Parformance
“art |

why we measure things

Now dynamic Is dynamic

"

Richards, Lebresne, Burg,Vitek, An Analysis of the Dynamic Behavior of JavaScript Programs. PLDI'| 0

Traced Alexa top 100

8GB of trace data

500M

Corpus

S distilled D

3

ALL

Alias Library URL

280s | Objective-J* | 280slides.com
BING bing.com

BLOG blogger.com
DIGG | jQuery? digg.com

EBAY ebay.com

FBOK facebook.com
FLKR flickr.com
GMAP | Closure maps.google.com
GMIL Closure gmail.com

GOGL Closure google.com

ISHK | Prototype* imageshack.us
LIVE research.sun.com/p
MECM | SproutCore® | me.com

TWIT jQuery twitter.com
WIKI wikipedia.com
WORD | jQuery wordpress.com
YTUB youtube.com

Average over 103 sites

U AT A)

U ATA) N | A

LIATA I N, | VA

Constructor Return “type”

e Constructors are “just”
functions that side-effect
this.

e Accordingly a constructor
can return different “types”,
l.e. objects with different
properties

function Person(n,M) {
this.name=n;
this.sex=M;
if (M) {
this.likes= “guns”

}

100 1000 10000

10

(>2K constructors}
————monomorphic
: N y,
*
* . *
.. 1 constructor
o returns
o es ~300 “types”
2
* « * L 4 ¢
* L 2 4 *o WO o
I I I I I I I I
1 2 5 10 20 50 100 200

#of different “types” returned by a constructor

1.0

0.8

0.6

0.4

0.2

LIATA I S | VA | <~ | A7 4 | N | L4 | < [A4)

0.0

Object Lifetimes
Twitter

o Dead |
O Read
O Update | "
® Add
m Delete |-

AL B A Ak A A

1.0 —
.. " Dead
| O Read
08 — Lt = Update |~
; ® Add
...] Delete

o
o
I

o
(V)
I

o
o
I

Object Lifetimes
Google

LIATA Y S | A4 | <~ | A7 A | N | L4 | <~ [A4)
o
~
I

s U0 AT AT

N\
—
==
o
o=
-
=}
7

LIATA Y S | LA | e

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

O Dead
O Read
@ Update
® Add

m Delete

0 Dead
O Read

® Add

@ Update [

B Delete |

Richards, Gal, Eich,Vitek. J[SBench: Automating the Construction of JavaScript Benchmarks. OOPSLA'| |

JS Benchmarks

Sunspider, V8, etc. Real web pages

e (Consistent behavior e Browser-dependent

e Easy to use e Difficult to automate

e L ong-running (n principle) e Short-running (ctual compute time)
e Wildly unrealistic e Representative by

definition

JSBench

Record and Replay

Record: Replay:
e HTTP proxy e APIs replayed from log
e JS instrumentation e “Push-button” benchmarks

e JS library log use of APls e Works on any JS engine

60

49X

50

40
30

20

10 4X

0
1.5.0.9 2.0.0.20 3.0.9 3.5.19 3.6.17 4.0.1 5.0.1 6.0.2

Version

—ill— SunSpider —e— JSBench

Research v. [he World

SR o aalil
e R o R B ~ g .
N A = ’,,«”"
X SRR 2 S
Y e £ PN
.’b’."\’-" ¥
L PR % NS
o = cze> Al R, . - v
. v -, el g
R X >
} Y - o s calkiidi
& 29
SE g
A -~ >, N

o
\\\\\
ol

Research v. [he World

Research v. [he World

JSBench Suite JavaScript benchmark

[IeOmMme

Jan Vitek

I

Holy mother of god... they are talking about
JSBench at the Apple Keynote... that's gotto b
worth like a bunch of POPL papers.

@ Tag Photo @ Add Location « Edit

I

g5 Domagoj Babic, Koushik Sen, Suresh Jagannathar
35 others like this.

) View 8 more comments

El

Derek Dreyer Huh, it took forever to load on
Chrome, and on my Safari it says it can't run i
at all because my Webkit is old (v 534.59.8). N
Machook Pro is only 2.5 years old.

It LS L= m - LiIKe

Jan Vitek You, old. Now that you have tenure:
splurge and buy one of those nifty new
MacBookAirs with Intel's new Hasbeen proces:
They come with Safari installed (1)

ine 11, 2 t 2:36am - Like

Derek Dreyer But why? This Macbook Pro is tl
first Apple computer | ever had that was not
broken, and it still works great. | am too
shellshocked from the narcissistic personality
disorder exhibited by my first Macbook Air to

rantamnlata hinvinn ana nf thaca dAamn Can A

Parformance
Part ||

now we measure things

1.10 —

SE=

%)
©)
§ 1.05 —
3 SPP> =
8 1.00 — @ & ==
O
o + default
© 095 - X alphabetical
1 T T 1T 1T T T 1T T T 1
Q g £ N @ © X o B X O €
S 2 ¢ 5 3 E § e 5 £ E S
O k)
c 2 d &£ 78
O ()
O o

Mitkowicz, Diwan, Hauswirth, Sweeney. Producing Wrong Data
Without Doing Anything Obviously Wrong! ASPLOS’09

Know the goals

« Ends-based

- Performance characteristics of a single system
- Comparison of two or more systems

* Explanatory

- Find hints, evidence to explain observed behavior
e Scope

- How general answer we’re looking for?

Usual goals in PL/Systems

 Ends-based

- Improvement over the best performing system

(in execution time, parallel speedup, power consumption, code size, pause
time, reaction time)

- Measured on application benchmarks, kernels

* Explanatory

- Explain the improvements/overheads (cache misses, cache size, TLB, time
spent in GC, memory utilization)

- Sometimes using directed micro-benchmarks
e Scope

- Pick one or two common platforms & OS

- Common benchmark suites

Kinds of performance quantities

Responsiveness
- Time (response time, latency)

- Time between arrival of packet to the gateway and its successful delivery to
destination

Productivity
- Rate (throughput, speed, network bandwidth)
- Number of transactions processed per second by application server

Utilization
- Percentage of time a particular resource is at least at given load level
- Percentage of time the CPU is not running the idle task

Stalls
- Cache-misses, page-faults, pipeline

Prevailing metrics in PL/Systems
are based on execution time

» Ratio of times — measure of optimizations
- Improvement in execution time
- Speed-up, parallel speed-up, performance overhead

* Absolute time
- Time of a system to boot and start accepting input
- Time of a garbage collection cycle
- Pause time Iin concurrent garbage collector
- Time to call a function

Factors impacting execution time

* Fixed effects
- Algorithm/code/optimization — what we work on
- Input (benchmark programs)

- CPU, OS, libraries, compiler optimizations, location in
virtual memory

- Report (reduce scope) or randomize

« Random effects

- Location in physical memory, system load, scheduling,
context switches, hw interrupts, randomized algorithms

- Model, summarize using statistics

Run DaCapo fop benchmark (Java) repeatedly, record execution times
for I in "seq 1 100" ; do
java -jar dacapo-9.12-bach.jar fop
done > fop.out 2>&1
Read the times into R, into vector “x” (in seconds)

out <- readLines("fop.out")

rlines <- grep("==== DaCapo .* in [0-9]+ msec.*", out, val=T)
timesms <- as.numeric(gsub(".* in ([0-9]+) msec.*","\\1",rlines))
X <- timesms / 1000

Show first 10 times

> x[1:10]
[1] 2.750 1.785 1.627 1.672 1.667 1.584 1.557 1.730 1.505 1.464

We assume times are repetitions of the same process,
we have the same expectations about x[1] as about x[2]

We assume times are (statistically) independent — the
fact that x[1] iIs 1.785 does not give us a clue what x|2]
will be.

Histogram of x
Show a histogram

hist(x, freq=T)

- 52 of the times are
between 1.4s and 1.6s

50

40

30

Frequency

_ 2 measured times are
between 2.6s and 2.8s

3

o - 1

20

10
|

I I I I I I I I
1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 [S]

X

We assume all times come from the same underlying process. With
Increasing number of iterations, the shape of the histogram should stabilize.

Histogram with estimate of
probability density function <+

hist(x, prob=T, ylim=c(0,5))
lines(density(x))

histogram: relative frequency of
measurements between 1.8s and 2.0s
was the area of this bin (0.05)

Density
2
|

density: probability of measured
time to be between 1.5sand 1.7s -~ -
IS the area below the density curve,
between 1.5 and 1.7.

14 | 16 | 18 2.0 2.2 2.4 2.6 2.8

X

Under our assumptions, the true density function
would fully describe the execution times of the benchmark.

FFT

Now we have 100 runs of the benchmark
from each run we have 2048 measurements.

List of 100 vectors (100 runs of the benchmark)
File names are like fft_ia64/runl.out

runs <- lapply(1:100, function(n) {
d <- read.table(
paste("fft ia64/run", n, ".out", sep=""),
header=T

)
d[1]] <g Vector of 2048 measurements

}) (first column of result data frame)

1a64 <- do.call(c, runs)
iab4 <- 1a64/(800.179008*1eb)

\

Vector of 100 * 2048 measurements

ia64

FFT

Lets explore the sequence of measurements from different runs. plot(ia64)
- o
@
g - "
e - =
)
¢ e
< - -
” ® e - ® o ®
. e e - - & o @ o _°
3 EE e " =) ’ = o -
- i o % L et _ e -
: ® a® ag - o_e = =) = -
S .. a=” “pe -

' |
0 50000 100000 150000

Index

200000

1aB4[1:(2048 * 5)]

FFT

Lets explore the sequence of measurements from different runs.

lot(ia64[1:(2048%*5 : i
plot(1ab4[1:()1) (a simple variant of DEX scatter plot)

AT RN
Benchmark runs
™ o Tt Y
2 N RPN I Yl o il
P P
@ AR RSP PR PN

—

0 2000 4000 6000 8000 10000

Non-determinism in execution
(that does not appear In iterations)

e Different executions of a benchmark have
different performance

- Plus with FFT, the difference is much bigger than
between iterations In the same run

 Uncontrolled fixed effect

e Must re-run executions to avoid bias

- And given the big impact of “execution”, no need
to repeat iterations within execution

—__ What Is the cause of this non-determinism?

19

runs <- lapply(1:100, function(n)

read.table(paste("“fft ia64/run", n, ".out", sep=""), header=T)

)

ia64 <- do.call(rbind, runs) -@§—— Joining data frames from multiple runs

plot(iab64)

CPU_CYCLES

L2_MISSES

L3_MISSES

DTLB_MISSES

Non-determinism in compilation
(that does not appear In executions)

* On some systems, linking order impacts
performance (e.g. SPECCPU, training size)

— Controlled fixed effects

- Should be randomized — and then need to repeat
compilation

* On some systems, build is non-deterministic

- e.g. C++ compiler implementing anonymous
namespaces

* Need to repeat compilation...

NOTE: naming of identifiers has also been reported to impact
performance; code layout by function/data order does too..

Highest level for repetition

* Find the highest “level” of non-determinism in the
given system/benchmark

- ldentify important uncontrolled fixed effects and randomize
them (like linking order, code layout)

- Check if building Is deterministic, binaries have different
performance

 |f it Is cheap enough, repeat at a higher level anyway
- If execution Is cheap, repeat whole executions always

* If In doubt, repeating at a higher level is never wrong

15

14

13

12

1"

Read chart6 times into R, into vector “x” (in seconds)

readDacapo <- function(fn) {
out <- readLines(fn)
rlines <- grep("==== DaCapo .* in [0-9]+ msec.*", out, val=T)
timesms <- as.numeric(gsub(".* in ([0-9]+) msec.*","\\1", rlines))
timesms / 1000

}
X <- readDacapo("dacapo/chart6/chart6 1 1.out")
plot(x)

The data is not independent in initial section of this execution,
possibly due to initialization/warm-up

OO{A

. O 5 0 > '-9 A
o Bl - D, T P S G IS T %&‘%be%‘?‘ PRI P BN BT Y F

| | | | | |

0 50 100 150 200 250 300

Dealing with warm-up

|dentify #iterations affected by Initialization

- Using run-sequence plots of different scales

- Validating on several runs

- Only obvious initialization, after which results are stable/similar

|dentify #iterations to independent state
- Using acf, lag.plot, run-sequence plots

- Only independent data can be used for summarization
using confidence interval

Neither stability nor independence is always reached
If not, can only use 1 number from run for summarization

Comparing two systems

T.., Time on the new system (usually ours). Lower is better. 58s

T4 Time on the old/baseline system.

T.. 0.28 (28%)
Told
1~ Loew 0.72 (72%)
Told
T
old 3.63 (363%, 3.63x)
Tnew *
T
T"’d —1 2.63 (263%)

new

16s

Ratio of execution times

Percentage improvement in
execution time

Speedup

“Percentage improvement
In speed”

