
ClassifyHub: An Algorithm
to Classify GitHub Repositories

Marcus Soll(B) and Malte Vosgerau

University of Hamburg, Mittelweg 177, 20148 Hamburg, Germany
{2soll,2vosgera}@informatik.uni-hamburg.de

Abstract. The classification of repositories found on GitHub can be
considered as a hard task. However, the solution of this task could be
helpful for a lot of different applications (e.g. Recommender Systems).
In this paper we present ClassifyHub, an algorithm based on Ensem-
ble Learning developed for the InformatiCup 2017 competition, which is
able to tackle this classification problem with high precision and recall.
In addition we provide a data set of classified repositories for further
research.

1 Introduction

GitHub is the largest [3] platform to organise and collaborate on different
projects (so-called repositories). The diversity of GitHub repositories reaches
from small LaTeX templates for homework up to huge software develop-
ment projects. Because of this diversity GitHub is ideal for many research
projects (e.g. influence of programming languages to code quality [10] or social
studies [14]).

To gain additional value out of the large variety of repositories on GitHub
it would be useful to classify these repositories into different disjunctive classes.
Such clustering could be used for many tasks like, for example, recommenda-
tion (so-called Recommender Systems) [1,11]. Another application would be the
improvement of search functions on GitHub.

In this paper we present ClassifyHub, an algorithm based on Ensemble Learn-
ing which tackles the GitHub Classification Problem and achieves high precision
and high recall considering the hard task. This algorithm reached the final round
in the InformatiCup 2017 competition, where the goal was to develop a complete
software solution with a time frame of about 5 month. In addition we provide a
data set with 681 classified repositories which can be used for further research.

2 Related Work

Ugurel et al. [15] classified source code archives into different application types
(like database or games), however they did not focus their work on content types
(like educational or data set) and furthermore only focused on application source
code instead of arbitrary repositories (like repositories containing only images).
c© Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 373–379, 2017.
DOI: 10.1007/978-3-319-67190-1 34

http://orcid.org/0000-0002-6845-9825


374 M. Soll and M. Vosgerau

Kawaguchi et al. [6] proposed a system which classifies software in automat-
ically generated categories. Again, the categories seem to focus on application
types rather than content types. In addition, they used categories about the
technology used (e.g. libraries), as well as the architecture of the software.

Maskeri et al. [8] proposed a system to automatically extract topics from the
source code. These topics are more related to the implementation (like SSL or
Logging) than to the content type.

3 GitHub Classification Problem

The GitHub Classification Problem (based on the InformatiCup 2017 task) is a
problem from the area of classification. The task is the classification of reposi-
tories hosted on GitHub into exactly one of the following content categories:

– DEV: Software development projects and similar
– HW: Solutions for homework, exercises and similar
– EDU: Projects with educational purpose and similar
– DOCS: Documents with no educational intent and similar
– WEB: (Personal) websites
– DATA: Data sets
– OTHER: Repositories which do not fit in one of the above categories

Two aspects turn the GitHub Classification Problem into a hard tasks:

– There is a large variety of repositories on GitHub. One can find reposito-
ries with projects run by one person up to repositories with thousands of
contributors (e.g. the Linux kernel).

– The classification of repositories is sometimes ambiguous - many projects can
be classified into multiple categories.

4 Multi Classifier Solution

To tackle the GitHub Classification Problem we used an approach based on
Ensemble Learning [13]: Through the combination of multiple weak classifier
(which have to be better than random guessing) we get a single strong classifier
which is correct on the majority of data. This works because each weak clas-
sifier added reduces the total error of the strong classifier. In our solution the
probability of a class is equal to the average probability calculated by all weak
classifiers, as shown in (1).

P (class) =
∑classifier

Pclassifier(class)
Nclassifier

(1)

4.1 Weak Classifier Used

Each weak classifier presented in the following sections returns a value between
zero and one which represents the probability with which the classifier classifies
a repository into one of the classes. The total sum of all classes can be higher
than one.



ClassifyHub: An Algorithm to Classify GitHub Repositories 375

FileClassifier. Based on the class of the repository one will likely find different
types of files in different repositories. A project of the class DEV is more likely
to have files of the type .cpp (C++ source code), .h (C/C++ header) or .java
(JAVA source code) while a repository of the DOCS class is more likely to
have files of the type .md (Markdown) or .pdf (document format). Often, the
file type is associated to the filename extension. The FileClassifer exploits this
for classification. While learning, the FileClassifier monitors the distribution of
extensions on the different classes (ignoring extensions which only occur once) as
shown in (2). For classification, the probability of all known filename extensions
in a repository will be averaged over all files as shown in (3).

P (class|extension) =
Nextension in class

Nextension in all classes
(2)

P (class) =
∑extensions

P (class|extension)
Nfiles

(3)

ReadmeClassifier. A lot of information about a project can be found in the self
description which is usually found as a README file. Based on this description
it is often possible to correctly classify the repository. To analyse README
files we use a Bag-of-words representation followed by a classification using the
k-Nearest Neighbor algorithm.

A Bag-of-words [12] is a special representation of a text where only the
appearance of a word has a meaning but not the context in which the word
appears. Although the context of the text is lost in this representation, it is still
possible to get a lot of information out of it. In our case we collected words in all
README files encountered during learning phase which only consist of letters
and numbers (independent of capitalisation). All words that only occur once are
removed. Based on the remaining words a list is created. During classification,
every occurring word in the README is set to 1, all other to 0. For every
README file one of these lists is created. These will then be used by the k-
Nearest Neighbor algorithm [5] (using the Jaccard distance [2]). The probability
of a class is equal to the distribution of classes with the smallest distance. To
classify a new repository a Bag-of-words is created for the README file. After
that the neighbourhood will be calculated. Based on the neighbourhood the
probability of the classes is calculated.

MetadataClassifier. Another source for the classification of repositories is
their meta data. GitHub provides an API to get a wide variety of meta data for
repositories. For the creation of a weak classifier we chose the following meta
data:

– Information whether the repository is a fork
– Information whether the repository has a website
– Size of repository
– Number of stargazers (equivalent to likes)



376 M. Soll and M. Vosgerau

– Number of watchers
– Information whether the repository has a wiki
– Information whether the repository has pages (website hosted by GitHub)
– Number of forks
– Number of bugs
– Number of subscribers

These meta data is then used in a decision tree [5].

LanguageClassifier. An evidence of the class of a repository is the used
programming language. GitHub provides a way to ask for the most used pro-
gramming language in a repository. The LanguageClassifier uses the language
returned by GitHub to calculate the probability of the different classes for a
repository. This allows a broad classification of many repositories. While learn-
ing, the classifier observes the languages used for the classes and calculates the
probability as shown in (4). The probability for a language not observed during
training is P (class|unknown language) = 0.

P (class|languange) =
Nclass with language

Nlanguage
(4)

LanguageDetailsClassifier. The LanguageDetailsClassifier is based on the
same idea as the LanguageClassifier. However, it uses the percentage distrib-
ution of programming languages in a repository instead of the main language
(based on file size). The GitHub API is used to get the distribution of program-
ming languages. Based on this, a decision tree [5] is build which is used for
classification. Because of this, the LanguageDetailsClassifier has a more detailed
basis but looses some generalisation in comparison to the LanguageClassifier.

NameClassifier. Although there is a huge variety in names for repositories,
there seems to be some common patterns found in the names of repositories of
the different classes. For example, one finds many repositories with words like
‘dataset’, ‘list’ or ‘challenge’ in their name in the DATA class. This can be
exploited for classification. For this, we use the k-Nearest Neighbor algorithm
[5] with the Levenshtein distance (cost 1 for replacement) [4] to calculate the
distance between names.

CommitMessageClassifier. Whenever someone changes something in a repo-
sitory (a so called Commit) there must be a description of that change. These
descriptions often hold information which can be used for classification. As an
example, a description ‘Solution exercise 2’ will hint at the HW class.

We use the same method here as for the ReadmeClassifier : All messages are
put into a Bag-of-word [12]. The probability of a class is calculated using the
k-Nearest Neighbor algorithm [5] using the Jaccard distance [2].



ClassifyHub: An Algorithm to Classify GitHub Repositories 377

RepositoryStructureClassifier. Often, the structure of a repository gives
evidence for the class of the repository. For example, if two repositories contain
a folder named ‘lab2’ and one has the class HW, it is very likely that the second
one also belongs to the same class.

RepositoryStructureClassifier exploits this for classification. It uses a simi-
lar algorithm compared to the ReadmeClassifier : The structure of a repository
(consisting of paths of files, folders and similar) is converted to a Bag-of-words
[12], which is then classified using the k-Nearest Neighbor algorithm [5] using
the Jaccard distance [2].

4.2 Implementation

We implemented ClassifyHub in Python using scikit-learn [9] for many machine
learning algorithms. The implementation has a high degree of parallelisation
because all weak classifiers can run independently. To show the internals of our
algorithm we implemented a user interface in Qt/PyQt5.

5 Data Set

For training and evaluation purpose we created a data set containing 681 reposi-
tories of all 7 classes. We focused on an almost equal distribution over all classes
to prevent an overfitting to one single class. The data set contains repositories
with a wide variety to match the variety of repositories found on GitHub, which
were picked at random and classified by hand. This includes not using the main
repository all the time but also forks which sometimes do not get updated. The
distribution of classes in the data set can be found in Table 1.

Table 1. Distribution of classes in our
data set

Class Number repositories

DEV 127

HW 96

EDU 74

DOCS 77

WEB 95

DATA 86

OTHER 126

Sum 681

Table 2. Average results of a 10-fold
cross-validation

Target class Precision Recall

DEV 0.5474 0.7189

HW 0.4933 0.5311

EDU 0.5299 0.3534

DOCS 0.6314 0.4192

WEB 0.6744 0.8051

DATA 0.7681 0.7178

OTHER 0.5484 0.5430

Average 0.5990 0.5841



378 M. Soll and M. Vosgerau

6 Results and Discussion

We performed a 10-fold cross-validation on our data set, which should give
us a good overview (with slightly negative tendency) over the performance of
our algorithm [7]. The results are shown in Table 2. With the combination of
multiple weak classifier we were able to achieve both high precision (59.90%)
as well as high recall (58.41%). This is a good result especially because the
GitHub Classification Problem can be considered as a hard task due to the high
variety of repositories (even within a class). In addition, the distinction between
the different classes is often ambiguous, even for humans (e.g. the difference
between source code for homework and normal software projects). This might
lead to classifications which could be considered correctly by humans, but do
not correspond to the labels in the data set.

Both, high precision and recall, is achieved over all classes (with minor differ-
ences). This is useful because based on the future application both high precision
and recall might be needed:

– A high precision might be important if, for example, the classification will be
used to improve search results because a human often does not want to look
through many wrong results first.

– A high recall might be important e.g. for automatic recommendation (like
in Recommender Systems) to show a high variety of results. A single wrong
classification has less effect here, because there is no active search which would
be interrupted.

7 Conclusion

In this paper we presented ClassifyHub1, an algorithm which tackles the GitHub
Classification Problem with high precision (59.90%) and high recall (58.41%).
This is achieved through the usage of Ensemble Learning, which combines multi-
ple weak classifier to a single strong classifier. In addition, we provide a data set2

with 681 classified GitHub repositories which can be used for further research.

Acknowledgements. We would like to thank the organisers, the jury and all partic-
ipants of the InformatiCup 2017, for which ClassifyHub was developed.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

2. Cha, S.-H.: Comprehensive survey on distance/similarity measures between prob-
ability density functions. Int. J Math. Models Methods Appl. Sci. 1(4), 300–307
(2007)

1 https://github.com/Top-Ranger/ClassifyHub.
2 https://github.com/Top-Ranger/ClassifyHub-data.

https://github.com/Top-Ranger/ClassifyHub
https://github.com/Top-Ranger/ClassifyHub-data


ClassifyHub: An Algorithm to Classify GitHub Repositories 379

3. Gousios, G., Vasilescu, B., Serebrenik, A., Zaidman, A.: Lean GHTorrent: Github
data on demand. In: Proceedings of the 11th Working Conference on Mining Soft-
ware Repositories, MSR 2014, NY, USA, pp. 384–387 (2014). http://doi.acm.org/
10.1145/2597073.2597126

4. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition,
2nd edn. Prentice Hall (2009)

5. Kantardzic, M.: Data Mining: Concepts, Models, Methods and Algorithms, 2nd
edn. Wiley, Hoboken (2011)

6. Kawaguchi, S., Garg, P.K., Matsushita, M., Inoue, K.: Mudablue: an
automatic categorization system for open source repositories. J. Syst.
Softw. 79(7), 939–953 (2006). http://www.sciencedirect.com/science/article/pii/
S0164121205001822. Selected papers from the 11th Asia Pacific Software Engi-
neering Conference (APSEC 2004)

7. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: Proceedings of the 14th International Joint Conference
on Artificial Intelligence, IJCAI 1995, vol. 2, pp. 1137–1143. Morgan Kaufmann
Publishers Inc., San Francisco (1995). http://dl.acm.org/citation.cfm?id=1643031.
1643047

8. Maskeri, G., Sarkar, S., Heafield, K.: Mining business topics in source code using
latent dirichlet allocation. In: Proceedings of the 1st India Software Engineering
Conference, ISEC 2008, NY, USA, pp. 113–120 (2008). http://doi.acm.org/10.
1145/1342211.1342234

9. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

10. Ray, B., Posnett, D., Filkov, V., Devanbu, P.: A large scale study of programming
languages and code quality in github. In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, NY,
USA, pp. 155–165 (2014). http://doi.acm.org/10.1145/2635868.2635922

11. Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems
Handbook, pp. 1–35. Springer US, Boston (2011). http://dx.doi.org/10.1007/
978-0-387-85820-3 1

12. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-
Hill Inc., New York (1986)

13. Seni, G., Elder, J.F.: Ensemble methods in data mining: improving accuracy
through combining predictions. Synth. Lect. Data Mining Knowl. Discov. 2(1),
1–126 (2010)

14. Tsay, J., Dabbish, L., Herbsleb, J.: Influence of social and technical factors for eval-
uating contribution in github. In: Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, NY, USA, pp. 356–366 (2014). http://doi.
acm.org/10.1145/2568225.2568315

15. Ugurel, S., Krovetz, R., Giles, C.L.: What’s the code?: automatic classification of
source code archives. In: Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2002, NY, USA, pp.
632–638 (2002). http://doi.acm.org/10.1145/775047.775141

http://doi.acm.org/10.1145/2597073.2597126
http://doi.acm.org/10.1145/2597073.2597126
http://www.sciencedirect.com/science/article/pii/S0164121205001822
http://www.sciencedirect.com/science/article/pii/S0164121205001822
http://dl.acm.org/citation.cfm?id=1643031.1643047
http://dl.acm.org/citation.cfm?id=1643031.1643047
http://doi.acm.org/10.1145/1342211.1342234
http://doi.acm.org/10.1145/1342211.1342234
http://doi.acm.org/10.1145/2635868.2635922
http://dx.doi.org/10.1007/978-0-387-85820-3_1
http://dx.doi.org/10.1007/978-0-387-85820-3_1
http://doi.acm.org/10.1145/2568225.2568315
http://doi.acm.org/10.1145/2568225.2568315
http://doi.acm.org/10.1145/775047.775141

	ClassifyHub: An Algorithm to Classify GitHub Repositories
	1 Introduction
	2 Related Work
	3 GitHub Classification Problem
	4 Multi Classifier Solution
	4.1 Weak Classifier Used
	4.2 Implementation

	5 Data Set
	6 Results and Discussion
	7 Conclusion
	References




