For number of commits,

the first, second, and third quartiles are 102, 393, and 1,230, re-

spectively. For number of contributors, the first, second, and third

quartiles are 8, 25, and 64, respectively; 3 and for number of forks,

the first, second, and third quartiles are 252, 460, and 879, respec-

tively. Therefore, the systems in our dataset usually have years of

development and many commits and contributors. 

Programming language: As returned by the GitHub API, the lan-

guage of a project is the one with the highest percentage of source

code in its repository. Fig. 4 shows the distribution of the sys-

tems per programming language. JavaScript is the most popular

language (1,559 repositories, 31.1%), followed by Java (520 reposito-

ries, 10.4%), Python (441 repositories, 8.8%), Objective-C (374 repos-

itories, 7.4%), and Ruby (305 repositories, 6.1%). Despite a concen-

tration of systems in these languages, the dataset includes systems

in 71 languages, including Cuda, Julia, SQLPL, and XSLT (all with

just one repository). 4 

Owner: We also characterize our dataset according to repository

owner. On GitHub, a repository can be owned by a user (e.g., tor-

valds/linux ) or by an organization (e.g., facebook/react ). In our

dataset, 2569 repositories (51.3%) are owed by users and 2431

repositories (48.7%) by organizations. 

Application domain: In this study, we also group repositories

by application domain. However, different from other source code
3 We report contributors data as retrieved by the GitHub API. This data may 

be different from the one presented on the project’s page on GitHub, which only 

counts contributors with GitHub account. 
4 Although HTML is a markup language, it is included in Fig. 4 . The reason is that 

we also intend to study repositories containing documentation. 

 

r  

r

epositories, like SourceForge, GitHub does not include informa-

ion about the application domain of a project. For this reason,

e manually classified the domain of each system in our dataset.

nitially, the first author of this paper inspected the description of

he top-200 repositories to provide a first list of application do-

ains, distributed over six domain types, as presented next. These

omains were validate with the second paper’s author. After this

nitial classification, the first author inspected the short descrip-

ion, the GitHub page and the project’s page of the remaining 4800

epositories. During this process, he also marked the repositories

ith dubious classification decisions. These particular cases were

iscussed by the first and second authors, to reach a consensus

ecision. To the best of our knowledge, this is the first large-scale

lassification of application domains on GitHub. 

The systems are classified in the following six domains: 5 

1. Application software : Systems that provide functionalities

to end-users, like browsers and text editors (e.g., Word-

Press/WordPress and adobe/brackets ). 

2. System software : Systems that provide services and infrastruc-

ture to other systems, like operating systems, middleware, and

databases (e.g., torvalds/linux and mongodb/mongo ). 

3. Web libraries and frameworks : Systems that are used to im-

plement the front-end (interface) of web-based applications

(e.g., twbs/bootstrap and angular/angular.js ). 

4. Non-web libraries and frameworks : Systems that are used to im-

plement other components of an application, despite a web-

based interface (e.g., google/guava and facebook/fresco ). 

5. Software tools : Systems that support development tasks,

like IDEs, package managers, and compilers (e.g., Home-

brew/homebrew and git/git ). 

6. Documentation : Repositories with documentation, tutorials,

source code examples, etc. (e.g., iluwatar/ 

java-design-patterns ). 

Fig. 5 shows the number of systems in each domain. The

op-3 domains are web libraries and frameworks (1,535 reposito-

ies, 30.7%), non-web libraries and frameworks (1,439 repositories,

8.7%), and software tools (972 repositories, 19.4%). The projects in

hese domains can be seen as meta-projects, i.e., they are used to

mplement other projects, in the form of libraries, frameworks, or

ocumentation. 

. Survey study 

In this section, we describe an investigation with developers to

eveal their motivations for starring projects and to check whether
5 This classification only includes first-level domains; therefore, it can be further 

efined to include subdomains, such Android vs desktop applications. 
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Fig. 4. Top-10 languages by number of repositories. 

Fig. 5. Number of repositories by domain. 
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hey consider the number of stars before using or contributing to

rojects on GitHub. Section 3.1 describes the design of the sur-

ey questionnaire and the selection of the survey participants.

ection 3.2 reports the survey results. 

.1. Survey design 

The survey questionnaire has two open-ended questions: (1)

hy did you star owner/name ? and (2) Do you consider the num-

er of stars before using or contributing to a GitHub project? In

he first question, owner/name refers to a repository. Our inten-

ion with this question is to understand the motivations behind

 developer’s decision to star a GitHub repository. With the sec-

nd question, our goal is to check whether stars is indeed a factor

onsidered by developers when establishing a more close relation-

hip with a project, as a client (or user) or as a contributor (or

eveloper). These questions were sent by email to the last devel-

per who starred each repository in our dataset. The emails were

btained using the GitHub API. When the developers who gave the

ast star do not have a public email, we select the previous one and

o on, successively. We excluded 276 repositories (5.5%) because

he last star was given more than six months before the data col-

ection. Therefore, this increases the probability of developers not

emembering the concrete reasons they starred these repositories.

oreover, for 336 repositories (6.7%), the selected developer also

ecently starred other repository in our dataset, thus we excluded

hese repositories to avoid sending multiple emails to the same de-

eloper. Finally, our sample of participants consists of 4370 devel-

pers who recently starred 4370 repositories from our dataset. 
The questionnaire was sent between 13rd and 27th of March

017. After a period of 30 days, we obtained 791 responses and

73 e-mails returned due to delivery issues (e.g., non-existent re-

ipient), resulting in a response rate of 18.8%. This number of an-

wers represent a confidence interval of 3.15%, for a confidence

evel of 95%. Considering the locations configured in the respon-

ents’ GitHub profile, 133 respondents (16.8%) are from the United

tates, 74 respondents (9.4%) are from China, 39 (4.9%) are from

razil, 34 (4.3%) are from Canada, and 27 (3.4%) from India. Other

21 respondents (40.6%) are from 68 different countries and 163

espondents (20.6%) have no location configured in their GitHub

rofiles. Regarding the respondents’ experience in the GitHub plat-

orm, their account age ranges from 18 days to 9.12 years, with an

verage of 4.16 years and a median of 4.09 years. Regarding the

rogramming language used by the participants, 32.6% have most

f their public GitHub projects implemented in JavaScript, followed

y Python (12.5%), Java (11.8%), Ruby (7.0%), and PHP (5.0%). 

To preserve the respondents privacy, we use labels P1 to P791

hen quoting the answers. We analyze the answers using thematic

nalysis ( Cruzes and Dyba, 2011 ), a technique for identifying and

ecording “themes” (i.e., patterns) in textual documents. Thematic

nalysis involves the following steps: (1) initial reading of the an-

wers, (2) generating a first code for each answer, (3) searching

or themes among the proposed codes, (4) reviewing the themes

o find opportunities for merging, and (5) defining and naming the

nal themes. All steps were performed by the first author of this

aper. 

.2. Survey results 

This section presents the answers to the survey questions. A

eparate subsection discusses each question. 

.2.1. Why did you star owner/name ? 

In this question, we asked the developers to respond why they

tarred a given repository. In the next paragraphs, we present four

ajor reasons that emerged after analysing the answers. 

To show appreciation: More than half of the participants

52.5%) answered they starred the repositories because they liked

he project. In general, the answers mention that stars are used

s “likes” button in other social networks, such as Facebook and

ouTube. As examples we have: 

I liked the solution given by this repo. (P373) 

I starred this repository because it looks nice. (P689) 
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Table 2 

Why do users star GitHub repositories? (95% confidence 

level with a 3.15% confidence interval). 

Reason Total % 

To show appreciation 415 52.5 

Bookmarking 404 51.1 

Due to usage 290 36.7 

Due to recommendations 36 4.6 

Unknown reasons 5 0.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Do GitHub users consider the number 

of stars before using or contributing to 

a project? (95% confidence level with 

a 3.19% confidence interval). 

Answer Total % 

Yes 567 73.0 

No 181 23.3 

Unclear 29 3.7 
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Bookmarking: 51.1% of the participants reported they starred

the repositories for later retrieval. We have the following answers

as examples: 

I starred it because I wanted to try using it later. (P250) 

Because I use stars as a “sort of” bookmarks. (P465) 

Due to usage: 36.7% of the participants reported they used or

are using the project. As examples we have: 

I have been using for many years and was about to use again in a

new project. (P162) 

Because it solved my problem. (P650) 

Due to third-party recommendations: 4.6% of the participants

starred the repositories due to recommendations from friends,

websites, or other developers, as in this answer: 

I starred the repository because a technological group recom-

mended it. (P764) 

Additionally, five developers (0.6%) answered they do not know

or remember the reason why they starred the repositories. Table 2

details the number of answers and the percentage of responses

on each theme. Note that one answer can receive more than one

theme. For example, the theme To show appreciation appeared to-

gether with Bookmarking and Due to usage in 122 and 116 answers,

respectively. Moreover, Due to usage and Bookmarking appeared to-

gether in 63 answers. 

Summary: GitHub developers star repositories mainly to show

appreciation to the projects (52.5%), to bookmark projects for

later retrieval (51.1%), and because they used or are using the

projects (36.7%). 

3.2.2. Do you consider the number of stars before using or 

contributing to a project? 

In the second question, we asked the participants to respond if

they consider the number of stars before using or contributing to

GitHub projects. 6 From the 791 answers received in the survey, 14

developers (1.7%) did not answer this specific question. Thus, the

numbers presented in this section refer to 777 responses, which

gives an updated confidence interval of 3.19%, for a confidence

level of 95%. First, we classified the answers in yes (the partici-

pant does consider the number of stars) and no (the participant

does not consider the number of stars). As observed in Table 3 ,

73% of the participants consider the number of stars before using

or contributing to GitHub projects and 23.3% answered negatively

to this question. Finally, 3.7% of the participants did not correctly

answer the question, probably due to a misunderstanding. For ex-

ample, participant P745 just provided the following answer: “I am

not an active OSS contributor ”. 

Positive answers: Considering the participants who answered

positively to this second question, 26.5% commented that the num-

ber of stars has a high influence on their decision of using or con-

tributing to a project. As examples, we have these answers: 
6 Therefore, in this survey, we do not distinguish usage and contribution to 

GitHub repositories, which is left for future work. 

a  

o

 

n  
I always consider the amount of stars on a repo before adopting it

n a project. It is one of the most important factors, and in my opinion

ives the best metric at a glance for whether a package is production

eady. (P365) 

Of course stars count is very useful thing, because it tells about

roject quality. If many people starred something - many people think

hat it is useful or interesting. (P31) 

For 29.3% of the participants who provided a positive answer,

he number of stars is just one of the factors they consider be-

ore using or contributing to GitHub projects. Other factors in-

lude quality of the code/documentation, recent activity, license,

nd project owner. As examples, we have the following answers: 

Yes. I do not take it as my only metric, but having a considerable

umber of stars and recent activity is reassuring in terms of it being

 stable project that my projects can depend on in future. (P104) 

I often consider the number of stars (as well as recency of com-

its, PRs, and issues) in deciding whether to use a project. (P442) 

Moreover, 8.8% of the participants consider the number of stars

hen using but not when contributing to GitHub projects. For ex-

mple: 

I usually contribute more to projects with less stars because of the

ase of approach to a smaller community, hence project. On the other

and I normally use frameworks with more stars because of the con-

inuous support they have. (P642) 

Additionally, 46 participants (8.1%) provided other comments, as

n the following answers: 

Yes, a little, I look if it has at least a couple of stars to be sure that

oesn’t get unmaintained in a short term (P89) 

Number of stars is not the major point for me. But it can serve as

ndicator of something really good (P224) 

I don’t really notice exactly how many stars something has, but

 do notice orders of magnitude (hundreds vs thousands vs tens of

housands) (P421) 

Finally, 194 developers (34.2%) did not provide additional infor-

ation to justify their positive answers. 

Negative answers: Considering only the participants who an-

wered negatively to this second question, 45 participants (24.9%)

ommented they consider the purpose, domain, and features of the

roject, but not the number of stars. As examples, we have the an-

wers: 

No, my primary interest is: what problem is solving by this project

P203) 

Not really. If I like the strategy and implementation, I don’t really

are how popular or unpopular the repository is (P560) 

Moreover, 38 developers (21.0%) answered they consider other

easures and sources of information on their decisions, but not

he number of stars. For example: 

No, I don’t consider the number of stars. Number of contributors,

ommits are important instead of number of stars (P270) 

No, I usually know a project from a different source than GitHub

tself so I rather refer to the outside opinions on a framework (blogs,

rticles, community, ...) on whether it is of good quality than a stars

n GitHub (P557) 

Additionally, 26 participants (14.3%) provided other reasons for

ot considering the number of stars (e.g., stars do not reflect
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Fig. 6. Stars by programming language (considering only the top-10 languages with 

more repositories). 
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Fig. 7. Number of stars by application domain. 

Fig. 8. Number of stars by repository owner. 
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roject quality); and 74 developers (40.8%) did not provide addi-

ional information to justify their answers. 

Summary: Three out of four developers consider the number of

stars before using or contributing to GitHub projects. Among

the developers who consider stars, 29.3% also evaluate other

factors, such as source code quality, license, and documentation.

. Characterization study 

In this section, we describe a quantitative characterization of

he number of stars of GitHub projects. 7 More specifically, we pro-

ide answers to four research questions: 

RQ #1: How the number of stars varies per programming lan-

uage, application domain, and repository owner? The goal is to pro-

ide an initial view about the number of stars of the studied sys-

ems, by comparing this measure across programming language,

pplication domain, and repository owner (user or organization). 

RQ #2: Does stars correlate with repository’s age, number of com-

its, number of contributors, and number of forks? This investigation

an help to unveil possible selection bias that occurs when rank-

ng projects based on the number of stars. For example, a positive

orrelation with repository’s age would imply that ranking by stars

avors older projects. 

RQ #3: How early do repositories get their stars? With this re-

earch question, we intend to check whether gains of stars are con-

entrated in specific phases of a repository’s lifetime, specifically in

arly releases. 

RQ #4: What is the impact of new features on stars? This inves-

igation can show if relevant gains in the number of stars in the

eeks following new releases. 

.1. Results 

RQ #1: How the number of stars varies per programming lan-

uage, application domain, and repository owner? 

Fig. 6 shows the distribution of the number of stars for the

op-10 languages with more repositories. The top-3 languages

hose repositories have the highest median number of stars are:

avaScript (3,163 stars), HTML (3,059 stars), and Go (3,0 0 0 stars).

he three languages whose repositories have the lowest me-

ian number of stars are C (2,679 stars), Java (2,6 6 6 stars), and
7 This section and the next one are based in our previous conference paper 

 Borges et al., 2016b ), but increasing the number of analysed systems from 2500 

o 50 0 0 open source projects. 

t

 

i  

d  
bjective-C (2,558 stars). By applying the Kruskal-Wallis test to

ompare multiple samples, we found that these distributions differ

n at least one language ( p-value < 0.001). Then, a non-parametric,

airwise, and multiple comparisons test (Dunn’s test) was used to

solate the languages that differ from the others. In Fig. 6 , the la-

els a and b in the bars express the results of Dunn’s test. Bars

haring the same labels indicate distributions that are not signifi-

antly different ( p-value ≤ 0.05). For example, both JavaScript and

TML share the label b , which means that these distributions have

o statistical difference. On the other hand, the distribution with

he number of stars of JavaScript projects (label b ) is statistically

ifferent from Java (label a ). 

Fig. 7 shows the distribution of the number of stars for the

epositories in each application domain. The median number of

tars varies as follow: systems software (3,168 stars), applications

3,147 stars), web libraries and frameworks (3,069 stars), docu-

entation (2,942 stars), software tools (2,763 stars), and now-web

ibraries and frameworks (2,642 stars). By applying the Kruskal-

allis test, we found that the distributions are different ( p-value

 0.001). According to Dunn’s test, the distribution of non-web li-

raries and frameworks (label c ) is statistically different from all

ther domains, showing that projects in this domain have less

tars. Similarly, tools (label b ) have more stars only than non-web

ibraries and frameworks (label c ). Finally, there is no statistical dif-

erence between the number of stars of systems software, applica-

ions, web libraries and frameworks, and documentation (since all

hese distributions have the label a in common). 

Finally, Fig. 8 shows how the number of stars varies depend-

ng on the repository owner (i.e., user or organization). The me-

ian number of stars is 3067 stars for repositories owned by orga-
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Fig. 9. Correlation analysis. In subfigures (c) and (d), the line is the identity relation. 
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nizations and 2723 stars for repositories owned by users. By ap-

plying the Mann-Whitney test, we detected that these distribu-

tions are different ( p-value < 0.001) with a very small effect size

(Cohen’s d = −0 . 178 ). Our preliminary hypothesis is that reposi-

tories owned by organizations—specifically major software com-

panies and free software foundations—have more funding and re-

sources, which contributes to their higher number of stars. 

Summary: JavaScript repositories have the highest number of

stars (median of 3163 stars); and non-web libraries and frame-

works have the lowest number (median of 2642 stars). Repos-

itories owned by organizations have more stars than the ones

owned by individuals. 

RQ #2: Does stars correlate with repository’s age, number of com-

mits, number of contributors, and number of forks? 

Fig. 9 shows scatterplots correlating the number of stars with

the age (in number of weeks), number of commits, number of

contributors, and number of forks of a repository. Following the

guidelines of Hinkle et al. (2003) , we interpret Spearman’s rho as

follows: 0.00 ≤ rho < 0.30 (negligible), 0.30 ≤ rho < 0.50 (low),

0.50 ≤ rho < 0.70 (moderate), 0.70 ≤ rho < 0.90 (high), and 0.90

≤ rho < 1.00 (very high). First, the plots suggest that stars are not

correlated with the repository’s age ( Fig. 9 a). We have old reposi-

tories with few stars and new repositories with many stars. For ex-

ample, facebookincubator/create-react-app has only five months

and 19,083 stars, while mojombo/grit has more than 9 years and

1883 stars. Essentially, this result shows that repositories gain stars

at different speeds. We ran Spearman’s rank correlation test and
he resulting correlation coefficient is close to zero ( rho = 0.050

nd p-value < 0.001). 

The scatterplot in Fig. 9 b shows that stars have a low cor-

elation with number of commits ( rho = 0.439 with p-value <

.001). However, as presented in Fig. 9 c, stars have a moderate

orrelation with contributors ( rho = 0.502 with p-value < 0.001).

n this figure, a logarithm scale is used in both axes; the line

epresents the identity relation: below the line are the systems

ith more contributors than stars. Interestingly, two systems in-

eed have more contributors than stars: raspberrypi/linux (6,277

ontributors and 3414 stars) and Linuxbrew/legacy-linuxbrew

5,681 contributors and 2397 stars). This happens because they

re forks of highly successful repositories ( torvalds/linux and

omebrew/brew , respectively). The top-3 systems with more stars

er contributor are shadowsocks/shadowsocks (16,017 stars/ con-

ributor), wg/wrk (10,658 stars/contributor), and octocat/Spoon-

nife (9,961 stars/contributor). However, these systems have just

ne contributor. The three systems with less stars per contribu-

or are DefinitelyTyped/DefinitelyTyped (2.97 stars/contributor),

odejs/node-convergence-archive (2.88 stars/contributor), and

penstack/nova (2.23 stars/contributor). 

Finally, Fig. 9 d shows plots correlating stars and forks. As sug-

ested by the followed guidelines, there is a moderate positive cor-

elation between the two measures ( rho = 0.558 and p-value <

.001). For example, twbs/bootstrap is the second repository with

he highest number of stars and also the second one with more

orks. angular/angular.js is the fifth repository in number of stars

nd the third one with more forks. In Fig. 9 d, we can also observe

hat only 28 systems (0.56%) have more forks than stars. As ex-
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Fig. 10. Cumulative distribution of the time fraction a repository takes to receive 

10%, 50%, and 90% of its stars. 
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Fig. 11. Fraction of stars gained in the first four weeks and in the last four weeks. 

Fig. 12. Fraction of stars for all releases ( F S All ) and just after major releases 

( F S Major ). 
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mples, we have a repository that just provides a tutorial for fork-

ng a repository ( octocat/SpoonKnife ) and a popular puzzle game

 gabrielecirulli/2048 ), whose success motivated many forks with

ariations of the original implementation. 

Summary: There is no correlation between stars and repository’s

age; however, there is a low correlation with commits, and a

moderate correlation with contributors and forks. 

RQ #3: How early do repositories get their stars? 

Fig. 10 shows the cumulative distribution of the time fraction a

epository takes to receive at least 10%, at least 50%, and at least

0% of its stars. Around 32% of the repositories receive 10% of their

tars very early, in the first days after the initial release (label A,

n Fig. 10 ). We hypothesize that many of these initial stars come

rom early adopters, who start commenting and using novel open

ource software immediately after they are public released. 8 After

his initial burst, the growth of the number of stars tend to stabi-

ize. For example, half of the repositories take 48% of their age to

eceive 50% of their stars (label B); and around half of the reposi-

ories take 87% of their age to receive 90% of their number of stars

label C). 

Fig. 11 shows the distribution of the fraction of stars gained in

he first and last four weeks of the repositories. For the first four

eeks, the fraction of stars gained is 0.4% (first quartile), 7.0% (sec-

nd quartile), and 21.6% (third quartile). For the last four weeks, it

s 0.8% (first quartile), 1.6% (second quartile), and 2.7% (third quar-

ile). By applying the Mann-Whitney test, we found that these dis-

ributions are different ( p-value < 0.001) with a large effect size

Cohen’s d = 0 . 856 ). 

Summary: Repositories have a tendency to receive more stars

right after their public release. After that, the growth rate tends

to stabilize. 

RQ #4: What is the impact of new features on stars? 

In this research question, we investigate the impact of new fea-

ures on the number of stars of GitHub repositories. The goal is

o check whether the implementation of new features (resulting in

ew releases of the projects) contribute to a boost in the number
8 It is worth mentioning that GitHub repositories can be created private and 

urned public later. In this RQ, we consider the latter event, which we referred as 

ublic release. 

s  

r

 

F  

w  
f stars. Specifically, we selected 1539 repositories from our dataset

30.7%) that follow a semantic versioning convention to number

eleases. In such systems, versions are identified by three integers,

n the format x.y.z , with the following semantics: increments in x

enote major releases, which can be incompatible with older ver-

ions; increments in y denote minor releases, which add function-

lity in a backward-compatible manner; and increments in z de-

ote bug fixes. In our sample, we identified 1304 major releases

nd 8570 minor releases. 

First, as illustrated in Fig. 12 , we counted the fraction of stars

eceived by each repository in the week following all releases

 F S All ) and just after major releases ( F S Major ). As mentioned, the

oal is to check the impact of new features in the number of

tars right after new releases (however, in the end of the RQ, we

lso consider the impact of different week intervals). As an ex-

mple, Fig. 13 shows the time series for Reportr/dashboard , us-

ng dots to indicate the project’s releases (v1.0.0/v.1.1.0, v2.0.0, and

2.1.0, respectively). This project has F S All = 0 . 525 (i.e., 52.5% of its

tars were gained in the weeks following the four releases) and

 S Major = 0 . 248 (i.e., 24.8% of its stars were gained in the weeks

ollowing the releases v1.0.0 and v2.0.0). 

Fig. 14 shows the distribution of F S All and F S Major for all se-

ected repositories. When considering all releases, the fraction of

tars gained in the first week after the releases is 1.0% (first quar-

ile), 3.1% (second quartile), and 10.5% (third quartile). For the ma-

or releases, it is 0.5% (first quartile), 1.2% (second quartile), and

.8% (third quartile). By applying the Mann-Whitney test, we found

hat these distributions are different ( p-value < 0.001), but with

 small effect size (Cohen’s d = 0 . 316 ). yarnpkg/yarn (a package

anager for JavaScript) is the repository with the highest fraction

f stars received after releases. The repository has one year, 21,809

tars, and gained most of its stars (83.0%) in the weeks after its

eleases. 

We also computed two ratios: R All = F S All / F T All and R Major =
 S Major / F T Major , where FT is the fraction of time represented by the

eeks following the releases per the repository’s age. When R >
All 
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Fig. 13. Reportr/dashboard (the dots indicate weeks with releases). 

Fig. 14. Fraction of stars gained in the first week after all releases and just after 

the major releases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Fraction of stars gained in the week following all releases (or just the major 

releases) / fraction of time represented by these weeks. 

Fig. 16. Fraction of stars by fraction of time (median values), computed using dif- 

ferent time intervals. 

 

 

 

g  

o  

o  

t  

(  

a  

o  

e  

o  

g  

i  

c  

e

5

 

c  
1 or R Major > 1 , the repository gains proportionally more stars af-

ter releases. For example, Reportr/dashboard ( Fig. 13 ) has F T All =
0 . 019 (i.e., the weeks following all releases represent only 1.9% of

its total age) resulting in R All = 0 . 525 / 0 . 019 = 27 . 047 . Therefore, re-

leases have a major impact on its number of stars. Fig. 15 shows

boxplots with the results of R All and R Major for all repositories.

Considering all releases, we have that R All is 0.89 (first quartile),

1.35 (second quartile), and 2.20 (third quartile). For major releases

only, we have that R Major is 0.83 (first quartile), 1.49 (second quar-

tile), and 3.37 (third quartile). By applying the Mann-Whitney test,

we found that these distributions are different ( p-value < 0.05);

but after computing Cohen’s d , we found a very small effect size

( d = −0 . 188 ). 

Finally, Fig. 16 shows the median values of R All and R Major com-

puted using stars gained after n weeks (1 ≤ n ≤ 4). Both ratios de-

crease (for major and all releases). Therefore, although there is

some gains of stars after releases, they tend to decrease after few

weeks. 

Summary: There is an acceleration in the number of stars gained

after releases. For example, half of the repositories gain at least

49% more stars in the week following major releases than in

other weeks. However, because repositories usually have more

weeks without releases, this phenomenon is not sufficient to
result in a major concentration of stars after releases. For ex-

ample, 75% of the systems gain at most 3.8% of their stars in

the week following major releases. 

Implications for empirical software engineering researchers: Re-

arding the selection of GitHub projects for empirical studies based

n number of stars, the following observations are derived from

ur findings: (1) this selection favors JavaScript systems (31.1% of

he systems in our dataset) and also web libraries and frameworks

30.7% of the dataset systems); (2) this selection might result in

 relevant number of projects that are not software systems (8.6%

f the projects in our dataset are tutorials, books, awesome-lists ,

tc); (3) this selection favors large projects (in terms of number

f contributors) with many forks, as we concluded when investi-

ating RQ #2 (correlation analysis); (4) additionally, after examin-

ng RQ #3, we recommend researchers (and also practitioners) to

heck whether the stars are not gained in a short time interval, for

xample, after the project public release. 

. Stars growth patterns 

In this section, we investigate common growth patterns con-

erning the number of stars of the GitHub repositories in our
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Fig. 17. βCV for 2 ≤ k ≤ 15. 
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Table 4 

Stars growth patterns. 

Cluster Pattern # Repositories Growth (%) 

C1 Slow 2706 (58.2%) 19.8 

C2 Moderate 1399 (30.0%) 63.9 

C3 Fast 434 (9.3%) 218.6 

C4 Viral 110 (2.3%) 1,317.2 
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ataset. To this purpose, we use the KSC algorithm ( Yang and

eskovec, 2011 ). This algorithm uses an iterative approach, similar

o the classical K-means clustering algorithm, to assign the time

eries in clusters and then refine the clusters centroids by opti-

izing a specific time series distance metric that is invariant to

caling and shifting. As result, the clusters produced by the KSC al-

orithm are less influenced by outliers. KSC is used in other stud-

es to cluster time series representing the popularity of YouTube

ideos ( Figueiredo, 2013 ) and Twitter posts ( Lehmann et al., 2012 ).

ike K-means ( Hartigan, 1975 ), KSC requires as input the number

f clusters k . 

Because the time series provided as input to KSC must have the

ame length, we only consider data regarding the last 52 weeks

one year). We acknowledge that this decision implies a com-

arison of projects in different stages of their evolution (e.g., a

ery young project, which just completed one year, and mature

rojects, with several years). However, it guarantees the deriva-

ion of growth patterns explaining the dynamics of the most re-

ent stars received by a project and in this way it also increases

he chances of receiving valuable feedback of the projects contrib-

tors, in the survey described in Section 7 . Due to this decision, we

ad to exclude from our analysis 333 repositories (6.6%) that have

ess than 52 weeks. 

We use the βCV heuristic ( Menasce and Almeida, 2001 ) to de-

ne the best number k of clusters. βCV is defined as the ratio of

wo coefficients: variation of the intracluster distances and vari-

tion of the intercluster distances. The smallest value of k after

hich the βCV ratio remains roughly stable should be selected. This

eans that new added clusters affect only marginally the intra and

ntercluster variations ( Figueiredo et al., 2014 ). In our dataset, the

alues of βCV start to stabilize for k = 4 (see Fig. 17 ). Note that al-

hough the value of βCV increases for k = 5 (from 0.968 to 1.002,

espectively), the βCV for k = 4 remains almost the same for k = 6

nd k = 7 (0.966 and 0.963, respectively). For this reason, we use

our clusters in this study. 

.1. Proposed growth patterns 

Fig. 18 shows plots with the time series in each cluster. The

ime series representing the clusters’ centroids are presented in

ig. 19 . The time series in clusters C1, C2, and C3 suggest a linear

rowth, but at different speeds. On the other hand, the series in

luster C4 suggest repositories with a sudden growth in the num-

er of stars. We refer to these clusters as including systems with

low, Moderate, Fast , and Viral Growth, respectively. 

Slow growth is the dominant pattern, including 58.2% of the

epositories in our sample, as presented in Table 4 . The table also
hows the percentage of stars gained by the cluster’s centroids

n the period under analysis (52 weeks). The speed in which the

epositories gain stars in cluster C1 is the lowest one (19.8% of new

tars in one year). Moderate growth is the second pattern with

ore repositories (30.0% of the repositories and 63.9% of new stars

n one year). 9.3% of the repositories have a fast growth (218.6%

f new stars in the analyzed year). Cluster C4 (Viral Growth) in-

ludes repositories with a massive growth in their number of stars

1,317%). However, it is a less common pattern, including 2.3%

f the repositories. Fig. 20 shows two examples of systems with

 viral growth: chrislgarry/Apollo–11 (Apollo 11 guidance com-

uter source code, with a peak of 19,270 stars in two weeks) and

aptha/tesseract.js (a JavaScript library to recognize words in im-

ges, which received 6888 stars in a single week). 

We also investigate the correlation of the proposed growth pat-

erns with the repositories ranking by number of stars. To this

urpose, we calculate the ranking of the studied repositories on

eek 0 (first week) and 51 (last week), by number of stars. Next,

e calculate the repositories rank in such weeks. Repositories with

ositive values improved their ranking position, whereas negative

alues mean repositories losing positions. Fig. 21 presents the dis-

ribution of the rank differences by growth pattern. Initially, we

an observe that at least 75% of the slow repositories dropped in

he ranking. By contrast, almost all repositories (109 out of 110)

ith viral growth improved their rank in the same period. Finally,

2% and 96% of the repositories with moderate and fast growth, re-

pectively, increased their ranks. By applying a Kruskal-Wallis test,

e found that these distributions are different ( p-value < 0.001).

ccording to Dunn’s test, the rank differences of repositories with

low and moderate growth are statistically different from the other

atterns; however, there is no statistical difference between repos-

tories with fast and viral growth. 

. Growth patterns characterization 

In this section, we identify endogenous factors that distinguish

he repositories in each growth pattern. Revealing these factors is

mportant because developers can strive to improve or change the

nes that can be controlled or better understand the impact of

hose they have no control. 

.1. Methodology 

To identify the most influential factors, we collected a set of

haracteristics of the repositories following each proposed growth

attern and applied a Random Forest classifier ( Breiman, 2001 ).

e selected Random Forest because it is robust to noise and out-

iers ( Provost and Fawcett, 2001; Tian et al., 2015; Hora et al.,

016 ). 

Table 5 lists 31 factors along three dimensions potentially af-

ecting the stars growth of the repositories. The Repository dimen-

ion includes factors that are accessible to users on the reposito-

ies’ page in GitHub. Usually, these pages are the main, or even

nique, source of information about the projects and might influ-

nce the developers’ decision on using (or not) a project. For exam-

le, forks, and subscribers are measures of potential contributors

o the repository. Moreover, the quality of README files is another
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Fig. 18. Clusters of time series produced by the KSC algorithm. 

Table 5 

Factors potentially affecting the growth pattern of a repository. 

Dimension Factor Description 

Repository Stars (r.stars) Number of stars 

Forks (r.forks) Number of forks 

Network (r.network) Number of repositories in the network 9 

Subscribers (r.subscribers) Number of users registered to receive notifications 

Age (r.age) Number of weeks since creation 

Last Push (r.pushed) Number of weeks since last git push 

Is Fork (r.is_fork) Repository is a fork (boolean value) 

Has homepage (r.has_homepage) Repository has a homepage (boolean value) 

Size (r.size) Size of the repository in MB 

Language (r.language) Main programming language of the repository 

Has Wiki (r.has_wiki) Repository has Wiki (boolean value) 

Has Pages (r.has_pages) Repository has GitHub pages 10 (boolean value) 

Is Mirror (r.mirror) Repository is a mirror (boolean value) 

Domain (r.domain) Application domain (as defined in Section 2 ) 

Description length (r.description_length) Number of words in the description 

README length (r.readme_length) Number of words in the README file 

Owner Account Type (o.type) Account type: User or Organization 11 

Company (o.company) Owner belongs to an organization (boolean value) 

Has Public Email (o.email) Owner has a public email (boolean value) 

Public Repositories (o.repos) Number of public repositories 

Public Gists (o.gists) Number of public code snippets 

Followers (o.followers) Number of followers 

Following (o.followings) Number of following 

Total stars (o.stars) Sum of all stars of all public repositories 

Account Age (o.age) Number of weeks since its account was created 

Activity (last 52 weeks) Commits (a.commits) Number of commits 

Contributors (a.contributors) Number of contributors 

Tags (a.tags) Number of git tags 

Releases (a.releases) Number of releases 

Issues (a.issues) Number of issues 

Pull Requests (a.pull_requests) Number of pull requests 
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Fig. 19. Time series representing the centroids of each cluster. 
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Table 6 

Top-10 most influential factors ( p-value < 0.01). 

Ranking Factor Dimension Actionable 

1 Age (r.age) Repository - 

2 Last push (r.pushed) Repository Yes 

3 Issues (a.issues) Activity - 

4 Commits (a.commits) Activity Yes 

5 Forks (r.forks) Repository - 

6 Account Age (o.age) Owner - 

7 Stars (r.stars) Repository - 

8 Subscribers (r.subscribers) Repository - 

9 Followers (o.followers) Owner - 

10 Tags (a.tags) Repository Yes 
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riterion considered by developers when selecting projects ( Begel

t al., 2013 ). 9 , 10 , 11 

The Owner dimension includes factors related to the reposi-

ory’ owner, for example, number of followers and account type.

or example, developers with more followers may take advantage

f GitHub News Feed 

12 , since their recent activities are shown

o more developers ( Tsay et al., 2014 ). Finally, developers owning

opular repositories (by number of stars) might also attract more

sers to their other projects. 

The Activity dimension includes factors related to the coding

ctivity in the 52 weeks considered when extracting the growth

atterns. For example, higher number of commits might indicate

hat the project is in constant evolution whereas number of con-

ributors, issues, and pull requests might indicate the engagement

f the community with the project. 

Before using the Random Forest classifier, we performed a hi-

rarchical cluster analysis on the 31 features in Table 5 . This

echnique is proposed for assessing features collinearity and it

s used in several other studies ( Tian et al., 2015; Rakha et al.,

016 ). Fig. 22 presents the final hierarchical cluster. For sub-

ierarchies with correlation greater than 0.7, only one variable was

elected to the classifier. For this reason, we removed the fea-

ures a.pull_requests and a.contributors (first cluster below the line),

.network (second cluster), and o.type (third cluster). 

.2. Most influential factors 

To assess the relative importance of the selected features in dis-

riminating each growth pattern, we used the rfPermute pack-

ge for R ( Archer, 2013 ). We use the Mean Decrease Accuracy

MDA), which is determined during the prediction error measure

hase, to rank the features based on their importance to the clas-

ifier. MDA is quantified by measuring the change in prediction ac-

uracy, when the values of the features are randomly permuted

ompared to the original observations ( Wolpert and Macready,

999 ). 

Table 6 lists the top-10 most influential factors according to the

eature importance ranking (all of them with p-value < 0.01). As

e can observe, these features are spread among the three dimen-

ions, which shows their importance. For Repository , the two most

iscriminative features are Age and Last Push , respectively. In fact,

or Age , we observed that slow growth is more common in old

epositories whereas repositories presenting fast and viral growth

re newest. The median number of weeks since creation is 235 for

low , 167 for moderate , 96 for fast , and 76 for viral . Regarding Last

ush , we observed long inactive periods in repositories with slow

rowth. The median number of weeks since the last code update

s 3.53 for slow , 0.80 for moderate , 0.52 for fast , and 0.49 for viral .

or the Owner dimension, the two most discriminative features

re Account Age and Followers , respectively. The owners of repos-
9 Total number of forks including forks of forks. 
10 https://pages.github.com 

11 https://help.github.com/articles/what- s- the- difference- between- user- and- 

rganization-accounts 
12 https://help.github.com/articles/news-feed , a dashboard with recent activity on 

epositories. 
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tories with viral growth have the lowest account age (median of

73 weeks) and the lowest median number of followers (0). Fi-

ally, for Activity , the two most discriminative features are Issues

nd Commits , respectively. Similarly to previous factors, reposito-

ies with slow growth have the lowest number of commits (only

9 commits). Moreover, moderate and fast repositories have higher

edian number of issues than slow and viral repositories (51, 64,

9, and 11 issues, respectively). 

Although some factors cannot be controlled by developers, oth-

rs depend on their actions. From the top-10 most influential fac-

ors in Table 6 , three are directly impacted by developers’ actions

column “Actionable”). These results suggest that projects with fre-

uent updates ( Last Push ), a rich development history ( Commits ),

nd frequent releases ( Tags ) tend to attract more attention, in

erms of number of stars. However, it is also important to high-

ight that “correlation does not necessarily imply in causation”.

herefore, it might be the project popularity that triggers constant

ushes, commits, and releases. In other words, these results indi-

ate that success in open source projects has its own price, which

omes in the form of constantly having to update and improve the

rojects. Developers should be aware of this fact and reserve time

o maintain a successful project. In fact, a recent survey shows that

ack of time is the third most common reason for the failure of

odern open source projects ( Coelho and Valente, 2017 ). 

Finally, to assess the effectiveness of the classifier, we relied on

etrics commonly used in Machine Learning and Information Re-

rieval ( Yates et al., 1999 ). Precision measures the correctness of

he classifier in predicting the repository growth pattern. Recall

easures the completeness of the classifier in predicting growth

atterns. F-measure is the harmonic mean of precision and recall.

able 7 shows the results for each growth pattern and the over-

ll result. In general, Random Forest performed satisfactorily for

ll patterns with a precision of 65.81%, recall of 68.40%, and F-

easure of 67.08%. The Slow pattern, which concentrates most of

he repositories, presented the most accurate results (F-measure =
1.47%). On the other hand, Viral has the worst results (F-measure

 6.61%), which can be caused by exogenous factors that are hard

o predict. 

Summary: When we compare the proposed growth patterns,

Age is the most discriminative feature, followed by number of

Issues and Last Push . Moreover, three out of four features from

the Activity dimension are in the top-10 most discriminative

ones, which confirms the importance of constantly maintaining

and evolving open source projects. 

. Developers’ perceptions on growth patterns 

In this section, we describe a survey with developers to reveal

heir perceptions on the growth patterns proposed in this work.

ection 7.1 describes the design of the survey questionnaire and

he selection of the survey participants. Section 7.2 reports the sur-

ey results. 

https://pages.github.com
https://help.github.com/articles/what-s-the-difference-between-user-and-organization-accounts
https://help.github.com/articles/news-feed
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Fig. 20. Examples of systems with viral growth. 

Table 7 

Classification effectiveness. 

Growth pattern Precision (%) Recall (%) F-measure (%) 

Slow 75.98 87.80 81.47 

Moderate 54.16 47.96 50.87 

Fast 47.43 29.72 36.54 

Viral 36.36 3.64 6.61 

Overall 65.81 68.40 67.08 

Fig. 21. Rank differences in the interval of one year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Number of survey participants and answers per growth pattern 

CI = Confidence interval at confidence level of 95%. 

Growth pattern Participants Answers % CI 

Slow 100 26 26.0 19.1 

Moderate 100 33 33.0 16.9 

Fast 100 34 34.0 16.1 

Viral 45 22 48.9 18.8 

Table 9 

Reasons for slow growth (95% confidence level with a 19.1% con- 

fidence interval). 

Reason Answers Percentage (%) 

Unmaintained or low activity 14 53.8% 

Limited or lack of promotion 4 15.3 

Niche audience 3 11.5 

Alternative solutions 2 7.6 

Unknown 3 11.5 

Other reasons 5 19.2 
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7.1. Survey design 

In this second survey, we asked developers to explain the rea-

sons for the slow, moderate, fast , or viral growth observed in the

number of stars of their repositories. The questionnaire was sent

by email to the repository’s owner, for repositories owned by Users ,

or to the contributor with the highest number of commits, for

repositories owned by Organizations . For each growth pattern, we

randomly selected 100 repositories whose developers have a pub-

lic email. Exceptionally for repositories classified with viral growth,

we selected 45 developers because they are the only ones with

public emails on GitHub. Thus, our sample of participants consists

of 345 developers. 

The questionnaire was sent between the 18th to 22nd of May

2017. After a period of seven days, we received 115 responses, re-

sulting in a response ratio of 33.3%, considering the four growth
atterns together (see details in Table 8 ). To preserve the respon-

ents privacy, we use labels R1 to R115 when quoting their an-

wers. After receiving the answers, the first paper’s author ana-

yzed them, following the same steps of the survey presented in

ection 3 . 

.2. Survey results 

Table 9 lists five major reasons for slow growth, according to the

urveyed developers. Unmaintained or low activity was the main

eason, reported by 14 developers (53.8%). Limited or lack of pro-

otion was mentioned by four developers (15.3%). For three de-

elopers, the project focus on a specific niche audience, thus not

eing so popular as other repositories. Furthermore, emergence of

lternative solutions was the reason pointed by two developers.

ther three developers reported they have no idea on the reasons
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Fig. 22. Correlation analysis (as result, we removed features a.pull_requests, a.contributors, r.network , and o.type ). 

Table 10 

Reasons for moderate growth (95% confidence level with a 16.9% confidence interval). 

Positive sentiments Negative sentiments 

Reason Answers Percentage (%) Reason Answers Percentage (%) 

Active promotion 15 45.4 Niche audience 3 9.0 

Trending technology 9 27.2 Low activity 2 6.0 

Active project 7 21.2 Limited or lack of promotion 1 3.0 

Innovative project 3 9.0 Old project 1 3.0 

Code or doc. quality 2 6.0 

Other 3 9.0 
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Table 11 

Reasons for fast growth (95% confidence level with a 

16.1% confidence interval). 

Reason Answers Percentage (%) 

Active promotion 22 64.7 

Trending technology 11 32.3 

Innovative project 8 24.5 

Active project 5 14.7 

Project usability 2 5.8 

Project usefulness 2 5.8 

Unknown 2 5.8 

Other 5 14.7 

F  

p

 

p  

f

 

m  

t  

m  

d  

g

 

[  

t  

(

 

t  

i  
f the slow growth. Finally, five developers provided other reasons

e.g., project age). Examples of answers include: 

The reason is there’s no new material there. Also the material that

s there is becoming outdated and less relevant over time. (R27, Un-

aintained or low activity) 

I believe the primary reason is that I am doing virtually nothing to

ctively promote the project. (R26, Limited or lack of promotion) 

I donâ;;t know the root cause, my guess is that itâ;;s a rather spe-

ialized tool with a limited audience. (R38, Niche audience) 

After analyzing the reasons for moderate growth, we identified

wo conflicting sentiments in the answers: (a) positives reasons,

hich are contributing to the stars growth; (b) negative reasons,

hich are limiting the stars growth. Table 10 lists the major rea-

ons for the positive and negative sentiments. 

For positive sentiments, 15 developers (45.4%) mentioned ac-

ive promotion (mainly on social media sites, as Hacker News 13 ).

he use of trending technologies was mentioned by nine devel-

pers (27.2%). For example, danialfarid/ng-file-upload (a popu-

ar Angular component) is benefited by the large community of

ngular practitioners. Active project (e.g., with frequent updates

nd fast issues resolution) was mentioned by seven developers

21.2%). Three developers explicitly mentioned the repository pro-

ides an innovative solution and two developers mentioned that

ode or documentation quality contributed to the stars growth. Fi-

ally, three other positive reasons were provided (project usability,

sefulness, and maturity). As examples we have these positive an-

wers: 

It could be related to how many people are using Angular JS and

he development and new features in the module had been active for

ouple years. (R34, Trending technology, Active project) 

The initial increase in stars happened as word of the project got

ut. I initially had a Product Hunt page and posted it on Hacker News.
13 https://news.ycombinator.com 

o

 

r  
rom there it is started to popup on other tech sites. (R85, Active

romotion) 

Our continued releases every 3–4 months for nearly 6 years is

robably the reasoning. We are a steady, stable, open source solution

or reverse engineering. (R16, Active project, Maturity) 

For answers transmitting negative sentiments, three developers

entioned the project’s niche audience as a restrictive growth fac-

or. Moreover, low activity and limited or lack of promotion were

entioned by two and one developers, respectively. Finally, one

eveloper mentioned that the project age is restricting its stars

rowth. Examples of negative answers are: 

I think the demographics for [repository] users shifts towards the

other-repository] – new devs and people new to a young language

end to look for more features, and [repository] is explicitly not that.

R25, Niche audience) 

My best guess is that it’s an older project that’s occasionally at-

racting new people, but there’s no single big “marketing event” where

t gets a huge spike of GitHub stars. (R28, Old project, Limited or lack

f promotion) 

For repositories presenting fast growth, Table 11 lists six major

easons reported by their developers. Active promotion is the ma-

https://news.ycombinator.com
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Table 12 

Reasons for viral growth (95% confidence level with a 18.8% confi- 

dence interval). 

Reason Answers Percentage (%) 

Promotion on social media sites 16 72.7 

Code or documentation quality 6 27.2 

Trending technology 4 19% 

Useful 3 14.2 

New features 2 9.5 

Other 2 9.5 

Unknown 1 4.7 
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jor reason according to 22 developers (64.7%). Furthermore, trend-

ing technology was mentioned by 11 developers (32.3%). Other

eight developers (24.5%) mentioned that it is an innovative project.

Examples of reasons for fast growth include: 

It’s a popular project because nothing else like it exists for React.

(R72, Innovative project, Trending technology) 

We’ve been adding a lot of features in the last year, and I’ve been

trying to evangelise the project to gain new users - some of those

things probably helped a lot. (R66, Active project, Active promotion)

Finally, Table 12 lists five major reasons that emerged after

analysing the developers’ answers for viral growth. As observed, 16

developers (72.7%) linked this behavior to successful posts in social

media sites, mostly Hacker News. Code or documentation quality

were mentioned by six developers (27.2%). Four developers (19.0%)

linked the viral growth to trending technologies. As examples of

answers we have: 

Yes, we had a huge bump in stars. The secret: coverage by Hacker

News, which resulted in follow-up by other news sites. (R44, Promo-

tion on social media sites) 

In my opinion is just that [repository] replied to some peo-

ple need and gain adoption very fast. Sharing the project on red-

dit/twitter/hacker news helped a lot the spread of it. In my opinion

the quality of docs/examples helps a lot. (R103, Promotion on social

media sites, Code or documentation quality, Useful project) 

I believe the project has seen such great growth because of it’s po-

sition within the greater Angular community ... (R87, Trending tech-

nology) 

Summary: According to the surveyed developers, the major rea-

son for slow growth is deprecation or lack of activity (53.8%).

Regarding moderate growth, there are two conflicting senti-

ments on the developers’ answers: positive sentiments (e.g., ac-

tive promotion) and negative sentiments (e.g., niche audience).

For fast growth, the three major reasons are active promotion,

usage of trending technology, and innovative project. Finally,

the major reason for viral growth is also promotion on social

media sites (72.7%). 

Implications for empirical software engineering researchers: The

following observations are derived in this second survey regard-

ing the selection of GitHub projects based on number of stars:

(1) this selection might favor projects with successful marketing

and advertising strategies, despite the adoption of well-established

software engineering practices; (2) it is particularly important to

check whether the projects have a viral growth behavior (e.g.,

chrislgarry/Apollo–11 gained 19,270 stars in just two weeks). 

8. Threats to validity 

Dataset. GitHub has millions of repositories. We build our

dataset by collecting the top-5,0 0 0 repositories by number of stars,

which represents a small fraction in comparison to the GitHub’s

universe. However, our goal is exactly to investigate the most

starred repositories. Furthermore, most GitHub repositories are
orks and have very low activity ( Kalliamvakou et al., 2014; 2015;

osentino et al., 2017 ). 

Application domains. Because GitHub does not classify the repos-

tories in domains, we performed this classification manually.

herefore, it is subjected to errors and inaccuracies. To mitigate

his threat, the dubious classification decisions were discussed by

he two paper’s authors. 

Survey study 1. The 50 0 0 repositories in our dataset have more

han 21 million stars together. Despite this fact, we surveyed only

he last developers who starred these repositories, a total of 4370

evelopers. This decision was made to do not spam the developers.

oreover, we restricted the participants to those who gave a star

n the last six months to increase the chances they remember the

otivation for starring the projects. Another threat is related to the

anual classification of the answers to derive the starring motiva-

ions. Although this activity has been done with special attention

y the paper’s first author, it is subjective by nature. 

Survey study 2. In the second survey, we asked the develop-

rs to explain the reasons for the slow, moderate, fast , or viral

rowth observed in the number of stars of their repositories. For

ach growth pattern, we randomly selected a group of 100 repos-

tories/developers. Exceptionally for repositories presenting a viral

rowth, 45 developers were used since they are the only ones with

ublic e-mails. Since we received 115 answers (corresponding to

 response ratio of 33.3%), we report the perceptions of a non-

egligible number of developers. 

Growth patterns . The selection of the number of clusters is a

ey parameter in algorithms like KSC. To mitigate this threat, we

mployed a heuristic that considers the intra/intercluster distance

ariations ( Menasce and Almeida, 2001 ). Furthermore, the analysis

f growth patterns was based on the stars obtained in the last year.

he stars before this period are not considered, since KSC requires

ime series with the same length. 

Growth patterns characterization . In Section 6 , we use a random

orest classifier to identify the factors that distinguish the proposed

rowth patterns. This classifier requires the number of trees to

ompose a Random Forest. In this study, we used 100 trees, which

s in the range suggested by Oshiro et al. (2012) . 

. Related work 

We organize related work in four groups: (1) criteria for select-

ng GitHub projects; (2) studies on GitHub popularity metrics; (3)

opularity of mobile apps; and (4) popularity of social media con-

ent. 

Criteria for selecting GitHub projects: Stars are often used

y researchers to select GitHub projects for empirical studies in

oftware engineering ( Ray et al., 2014; Padhye et al., 2014; Hilton

t al., 2016; Mazinanian et al., 2017; Jiang et al., 2017; Nielebock

t al., 2018; Rigger et al., 2018; Castro and Schots, 2018 ). For ex-

mple, in a previous study, we use the top-5,0 0 0 GitHub repos-

tories with most stars to investigate the performance of linear

egression models to predict the number of stars in the future

 Borges et al., 2016a ). In a more recent study, we use the top-

00 most starred GitHub repositories to investigate the channels

sed by open source project managers to promote their systems

 Borges and Valente, 2018 ). Ray et al. select 50 projects by stars on

itHub to study the effects of programming language features on

efects ( Ray et al., 2014 ). To study the levels of participation of dif-

erent open-source communities, Padhye et al. rely on the 89 most-

tarred GitHub projects ( Padhye et al., 2014 ). Hilton et al. study

ontinuous Integration (CI) practices using a sample of 50 projects,

anked by number of stars ( Hilton et al., 2016 ). Silva et al. select

48 Java projects to study refactoring practices among GitHub con-

ributors ( Silva et al., 2016 ) and Mazinanian study the adoption of

amba expressions in a large sample of 20 0 0 Java projects, also or-
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ered by stars ( Mazinanian et al., 2017 ). Finally, Castro and Schots

se GitHub stars as cut-off criterion to select projects and then an-

lyze logging information to propose a visualization tool ( Castro

nd Schots, 2018 ). 

However, there are also studies that rely on different met-

ics and methodologies to select GitHub projects. For example,

asilescu et al. use the programming language and number of forks

o collect 246 repositories and then characterize the effects of CI

n process automation on open source projects ( Vasilescu et al.,

015 ). Bissyandé et al. use the default criteria of the GitHub API

i.e., best match) to collect 100K repositories and study popularity,

nteroperability, and impact of programming languages ( Bissyande

t al., 2013 ). Kikas et al. combine number of issues and commits to

btain a large set of GitHub projects and study models to predict

hether an issue will be closed ( Kikas et al., 2016 ). 

Finally, there are efforts proposing more rigorous methods

o select projects in software repositories. For example, Falessi

t al. first perform a systematic mapping study with 68 past stud-

es and did not find any study that can be ranked as completely

eplicable ( Falessi et al., 2017 ). Then, the authors present a rig-

rous method to select projects, called STRESS, that allows users

o define the desired level of diversity, fit, and quality. Munaiah

t al. propose a similar framework and tool, called Reaper, to se-

ect engineering GitHub projects, i.e., projects that follow sound

oftware engineering practices, including documentation, testing, 

nd project management ( Munaiah et al., 2017 ). Ultimately, Reaper

as conceived to separate the signal (e.g., engineering software

rojects) from the noise (e.g., home work assignments) when se-

ecting projects in GitHub. As part of their findings, the authors re-

ort that using stars to classify engineered GitHub projects results

n a very high precision, but with a low recall. In other words,

epositories with a large number of stars are usually engineered

rojects; however, the contrary is not always true. Previously, Na-

appan et al. proposed a measure, called sample coverage, to cap-

ure the percentage of projects in a population that are similar to

 given sample ( Nagappan et al., 2013 ). Their goal is to promote

he importance of diversity when selecting projects for evaluating

 software engineering approach or performing an empirical study.

hey illustrated the usage of sample coverage in a population of

0K projects monitored by Ohloh.net, which is a public directory

f open source projects, currently called Open Hub. 

Studies on GitHub popularity metrics: Several studies investi-

ate characteristics and usages of GitHub popularity metrics. Zho

t al. study the frequency of folders used by 140K GitHub projects

nd their results suggest that the use of standard folders (e.g.,

oc, test, examples) may have an impact on project popularity, in

erms of number of forks ( Zhu et al., 2014 ). Aggarwal et al. study

he effect of social interactions on GitHub projects’ documenta-

ion ( Aggarwal et al., 2014 ). They conclude that popular projects

end to attract more documentation collaborators. Jiang et al. pro-

ide a comprehensive analysis of inactive yet available assignees

n popular GitHub projects. They show that some projects have

ore than 80% of inactive assignees ( Jiang et al., 2017 ). Wanwangy-

ng et al. conduct a study to identify the most influential Python

rojects on GitHub ( Ma et al., 2016 ). They found that the most in-

uential projects are not necessarily popular among GitHub users.

y analyzing the effect of evolutionary software requirements on

pen source projects, Vlas et al. state that popularity (measured by

umber of stars and forks) depends on the continuous developing

f requirements ( Vlas et al., 2017 ). Papamichail et al. argue that the

opularity of software components is as an indicator of software

uality ( Papamichail et al., 2016 ); however, Herraiz et al. alert that

opularity can also impact the perceived quality ( Herraiz et al.,

011 ). Finally, as one of the findings of a systematic mapping study,

osentino et al. report that popularity (as measured by number
r

f stars) is also useful to attract new developers to open source

rojects ( Cosentino et al., 2017 ). 

Popularity of mobile apps: Popularity in the context of mo-

ile apps is the subject of several studies. For example, there

re many studies examining the relationship between popular-

ty of mobile apps and code properties ( Fu et al., 2013; Linares-

ásquez et al., 2013; Mojica Ruiz et al., 2014; Lee and Raghu, 2014;

ian et al., 2015; Corral and Fronza, 2015; McIlroy et al., 2016 ).

uan et al. investigate 28 factors along eight dimensions to un-

erstand how high-rated Android applications are different from

ow-rated ones ( Tian et al., 2015 ). Their results show that exter-

al factors, like number of promotional images, are the most in-

uential ones. Guerrouj and Baysal explore the relationships be-

ween mobile apps’ success and API quality ( Guerrouj and Baysal,

016 ). They found that changes and bugs in API methods are not

trong predictors of apps’ popularity. McIlroy et al. study the fre-

uency of updates in popular free apps from different categories

n the Google Play store ( McIlroy et al., 2016 ). They report that

requently-updated apps do not experience an increase in nega-

ive ratings by their users. Ruiz et al. examine the relationship be-

ween the number of ad libraries and app’s user ratings ( Mojica

uiz et al., 2014 ). Their results show that there is no relationship

etween these variables. Lee and Raghu tracked popular apps in

he Apple Store and found that the survival rates of free apps are

p to two times greater than the paid ones ( Lee and Raghu, 2014 ).

oreover, they report that frequent feature updates can contribute

o app survival among the top ones. Ali et al. conducted a compar-

tive study of cross-platform apps to understand their characteris-

ics ( Ali et al., 2017 ). They show that users can perceive and rate

ifferently the same app on different platforms. 

Popularity of social media content: Other studies track pop-

larity on social networks, including video sharing sites (e.g.,

ouTube) and social platforms (e.g., Twitter and news aggregators).

hatzopoulou et al. (2010) analyze popularity of YouTube videos by

ooking at properties and patterns metrics. They report that several

opularity metrics are highly correlated. Lehmann et al. (2012) an-

lyze popularity peaks of hashtags. They found four usage patterns

estricted to a two-week period centered on the peak time. Aniche

t al. conduct a study to understand how developers use mod-

rn news aggregator sites (Reddit and Hacker News) ( Aniche et al.,

018 ). According to their results, half of the participants read only

he most upvoted comments and posts. 

0. Conclusion 

In this paper, we reported that developers star GitHub repos-

tories due to three major reasons (which frequently overlap): to

how appreciation to projects, to bookmark a project, and because

hey are using a project. Furthermore, three out of four developers

eclared they consider the number of stars before using or con-

ributing to GitHub projects. 

Recommendation #1: Stars are a key metric about the evolution

of GitHub projects; therefore, project managers should track

and compare the number of stars of their projects with com-

petitor ones. 

We provided a quantitative characterization of the top-5,0 0 0

ost starred repositories. We found that repositories owned by

rganizations have more stars than the ones owned by individu-

ls (RQ #1). We also reported the existence of a moderate corre-

ation of stars with contributors and forks, a low correlation be-

ween stars and commits, and no correlation between stars and

epository’ age (RQ #2). Furthermore, repositories have a tendency

o receive more stars right after their public release (RQ #3). Fi-

ally, there is an acceleration in the number of stars gained after

eleases (RQ #4). 
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We validated the proposed stars growth patterns by means of

a survey with project owners and core developers. We revealed

that the major reason for a slow growth in the number of stars

is project deprecation or inactivity. Regarding moderate growth, we

detected both positive sentiments (e.g., active promotion) and neg-

ative ones (e.g., niche audience). The major reasons for fast growth

are active promotion, usage of trending technologies, and innova-

tive projects. Finally, the major reason for viral growth is also pro-

motion on social media. 

Recommendation #2: Open source projects require an invest-

ment on marketing and advertisement, mainly in social net-

works and programming forums, like Hacker News. 

We distilled a list of threats practitioners and researchers may

face when selecting GitHub projects based on the number of stars.

For example, this selection favors large projects, with many con-

tributors and forks. It may also include projects that receive a large

number of stars in a short interval, including projects with a viral

growth in their number of stars. Finally, it tends to favor projects

with effective marketing and advertising strategies, which do not

necessarily follow solid software engineering principles and prac-

tices. 

Recommendation #3: When selecting projects by number of

stars, practitioners and researchers should check whether the

stars are not concentrated in a short time period or whether

they are mostly a consequence of active promotion in social

media sites. 

Future work may include an investigation of repositories that

have few stars, including a comparison with the most starred ones.

It would also be interesting to correlate repository’s stars and lan-

guage popularity and in this way to investigate relative measures

of popularity. For example, if we restrict the analysis to a given

language, a Scala repository can be considered more popular than

a JavaScript one, although having less stars. Finally, the use of a

different technique (e.g., Scott-Knott ESD ( Tantithamthavorn et al.,

2017 )) may provide additional insights on the factors that impact

the classification of a project in a given growth pattern. 

Tool and dataset: We implemented a tool to explore and check

our results, including the time series of stars used in this pa-

per and the proposed growth patterns. It is available at: http:

//gittrends.io . The analyzed data, manual classification of the

application domain, and the surveyed responses used in this

study are publicly available at: https://doi.org/10.5281/zenodo.

1183752 . 
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