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Previous studies have shown that there is a non-trivial amount of duplication in source code. This paper
analyzes a corpus of 4.5 million non-fork projects hosted on GitHub representing over 428 million files written
in Java, C++, Python, and JavaScript. We found that this corpus has a mere 85 million unique files. In other
words, 70% of the code on GitHub consists of clones of previously created files. There is considerable variation
between language ecosystems. JavaScript has the highest rate of file duplication, only 6% of the files are distinct.
Java, on the other hand, has the least duplication, 60% of files are distinct. Lastly, a project-level analysis shows
that between 9% and 31% of the projects contain at least 80% of files that can be found elsewhere. These rates
of duplication have implications for systems built on open source software as well as for researchers interested
in analyzing large code bases. As a concrete artifact of this study, we have created DéjaVu, a publicly available
map of code duplicates in GitHub repositories.
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1 INTRODUCTION

The advent of web-hosted open source repository services such as GitHub, BitBucket and Source-
Forge have transformed how source code is shared. Creating a project takes almost no effort and is
free of cost for small teams working in the open. Over the last two decades, millions of projects
have been shared, building up a massive trove of free software. A number of these projects have
been widely adopted and are part of our daily software infrastructure. More recently there have
been attempts to treat the open source ecosystem as a massive dataset and to mine it in the hopes
of finding patterns of interest.
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When working with software, one may want to make statements about applicability of, say,
a compiler optimization or a static bug finding technique. Intuitively, one would expect that a
conclusion based on a software corpus made up of thousands of programs randomly extracted from
an Internet archive is more likely to hold than one based on a handful of hand-picked benchmarks
such as [Blackburn et al. 2006] or [SPEC 1998]. For an example, consider [Richards et al. 2011]
which demonstrated that the design of the Mozilla optimizing compiler was skewed by the lack of
representative benchmarks. Looking at small workloads gave a very different picture from what
could be gleaned by downloading thousands of websites.

Scaling to large datasets has its challenges. Whereas small datasets can be curated with care,
larger code bases are often obtained by random selection. If GitHub has over 4.5 million projects,
how does one pick a thousand projects? If statistical reasoning is to be applied, the projects must
be independent. Independence of observations is taken for granted in many settings, but with
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Fig. 1. Map of code duplication. The y-axis is the number of commits per project, the x-axis is the number of
files in a project. The value of each tile is the percentage of duplicated files for all projects in the tile. Darker
means more clones.
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software there are many ways one project can influence another. Influences can originate from
the developers on the team, for instance the same people will tend to write similar code. Even
more common are the various means of software reuse. Projects can include other projects. Apache
Commons is used in thousands of projects, Oracle’s SDK is universally used by any Java project,
JQuery by most websites. StackOverflow and other discussion forums encourage the sharing of
code snippets. Cut and paste programming where code is lifted from one project and dropped into
another is another way to inject dependencies. Lastly, entire files can be copied from one project to
the next. Any of these actions, at scale, may bias results of research.

Several published studies either neglected to account for duplicates, or addressed them before
analysis. [Casalnuovo et al. 2015] studied the use of assertions in the top 100 most popular C and
C++ projects in GitHub. [Ray et al. 2014] studied software quality using the top 50 most popular
projects in 17 languages. Neither addressed file duplication. Conversely, [Hoffa 2016] studied the
old “tabs v. spaces” issue in 400K GitHub projects; file duplication was identified as an issue and
eliminated before analysis. [Cosentino et al. 2016] present a meta-analysis of studies on GitHub
projects where trends and problems related to dataset selection are identified.

This paper provides a tool to assist selecting projects from GitHub. DéjaVu is a publicly available
index of file-level code duplication. The novelty of our work lies partly in its scale; it is an index
of duplication for the entire GitHub repository for four popular languages, Java, C++, Python
and JavaScript. Figure 1 illustrates the proportion of duplicated files for different project sizes
and numbers of commits (section 5 explains how these heatmaps were generated). The heatmaps
show that as project size increases the proportion of duplicated files also increases. Projects with
more commits tend to have fewer project-level clones. Finally JavaScript projects have the most
project-level clones, while Java projects have the fewest.

The clone map from which the heatmaps were pro-  Fig. 2. File-hash duplication in subsets.
duced is our main contribution. It can be used to under-

10K Stars | 10K Commits
stand the similarity relations in samples of projects or Java 0% %
to curate samples to reduce duplicates. Consider for in- C/Cixt 1% 517
stance a subset that focuses on the most active projects, Python 28% 44%
as done in [Borges et al. 2016], by filtering on the number JavaScript 44% 66%

of stars or commits a project has. For example, the clones
for the 10K most popular projects are summarized in Figure 2. In Java, this filter is reasonably
efficient at reducing the number of clones. In other languages clones remain prevalent. DéjaVu
can be used to curate datasets, i.e. remove projects with too many clones. Besides applicability to
research, our results can be used by anyone who needs to host large amounts of source code to
avoid storing duplicate files. Our clone map can also be used to improve tooling, e.g. being queried
when new files are added to projects to filter duplicates.

At the outset of this work, we were planning to study different granularities of duplication. As
the results came in, the staggering rate of file-level duplication drove us to select three simple levels
of similarity. A file hash gives a measure of file that are copied across projects without changes. A
token hash captures minor changes in spaces, comments and ordering. Lastly, SourcererCC captures
files with 80% token-similarity. This gives an idea of how many files have been edited after cloning.
Our choice of languages was driven by the popularity of these languages, and by the fact that two
are statically typed and two have no type annotations. This can conceivably lead to differences in
the way code is reused. We expected to answer the following questions: How much code cloning is
there, how does cloning affect datasets of software written in different languages, and through
which processes does duplication come about? This paper describes our methodology, details the

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 84. Publication date: October 2017.



84:4 C. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek

corpus that we have selected and gives our answers to these questions. Along with the quantitative
analysis, we provide a qualitative analysis of duplicates on a small number of examples.
Artifacts. The lists of clones, code for gathering data, computing clones, data analysis and visualiza-
tion are at: http://mondego.ics.uci.edu/projects/dejavu. Processing was done on a Dell PowerEdge
R830 with 56 cores (112 threads) and 256G of RAM. The data took 2 months to download and 6
weeks to process.

2 RELATED WORK

Code clone detection techniques have been documented in the literature since the early 90s.
Readers interested in a survey of the early work are referred to [Koschke 2007; Roy and Cordy
2007]. There are also benchmarks for assessing the performance of tools [Roy and Cordy 2009;
Svajlenko and Roy 2015]. The pipeline we used includes SourcererCC, a token-based code clone
detection tool that is freely available and has been compared to other similar tools using those
benchmarks [Sajnani 2016; Sajnani et al. 2016]." SourcererCC is the most scalable tool so far for
detecting Type 3 clones. Type 3 clones are syntactically similar code fragments that differ at the
statement level. The fragments have statements added/modified/removed with respect to each
other.

One of the earliest studies of inter-project cloning, [Kamiya et al. 2002] analyzed clones across
three different operating systems. They found evidence of about 20% cloning between FreeBSD
and NetBSD and less than 1% between Linux and FreeBSD or NetBSD. This is explained by the fact
that Linux originated and grew independently. [Mockus 2007] performed an analysis of popular
open source projects, including several versions of Unix and several popular packages; 38K projects
and 5M files. The concept of duplication there was simply based on file names. Approximately
half of the file names were used in more than one project. Furthermore, the study also tried to
identify components that were duplicated among projects by detecting directories that share a
large fraction of their files. Both [Mockus 2007] and [Mockus 2009] use only a fraction of our
dataset and a single similarity metric, as opposed to the 3 metrics we provide.

A few studies have focused on block-level cloning, i.e. portions of code smaller than entire files.
[Roy and Cordy 2010] analyzed clones in twenty open source C, Java and C# systems. They found
15% of the C files, 46% of the Java files, and 29% of C# files are associated with exact block-level
clones. Java had a higher percentage of clones because of accessors methods in Swing. [Heinemann
et al. 2011] computed block-level clones consisting of at least 15 statements between 22 commonly
reused Java frameworks consisting of more than 6 MLOC and 20 open source Java projects. They
did not find any clones for 11 projects. For 5 projects, they found cloning to be below 1% and for
the remaining 4, they found up to 10% cloning. These two studies give conflicting accounts of
block-level code duplication.

Closer to our study, an analysis of file-level code cloning on Java projects is presented by [Ossher
et al. 2011]. This work, analyzed 13K Java projects with close to 2M files. The authors created a
system that merges various clone detection techniques with various degrees of confidence, starting
on the highest: MD5 hashes; name equivalence through Java’s full-qualified names. They report
5.2% file-hash duplication, considerably lower than what we found. Our corpus is three orders
of magnitude larger than Ossher’s. Furthermore, intra-project duplication meant to deal with
versioning was excluded. They looked at subversion, which may have different practices than git,
especially related to versioning. We speculate that the practice of copying source code files in open
source has become more pervasive since that study was made, and that sites like GitHub simplify

Ihttp://github.com/Mondego/SourcererCC
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copying files among projects, but we haven’t reanalyzed the dataset as it is not relevant to the
DéjaVu map.

Over the past few years, open source repositories have turned out to be useful to validate beliefs
about software development and software engineering in general. The richness of the data and
the potential insights that it represents has created an entire community of researchers. [Kochhar
et al. 2013] used 50K GitHub repositories to investigate the correlation between the presence of
test cases and various project development characteristics, including the lines of code and the size
of development teams. They removed toy projects and included famous projects such as JQuery
and Rails in their dataset. [Vendome et al. 2016] study how licensing usage and adoption changes
over a period of time on 51K repositories. They choose repositories that (i) were not forks; and
(ii) had at least one star. [Borges et al. 2016] analyze 2.5K repositories to investigate the factors
that impact their popularity, including the identification of the major patterns that can be used to
describe popularity trends.

The software engineering research community is increasingly examining large number of projects
to test hypotheses or derive new knowledge about the software development process. However,
as [Nagappan et al. 2013] point out, more is not necessarily better, and selection of projects
plays an important role — more so now than ever, since anyone can create a repository for any
purpose at no cost. Thus, the quality of data gathered from these software repositories might be
questionable. For example, as we also found out, repositories often contain school assignments,
copies of other repositories, images and text files without any source code. [Kalliamvakou et al.
2014] manually analyzed a sample of 434 GitHub repositories and found that approximately 37%
of them were not used for software development. As a result, researchers have spent significant
effort into collecting, curating, and analyzing data from open source projects around the world.
Flossmetrics [Gonzalez-Barahona et al. 2010] and Sourcerer [Ossher et al. 2009] collect data and
provide statistics. [Dyer et al. 2013] have curated a large number of Java repositories and provide
a domain specific language to help researchers mine data about software repositories. Similarly
[Bissyande et al. 2013] have created Orion, a prototype for enabling unified search to retrieve
projects using complex search queries linking different artifacts of software development, such as
source code, version control metadata, bug tracker tickets, developer activities and interactions
extracted from hosting platform. Black Duck Open Hub (www.openhub.net) is a public directory
of free and open source software, offering analytics and search services for discovering, evaluating,
tracking, and comparing open source code and projects. It analyzes both the code’s history and
ongoing updates to provide reports about the composition and activity of project code bases. These
platforms are useful for researchers to filter out repositories that are interesting to study a given
phenomenon by providing various filters. While these filters are useful to validate the integrity
of the data to some extent, certain subtle factors when unaccounted for can heavily impact the
validity of the study. Code duplication is one such factor. For example, if the dataset consists of
projects that have hundreds and thousands of duplicate projects that are part of the same dataset,
the overall lack of diversity in the dataset might lead to incorrect observations, as pointed out
by [Nagappan et al. 2013].

3 ANALYSIS PIPELINE

Our analysis pipeline is outlined in Figure 3. The pipeline starts with local copies of the projects that
constitute our corpus. From here, code files are scanned for fact extraction and tokenization. Two
of the facts are the hashes of the files and the hashes of the tokens of the files. File hashes identify
exact duplicates; token hashes allow catch clones up with minor differences. While permutations
of same tokens may have the same hash, they are unlikely. Clones are dominated by exact copies,
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Fig. 3. Analysis pipeline.

and we did not observe any such collision in randomly sampled pairs. Files with distinct token
hashes are used as input to the near-miss clone detection tool, SourcererCC. While our JavaScript
pipeline was developed independently, data formats, database schema and analysis scripts are
identical.

3.1 Tokenization

Tokenization transforms a file into a “bag of words,” where occurrences of each word are recorded.
Consider, for instance, the Java program:

package foo;
public class Foo { // Example Class

private int x;

public Foo(int x) { this.x 3

private void print() { System.out.println("Number:

public static void main() { new FooNumber (4).print();

X;
" e )

3

3

Tokenization removes comments, white space, and terminals. Tokens are grouped by frequency,
generating:

Java Foo:[(package,1),(foo,1),(public,3),(class,1),(Foo,2),(private,2),(int
,2),(%,5),

(this,1),(void,2),(print,2),(System,1),(out,1),(println,1), (Number,1),(
static,1),

(main,1),(new,1),(FooNumber,1),(4,1)]

The tokens package and foo appear once, public appears three times, etc. The order is not
relevant. During tokenization we also extract additional information: (1) file hash — the MD5 hash
of the entire string that composes the input file; (2) token hash — the MD5 hash of the string that
constitutes the tokenized output; (3) size in bytes; (4) number of lines; (5) number of lines of code
without blanks; (6) number of lines of source without comments; (7) number of tokens; and (8)
number of unique tokens. The tokenized input is used both to build a relational database and as
input to SourcererCC. The use of MD5 (or any hashing algorithm) runs the risk of collisions, given
the size of our data they are unlikely to skew the results.

3.2 Database

The data extracted by the tokenizer is imported into a MySQL database. The table Projects
contains a list of projects, with a unique identifier, a path in our local corpus and the project’s URL.
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Files contains a unique id for a file, the id of the project the file came from, the relative paths and
URLs of the file and the file hash. The statistics for each file are stored in the table Stats, which
contains the information extracted by the tokenizer. The tokens themselves are not imported. The
Stats table has the file hash as unique key. With this, we get an immediate reduction from files
to hash-distinct files. Two files with distinct file hashes may produce the exact same tokens, and,
therefore the same token hash. This could happen when the code of one file is a permutation of
another. The converse does not hold: files with distinct token hashes must have come from files
with distinct file hashes. For source code analysis, file hashes are not necessarily the best indicators
of code duplication; token hashes are more robust to small perturbations. We use primarily token
hashes in our analysis.

3.3 Project-level analysis

Besides file-level analysis, we also look for projects with significant overlap with other projects.
This is done with a script that queries the database making an intersection of the project files’
distinct token hashes. This script produces pairs of projects that have significant overlap in at
least one direction. The results are of the form: A cloned in B at x%, B cloned in A at y%, where x%
of project A’s files (in tokenized form) are found also in project B, and y% of project B’s files (in
tokenized form) are found in project A. Calculating project-level information is done in two steps.
First, collect all the files from a project A, say, for example there are 4 files in A: Then find the
token-hash duplicates for each of these files in other projects. It might be something like:

project A
File; - B, B, C
Fileg - B
File3 -

Files - B, D, F

There are 3 files from A with duplicates in B, making A a clone of B at 75%. Conversely, there are 4
files in B with duplicates in A; assuming B has a total of 20 files, then B is cloned in A at 20%. A file
can be in other project multiple times (e.g. in different directories) as is File 1.

3.4 SourcererCC

The concept of inexact code similarity has been studied in the code cloning literature. Blocks of code
that are similar are called near-miss clones, or near-duplication [Cordy et al. 2004]. SourcererCC
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Table 1. GitHub Corpus.

’ ‘ H Java ‘ C++ Python ‘ JavaScript
# projects (total) 3,506,219 1,130,879 2,340,845 4,479,173

w | # projects (non-fork) 1,859,001 554,008 1,096,246 2,011,875
§ # projects (downloaded) 1,481,468 369,440 909,290 1,778,679
8 # projects (analyzed) 1,481,468 364,155 893,197 1,755,618
# files (analyzed) 72,880,615 61,647,575 31,602,780 261,676,091

o | Files/project 9 (0=600) ] 11(c =1304) | 4(c=501)] 6 (o =1335)
& | SLOC/file 41 (0 =552) | 55 (o = 2019) | 46 (o = 2196) | 28 (o = 2736)
%’ Stars/project 0(c=71) 0(c=119) 0 (0 =99) 0 (o =324)
Commits/project 4 (0 =336) | 6(0=1493) 6 (o = 542) 6 (o = 275)

estimates the amount of near-duplication in GitHub with a “bag of words” model for source code
rather than more sophisticated structure-aware clone detection methods. It has been shown to
have good precision and recall, comparable to more sophisticated tools [Sajnani 2016]. Its input
consists of non-empty files with distinct token hashes. SourcererCC finds clone pairs between
these files at a given level of similarity. We have selected 80% similarity as this has given good
empirical results. Ideally one could imagine varying the level of similarity and reporting a range
of results. But this would be computationally expensive and, given the relatively low numbers of
near-miss clones, would not affect our results.

4 CORPUS

The GitHub projects were downloaded using the GHTorrent database and network [Gousios
2013] which contains meta-data such as number of stars, commits, committers, whether projects
are forks, main programming language, date of creation, etc., as well as download links. While
convenient, GHTorrent has errors: 1.6% of the projects were replicated entries with the same URL;
only the youngest of these was kept for the analysis.

Table 1 gives the size of the different language corpora. We skipped forked projects as forks
contain a large amount of code from the original projects, retaining those would skew our findings.
Downloading the projects was the most time-consuming step. The order of downloads followed
the GHTorrent projects table, which seems to be roughly chronological. Some of the URLs failed
to produce valid content. This happened in two cases: when the projects had been deleted, or
marked private, and when development for the project happens in branches other than master.
Thus, the number of downloaded projects was smaller than the number of URLs in GHTorrent. For
each language, the files analyzed were files whose extensions represent source code in the target
languages. For Java: . java; for Python: . py; for JavaScript: . js, for C/C++: .cpp .hpp .HPP .c
.h .C .cc .CPP .c++and .cp. Some projects did not have any source code with the expected
extension, they were excluded.

The medians in Table 1 give additional properties of the corpus, namely the number of files per
(non-empty) project, the number of Source Lines of Code (SLOC) per file, the number of stars and
the number of commits of the projects. In terms of files per project, Python and JavaScript projects
tend to be smaller than Java and C++ projects. C++ files are considerably larger than any others,
and JavaScript files are considerably smaller. None of these numbers is surprising. They all confirm
the general impression that a large number of projects hosted in GitHub are small, not very active,
and not very popular. Figures 4 and 5 illustrate the basic size-related properties of the projects we
analyzed, namely the distribution of files per project and the distribution of Source Lines of Code
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(SLOC) per file. For JavaScript we give data with and without NPM (it is a cause of a large number
of clones). Without NPM means that we ignored files downloaded by the Node Package Manager.

5 QUANTITATIVE ANALYSIS

We present analyses of the data at two levels of detail: file and project level. This section focuses
exclusively on quantitative analysis; the next section delves deeper into qualitative observations.

5.1 File-Level Analysis

Table 2 shows a summary of the findings for files. “SCC dup files” is the number of files, out of the
distinct token-hash files, that SourcererCC has identified as clones; similarly, “SCC unique files” is
the number of files for which no clones were detected. Figure 6 (top row) charts the numbers in
Table 2. The duplicated files (dark grey) are the files that are duplicate of at least one of the distinct
token-hash files (light grey); further, the distinct token-hash files are split between those for which
SourcererCC found at least one similar file (cloned files, grey) and those for which SourcererCC
did not find any similar file (unique files, in white).

These numbers show a considerable amount of code duplication, both exact copies of the
files (file hashes), exact copies of the files’ tokens (token hashes), and near-duplicates of files
(SourcererCC). The amount of duplication varies with the language: the JavaScript ecosystem
contains the largest amount of duplication, with 94% of files being file-hash clones of the other 6%;
the Java ecosystem contains the smallest amount, but even for Java, 40% of the files are duplicates;
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the C++ and Python ecosystems have 73% and 71% copies, respectively. As for near-duplicates, Java
contains the largest percentage: 46% of the files are near-duplicate clones. The ratio of near-miss
clones is 43% for Java, 39% for JavaScript, and 32% for Python.

The heatmaps (Figure 1) shown in the beginning of the paper were produced using the number
of commits shown in Table 1, the number of files in each project, and the file hashes. The heat
intensity corresponds to the ratio of file hashes clones over total files for each cell.

Duplication can come in many flavors. Specifically, it could be evenly or unevenly distributed
among all token hashes. We found these distributions to be highly skewed towards small groups
of files. In Java 1.5M groups of files with the same token-hash have either 2 or 3 files in them; the
number of token hash-equal groups with more than 100 files is minuscule. The same observation

Table 2. File-Level Duplication.

‘ | Java | C++ | Python | JavaScript |
| Total files | 72,880,615 | 61,647,575 | 31,602,780 | 261,676,091 |
File hashes 43,713,084 (60%) | 16,384,801 (27%) | 9,157,622 (29%) | 15,611,029 (6%)
Token hashes 40,786,858 (56%) | 14,425,319 (23%) | 8,620,326 (27%) | 13,587,850 (5%)
SCC dup files 18,701,593 (26%) | 6,200,301 (10%) | 2,732,747 (9%) | 5,245,470 (2%)
SCC unique files [| 22,085,265 (30%) | 8,225,018 (13%) | 5,887,579 (19%) | 8,342,380 (3%)
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holds for the other languages. Another interesting piece of information about clone groups is given
by the largest extreme. In Python, the largest group of file-hash clones has over 2.5M files. In Java,
the largest group of SourcererCC clones has over 65K files. In the next section we show which files
these are.

5.2 File-Level Analysis Excluding Small Files

One observation that emerged immediately from all the language ecosystems was that the most
duplicated file is the empty file — a file with no content, and size 0. In the Python corpus alone,
there are close to 2.2M occurrences of this trivial file, and in the JavaScript corpus there are 986K
occurrences of that same file. Another frequently occurring trivial file in all ecosystems is a file
with 1 empty line. Indeed, a common pattern that emerged was that the most duplicated files tend
to be very small. Once we detected that, we redid the analysis excluding small files. Specifically,
we excluded all files with less than 50 tokens.” Table 3 and Figure 6 (bottom row) show the results.

2This threshold is arbitrary. It is based on our observations of small files; other values can be used.

Table 3. File-level duplication excluding small files.

’ I Java | C++ | Python | JavaScript |
# of files 57,240,552 49,507,006 23,382,050 162,136,892
% of corpus 79% 80% 74% 62%
File hashes 34,617,736 (60%) | 13,401,948 (27%) | 7,267,097 (31%) | 11,444,667 (7%)
Token hashes 32,473,052 (58%) | 11,893,435 (24%) | 6,949,894 (30%) | 10,074,582 (6%)
SCC dup files 14,626,434 (26%) | 5,297,028 (10%) | 2,105,769 (9%) | 3,896,989 (2%)
SCC unique files || 17,848,618 (31%) | 6,596,407 (13%) | 4,844,125 (21%) | 6,177,593 (4%)
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Although the absolute number of files and hashes change significantly, the changes in ratios of
the hashes and SCC results are small. When they are noticeable, they show that there is slightly
less duplication in this dataset than in the entire dataset. Comparing Table 3 with Table 2 shows
that small files account for a slightly higher presence of duplication, but not that much higher
than the rest of the corpus.

5.3 Inter-Project Analysis

So far, we investigated how code duplication is rampant at the file level. The next question is how
this finding maps into projects: how many projects are exact and near-duplicates of other projects,
even though they are not technically forks? This is called inter-project cloning. For that, and as
explained in Section 3, we computed the overlap of files between projects, as given by the files’
token hashes. We used the entire corpus, including the small files, as these are important for the
projects. The results are shown in Table 4 and Figure 7.

Table 4. Inter-project cloning.

Java C++ Python JavaScript
# projects (analyzed) 1,481,468 364,155 893,197 1,755,618
# clones > 50% 205,663 (14%) | 94,482 (25%) | 159,224 (18%) | 854,300 (43%)
# clones > 80% 135,168 (9%) | 58,906 (16%) | 94,634 (11%) | 546,207 (31%)
# clones 100% 87,220 (6%) 24,851 (7%) 51,589 (6%) | 273,970 (15%)
# exact dups 73,869 (5%) | 19,809 (5%) | 43,501 (5%) | 198,556 (11%)
# exact dups (> 10 files) | 37,722 (3%) | 10,286 (3%) 7331 (1%) | 78,972 (4%)

Java C/C++ Python JavaScript
50-

40-

30-
>=50%
B =s0%
20~ 100%
lo- I I I
0- I . . .

Fig. 7. Percentage of project clones at various levels of overlap.

%

Table 4 shows the number of projects whose files exist in other projects at some overlap threshold
- 50%, 80% and 100%, respectively. A normalization of these numbers over the total number of
projects for each language is shown in Figure 7. JavaScript comes on top with respect to the amount
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of project-level duplication, with 48% of projects having 50% or more files duplicated in some other
project, and an equally impressive 15% of projects being 100% duplicated.” Not surprisingly, the
percentage of project-level duplication tracks the percentage of file-level duplication, as shown in
Figure 6. The differences seen between the language ecosystems do not seem to be related to the
size of projects: Table 1 in Section 4 shows that the median files per project in JavaScript is slightly
higher than in Python (so, JavaScript projects tend to have more files), but the inter-project cloning
is much higher for JavaScript than for Python. We will dive more into this in the next section.

The last two rows of Table 4 show the number of projects that are token-hash clones of some
other project (apart from differences in white space, comments, and terminal symbols). This is
different, and more constrained, than being cloned at 100% elsewhere: it requires bidirectionality.
With the exception of JavaScript at 11%, the ratios are all 5%, but it is still surprising that there
are so many projects that are exact copies of each other. As the last row shows, though, many of
those are very small projects, with less than 10 files. The number for projects with at least 10 files
that are exact copies of some other project is considerably smaller, but still in the thousands for all
languages.

6 MIXED METHOD ANALYSIS

The numbers presented in the previous section portray an image of GitHub not seen before.
However, that quantitative analysis opens more questions. What files are being copied around,
and why? What explains the differences between the language ecosystems? Why is the JavaScript
ecosystem so much off the charts in terms of duplication? In order to answer these kinds of
questions, we delve deeper into the data.

With so much data, our first heuristic was size. As seen in the previous section we noticed that
the empty file was the most duplicated file in the entire corpus, among all languages. We also
noticed that the top duplicated files tended to be very small and relatively generic. Although an
intriguing finding, very small, generic files hardly provide any insightful information about the
practice of code duplication. What about the non-trivial files that are heavily duplicated? What
are they?

This section presents observations emerging from looking at specific files and projects using
mixed methods. We divide the section into four parts: (1) an analysis of each language ecosystems
looking for the most duplicated files in general; (2) file duplication at different levels (file hashes,
token hashes and near duplicates with SourcererCC); (3) the most reappropriated projects in the
four ecosystems; and (4) an in-depth analysis of the JavaScript ecosystem.

6.1 Most Duplicated Non-Trivial Files

As stated above, we wanted to find out if the size of the files had an effect on their duplication.
For example, are small files copy-pasted from StackOverflow or online tutorials and blogs, and
large files from well-known supporting libraries? In order to make sense of so much data, we
needed to sample it first, so that interesting hypotheses could emerge, and/or we could find
counter-examples that contradicted our initial expectations. This is territory of qualitative and
mixed methods [Creswell 2014].

6.1.1 Methodology. We used a mixed method approach consisting of qualitative and quanti-
tative elements. Based on our quantitative analysis, we hypothesized that size of the files, and
whether the duplication was exact or token-based, might have an effect on the nature of duplica-
tion; for example, the empty file certainly is not being copy-pasted from one project to another, it

3Again, we remind the reader that our dataset does not contain forks.
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simply is created in many projects, for a variety of reasons. Maybe we could see patterns emerge
for files of different sizes. The following describes our methodology:

Table 5. Number of tokens per file within certain percentiles of the distribution of file size.

[ ] I 20%-30% 45%-55% 70%-80% 90%+
w» | Java 46-71 120-167 279-419 751+
G| C/C+ 50-77 138-199 372-623 1284+
© | Python 29-65 149-236 477-795 1596+

JavaScript 19-32 68-114 238-431 1127+
Java 7,670,926 (11%) | 7,523,679 (10%) | 7,335,067 (10%) | 7,298,767 (10%)
8| c/C++ 6,381,850 (10%) | 6,228,550 (10%) | 6,204,943 (10%) | 6,167,647 (10%)
= | Python 3,282,957 (10%) | 3,205,337 (10%) | 3,169,316 (10%) | 3,161,325 (10%)
JavaSript || 28,257,319 (11%) | 27,306,195 (10%) | 26,326,975 (10%) | 26,134,513 (10%)

¢ Quantitative Elements. We split files according to the percentiles of the number of tokens
per file within each language corpus, and create bins representing the ranges 20%-30% (small),
45%-55% (medium), 70%-80% (large), and greater than 90% (very large). So, the 45%-55% bin
contains files that are between the 45% percentile and the 55% percentile on the number of
tokens per file of a certain language. The number of tokens for the bins can be seen in Table 5.
For example in Java, the first bin includes files containing 47 to 72 tokens, and so on. The
gaps between these percentiles (for example, no file is observed between the 30% and the
45% percentile) ensure buffer zones that are large enough to isolate the differently-sized files,
should differences in their characteristics be observed. For each of these bins, we analyzed
the top 20 most cloned files; this grouping was performed twice, using file hashes and token
hashes, and this was done for all the languages. In total, for each language, 80 files were
analyzed.

¢ Qualitative Elements. Looking at names of most popular files, a first observation was that
many of these files came from popular libraries and frameworks, like Apache Cordova. This
hinted at the possibility that the origin of file duplication was in well-known, popular libraries
copied in many projects; a qualitative analysis of file duplication was better understood
from this perspective. Therefore, each file was observed from the perspective of the path
relative to the project where it resides, and was then hand coded for its origin. For example,
project_name/src/external/com/http-lib/src/file. java was considered to be part
of the external library http-1lib. Each folder assumed to represent an external library
was matched with an existing homepage for the library, if we could find it using Google.
Continuing the running example, http-1ib was only flagged as an external dependency if
there was a clear pointer online for a Java library with that name. In some cases, the path
name was harder to interpret, for example: p roject_name/external/include/internal/ftobjs.h.
In those cases, we searched Google for the last part of the path in order to find the origin
(in this particular case, we searched i nclude/internal/ftobjs.h). For JavaScript the situation
was often simpler: many of the files came from NPM modules, in which case the module
name was obvious from the file’s location. Some of the files were also minified versions of
libraries, in which case the name of the file gave the library name, often with its version (e.g.
jquery-3.2.1.min). Using these methods, we were able to trace the origins of all the 320
files.

4For a good tutorial on coding, see [Saldafia 2009]
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6.1.2  Observations. Contrary to our original expectation, we did not find any differences in the
nature of file duplication related to either size of the files, similarity metric, or language in the 320
samples we inspected. We also didn’t find any StackOverflow or tutorial files in these samples.
Moreover, the results for these files show a pattern that crosses all of those dimensions: the most
duplicated files in all ecosystems come from a few well-known libraries and frameworks. The Java
files were dominated by the ActionBarSherlock and Cordova. C/C++ was dominated by boost
and freetype, and JavaScript was dominated by files from various NPM packages, only 2 cases
were from jQuery library. For Python, the origins of file cloning for the 80 files sampled were more
diverse, along 6 or 7 common frameworks.’

Because the JavaScript sample was so heavily (78 out of 80) dominated by Node packages, we
have performed the same analysis again, this time excluding the Node files. This uncovered jQuery
in its various versions and parts accounting for more than half of the sample (43), followed from
a distance by other popular frameworks such as Twitter Bootstrap (12), Angular (7), reveal (4).
Language tools such as modernizr, prettify, HTML5Shiv and others were present. We attribute this
greater diversity to the fact that to keep connections small, many libraries are distributed as a
single file. It is also a testament to the popularity of jQuery which still managed to occupy half of
the list.

The presence of external libraries within the projects’ source code shows a form of dependency
management that occurs across languages, namely, some dependencies are source-copied to the
projects and committed to the projects’ repositories, independent of being installed through a
package manager or not. Whether this is due to personal preference, operational necessity, or
simple practicality cannot be inferred from our data.

Another interesting observation was the proliferation of libraries for being themselves source-
included in other widely-duplicated libraries. Take Cordova, a common duplicated presence within
the Java ecosystem. Cordova includes the source of okhttp, another common origin of duplication.
Similarly, within C/C++, freetype2 was disseminated in great part with the help of another highly
dispersed supporting framework, cocos2d. This not only exacerbates the problem, but provides a
clear picture of the tangled hierarchical reliance that exists in modern software, and that sometimes
is source-included rather than being installed via a package manager.

6.2 File Duplication at Different Levels

In this section, we look in greater detail at the duplication in the three levels reported: file hashes,
token hashes and SCC clones:

6.2.1 File Hashes. Top cloned files of various sizes were already analyzed in 6.1. To complement,
we have also investigated mostly cloned non-trivial files across all sizes to make sure no interesting
files slipped between the bins, but we did not find any new information. Instead we tried to give
more precise answer to question which files get cloned most often. Our assumption was that the
smaller the file, the more likely it is to be copied. Figure 8 shows our findings. Each file hash is
classified by number of copies of the file (horizontal axis) and by size of the file in bytes (vertical
axis). Furthermore, we have binned the data into 100x100 bins and we have a logarithmic scale
on both axes, which forms the artefacts towards the axes of the graph. The darker the particular
bin, the more file hashes it contains. The graphs show that while it is indeed smaller files that get
copied most often, with the exception of extremely small outliers (trivial files, such as the empty

5The very small number of libraries and frameworks found in these samples is a consequence of having sampled only 80
files per language, and the most duplicated ones. Many of the files had the same origin, because those original libraries
consist of several files.
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file), the largest duplication groups can be found for files with sizes in thousands of bytes, with
maximum sizes of the clone groups gradually lowering for either larger, or smaller files.

Java CIC++

100000000 g 100000000 -

100000 - ;.
count 100000

1e+06
1e+04

1e+02

File Size (bytes)
File Size (bytes)

1e+00

00 -

1‘0 lﬂhﬂ 1‘0 1dOO 100‘000
# of duplicate files # of duplicate files

Python JavaScript
100000000~

100000000 -

100000 - count count

100000 -
10000 10000

100 100

File Size (bytes)
File Size (bytes)

100 -
100 -

100000 10 100000

1000 1000
# of duplicate files # of duplicate files

Fig. 8. Distribution of file-hash clones.

6.2.2 Token Hashes. For a glimpse of the distribution of token hashes, we have investigated
the relations between number of files within a token hash group and number of file hashes (i.e.
different files). These findings are summarized in Figure 9. The outlier in the top-right corner of
each graph is the empty file. The number of different empty files is explained by the fact that
when using token hash, any file that does not have any language tokens in it is considered empty.
Given the multitude of sizes observed within token hash groups, the next step was to analyze the
actual difference in sizes within the groups. The results shown in Figure 10 summarize our findings.
As expected, for all four languages the empty file again showed very close to the top. For Java, the
biggest empty file was 24.3MB and contains a huge number of comments as a compiler test. For
C/C++ the empty files has the second largest difference and consists of a comment with ASCII
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Fig. 9. Distribution of token-hash clones.

art. Python’s empty file was a JSON dump on a single line, which was commented, and finally for
JavaScript the largest empty file consisted of thousands of repetitions of an identical comment
line, totaling 36MB.

More interesting than largest empty files is the answer to the question: What other, non-trivial
files display the greatest difference between sizes in the same group. Interestingly, the answer
is slightly different for each language: for Java, the greatest size differences exist for binary files
disguised as java files. In these files, very few tokens were identified by the tokenizer and therefore
two unrelated binary files were grouped into a single token group with a small number of very
different files. For C/C++ often, we have found source codes with and without hundreds of KB
of comments as members of the same groups. An outlier was a file with excessive white-spaces
at each line (2.42MB difference). In Python, formatting was most often the cause: a single file
multiplied its size 10 times by switching from tabs to 8 spaces. For JavaScript, we observed minified
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Fig. 10. A of file sizes in token hash groups.

and non-minified versions. Sometimes the files were false positives because complex Javascript
regular expressions were treated as comments by the simple cross-language parser.

6.2.3  SourcererCC Duplicates. For SourcererCC, we randomly selected 20 clone pairs and we
categorized them into three categories: i) intentional copy-paste clones; ii) unintentional accidental
clones; and iii) auto-generated clones. It is interesting to note that the clones in categories ii) and
iii) are both unavoidable and are created because of the use of the popular frameworks.

Java. We have categorized 30% (6 out of 20) of the clone pairs into the intentional copy-paste
clones category. It included instances of both inter-project and intra-project clones. Intra-project
clones were created to test/implement functionalities that are similar while keeping them isolated
and easy to maintain. Inter-project clones seemed to come from projects that look like class projects
for a university course and from situations where one project was almost entirely copy-pasted into
the other project. We found 2 instances of unintentional cloning, both inter-project. The files in
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such clone pairs implement a lot of similar boilerplate code necessary to create an Android activity
class. We categorized the majority (12 out of 20) of the clone pairs into the auto-generated clones
category. The files in this category are automatically generated from the frameworks like Apache
Axis (6 pairs), Android (2 pairs), and Java Architecture for XML Binding (4 pairs). The unintentional
and auto-generated clones together constitute 70% of the sample.

C/C++. The sample was dominated by intentional copy-paste clones (70%, 12 pairs). The origin
for these file clone pairs seems to be the same, independent of these being inter of intra-project
clones, and relates to the reuse of certain pieces of source code after which they suffer small
modification to cope with different setups or support different frameworks. Five pairs were classified
as unintentional cloning. They represented educational situations (one file was composed in its
large part by the skeleton of a problem, and the difference between the files clones was the small
piece of code that implements the solution). Two different versions of the same file were also
found (libpng 1.0.9 vs. libpng 1.2.30). Files from two projects sharing a common ancestor (bitcoin
vs dotcoin) were also observed. The auto-generated clones were present in three pairs, 2 of them
from the Meta-Object compiler.® The unintentional and auto-generated clones accounted for 40%
of the sample.

Python. The sample was dominated by uses of the Django framework (17 pairs), all variants
of auto generated code to initialize a Djagno application. We classified them as auto-generated
clones. Two pairs were intentional copy-paste clones intra-project copy-paste of unittests. The last
pair belonged to the same category was a model schema for a Django database.

JavaScript. Only one intentional copy-paste clones example has been found, which consisted of a
test template with manually changed name, but nothing else. Five occurrences of unintentional
cloning comprised of pairs of different file versions for jQuery(2), google maps opacity slider,
modernizr, and angular socket service. The remaining 14 pairs (70%) have been classified as auto-
generated clones. Dominated by Angular project files(7), project files for express(3), angular locales
and different gruntfiles (builder files for Node projects) were present. All of the Angular project files
are created with Yeoman, a tool for creating application skeletons with boilerplate code used also
by the Angular Full Stack Generator. The last pair classified as autogenerated was also the only
inter-project clone and consisted of two very similar JSON records in a federal election commission
dump stored on Github. In total, 95% of the pairs were unintentional or auto-generated.

6.3 Most Reappropriated Projects

We look for projects duplicated in bulk without any addition or change, i.e. with 100% of their files
present in a single host project. This captures the practice of reappropriation. Since versioning
systems offer features that should be used instead of reappropriation (such as Git submodules) we
were interested in how prevalent and for what purposes reappropriation exists. A simple query
into the database gave us some insights. Note our analysis is not exhaustive; projects originating
from outside GitHub may not be found unless an abandoned project that just reappropriated
them exists. But if the project’s exact copy will be missed, the files themselves will be identified as
clones between projects using the same library.

For Java, we found that Minecraft-APl and PhoneGap are the two most reappropriated projects.
Looking for clues online, we found that the original Minecraft-API project was not hosted in GitHub
until 2012, so the copies may have been from developers who used GitHub at the time. Also, on

®http://doc.qt.io/qt-4.8/moc.html
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Fig. 11. JavaScript files over time, with and without NPM files.

further inspection we found that PhoneGap is related to Apache Cordova. These frameworks might
not have been in GitHub from the beginning.

For C++, GNU ISO C++ Library, homework templates, and Arduino examples have been reap-
propriated the most. The homework case is interesting: it seems that some instructor created a
body of code that was then cloned by several dozen students, instead of being forked in GitHub,
as one might expect. All clones were exactly the same, which seems to indicate the students didn’t
push their changes back. This an unorthodox, and somewhat abusive use of GitHub.

For Python, the top 3 most reappropriated projects are Cactus, which is a static site generator
using Django templates, Shadowsocks, a fast tunnel proxy that helps bypass firewalls, and Scons,
a software construction tool.

Finally, for JavaScript the most reappropriated project is the Adobe PhoneGap’s Hello World
Template’, which has been found intact in total of 1746 projects. PhoneGap is a framework for
building mobile applications using the web stack and it dominates the most frequently cloned
projects - the top 15 most cloned projects are all different versions of its template. PhoneGap is
followed by the OctoPress® blogging framework and by a template for BlueMix.’

These observations show that project reappropriation exists for a variety of reasons: simple reap-
propriations that could be addressed by Git submodules (e.g. Minecraft API, Arduino), seemingly
abandoned derivative development (Cactus, PhoneGap), true forks with addition of non-source
code content (OctoPress) and even unorthodox uses of GitHub (the C++ homework).

6.4 JavaScript

JavaScript has the highest clone ratio of the languages studied. Over 94% of the files are file-hash
clones. We wanted to find out what is causing this bloat. After manually inspecting several files,
we observed that many projects commit libraries available through NPM as if they are part of
the application code.'” As such, we analyzed the data with respect to the effect of NPM libraries,
and concluded that this practice is the single biggest cause for the large duplication in JavaScript.
What follows are some mostly quantitative perspectives on the effect of NPM libraries, along

"http://github.com/phonegap/phonegap-template-hello-world
8http://octopress.org/

%https://www.ibm.com/cloud-computing/bluemix/

%npm is the package manager used by the very popular Node framework.
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Fig. 12. Percentage of clones over time

with some qualitative observations pulled from additional sources. Figure 11 on the left shows
the composition of JavaScript repositories over time with respect to unique files and tests and
token-hash clones and (we considered any file in test folder to be a test) compared with files &
tests coming from unorthodox use of NPM. Figure 11 on the right shows the corpus in the same
categories, but without the NPM files, whose number is indicated by the dashed line which quickly
surpasses all other files in the corpus. The huge impact of NPM files can be seen not only in the
sheer number of files, Figure 12 shows the percentage of token-hash clones for different subsets
of the files over time. To help assess influence, the background of the graph shows the numbers
of total and NPM files at given times. Few files predate the NPM Manager itself (January 2010).
We have found similar outliers in the rest of the files (small amount of them predating not just
GitHub and Git, but even JavaScript itself). As soon as NPM files started to appear in the corpus,
they took over the global ratio (solid line), while the rest of the files slowly added original content
over time. Interesting is the higher originality of tests — when people copy and paste the entire
files, they tend to ignore their tests.

6.4.1 NPM Files. When npm is used in a project, the package. json file contains the descrip-
tion of the project including its required packages. When the project is built, these packages,
are loaded and stored in the ’node_modules’ directory. If the packages themselves have depen-
dencies, these are stored under the package name in another nested 'node_modules’ directory.
The ’node_modules’ folder will be updated each time the project is built and a new version of
some of the packages it transitively requires is available. Therefore it should not be part of the
repository itself - a practice GitHub recommends.'" Since NPM allows dependencies to link to
specific versions of the package, there is no need to include the ’node_modules’ directory even if
the application requires specific package version. Even more surprising than the sheer number of
NPM files in the corpus is the number of packages responsible for them. 41.21% (732991) projects
use NPM package manager, but only 6% (106582) projects include their 'node_modules’ directory.
These 6% projects are ultimately responsible for almost 70% of the entire files. It is therefore not

Uhttps://github.com/github/gitignore/blob/master/Node.gitignore
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Fig. 13. % of NPM files in projects and directly imported NPM packages

surprising that once a project includes its NPM dependencies, its file number is overwhelmed by
the packages’ files as shown in Figure 13 on the left.

There are even projects that seem to contain only NPM files. Often a project is created us-
ing an automated generator which installs various dependencies, pushed to Github with the
node_modules directory and never used again. The largest of such projects'? contains only NPM
modules used in other project of the same author and has 46281 files. If the project is written
a dialect of Javascript that does not use the js extension (such as jsx or TypeScript) it would
appear all its files come from NPM. This is the case of the second largest npm-only project’’
consists of 16761 JS files from NPM and a handful of jsx files discovered by manual inspection.

We have also analyzed the depth of nested dependencies in the NPM packages. In the worst
case we have observed this nesting to be 47 modules deep with median of 5. The number of unique
projects included has median of 63 and maxes out at 1261, but this includes the nested dependencies
as well. The direct imports, i.e. modules specified as dependencies in the package. json file is in
general much smaller as shown in Figure 13 on the right. There are however outliers which come
close to the max number of unique projects included. The largests of them has been created by
the Angular Full Stack Generator,'* an automated service for generating Angular applications.'
Other projects with extraordinarily large direct dependencies are created using similar automated
generators, such as Yeoman. In terms of module popularity (Figure 14) (note the log scale on y
axis) most modules are imported by a small percent of projects, however there are some massively
popular ones: Express'® (59277 projects) is a minimalist web Ul framework, body parser!’ (31807
projects) a HTTP response body parser and debug'® (24413 projects), a debugging utility for Node
applications. Surprisingly, many of the NPM packages contain a great deal of tests in them, as
shown in Figure 11, which seems unnecessary, as these should be release versions of the packages
for users, not package for developers.

2https://github.com/kuangyeheng/workflow-modules

Bhttps://github.com/george-codes/react-skeleton
https://github.com/angular-fullstack/generator-angular-fullstack

15 Tronically the project itself was created to let people “quickly set up a project following best practices”.
o https://www.npmjs.com/package/express

Thttps://www.npmjs.com/package/body-parser

Bhttps://www.npmjs.com/package/debug
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