
Performance
Part I

why we measure things

how dynamic is dynamic

Richards, Lebresne, Burg, Vitek, An Analysis of the Dynamic Behavior of JavaScript Programs. PLDI’10

Corpus

Traced Alexa top 100

8GB of trace data

500MB distilled DB

The goal of this paper is to provide supporting evidence to either

confirm or invalidate these assumptions. We are not disputing the

validity of previous research, as even if a couple of the above

assumptions proved to be unfounded, previous work can still serve

as a useful starting point for handling full JavaScript. But we do

want to highlight limitations to widespread adoption of existing

techniques and point to challenges that should be addressed in

future research.

Related Work. Until now, to the best of our knowledge, there

has been no study of the dynamic behavior of JavaScript programs

of comparable depth or breadth. Ratanaworabhan et al. have per-

formed a similar study concurrently to our own, and its results are

similar to ours [22]. There have been studies of JavaScript’s dy-

namic behavior as it applies to security [28] [8], but the behaviors

studied were restricted to those particularly relevant to security. We

conducted a small scale study of JavaScript and reported prelimi-

nary results in [19], and those results are consistent with the new

results presented here. Holkner and Harland [14] have conducted a

study of the use of dynamic features (addition and deletion of fields

and methods) in the Python programming language. Their study

focused on a smaller set of programs and concluded that there is

a clear phase distinction. In their corpus dynamic features occur

mostly in the initialization phase of programs and less so during

the main computation. Our results suggest that JavaScript is more

dynamic than Python in practice. There are many studies of the

runtime use of selected features of object-oriented languages. For

example, Garret et al. reported on the dynamism of message sends

in Self [11], Calder et al. characterized the difference of between C

and C++ programs in [4], and Temporo et al. studied the usage of

inheritance in Java in [23]. These previous papers study in great de-

tail one particular aspect of each language. In this particular work,

we strive for an overview of JavaScript, and leave detailed analysis

for future work. Finally, we were inspired by the work of Dufour et
al. [7] and their rigorous framework for discussing runtime metrics

for Java.

3. Tracing and Analysis Infrastructure
The tracing infrastructure developed for this paper is based on an

instrumented version of the WebKit
4

web browser engine inte-

grated into Apple’s Safari browser. While there are standalone in-

terpreters available, they would not be able to deal with the mix-

ture of DOM and AJAX that is commonplace in most JavaScript-

enabled sites. For flexibility, analysis is performed offline. Our in-

strumented browser records a trace containing most operations per-

formed by the interpreter (reads, writes, deletes, calls, defines, etc.)

as well as events for garbage collection and source file loads. In-

vocations to eval trigger an event similar to the one for source file

loads, and the evaluated string is saved and traced like any other

part of the program’s execution. Complete traces are compressed

and stored to disk. While it does have some performance overhead,

our instrumentation does not cause a noticeable slowdown in inter-

active applications, and none of our users complained about per-

formance. Traces are analyzed offline and the results are stored in

a database which is then mined for data. The offline trace analy-

sis component is essentially an abstract interpreter for the event

stream. It is able to replay any trace creating an abstract represen-

tation of the heap state of the corresponding JavaScript program.

The trace analyzer maintains rich and customizable historical in-

formation about the program’s behavior, such as access histories of

each object, call sites and allocation sites, and so on. Finally, sev-

eral static analyses (eval classification, code size metrics) are per-

4 webkit.org.

formed on the recovered source files using the parsing framework

from the Rhino JavaScript compiler.
5

As WebKit does not hide its identity to JavaScript code, it is pos-

sible for code to exhibit behavior peculiar to WebKit. Techniques

like this are often used to work around bugs in JavaScript imple-

mentations or browsers. For instance, the Prototype JavaScript li-

brary includes the following check for WebKit.

WebKit: ua.indexOf(’AppleWebKit/’) > -1,

It then uses that check to create different implementations of

setOpacity, getRootElement, shouldUseXPath and other functions

which may exhibit browser-dependent behavior. Although this does

introduce a possible bias which is very difficult to detect, all other

JavaScript implementations are equally detectable and so create

comparable bias. We would be interested in comparable studies

using other engines, to determine whether the results differ in sig-

nificant ways.

4. Corpus and Methodology
We have selected 100 web sites based on the Alexa list of most

popular sites on the Internet, along with a number of sites of par-

ticular interest (including 280slides, Lively Kernel, and a medley

of different web sites visited in a single session). Moreover we also

recorded traces for the three main industry benchmark suites (Sun-

Spider, Dromaeo, and V8). For each of these sites we asked several

of our colleagues to interact with the site in a “meaningful” manner.

Each interaction with a different web site was saved in a different

trace. Multiple traces for the same site are averaged in our metrics.

In the remainder of this paper we focus on the results of 17 sites

that we believe to be representative of the full range of behaviors

and usage of popular libraries. The list of sites we have retained is

shown in Figure 1. Data for all the web sites, as well as our tracing

and analysis framework, database, and graphs are available on the

project web site
6
. For each site, we also list publicly-available

JavaScript libraries utilized by the site, if any. Sites that use the

same libraries tend to have similar coding styles and program

structure. It is instructive to see whether similarities also exist in

the dynamic behavior of these programs, regardless of different

application logic and use cases.

Alias Library URL

280S Objective-J
1 280slides.com

BING bing.com
BLOG blogger.com
DIGG jQuery

2 digg.com
EBAY ebay.com
FBOK facebook.com
FLKR flickr.com
GMAP Closure

3 maps.google.com
GMIL Closure gmail.com
GOGL Closure google.com
ISHK Prototype

4 imageshack.us
LIVE research.sun.com/projects/lively
MECM SproutCore

5 me.com
TWIT jQuery twitter.com
WIKI wikipedia.com
WORD jQuery wordpress.com
YTUB youtube.com
ALL Average over 103 sites

Figure 1. Selected JavaScript-enabled web sites.
1 cappuccino.org 2jquery.com 3code.google.com/closure

4prototypejs.org 5sproutcore.com

5 www.mozilla.org/rhino.
6 http://www.cs.purdue.edu/homes/gkrichar/js

Constructor Return “type”

• Constructors are “just”
functions that side-effect
this.

• Accordingly a constructor
can return different “types”,
i.e. objects with different
properties

1 2 5 10 20 50 100 200

1
10

10
0

10
00

10
00
0

function Person(n,M){
 this.name=n;
 this.sex=M;
 if(M){
 this.likes= “guns”
 }
} #of different “types” returned by a constructor

>2K constructors
monomorphic

1 constructor
returns

~300 “types”

Object Lifetimes
Twitter

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

Object Lifetimes
Google

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

Sunspider

v8

benchmarks for free

Richards, Gal, Eich, Vitek. JSBench: Automating the Construction of JavaScript Benchmarks. OOPSLA’11

JS Benchmarks
Sunspider, V8, etc.

• Consistent behavior

• Easy to use

• Long-running (in principle)

• Wildly unrealistic 

Real web pages

• Browser-dependent

• Difficult to automate

• Short-running (actual compute time)

• Representative by
definition

JSBench

Record:

• HTTP proxy

• JS instrumentation

• JS library log use of APIs 

Replay:

• APIs replayed from log

• “Push-button” benchmarks

• Works on any JS engine

Record and Replay

1.5.0.9 2.0.0.20 3.0.9 3.5.19 3.6.17 4.0.1 5.0.1 6.0.2

0

10

20

30

40

50

60

Firefox Speedup SunSpider vs JSBench

SunSpider JSBench

Version

S
p

e
e

d
u

p
 r

e
la

ti
ve

 t
o

 1
.5

.0
.9

49x

4x

Research v. The World

Microsoft Research

Research v. The World

Mozilla

Research v. The World

Performance
Part II

how we measure things

Parameter Core 2 Pentium 4 m5 O3CPU
Operating System Linux 2.6.25 Linux 2.4.21 NA
Tool Chain gcc 4.1.3, icc 10.1 gcc 4.2.1 gcc 4.1.0
Measurement papi-3.5.1 / perfmon-2.8 papi-3.0.8 / perfctr-5.2.16 NA
Micro-architecture Core NetBurst Alpha
Clock Frequency 2.4 GHz 2.4 GHz 1GHz
memory 8G 2G 512M
L1 32K Ins., 32K Data 12K Ins. 8K Data 32K Ins. 64K Data
L2 128K Unified 512K Unified 2M Unified
L3 4096K NA NA
TLB entries 512 64 48 Ins. 64 Data

Table 2. Description of the machines used in our study to show the effects of measurement bias.

3.3 Following best practices

With all aspects of our measurements we attempted to be
as careful as possible. In other words, the measurement bias
that we demonstrate later in the paper is present despite our
following best practices.

• Except in the experiments where we add environment
variables, we conducted our experiments in a minimal
environment (i.e., we unset all environment variables that
were inessential).

• We conducted all our experiments on minimally-loaded
machines, used only local disks, and repeated each ex-
periment multiple times to ensure that our data was rep-
resentative and repeatable.

• We conducted our experiments on two different sets of
hardware and (when possible) one simulator. This way
we ensured that our data was not an artifact of the partic-
ular machine that we were using.

• Some Linux kernels (e.g., on our Core 2) randomize the
starting address of the stack (for security purposes). This
feature can make experiments hard to repeat and thus we
disabled it for our experiments.

4. Measurement Bias is Significant and
Commonplace

This section shows that measurement bias is significant and
commonplace. By significant we mean that measurement
bias is large enough to lead to incorrect conclusions. By
commonplace we mean that it is not an isolated phenomenon
but instead occurs for all benchmarks and architectures that
we tried.

We quantify measurement bias with respect to the fol-
lowing question: how effective are the O3 optimizations in
gcc? By “O3 optimizations” we mean optimizations that O3

introduces (i.e., it does not include optimizations that carry
over from O2).

4.1 Measurement bias due to link order

We first show the measurement bias due to link order for all
benchmarks and then discuss one potential cause for it on
one benchmark.

linking order

0.95

1.00

1.05

1.10

d
e
fa

u
lt

a
lp

h
a
b
e
tic

a
l 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

cy
cl

e
s(

O
2

)
/

cy
cl

e
s(

O
3

)

(a) Perlbench

0.95

1.00

1.05

1.10

g
cc

lib
q
u
a
n
tu

m

p
e
rl
b
e
n
ch

b
zi

p
2

h
2
6
4
re

f

m
cf

g
o
b
m

k

h
m

m
e
r

sj
e
n
g

sp
h
in

x

m
ilc

lb
m

!
!

!

!

! !
! !

!

!

!

!

default
alphabeticalcy

cl
e
s

(O
2
)

/
cy

cl
e
s

(O
3
)

(b) All Benchmarks

Figure 2. The effect of link order on Core 2.

4.1.1 The extent of measurement bias

Figure 2 (a) explores the effect of link order on the speedup
of O3 for perlbench. To obtain this data, we compiled perl-
bench 33 times; the first time we used the default link order
(as specified by the make file), the second time we used an
alphabetical link order (i.e., the .o files appeared in alpha-
betical order), and the remaining times we used a randomly
generated link order. A point (x, y) in Figure 2 (a) says that
for the xth link order we tried, the speedup of O3 was y. For
each point, we conducted five runs each with O2 and O3 ;
the whiskers give the 95% confidence intervals of the mean.

268

Mytkowicz, Diwan, Hauswirth, Sweeney. Producing Wrong Data
Without Doing Anything Obviously Wrong! ASPLOS’09

Know the goals

● Ends-based

– Performance characteristics of a single system

– Comparison of two or more systems

● Explanatory

– Find hints, evidence to explain observed behavior

● Scope

– How general answer we’re looking for?

Usual goals in PL/Systems

● Ends-based

– Improvement over the best performing system

(in execution time, parallel speedup, power consumption, code size, pause
time, reaction time)

– Measured on application benchmarks, kernels

● Explanatory

– Explain the improvements/overheads (cache misses, cache size, TLB, time
spent in GC, memory utilization)

– Sometimes using directed micro-benchmarks

● Scope

– Pick one or two common platforms & OS

– Common benchmark suites

Kinds of performance quantities

● Responsiveness

– Time (response time, latency)

– Time between arrival of packet to the gateway and its successful delivery to
destination

● Productivity

– Rate (throughput, speed, network bandwidth)

– Number of transactions processed per second by application server

● Utilization

– Percentage of time a particular resource is at least at given load level

– Percentage of time the CPU is not running the idle task

● Stalls

– Cache-misses, page-faults, pipeline

Prevailing metrics in PL/Systems
are based on execution time

● Ratio of times – measure of optimizations

– Improvement in execution time

– Speed-up, parallel speed-up, performance overhead

● Absolute time

– Time of a system to boot and start accepting input

– Time of a garbage collection cycle

– Pause time in concurrent garbage collector

– Time to call a function

Factors impacting execution time

● Fixed effects

– Algorithm/code/optimization – what we work on

– Input (benchmark programs)

– CPU, OS, libraries, compiler optimizations, location in
virtual memory

– Report (reduce scope) or randomize

● Random effects

– Location in physical memory, system load, scheduling,
context switches, hw interrupts, randomized algorithms

– Model, summarize using statistics

out <- readLines("fop.out")
rlines <- grep("==== DaCapo .* in [0-9]+ msec.*", out, val=T)
timesms <- as.numeric(gsub(".* in ([0-9]+) msec.*","\\1",rlines))
x <- timesms / 1000

for I in `seq 1 100` ; do
java -jar dacapo-9.12-bach.jar fop

done > fop.out 2>&1

Run DaCapo fop benchmark (Java) repeatedly, record execution times

Read the times into R, into vector “x” (in seconds)

Show first 10 times

> x[1:10]
[1] 2.750 1.785 1.627 1.672 1.667 1.584 1.557 1.730 1.505 1.464

We assume times are repetitions of the same process,

we have the same expectations about x[1] as about x[2].

We assume times are (statistically) independent – the

fact that x[1] is 1.785 does not give us a clue what x[2]

will be.

Show a histogram

hist(x, freq=T) 52 of the times are
between 1.4s and 1.6s

2 measured times are
between 2.6s and 2.8s

We assume all times come from the same underlying process. With
increasing number of iterations, the shape of the histogram should stabilize.

[s]

Histogram with estimate of
probability density function

hist(x, prob=T, ylim=c(0,5))
lines(density(x))

histogram: relative frequency of
measurements between 1.8s and 2.0s
was the area of this bin (0.05)

density: probability of measured
time to be between 1.5s and 1.7s
is the area below the density curve,
between 1.5 and 1.7.

Under our assumptions, the true density function
would fully describe the execution times of the benchmark.

FFT: re-running the benchmark
Now we have 100 runs of the benchmark (before we only looked at 1 run),
from each run we have 2048 measurements.

runs <- lapply(1:100, function(n) {
 d <- read.table(
 paste("fft_ia64/run", n, ".out", sep=""),
 header=T
)
 d[[1]]
})
ia64 <- do.call(c, runs)
ia64 <- ia64/(800.179008*1e6)

File names are like fft_ia64/run1.out

Vector of 2048 measurements
(first column of result data frame)

List of 100 vectors (100 runs of the benchmark)

Vector of 100 * 2048 measurements

FFT: re-running the benchmark
Lets explore the sequence of measurements from different runs. plot(ia64)

FFT: re-running the benchmark
Lets explore the sequence of measurements from different runs.

plot(ia64[1:(2048*5)])

Benchmark runs

(a simple variant of DEX scatter plot)

● Different executions of a benchmark have
different performance

– Plus with FFT, the difference is much bigger than
between iterations in the same run

● Uncontrolled fixed effect

● Must re-run executions to avoid bias

– And given the big impact of “execution”, no need
to repeat iterations within execution

Non-determinism in execution
(that does not appear in iterations)

What is the cause of this non-determinism?

runs <- lapply(1:100, function(n)
 read.table(paste("fft_ia64/run", n, ".out", sep=""), header=T)
)
ia64 <- do.call(rbind, runs)
plot(ia64)

Joining data frames from multiple runs

Non-determinism in compilation
(that does not appear in executions)

● On some systems, linking order impacts
performance (e.g. SPECCPU, training size)

– Controlled fixed effects

– Should be randomized – and then need to repeat
compilation

● On some systems, build is non-deterministic

– e.g. C++ compiler implementing anonymous
namespaces

● Need to repeat compilation...

NOTE: naming of identifiers has also been reported to impact
performance; code layout by function/data order does too..

Highest level for repetition

● Find the highest “level” of non-determinism in the
given system/benchmark

– Identify important uncontrolled fixed effects and randomize
them (like linking order, code layout)

– Check if building is deterministic, binaries have different
performance

● If it is cheap enough, repeat at a higher level anyway

– If execution is cheap, repeat whole executions always

● If in doubt, repeating at a higher level is never wrong

readDacapo <- function(fn) {
 out <- readLines(fn)
 rlines <- grep("==== DaCapo .* in [0-9]+ msec.*", out, val=T)
 timesms <- as.numeric(gsub(".* in ([0-9]+) msec.*","\\1",rlines))
 timesms / 1000
}
x <- readDacapo("dacapo/chart6/chart6_1_1.out")
plot(x)

Read chart6 times into R, into vector “x” (in seconds)

The data is not independent in initial section of this execution,
possibly due to initialization/warm-up

Dealing with warm-up

● Identify #iterations affected by initialization

– Using run-sequence plots of different scales

– Validating on several runs

– Only obvious initialization, after which results are stable/similar

● Identify #iterations to independent state

– Using acf, lag.plot, run-sequence plots

– Only independent data can be used for summarization
using confidence interval

● Neither stability nor independence is always reached

● If not, can only use 1 number from run for summarization

Comparing two systems

Tnew Time on the new system (usually ours). Lower is better.

Told Time on the old/baseline system.

1−
Tnew

T old

0.72 (72%)

Told

T new

2.63 (263%)
Told

T new

−1

Percentage improvement in
execution time

“Percentage improvement
in speed”

T new

T old

0.28 (28%) Ratio of execution times

3.63 (363%, 3.63x) Speedup

58s

16s

